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ABSTRACT

Graph Neural Networks (GNNs) have demonstrated both empirical efficiency
and universal expressivity for solving constrained optimization problems such as
linear and quadratic programming. However, extending this paradigm to more
general convex problems with universality guarantees, particularly Second-Order
Cone Programs (SOCPs), remains largely unexplored. We address this challenge
by proposing a novel graph representation that captures the inherent structure
of conic constraints. We then establish a key universality theorem: there exist
GNNs that can provably approximate essential SOCP properties, such as instance
feasibility and optimal solutions. We further derive the sample complexity for
GNN generalization based on Rademacher complexity, filling an important gap for
Weisfeiler-Lehman-based GNNs in learning-to-optimize paradigms. Our results
provide a rigorous foundation linking GNN expressivity and generalization power
to conic optimization structure, opening new avenues for scalable, data-driven
SOCP solvers. The approach extends naturally to p-order cone programming for
any p > 1 while preserving universal expressivity and requiring no structural
modifications to the GNN architecture. Numerical experiments on randomly
generated SOCPs and real-world power grid problems demonstrate the effectiveness
of our approach, achieving superior prediction accuracy with significantly fewer
parameters than fully connected neural networks.

1 INTRODUCTION:

Second Order Cone Programming (SOCP) represents a fundamental class of convex optimization
problems with numerous real-world applications (Lobo et al.l|1998)), including optimal power flow
(Gan et al., 2014), trajectory planning (Liu et al.,|2016), image restoration (Goldfarb & Yinl [2005),
signal processing (Shi et al.,|2014), and network localization (Tseng,[2007). However, traditional
algorithms, such as primal-dual interior point methods, face computational limitations in large-scale
applications, particularly in real-time scenarios where rapid response is crucial.

Recent advances in machine learning, such as
the learn-to-optimize (L20) paradigm (Chen
et al., 2022a; |L1 & Malik, 2016)), have enabled
solving optimization problems in real-time.
Specifically, graph neural networks (GNNs)
have been proven efficient in training by lever-
aging the inherent graph structures of the prob-
lem. For instance, linear programs (LP) can be
modeled as bipartite graphs with variable and
constraint nodes (Chen et al., [2022b)), enabling
efficient learning with a parameter sharing mech- Figure 1: GNN expressivity for convex programs.
anism over GPUs. Beyond empirical success,

theoretical foundations, including universal approximation capabilities, have been established for
GNN applications in (mixed-integer) LP (Chen et al.| |2022b; 2023), quadratic programming (QP)
(Chen et al.} 2024b)), and convex quadratically constrained QP (Chen et al., [2024b; Wu et al., |2024)).
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Despite these advances, extending GNNs to more general convex programs like SOCP remains an
open challenge. A key difficulty lies in the hybrid structure of second-order cone constraints, which
involve both linear parts and non-linear norms. Effectively modeling the interplay between them and
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encoding constraints into graphs remains largely open. This paper proposes a novel GNN architecture
with universal approximation capabilities for SOCPs, making the following contributions:

> We propose a novel graph representation for SOCPs, which exploits linear relationships within the
non-linear conic constraint and decomposes it into separated nodes for efficient graph representations.

> Based on proposed graph representations, we design SOCP-GNNS, to predict the key properties of
SOCPs, including instance feasibility and optimal solutions, with universal expressivity guarantees.
Our GNN design and expressivity guarantees can be extended to p-order conic programming for
p > 1 without GNN structural modifications.

> We further derive the sample complexity of the SOCP-GNNs for generalization. Such analysis is
general and can also be extended to other Weisfeiler-Lehman-based GNN approaches in the L20
community (Chen et al.,|2022b; 2023; /Wu et al., 2024).

> Our experiments demonstrate that the expressivity of designed GNNs, which use fewer parameters
to achieve better prediction accuracy compared to fully connected NN, in both the synthetic SOCP
dataset and the real-world power grid optimization.

To the best of our knowledge, this is the first GNN design for SOCP with universal expressivity
guarantees, and also the first work to analyze the generalization ability of Weisfeiler-Lehman-based
GNNs designed in the L20 paradigm.

2 RELATED WORK

GNN Expressivity in L20 Paradigms: We review two primary paradigms for analyzing GNN
expressivity for optimization problems: the Weisfeiler-Lehman (WL)-based and Algorithm-Unrolling
(AU)-based frameworks.

The WL-based framework models optimization problems as graphs, where nodes represent variables
and constraints, with edges modeling their interactions. It then links the GNN’s expressive power
with WL tests on graphs. Building on established foundations for (mixed-integer) linear programs
(LP) (Chen et al.| 2022b; 2023)), researchers have extended this framework to more complex problems
such as quadratic programs (QP) (Chen et al., [2024b)) and quadratically constrained QP (QCQP) (Wu
et al.;2024). A key challenge is representing non-linear constraints, as encoding complex interactions
into nodes and edges is non-trivial. Recent work has addressed convex quadratic constraints through
dynamic edge updates (Chen et al.,|2024b) or augmented quadratic variable nodes (Wu et al.| 2024).
However, extending existing frameworks to represent general conic constraints like second-order
cones remains an open question (see Appendix [A.T.T|for details).

The AU-based paradigm maps iterative steps of specialized algorithms (e.g., primal-dual methods)
onto GNN layers. By aligning GNN layers with known algorithms for specific problems, such as
LP (Qian et al.} 2024; [Li et al., [2024ajb; [2025)), QP (Qian & Morris, 20254} |Yang et al., [ 2024a), and
combinatorial problems (Yau et al., 2025} |He & Vitercik, 2025), universality and parameter com-
plexity can be naturally established through existing algorithmic convergence properties. However,
representing more complex algorithmic steps involving non-linear operations (e.g., factorization or
projection) is non-trivial. Furthermore, the GNN’s expressivity is inherently limited by the underlying
capability of the algorithm itself (see Appendix[A.T.2)for details).

Generalization of GNNs and L20: We briefly review several studies on the generalization ability of
both GNNs and L20 paradigms (see Appendix [A.2]for details).

To study the generalization capability of GNN and its variants, researchers have leveraged multiple
ways, such as Vapnik—Chervonenkis(VC) dimension (Scarselli et al., 2018} Morris et al., 2023} [Franks
et al.|, 2024; |D’Inverno et al., [2025), Rademacher complexity (Garg et al., 2020; [Pellizzoni et al.,
2024), PAC-Bayes bound (Ju et al., 2023}, [Liao et al., [2020)), and stochastic optimization (Tang &
Liu, 2023). However, these works cannot be directly applied to WL-based GNN frameworks under
the L20 paradigm due to the continuous feature space of optimization problems and the difference
in GNN structures. The generalization performance of L20 or data-driven methods has also been
studied from many perspectives, including VC dimension (and pseudo dimension) (Balcan et al.,
2021)), loss landscape (Yang et al., [2023)), and PAC-Bayes bound (Sucker & Ochs|, 2025; Sambharya;
& Stellatol, 2024). However, these works are not specifically designed for WL-based GNNs in L20O
paradigms.
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In this work, we extend the WL-based framework to optimization problems with second-order cone
constraints, a general class that encompasses LP, QP, and convex QCQP, with extensive real-world
applications. Our specialized GNN achieves universal expressivity capabilities while maintaining
computational efficiency, establishing a foundational approach for extending GNNs to broader conic
programming domains. Additionally, we provide the first generalization analysis for WL-based GNNs
in the learning-to-optimize paradigm, establishing theoretical foundations for sample complexity
when applying GNNss to solve optimization problems.

3  PROBLEM DEFINITION AND OPEN ISSUES

We consider a general second-order cone programming (SOCP) (Alizadeh & Goldfarb, [2003)) as:

min eles st Fr<g, |Ax+Dbs<cla+d;,ic][m] (1
I<z<lr
where decision variables are x € R™ and the problem parameters are e € R™, A; € RFixn p. e RFi,
c; €ER", d; e R, F e R, ge R [ €R” andr € R".

Open issue: While GNNs have successfully modeled linear and convex quadratic constraints
with expressivity guarantees, handling more general second-order cone (SOC) constraints remains
challenging. Additionally, the generalization capacity of GNNs for optimization problems remains
largely unexplored. While previous work focused on expressivity, understanding how many training
samples are needed for good performance over new instances is critical for trustworthy applications.

4 METHODOLOGY
We design the following layered graph representation to address the expressivity of GNN for SOCP:
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Figure 2: The graph representation of SOCPs and the message passing steps in GNN design. A
specific SOCP instance and its corresponding SOCP-graph are included in Fig.[6] Appendix [B.4]

4.1 GRAPH REPRESENTATION OF SOCPs

As shown in Fig.[2] the graph representation of an SOCP consists of four types of nodes, to represent
decision variables (V1 ), polyhedron constraints (V'5), minor conic constraints (V3), and major conic
constraints ( ;):

* Vi := {v;}em denotes decision variables, where each node v; is associated with a feature tuple
(ej,1;,7;), representing the objective coefficient, variable lower and upper bounds.

* Va := {sk }repp) denotes polyhedron constraints equipped with feature (gy,) for each node.

o V3= {ozl}ia% denotes the minor conic constraint, where each node o;; represents the i-th conic

constraint’s [-th component, with feature (b; ;).

* Vi := {qi}ie[m) denotes the i-th conic constraint with feature (d;).

Meanwhile, the SOCP graph includes four types of edges to model the interactions between the
decision variables and different constraint nodes:
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* ¢ € V1 x V denote the edges between the variable node v; and the polyhedron constraint node
sy, with weight Fy,;.

* ¢j i € V1 x V3 denote the edge between variable node v; and minor conic constraint node o;;,
with weight A; ;.

* ¢j; € V1 x Vy denote the edge between the variable node v; and major conic constraint node g¢;,
with weight ¢; ;.

* e;,; € V3 x V, denote the edge between node 0;; and node ¢;, with a constant weight 1.

Remark 1 (Insights of Graph Design). For linear objectives and polyhedral constraints, our structure
builds upon foundational works (Chen et al., 2022b)). To deal with nonlinear second-order cone
constraints, we exploit the linear relationships within the conic constraint, specifically, between A;
and z, and between c¢; and x. By representing the left-hand side and right-hand side as separate
constraint nodes (V3 and V), with linear interactions to decision nodes separately, and connecting
V3 and V; via additional edges, we decompose the challenging nonlinear conic constraint into
components amenable to efficient graph representations. Such decomposition and representation are
not limited to the second-order cone, and we provide more discussion after Theorem

Remark 2 (SOCP — QCQ. One may note that SOC constraints, || Az + bz < ¢ + d, can be
transformed into quadratic constraints by squaring both sides, potentially enabling the application
of previous work on quadratic constraints (Wu et al., 2024} |Chen et al., |2024b). However, this
transformation introduces two significant challenges: (i) the resulting quadratic coefficient matrix
AT A — cc™ may not be positive semidefinite, rendering previous work theoretically inapplicable
for such a non-convex QC; and (ii) the quadratic coefficient matrix ATA —ccT may be dense,
losing the potential sparse/low-rank structure of A and ¢ in the SOC constraint and making the graph
representation and message passing inefficient.

Remark 3 (Convex QCQP — SOCP). Conversely, we may transform convex quadratic constraints
of the form " Qz + ¢"x + d < 0 into SOC constraints for more effective graph representation.
For example, we can apply matrix decomposition Q = LLT where L € R"*", and reformulate the
constraint as [|[(1 + ¢z + d)/2; L] ||2 < (1—c"x —d)/2. Such a transformation is particularly
efficient for low-rank matrices () where r < n, as it reduces the complexity of the graph representa-
tion for original convex quadratic constraints, from quadratic node (Wu et al., 2024) to minor conic
constraint node via SOC graph representation. The convex quadratic objective in QCQP can also
be converted to a linear objective by adding the epigraph constraint (Alizadeh & Goldfarb, [2003)).
Thus, a convex QCQP with n variables and m quadratic constraints is equivalent to an SOCP with
n + 1 variables and m + 1 conic constraints (potentially low-rank). We further provide a quantitative
comparison in the next section (Table[3).

4.2 MESSAGE PASSING IN SOCP-GNNSs

Given the established graph representation of SOCPs, we propose message-passing (MP)-GNNs,
consisting of an embedding layer, 1" message-passing layers (each comprised of three sub-layers),
and a readout layer, detailed as follows:

» Embedding Layer: For all nodes, the input features h%%, h0% h0:° h0:9 are initialized by embed-
ding the node features into a hidden space R"0, where hy is the space dimension. Specifically,

ROV gl (hY),Yu € Vi, h"® « §3(h°),Vs € Vs
R «— §3(h°),Yo € Vs, h"? « g3(h?),Vq € V4

where g} are learnable embedding functions for [ = 1,2, 3, 4, and h", h*, h°, h? denotes the node
features for v € Vi,s € V5,0 € Vs, q € V4, respectively.

* Message-Passing Layer: As shown in Fig.[2] each message-passing layer consists of three sub-
layers for updating the features of nodes with learnable functions f/, gf. For notation simplicity,
w;; represents the weight of edge e;; and 7(n) € {1,2, 3,4} denotes the index of the node set for
a node n.

'Please refer to Appendix for detailed equivalent SOCP formulations.
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— Updating for all constraint nodes (V; — Vo + V3 4 Vy): Vs € Vo and Vn € V3 UV, we
update the embedding as:

10 e (K5 00 ) B st (K 3 w60
veVy veEV]L

— Updating between major and minor conic constraint nodes (V3 — V, and V; — V3):
Vq € V4 and Vo € V3, we update the embedding as:

hH—Lq « 92 <}‘1t,q, Z wo,qfi(}_lft’o)> ’ ht+1,o - g:_:) <}_lt,o’ Z wq,ofst(ht+1’q)>
0EV3 qeVy
— Updating for variable nodes (1, + V3 + Vy — V1): Vv € V7, we update the embedding as:
AT gg (h > we 6B, weu fr(ATHO), D wq,ufé(htm))
seVa o€eVs qeVy

* Readout layer: The readout layer leverages a learnable function f,, to map the node embedding
hT>V output by the T-th (i.e., last) message-passing layer for v € Vi U V5 U V3 U V4, to a readout
y in a desired output space R%, where a is the output dimension. For example:

— Graph-level scalar output (e.g., predicting SOCP feasibility with a = 1):
Y = fou (I1, I2, I3, 1)
— Node-level vector output (e.g., predicting SOCP optimal solutions with a = n):
Yi = fou (K", 11, I, I3, 1y)
where Iy = 3 oy, K1Y, I = D sevs TS, Iy = D octs e, I, = D eva hT,
As mentioned in Remarks [2] and 3] our

SOCP-GNN also efficiently handles con-
vex QCQPs by reformulating them into

| Num. of Nodes ~ MP Complexity

SOCP. Based on the GNN architecture de-  (Wu et al| 2024) On? +m) O(n® + mn?)
scribed above, we analyze both the node  (Chenetal[[2024b) | O(mn) . O(an)m
and message passing complexity compared ~ Ours On+3"gri) Oln-3Tors)

to previous works on convex QCQP (Wu Figure 3: Complexity comparison of GNNs for con-

et al., 2024; Ch?n et al}, 2024b).  Our vex QCQP with n variables, m quadratic constraints, and
SOCP-GNN achieves the same order of quadratic coefficient matrix of ranks r; < n,i = 0,...,m,

node and message passing complexity as  where i = 0 indicate the quadratic matrix from objective.
state-of-the-art GNN's designed specifically

for QCQP with general parameter coefficients. In practice, the coefficient matrices may exhibit
sparse or low-rank structure, resulting in different empirical performance: (i) When the quadratic
coefficients (); are sparse, previous GNNs benefit from reduced connections and message passing.
After reformulating to SOCP via decomposition Q; = L;L7, the resulting graph may lose this
sparsity. However, for structured sparse matrices (e.g., banded or block diagonal (Davis} 2006; (Golub
& Van Loanl [2013)), sparsity is preserved in the SOCP-graph, and our SOCP-GNN inherits the
computational benefits. (ii) When the quadratic matrices exhibit low-rank structure, SOCP-GNN
becomes more efficient with reduced graph size and message passing complexity.

Therefore, SOCP-GNN not only extends theoretical applicability to the broader class of SOCP beyond
convex QCQPs, but also maintains competitive computational complexity when restricted to the
convex QCQP subclass. See detailed discussion in Appendix [B.3]

5 UNIVERSALITY OF SOCP-GNN

With the established graph representation and corresponding GNN, we formally prove the universality
of the GNN for predicting key properties of SOCPs, like the instance feasibility and optimal solutions.
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5.1 BASIC DEFINITIONS

Definition 5.1 (Spaces of SOCP-Graphs). Let g;‘gg};’“ kb denote the set of graph representations
for all SOCPs with n variables, m conic constraints with dimension k1, ..., k.,,, and b polyhedron
constraints.

Definition 5.2 (Spaces of SOCP-GNNs). Let fglézl};kl""’km’b(Ra) be the set of message passing

n,m,ki,...

GNNs proposed in Sec. that map the input graph in Gy kb o a target output in R%. Each
GNN is parameterized by continuous embedding functions g; ,1; € [4], continuous hidden functions
in the message passing layers glt2 ,lo € 6] and ffg, I3 € [8], and the continuous readout function foy.

Definition 5.3 (Target mappingsEb. Let Gsocp be a graph representation of a SOCP problem. We
define the following target mappings.

* Feasibility mapping: ®r.,s(Gsocp) = 1 if the SOCP is feasible and Pyes5(Gsocp) = 0 otherwise.

* Optimal solution mapping: @, (Gsocp) = *, where z* is the optimal solution of the SOCPEl

5.2 SEPARATION POWER OF THE SOCP WEISFEILER-LEHMAN TEST

To investigate the relationship between target properties and SOCP-GNNs, we first analyze the
separation power of SOCP-GNNs. The separation power of traditional GNNss is closely related to the
Weisfeiler-Lehman (WL) test (Weisfeiler & Leman| |1968)), a classical algorithm to identify whether
two given graphs are isomorphic. To apply the WL test on SOCP-graphs, we design a modified WL
test, called the SOCP-WL test, in Algorithm[I] Below, we provide the main theoretical result about
the separation power of the SOCP-WL test.

Theorem 1. Let T, 7 (with given sizes n,m, ki, ..., km, b, encoded by G, G € g;g?,;’““"”“m’b) be
two SOCP instances. If the G and G cannot be distinguished by the SOCP-WL test, then: For any

n,muk1,km, A

target mapping ® : Gg)ip b R, ®(G) = ®(G) always holds up to permutations.

The detailed proof can be found in Appendix[C| By Theorem[I} we can see that: any two instances
which the SOCP-WL test cannot separate share the same target property we want (up to permutations).
Hence, demonstrating SOCP-GNN is equivalent to SOCP-WL guarantees its sufficient separation
power, as shown in Appendix [C]

5.3 UNIVERSAL APPROXIMATION OF SOCP-GNNS

Beyond separation power, expressive power (i.e., approximation capability) is also critical. Here, we
provide the main theoretical results to validate the SOCP-GNN'’s universal expressivity for SOCP,
i.e., there always exists an SOCP-GNN that can universally approximate target mappings in Def.[5.3|
within given error tolerance:

n,m,k1,...,km,b
’

Theorem 2. For any Borel regular probability measure P on the space of SOCPs G/l
any target mapping o : gggg};’“““"’“m*” — R® defined in Def. and any 6,€ > 0, there exists
F e Fimshnkmb(Ray gich that:

P{||F(Gsocp) — ®(Gsocr)|| > 6} < e. )

The detailed proof is provided in Appendix [C| This Theorem formally establishes the universal
expressivity of the proposed SOCP-GNNs. The high-level proof structure follows established
foundations for LP in (Chen et al.l 2022b). However, previous graph design and expressivity proof
can not directly be extended to the challenging non-linear SOC constraints. To this end, we leverage
the equivariance, convexity, and separabilir}ﬂ of the /5 norm in SOC, and then establish the expressive
power of proposed SOCP-GNNs. We further extend the universal expressivity of the proposed GNN
to p-order cone programming in Appendix[C.6} since the core lemmas in our proof are also satisfied
for the £, norm.

2For more target mappings, please refer to Def. H Theorem also holds for these target mappings.
3Since SOCP may admit multiple optimum, we choose the one with minimum /> norm (Chen et al., 2022b).
4 I . I

Please refer to those definitions in Definition and
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6 GENERALIZATION ABILITY OF SOCP-GNNS

Beyond expressivity, the generalization capability of GNNS, i.e., how many samples are needed
for training to achieve good performance on unseen instances, is critical for real-world trustworthy
applications. While previous foundational works have focused on expressivity (Chen et al., 2022bj
2024b)), the generalization ability of GNNs designed for optimization remains largely unexplored.
Addressing this gap, our work takes an initial step towards formally analyzing the generalization
properties of these models.

We consider a subclass of SOCP problems denoted as X' C ggo’?[’,kl kb with bounded parameters

(e, {A: 1, {bi} 7y, {ei by, {di}i™ ¢, F, g,1,7), and denote N as the problem size, i.e., the total
dimension of all parameters. Without loss of generality, it is sufficient to consider the problem
parameters lie in a ball B,, = {x |||z]|2 < r;} with some positive radius r;.

Definition 6.1 (Lipschitz GNN). A SOCP-GNN f € FgaluFFmb(Ra) is said to be Lipschitz
with respect to the input domain X if and only if 3L > 0 such that for each output component f;,
|fi(x) — fi(2")| < L||x — 2’| holds for all z, 2" € X. And L denotes the Lipschitz constant of f.

We also assume the GNN is Lipschitz (Def. and denote all the SOCP-GNNs whose Lipschitz
constant is no more than L with respect to the input domain B, C RN by A n. We remark that this
Lipschitz assumption is widely adopted in related works on the sample complexity/generalization
ability of graph neural networks (Pellizzoni et al.,|2024; |Garg et al.| 2020; Tang & Liu} 2023} Huang
et al.,|2024a). The Lipschitz condition holds in general if both the input domain and the parameter
space are bounded, while the GNNs are differentiable with respect to the inputs and parameters. We
then present the main theorem for the generalization capability of our GNN:

Theorem 3 (Generalization Bound for SOCP-GNNs). Consider the hypothesis class Ar, n of SOCP-
GNNs with outputs in Y and input SOCP instances X with parameters in B,... Let D be the uniform
distribution over X. Assume the loss function { : Y x Y — R is bounded by p and q-Lipschitz
with respect to the first parameter when the second parameter is fixed. For a training set S of m
samples drawn i.i.d. from D, let h* = arg minpec 4, 5 LD(h be the population risk minimizer and

hg = arg minpe A v ﬁs(h) be the empirical risk minimizer. Then with probability at least 1 — §:
LD(];/S» - LD(h*) < Ctask : B(m7 N7 L7 ’I“) + 2p 2 log(l/é)/m

where the complexity term is B(m, N, L,r) = inf.c[o. /2] [45 + % f:/2 C(v) dv}, with C(v) =

\/(%)N(l — (1 = min((57;)N,1))™) log (22 + 2). The task-dependent constant are defined
as: Cysi = 4q for graph-level predictions with outputs in [—r,r]; and Cryg = 4\/§nq for node-level

predictions with outputs in [—r, r|™. Here, n denotes the number of decision variables.

The detailed proof can be found in Appendix [D.3] The conditions in Theorem [3] are satisfied by
many common loss functions, including margin loss and MSE loss under mild regularity conditions.
Theorem [3] provides the first sample complexity analysis for WL-test based GNNs, particularly
SOCP-GNNE, establishing a solid theoretical foundation for task-specific sample complexity research.
As demonstrated in Theorem (3] sample complexity deteriorates as GNN complexity or problem
dimension increases (i.e., as L or N grows larger). This relationship is directly evident from the
proofs in Theorems [T3]and [T4]

Remark 4. We also analyze the VC dimension and pseudo dimension of SOCP-GNNs with scalar
outputs in Appendices[D.I]and [D.2] respectively, for SOCPs whose parameters can be encoded into
discrete labels (e.g., problems where all coefficients are binary-valued). However, these theoretical
results reveal practical limitations: for continuous problem parameters typical in real-world SOCPs,
the resulting VC and pseudo dimensions are often infinite. This necessitates more powerful analytical
tools capable of handling continuous feature spaces, such as Theorem [3] Under the same assumptions
as Theorem 3| our theoretical framework extends directly to other distributions over different SOCP
problems and other WL-based approaches in L20 paradigms, since the application of Tonelli’s
theorem, Jensen’s inequality, and contraction lemmas all remain valid as proven in Appendix [D.3]

>Here, the population(true) risk is defined as Lp(h) = E.~p(l(h(x),y(z))) and the empirical risk for
training set S is defined as W

value.

, where y(z) is the true label of SOCP instance x, e.g. objective
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7 NUMERICAL EXPERIMENTS

In this section, we demonstrate the efficiency of the proposed SOCP-GNN on both synthetic SOCP
instances and real-world power grid optimization problems.

To validate the empirical advantages of SOCP-Graphs (Sec. [.1), we employ a fully-connected
neural network (FCNN) as one baseline, where the FCNN receives the same problem parameters
as input in vectorized form. This comparison isolates the benefits of the graph structure inherent
in SOCP-GNN relative to a standard neural network approach. To validate the designed message-
passing mechanisms (Sec. .2, we compare our SOCP-GNN with vanilla Message Passing Neural
Network (MPNN) (Gilmer et al.l2017) and Graph Isomorphism Network (GIN) (Xu et al.;|2019).
We note that no existing graph representation has been specifically designed for SOCP problems
with non-linear constraints. Therefore, we compare all of those GNN-based baselines to the same
graph structure proposed in this work. Notably, vanilla MPNN and GIN perform message passing
based on the adjacency relationships, whereas our approach incorporates well-designed constraint-to-
variable and variable-to-constraint message passing. While SOCP instances can be reformulated as
QCQP, previous QCQP-GNN (Wu et al., 2024; (Chen et al.,|2024b)) do not provide publicly available
implementations, and more importantly, they lack theoretical universal approximation guarantees for
SOCP instances since the associated quadratic constraints are not necessarily positive semidefinite.
Consequently, we focus our experimental comparison on vanilla MPNN, GIN and FCNN baselines.

7.1 SYNTHETIC SOCP INSTANCE

For dataset generation, we randomly sample coefficient matrices and constraint parameters following
the CVXPY| example code structure and parameter settings (Chen et al., 2024b). Each instance
is solved in CVXPY to obtain ground truth solutions, forming our training dataset. We then train
SOCP-GNN using regular supervised learning procedures for optimal solution predictions. We also
test the feasibility classification in Appendix [F]

As shown in Fig. [4(a)} [4(b) and [4(c)] we compare the solution relative error [f|of our SOCP-GNN
against the FCNN, Vanilla MPNN, and GIN baselines across three different problem scales over
100 training epochs. SOCP-GNN demonstrates superior performance across all scales, achieving
substantially lower error on both training and validation sets. For the large-scale 500-dim SOCP
with input dimension 452, 400, our GNN achieves better prediction accuracy while using only
0.35Mb parameters compared to 110Mb for the FCNN baseline (shown in Fig. 5(c))—a 300x
reduction in model complexity. This demonstrates SOCP-GNN'’s parameter efficiency and its ability
to effectively learn target mappings in SOCPs by leveraging the natural sparse graph structure of these
problems. All graph-based neural networks outperform FCNN significantly on synthetic datasets,
further validating the effectiveness of our graph representation. Notably, SOCP-GNN substantially
surpasses other GNN baselines, demonstrating the advantage of SOCP-GNN’s three-sublayer message
passing mechanism over methods relying solely on adjacency relationships.

7.2 SOC-BASED OPTIMAL POWER FLOW

Optimal power flow (OPF) is the fundamental problem in power systems optimization, determining
the most economical operating point while satisfying all constraints. The second-order cone (SoC)
relaxation transforms the non-convex AC power flow equations into tractable convex conic forms (see
formulations in Appendix [E). This relaxation is exact for radial networks and provides near-optimal
solutions for meshed transmission systems (Gan et al.,2014; [Madani et al., 2014}, making it preferred
for real-time operation

We evaluate SOCP-GNN on IEEE test systems ranging from 118 to 500-bus power grids (Babaeine-
jadsarookolaee et al.,[2019). For each grid, we generate problem instances by randomly varying load

The solution relative error (Chen et al.,[2024b)) between prediction & and ground truth x* is as IM“;%%
’ 2

"We note that GNN-based methods have been directly applied to non-convex AC-OPF problems using the
physical graph structure of power grids (Yang et al.| |2024bj; Owerko et al.,[2020; |Varbella et al., |2024). However,
we do not compare with these methods directly because: (1) the SOC relaxation provides a lower bound for the
original AC-OPF problem, making direct performance comparison unfair, and (2) our focus is on demonstrating
GNN universality for convex SOC-relaxed problems. Nevertheless, extending our theoretical framework to
establish universality guarantees for non-convex AC-OPF remains an important direction for future work with
significant practical value.
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Figure 4: (a)-(c): Performance comparison in predicting solutions of synthetic SOCP instances.
The SOCP size are (50,10,10), (100,50,50),and (500,100, 100), respectively. (d)-(f):
Performance comparison in predicting solutions of SoC-OPF. The SOCP size are (596, 854, 555),
(764,1288,732), and (2182,3454,2181), respectively. Here, we denote the size of an
SOCP instance by a tuple (n, b, m), where n represents the number of decision variables, b denotes
the number of polyhedral constraints, and m indicates the number of second-order cone constraints.
The total input parameters for an SOCP (n, b, m) are of dimension O(n - (b + m)).

demands and generator costs, and introducing random line outages (i.e., loss of line connection) to
simulate realistic operational scenarios. We compare against CVXPY with MOSEK solver (on CPU)
and learning-based approaches, including various GNNs and FCNN (on both CPU and GPU for a
fair comparison). Results in Fig(d)4(e)] and ()] show that SOCP-GNN achieves lower errors
across all problem scales with significantly fewer parameters than the FCNN baseline in real-world
scenarios. For real-world OPF problems with sparse structures, SOCP-GNN performs better than on
randomly generated instances in both prediction errors and inference time (shown in Fig. [5(a)|and Fig.
[5(b)), highlighting the potential for real-world applications. Consistent with the results obtained from
the synthetic dataset, experiments on real-world OPF problems further demonstrate the effectiveness
of our graph representation and the benefits of our three-layer message passing mechanism.

7.3 EMPIRICAL STUDY ON SAMPLE/MODEL COMPLEXITY AND SIZE GENERALIZATION

In this section, we investigate the performance of SOCP-GNNs under different model sizes and
training samples. The detailed experiment settings can be found in Appendix [F4] As shown in
Fig. SOCP-GNNs are both scalable and fast at solving SOCPs with superior accuracy.
Since the learnable functions are applied feature-wise, independent of the number of nodes and
edges, the memory cost of SOCP-GNNs remains constant across different problem sizes. We then
analyze the sensitivity of SOCP-GNN to different hidden sizes and training samples as shown in
Fig.[5(e)} Both training and validation losses decrease as hidden layer size or number of training
samples increases, demonstrating the model’s capacity to benefit from additional parameters and data
while validating Theorem 3.

To further validate the Lipschitz assumption in Theorem 3] we use projected optimization method
(Gouk et al.l |2020) to control the Lipschitz coefficient of SOCP-GNN. The results can be found
in Appendix [F.5] From the result, we can see that: the generalization gap decreases as the model
becomes less complex (i.e. we decrease the Lipschitz constant L of SOCP-GNN) as the train error
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Figure 5: (a)-(d): inference time and model size comparison between GNN and FCNN in SOCP and
SoC-OPF problems. (e): sensitivity analysis of GNN on hidden-layer embedding sizes and number
of training samples. (f): generalization ability analysis of GNN on SOCP problems of different sizes.

increases. This enhances the tradeoff between the expressive power and generalization ability of
SOCP-GNN:, as indicated in Theorem@

We also investigate the size generalization capability from small to large-scale problems, with results
shown in Fig. [5(f)) Models trained on larger training samples perform well on smaller testing
instances, while those trained on small samples generalize less effectively to larger SOCP instances.
This observation motivates further research to theoretically characterize the size generalization ability

of GNN training (Huang et al.| 2024b).

8 CONCLUSIONS, LIMITATIONS, AND FUTURE WORKS

This paper introduces a novel graph representation for SOCP, a fundamental class of convex optimiza-
tion problems covering LP, QP, and convex QCQP. We design a novel GNN architecture that exploits
inherent SOC structure for predicting key properties, including feasibility and optimal solutions, with
established universal expressivity guarantees. Our framework extends to p-order cone programming,
broadening GNN applicability in a subclass of conic and polynomial optimization. We establish the
first general framework for analyzing the generalization capability of SOCP-GNN or other WL-based
GNNss, bridging an important research gap. Comprehensive experiments validate both our theoretical
predictions and practical performance.

While our work establishes universality and sample complexity guarantees, several important limi-
tations suggest promising future directions. The parameter complexity of GNNs for optimization
problems remains a significant challenge shared by prior WL-test-based frameworks. One promising
avenue involves combining algorithm-unrolling approaches with the WL-based framework to develop
a unified theoretical analysis of GNNSs for optimization. Another important direction is extending
the GNN paradigm beyond convex settings to handle semidefinite programs and general polynomial
optimization problems. Such extensions would require developing new graph representations and
theoretical frameworks capable of capturing the more complex variable-constraint relations. Fur-
thermore, exploring metrics beyond the naive /5 norm for the SOCP parameter space is crucial. An
optimization-property-aware distance could significantly lower the covering number by better fitting
the problem’s intrinsic structure, directly yielding a tighter generalization bound.

10



Under review as a conference paper at ICLR 2026

REFERENCES

Farid Alizadeh and Donald Goldfarb. Second-order cone programming. Mathematical programming,
95(1):3-51, 2003.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural networks.
arXiv preprint arXiv:2006.15646, 2020.

Sogol Babaeinejadsarookolaee, Adam Birchfield, Richard D Christie, Carleton Coffrin, Christopher
DeMarco, Ruisheng Diao, Michael Ferris, Stephane Fliscounakis, Scott Greene, Renke Huang,

et al. The power grid library for benchmarking ac optimal power flow algorithms. arXiv preprint
arXiv:1908.02788, 2019.

Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen
Vitercik. How much data is sufficient to learn high-performing algorithms? generalization
guarantees for data-driven algorithm design. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pp. 919-932, 2021.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch:
Generalization guarantees and limits of data-independent discretization. Journal of the ACM, 71
(2):1-73, 2024.

Qian Chen, Tianjian Zhang, Linxin Yang, Qingyu Han, Akang Wang, Ruoyu Sun, Xiaodong Luo, and
Tsung-Hui Chang. Symilo: A symmetry-aware learning framework for integer linear optimization.
Advances in Neural Information Processing Systems, 37:24411-24434, 2024a.

Qian Chen, Lei Li, Qian Li, Jianghua Wu, Akang Wang, Ruoyu Sun, Xiaodong Luo, Tsung-Hui
Chang, and Qingjiang Shi. When gnns meet symmetry in ilps: an orbit-based feature augmentation
approach. arXiv preprint arXiv:2501.14211, 2025.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark. Journal of Machine Learning
Research, 23(189):1-59, 2022a.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear
programs by graph neural networks. arXiv preprint arXiv:2209.12288, 2022b.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing mixed-integer
linear programs by graph neural networks, 2023.

Ziang Chen, Xiaohan Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. Expressive power of graph
neural networks for (mixed-integer) quadratic programs. arXiv preprint arXiv:2406.05938, 2024b.

Ziang Chen, Jialin Liu, Xiaohan Chen, Xinshang Wang, and Wotao Yin. Rethinking the capacity of
graph neural networks for branching strategy. arXiv preprint arXiv:2402.07099, 2024c.

Timothy A Davis. Direct methods for sparse linear systems. SIAM, 2006.

Giuseppe Alessio D’Inverno, Monica Bianchini, and Franco Scarselli. Vc dimension of graph neural
networks with pfaffian activation functions. Neural Networks, 182:106924, 2025. ISSN 0893-6080.
doi: https://doi.org/10.1016/j.neunet.2024.106924. URL https://www.sciencedirect,
com/science/article/pi11/S0893608024008530.

Billy J Franks, Christopher Morris, Ameya Velingker, and Floris Geerts. Weisfeiler-leman at the
margin: When more expressivity matters. arXiv preprint arXiv:2402.07568, 2024.

Lingwen Gan, Na Li, Ufuk Topcu, and Steven H Low. Exact convex relaxation of optimal power
flow in radial networks. IEEE transactions on automatic control, 60(1):72-87, 2014.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. In International conference on machine learning, pp. 3419-3430. PMLR,
2020.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks, 2019.

11


https://www.sciencedirect.com/science/article/pii/S0893608024008530
https://www.sciencedirect.com/science/article/pii/S0893608024008530

Under review as a conference paper at ICLR 2026

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263-1272. Pmlr, 2017.

Donald Goldfarb and Wotao Yin. Second-order cone programming methods for total variation-based
image restoration. SIAM Journal on Scientific Computing, 27(2):622-645, 2005.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE international joint conference on neural networks, 2005., volume 2,
pp. 729-734. IEEE, 2005.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regularisation of neural networks
by enforcing lipschitz continuity, 2020. URL https://arxiv.org/abs/1804.04368,

Yu He and Ellen Vitercik. Primal-dual neural algorithmic reasoning, 2025.

Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan Li.
On the stability of expressive positional encodings for graphs, 2024a.

Zheng Huang, Qihui Yang, Dawei Zhou, and Yujun Yan. Enhancing size generalization in graph neural
networks through disentangled representation learning. In Proceedings of the 41st International
Conference on Machine Learning, pp. 20365-20381, 2024b.

Haotian Ju, Dongyue Li, Aneesh Sharma, and Hongyang R Zhang. Generalization in graph neural
networks: Improved pac-bayesian bounds on graph diffusion. In International conference on
artificial intelligence and statistics, pp. 6314—6341. PMLR, 2023.

Bingheng Li, Linxin Yang, Yupeng Chen, Senmiao Wang, Qian Chen, Haitao Mao, Yao Ma, Akang
Wang, Tian Ding, Jiliang Tang, et al. Pdhg-unrolled learning-to-optimize method for large-scale
linear programming. arXiv preprint arXiv:2406.01908, 2024a.

Ke Li and Jitendra Malik. Learning to optimize, 2016. URL https://arxiv.org/abs/1606,
01885.

Qian Li, Tian Ding, Linxin Yang, Minghui Ouyang, Qingjiang Shi, and Ruoyu Sun. On the power of
small-size graph neural networks for linear programming. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024b.

Qian Li, Minghui Ouyang, Tian Ding, Yuyi Wang, Qingjiang Shi, and Ruoyu Sun. Towards explaining
the power of constant-depth graph neural networks for linear programming. In The Thirteenth
International Conference on Learning Representations, 2025.

Renjie Liao, Raquel Urtasun, and Richard S. Zemel. A pac-bayesian approach to generalization
bounds for graph neural networks. CoRR, abs/2012.07690, 2020.

Xinfu Liu, Zuojun Shen, and Ping Lu. Entry trajectory optimization by second-order cone program-
ming. Journal of Guidance, Control, and Dynamics, 39(2):227-241, 2016.

Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. Applications of
second-order cone programming. Linear algebra and its applications, 284(1-3):193-228, 1998.

Ramtin Madani, Somayeh Sojoudi, and Javad Lavaei. Convex relaxation for optimal power flow
problem: Mesh networks. IEEE Transactions on Power Systems, 30(1):199-211, 2014.

Ian Horrocks Matthew Morris, Bernardo Cuenca Grau. Orbit-equivariant graph neural networks. In
2024 The International Conference on Learning Representations(ICLR), pp. 7056-7062. ICLR,
2024.

Andreas Maurer. A vector-contraction inequality for rademacher complexities. In International
Conference on Algorithmic Learning Theory, pp. 3—17. Springer, 2016.

Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18-44, 2021.

12


https://arxiv.org/abs/1804.04368
https://arxiv.org/abs/1606.01885
https://arxiv.org/abs/1606.01885

Under review as a conference paper at ICLR 2026

Christopher Morris, Floris Geerts, Jan Tonshoff, and Martin Grohe. W1 meet vc. In International
conference on machine learning, pp. 25275-25302. PMLR, 2023.

Damian Owerko, Fernando Gama, and Alejandro Ribeiro. Optimal power flow using graph neural
networks. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5930-5934. IEEE, 2020.

Xiang Pan, Tianyu Zhao, Minghua Chen, and Shengyu Zhang. Deepopf: A deep neural network
approach for security-constrained dc optimal power flow. IEEE Transactions on Power Systems,
36(3):1725-1735, 2020.

Paolo Pellizzoni, Till Hendrik Schulz, Dexiong Chen, and Karsten Borgwardt. On the expressivity and
sample complexity of node-individualized graph neural networks. Advances in Neural Information
Processing Systems, 37:120221-120251, 2024.

Chendi Qian and Christopher Morris. Towards graph neural networks for provably solving convex
optimization problems. arXiv preprint arXiv:2502.02446, 2025a.

Chendi Qian and Christopher Morris. Principled data augmentation for learning to solve quadratic
programming problems. arXiv preprint arXiv:2506.01728, 2025b.

Chendi Qian, Didier Chételat, and Christopher Morris. Exploring the power of graph neural networks
in solving linear optimization problems. In International conference on artificial intelligence and

statistics, pp. 1432-1440. PMLR, 2024.

Rajiv Sambharya and Bartolomeo Stellato. Data-driven performance guarantees for classical and
learned optimizers, 2024.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61-80, 2008.

Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik—chervonenkis dimension
of graph and recursive neural networks. Neural Networks, 108:248-259, 2018.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Mohamed Shamseldein. A hybrid gnn-Ise method for fast, robust, and physically-consistent ac power
flow. Electric Power Systems Research, 252:112380, 2026.

Qingjiang Shi, Weigiang Xu, Tsung-Hui Chang, Yongchao Wang, and Enbin Song. Joint beamforming
and power splitting for miso interference channel with swipt: An socp relaxation and decentralized
algorithm. IEEE Transactions on Signal Processing, 62(23):6194-6208, 2014.

Michael Sucker and Peter Ochs. A generalization result for convergence in learning-to-optimize,
2025.

Huayi Tang and Yong Liu. Towards understanding generalization of graph neural networks. In
Proceedings of the 40th International Conference on Machine Learning. PMLR, 2023.

Paul Tseng. Second-order cone programming relaxation of sensor network localization. SIAM
Journal on Optimization, 18(1):156-185, 2007.

Anna Varbella, Damien Briens, Blazhe Gjorgiev, Giuseppe Alessio D’Inverno, and Giovanni
Sansavini. Physics-informed gnn for non-linear constrained optimization: Pinco a solver for
the ac-optimal power flow, 2024. URL https://arxiv.org/abs/2410.04818,

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

B. Ju. Weisfeiler and A. A. Leman. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Tekhnicheskaya Informatsiya, Seriya 2, (9):19-21, 1968.

13


https://arxiv.org/abs/2410.04818

Under review as a conference paper at ICLR 2026

Chenyang Wu, Qian Chen, Akang Wang, Tian Ding, Ruoyu Sun, Wenguo Yang, and Qingjiang Shi.
On representing convex quadratically constrained quadratic programs via graph neural networks.
arXiv preprint arXiv:2411.13805, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https
//openreview.net/forum?id=ryGs6iA5Km.

Junjie Yang, Tianlong Chen, Mingkang Zhu, Fengxiang He, Dacheng Tao, Yingbin Liang, and
Zhangyang Wang. Learning to generalize provably in learning to optimize. In Proceedings of
The 26th International Conference on Artificial Intelligence and Statistics, pp. 9807-9825. PMLR,
2023.

Linxin Yang, Bingheng Li, Tian Ding, Jianghua Wu, Akang Wang, Yuyi Wang, Jiliang Tang, Ruoyu
Sun, and Xiaodong Luo. An efficient unsupervised framework for convex quadratic programs via
deep unrolling, 2024a.

Mei Yang, Gao Qiu, Junyong Liu, Youbo Liu, Tingjian Liu, Zhiyuan Tang, Lijie Ding, Yue Shui, and
Kai Liu. Topology-transferable physics-guided graph neural network for real-time optimal power
flow. IEEE Transactions on Industrial Informatics, 20(9):10857-10872, 2024b.

Morris Yau, Nikolaos Karalias, Eric Lu, Jessica Xu, and Stefanie Jegelka. Are graph neural networks
optimal approximation algorithms? Advances in Neural Information Processing Systems, 37:
73124-73181, 2025.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small relu networks are powerful memorizers: a tight
analysis of memorization capacity. Advances in neural information processing systems, 32, 2019.

14


https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Contents

A Di : Related Works 16
A.1 GNN for Constrained Optimization|. . . . . . . . . ... ... ... ........ 16
A.2 Generalization Analysis of GNNs and L20 paradigms| . . . .. ... ... .... 17

[B™ Preliminary and Basic Concepts| 18

.1 Basicconceptsof SOCPs| . . . . . .. .. . . 18
.2 _Equivalent Formulations of SOCP| . . . . .. ... ................. 18
B.3 Target Mappings for SOCP| . . . . . . . .. ... ... ... L. 20
. n Example for graphs| . . . . ... 20
.5 Complexity Comparison with SOTA Works:| . . . . . .. ... ... .. ...... 20

[C_Proof of Main Theorem| 21
..................................... 21
C.2 The connection between the WL-1indistinguishablity and target property| . . . . . . 22
C.3 'The measurable property of target mapping| . . . . . . ... ... ... ...... 27
C.4  Relation between SOCP-GNN'’s separation power and SOCP-WL test’s separation |

| POWEI| .« o v v o e e e et e e e e e e e e e e e e 31
C.5 Main theorem’sproof| . . . . . . . . . . . ... 32
C.6 Extension to p-order cone programming| . . . . . . . . . . ...l 34

[D_Proof of theorem[3| 35

.1 VC-dimension based approaches for binary classification|. . . . . . .. ... ... 35
.2 Pseudo-dimension based approaches for real-valued scalar prediction| . . . . . .. 35
.3 Rademacher complexity based approaches| . . . . .. ... ... .. ... ... 36
EE SOCP-based Formulation for OPF 46
[ Experiment Setfings and Supplementary Results | 47
.1 Datageneration| . . . . . ... ... ... 47
.2 Implementations and training settings for predicting the optimal solution and feasibility| 48
.3 Results for predicting optimal solutions and feasibility] . . . . . .. ... ... .. 49
.4 Empirical study on sample/model complexity and size generalization|. . . . . . . . 49
.5 Empirical study on the Lipschitz regularization| . . . . . ... ... ... .. ... 49

15



Under review as a conference paper at ICLR 2026

LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.

A DISCUSSIONS ON RELATED WORKS

A.1 GNN FOR CONSTRAINED OPTIMIZATION

In response to the growing demand for solving large-scale optimization problems in real-time,
“learning to optimize” paradigms have emerged across multiple domains (Pan et al.|[2020) (Monga
et al.}2021). Among various neural approaches, Graph Neural Networks (GNNs) have demonstrated
particular effectiveness for optimization problems with inherent graph structures, leveraging the
natural correspondence between problem formulations and graph representations (Chen et al., | 2022b;
Wu et al., [2024; |Chen et al., 2023))(Varbella et al., 2024} [Shamseldein, [2026).

To understand the fundamental capabilities of GNNs in optimization contexts, research has examined
multiple theoretical and practical aspects, including expressivity (Chen et al., 2022b;2024c), gen-
eralization properties (Balcan et al.| 2021} |2024)), and symmetry preservation (Chen et al., [2024a;
Matthew Morris) 2024} (Chen et al. [2025} |Qian & Morrisl [2025b). The analysis of GNN expres-
sive power in optimization is primarily guided by two complementary theoretical paradigms: the
Weisfeiler-Lehman (WL)-test-based framework, which characterizes what optimization properties
GNNSs can theoretically distinguish, and the Algorithm-Unrolling (AU)-based framework, which
establishes connections between classical optimization algorithms and GNN architectures through
direct algorithmic simulation.

A.1.1 WL-BASED FRAMEWORKS

This section reviews optimization problems where GNNs have been proven to achieve universal
approximation capabilities through theoretical frameworks based on Weisfeiler-Leman (WL) tests.

Linear Programming (LP) (Chen et al.,2022b): It establishes a foundational theoretical framework
for analyzing GNN expressivity in solving LPs through WL-tests. Building upon the bipartite graph
representation introduced by (Gasse et al.,|2019), they demonstrate a formal connection between
GNN expressivity and WL-tests on graph structures. Their key theoretical contribution proves that
GNNs achieve universality over the parameter space of LPs. Specifically, they show the existence
of message-passing GNNs capable of reliably approximating fundamental LP properties, including
feasibility, optimal objective value, and optimal solutions.

Mixed-Integer Linear Programming (MILP) (Chen et al., 2023): The extension to MILP presents
significant theoretical challenges not encountered in the continuous LP setting. The fundamental
limitation arises from the discrete nature of integer variables, where GNN expressivity remains
constrained by the discriminative power of WL-tests. A critical issue emerges: two MILP instances
that are indistinguishable under WL-tests may exhibit fundamentally different properties regarding
feasibility and optimal solutions. To address these challenges, the authors identify a restricted
class of MILPs satisfying the “unfoldable” property, for which universality guarantees can be
established. Additionally, they demonstrate that augmenting the graph representation with random
node features enables GNNs to achieve universality over the complete class of MILP problems,
effectively circumventing the limitations imposed by deterministic WL-tests.

Linearly Constrained Quadratic Programming (LCQP) (Chen et al.,[2024b): While modeling
linear constraints through a bipartite graph is relatively straightforward, extending graph-based ap-
proaches to handle quadratic objective functions presents challenges. It addresses this by introducing
self-connections within variable nodes to capture quadratic interactions in the objective function.
Their framework extends a broader class of mixed-integer LCQP problems satisfying the MP-tractable
property, establishing universality results for GNNs on specific computational tasks within this class.

The authors further extend their approach to convex quadratically constrained quadratic programming
(QCQP) through dynamic edge update mechanisms, as detailed in their supplementary materials,
demonstrating the framework’s adaptability to more complex constraint structures.
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Convex Quadratically Constrained Quadratic Programming (QCQP) (Wu et al.,[2024): It pro-
vides a comprehensive treatment of convex QCQPs, addressing the significant complexity introduced
by multiple convex quadratic constraints. The key innovation lies in their sophisticated design of edge
weights and specialized GNN architecture, which together ensure that the resulting message-passing
framework achieves universality for the complete class of convex QCQP problems. This represents
a significant advancement in handling optimization problems with complex constraint structures
through GNNs.

A.1.2 AU-BASED FRAMEWORKS

Algorithm unrolling represents a fundamental approach in learning-based optimization, enhancing
interpretability by directly simulating classical algorithmic procedures through neural network archi-
tectures. This section reviews successful applications of GNNSs in unrolling established optimization
algorithms.

Interior Point Method : The unrolling of Interior Point Methods (IPM) establishes a direct and
interpretable correspondence between classical optimization algorithms and GNNs. (Qian et al.|
2024) first provides theoretical foundations demonstrating that standard IPM iterations for LPs can
be precisely simulated through sequences of GNN message-passing operations. This framework
was extended to the broader class of LCQPs (Qian & Morris, [2025a), maintaining the fundamental
correspondence between algorithmic steps and neural computations.

Primal-Dual Hybrid Gradient: The unrolling of Primal-Dual Hybrid Gradient (PDHG) algorithms
provides a scalable framework for accelerating first-order optimization methods through learning-
based approaches. (Li et al.|, [2024a)) introduces PDHG-Net for large-scale LPs, demonstrating
that optimal LP solutions can be approximated using polynomial-sized neural networks. This
foundational work establishes both theoretical guarantees and practical scalability for the unrolled
PDHG framework. The extension to QP represents another advancement (Yang et al.,[2024a)), which
introduces an innovative unsupervised training methodology that directly incorporates Karush-Kuhn-
Tucker (KKT) optimality conditions into the loss function.

Specialized Algorithms for Structured Problems: For optimization problems with specialized
structures, researchers have developed tailored algorithmic approaches that leverage problem-specific
properties for effective GNN unrolling.

For covering and packing LPs, (L1 et al., |2024b) design variants of the Awerbuch-Khandekar al-
gorithm, successfully unrolling these through careful exploitation of activation function properties.
Specifically, they utilize ELU and sigmoid activation functions to simulate exponential operations and
Heaviside step functions, respectively, enabling reproduction of the classical algorithm’s behavior
within the GNN framework.

In the context of sparse binary LPs, (Li et al.|[2025)) proposes a constant-round distributed algorithm
that applies to almost all sparse binary LP instances. This algorithm naturally aligns with constant-
depth, constant-width GNN architectures, providing theoretical justification for the empirical success
of shallow networks in this domain.

(Yau et al.l 2025)) demonstrates that polynomial-sized GNNs can effectively learn powerful approx-
imation algorithms for Maximum Constraint Satisfaction Problems (Max-CSP). Their approach
leverages the equivalence between projected gradient descent on low-rank vector formulations of
relaxed semidefinite programs and local message-passing operations inherent in GNN architectures.

Additionally, (He & Vitercik, |2025)) aligns GNN architectures with primal-dual algorithmic reasoning
for minimum hitting set problems, achieving empirical success in generalization across problem sizes
and out-of-distribution scenarios.

A.2 GENERALIZATION ANALYSIS OF GNNS AND L20 PARADIGMS

Generalization of GNNs: Graph Neural Networks (GNNs) (Gori et al.l 2005} [Scarselli et al.,
2008) are state-of-the-art architectures proposed for graph learning. They leverage neighborhood
information to capture the structured properties of a graph. To ensure effective learning, several
approaches have been introduced to study their sample complexity, which is defined as the number
of data required to generalize well to unseen data from the same underlying distribution. (Scarselli
et al.,[2018)) connects the VC dimension to network parameters, activation functions (like piecewise
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polynomial activation functions), and graph size. Furthermore, (D’Inverno et al.,[2025)) derives upper
bounds for the VC dimension of Graph Neural Networks using more general Pfaffian activation
functions (like sigmoid and tanh), relating generalization capacity to network hyperparameters and
the number of colors determined by the Weisfeiler-Lehman test. (Morris et al.;2023) then tightly link
the generalization ability to GNN expressivity via the Weisfeiler-Leman(WL) test. Further, (Franks
et al.l 2024) uses margin theory to show that greater expressivity only improves generalization if it
also increases the margin between classes. Based on Rademacher complexity, (Garg et al., [2020)
gives the first data-dependent generalization bounds for GNNs using Rademacher complexity, which
are significantly tighter than previous VC-dimension-based guarantees. For node individualization
schemes emerging these days, (Pellizzoni et al., [2024)) uses both VC dimension and Rademacher
complexity to give the generalization bound via WL-test and covering number bounds. Moreover,
several researches (Ju et al.,|2023; Liao et al., 2020; [Tang & Liu, |2023) give the generalization bound
from other perspectives, like the PAC-Bayes bound and stochastic optimization.

Generalization of L20 paradigms: There are two main parts of researches in the study of general-
ization ability of L20 paradigms: optimizer generalization, i.e., the performance gap between trained
optimizees(tasks) and unseen optimizees, and optimizee generalization, i.e., the performance gap
between training data and unseen test data of the same underlying optimizees (Yang et al., [2023)).
We only review the optimzee generalization part and the data-driven method generalization studies
below.

(Balcan et al., 202 1)) first proposes a unified sample complexity framework for the algorithm parameter
configuration based on pseudo-dimension. (Yang et al.,|[2023)) shows that local entropy measures
loss landscape flatness, similar to the Hessian. It then uses both metrics as regularizers to meta-train
optimizers that provably learn to find generalizable models. (Sucker & Ochs}[2025)) combines PAC-
Bayesian generalization theory with variational analysis to show that a learned algorithm’s trajectory
will converge to a critical point with high probability on unseen problems. (Sambharya & Stellato,
2024) develops a general data-driven framework using PAC-Bayes theory to provide probabilistic
performance guarantees for both classical and learned optimizers over a fixed number of iterations.

B PRELIMINARY AND BASIC CONCEPTS

B.1 BASIC CONCEPTS OF SOCPS
For problem [I] we denote all the feasible solution by:

Xeoasible := {a: ER" | Fr<g;l<ax<r; ||[Ax+bills <cla+d;, Vi [m]} 3)

If AXfcasible 18 NOt empty, problem E]is said to be feasible; otherwise, it is said to be infeasible. A
feasible SOCP is bounded if and only if the objective function is bounded from below in Xfeasible,
i.e., Ja € R such that

T
c T Z CL,\V’J) S Xfeasible
Otherwise, the SOCP instance is unbounded.

For a feasible and bounded SOCP, its optimal value is defined as: inf {eTxN:r € Xroasible |-
Moreover, x* is said to be an optimal solution if it’s feasible and

eT:C* < eTa:,Vx € Xreasible

Unlike convex QCQP, an SOCP instance may not admit an optimal solution even when it’s feasible
and bounded (see corollary . Moreover, an SOCP instance can also have multiple solutions.

B.2 EQUIVALENT FORMULATIONS OF SOCP

Dimension Reduction of SOC Constraints: Consider a second-order cone (SOC) constraint of
the form || Az + b||2 < ¢T'z + d, where A € R¥*™ has rank r < min(k,n). Let the singular value
decomposition of Abe A = U VT, where U € R*¥*" has orthonormal columns, ¥ € R™*" is
diagonal with positive entries, and V' € R™*" has orthonormal columns.
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Since U has orthonormal columns, we have UTU = I,. and UU7 is the orthogonal projection onto
the column space of A. We can decompose the vector b as

b=by+by, where b =UU"b, b= —-UU")b €))
where b| lies in the column space of A and b, is orthogonal to it.
Define A’ = VT € R"™™ and ' = UTb € R". Then:
A=UsvT =UuA ®)

and
Az +b=UAz+UUb+ (I, - UUT )b =U(A'x + UTby)) + by (6)

Since U has orthonormal columns and b is orthogonal to the column space of U, we have:

/ T
Az + bl = |[UAz+UTby)) + b2 = Az +UTh
I

[ @)

2
This reformulation reduces the constraint to at most » + 1 rows, which is beneficial when k& > r.

Reformulation of SOCP to QCQP: A SOC constraint | Az + b||2 < ¢T'z + d can be equivalently
written as the quadratic constraint (may be non-convex) by squaring both sides as:

(Az + )T (Az +b) < (Tx + d)?
2T AT Az + 207 Az 4 ||b))3 < 2T ec’x + 2dcTx + d?
provided that ¢”z 4+ d > 0. Rearranging terms yields:
2T(ATA — ccT)x + 2067 A — dcT)x + (||b]|3 — d*) <0 8)

This transformation is valid only when the right-hand side of the original SOC constraint is non-
negative, which must be enforced as an additional linear constraint ¢’z 4+ d > 0.

Reformulation of Convex QCQP to SOCP: Conversely, we may transform convex quadratic
constraints of the form 2" Qz + ¢"z 4+ d < 0 into SOC constraints. Since @ € S? is positive

semidefinite, we can apply matrix decomposition Q = LLT where L € R™"*" with r = rank(Q).
This decomposition can be obtained through Cholesky factorization when @ is positive definite, or
through eigenvalue decomposition in the general case.

The quadratic constraint can then be reformulated as:
2 Qr+cz+d<0
2 ' LLTx+c 2 +d <0
IL 2|2 +c'z+d<0

Using the rotated second-order cone representation, we can reformulate the constraint as:

1+c z+d 1—clao—d
(7))

<——F ©)
) 2
This formulation is valid when 1 —c" 2 —d > 0, which ensures that the right-hand side is non-negative.
The constraint ¢ " 2 + d < 0 from the original quadratic form is automatically satisfied when the SOC
constraint holds.

For the convex quadratic objective function min, =" Qx + ¢'x + d, we can reformulate it using an
epigraph variable 7:

min T
x,T

s.t. I'TQ.’E +celz+d<T
Using the matrix decomposition Q = LL T, this becomes:

min T
T, T

1—T+CT.’L‘+[1
t.
(7R
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B.3 TARGET MAPPINGS FOR SOCP

Then, we propose all our target mappings.

Definition B.1 (Target mappings). Let Gsocp be a graph representation of a SOCP problem. We
define the following target mappings.

* Feasibility mapping: We define ®,(Gsocp) = 1 if the SOCP problem is feasible and
DBreas(Gsocp) = 0 otherwise.

* Boundedness mapping: For a feasible SOCP problem, we define ®pouna(Gsocp) = 1 if the
SOCP problem is bounded and Ppouna(Gsocp) = 0 otherwise.

* Optimal value mapping: For a feasible and bounded SOCP problem, we set ®opc(Gsocp)
to be its optimal objective value.

* Solution Attainability Mapping : For a feasible and bounded SOCP problem, its optimal
value (infimum) is finite, but this value is not necessarily attained by a feasible point.
Therefore, we introduce a mapping Pauain(Gsocp) Which equals 1 if an optimal solution
exists, and O otherwise.

* Optimal solution mapping: For an SOCP problem that admits a solution, its optimal
solution might not be unique. Therefore, we define the optimal solution mapping to be
D01 (Gsocp) = x*, where x* is the solution with the smallest I norm of the corresponding
SOCP

B.4 AN EXAMPLE FOR SOCP GRAPHS

Figure[6]is an example of a toy SOCP and its corresponding graph representation:

Polyhedron
constraint node

)

3 4
min 1x; +2x;,
Variable node 1 Variable node 2
s.t.3x1+4x, <5 1,-1,1) 2-1,1)
-1<x;<1,j=1,2
J J 6/ 7 o~_\10
" 6x1+7x2+8 IIZS9x1+10x2+11
® ® an
Minor conic 1 I

constraint node stre

Figure 6: A toy SOCP instance with its graph representation

B.5 COMPLEXITY COMPARISON WITH SOTA WORKS:

Complexity for representing convex QCQP: We discuss further about what we mentioned in remark

For a convex QCQP instance with m quadratic constraints and n variables, where the i-th
constraint matrix has rank r; < n, our graph representation requires n + m + 2 + Y .- (r; + 1)
nodes while the architecture in (Wu et al., 2024) requires n + m + %n(n + 1) nodes and architecture
in (Chen et al., [2024b) requires m + n + mn “nodes” that need to be updated dynamically. It’s
noteworthy that our graph representation only uses sparse connections between these nodes via using
minor conic nodes as a sparse intermediate information passing layer between variables and conic
constraints. As a result, our SOCP-GNN requires only O(n(}_" , 7;)) messages per iteration. This is
in sharp contrast to the architecture by (Wu et al.l 2024), which models each quadratic term explicitly
and thus incurs a much higher per-iteration cost of O(n® + mn?). And result in (Chen et al., 2024b)
use O(mn?) messages each iteration.
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Algorithm 1 The WL test for SOCP-Graphs (denoted by WLsocp)

1: Require: A graph instance G = (V, E) with node sets Vi, Vs, V3, V4, initial node features
h",h?, h°, hi, and an iteration limit L > 0.

2: Initialize initial colors for all nodes:
3: C% «+~ HASHy v (R?), Yo eV
4: C05 HASHoys( S), Vs e Vs
5: C%° <~ HASHg 0(h°), Vo€ V3
6: C%7 +— HASHg o (h?), Vg€V
7: for [ =1to L do
8:  Update colors for polyhedron constraint nodes (15):
9. b HASH(C“LS, Yoer: wMHASH(C’l*L”))
10:  Update colors for minor conic constraint nodes (15):
1. Cllo HASH(C’Z*LO, Y oer: wovaASH(C’l*L”)>
12:  Update colors for major conic constraint nodes (1;):
130 CUNC HASH(C M, 5,y g, JHASH(C 1) )
14:  Update colors for major conic constraint nodes (1;):
15 Cba HASH(C‘Hﬂ, Soev, wq,OHASH(Cl*LO))
16:  Update colors for minor conic constraint nodes (15):
17 C%  HASH(C'710, 5, .y, o (HASH(C))
18:  Update colors for variable nodes (V7):
19:  Chv « HASH(C’Z_L”, My, Ms, Mg),where:
My =" w, HASH(C")
seVs
My =" w, HASH(C")
0€V3
Ms =" w, JHASH(C")
qeVy
20: end for

21: Return The multisets of final colors: {{CT"}},cvy, {{CE*}}sevns {{CF°} oevs, {{CE 1} e,

Reducing the Node Complexity of SOCP-GNNs: One may note that for SOC constraints || Az +
blla < ¢'x + d with A € R¥*" of a large k& > n, the GNN need k minor conic constraint
nodes to represent it. However, as shown in Appendix we can reduce the complexity to O(n)

by reformulating it into another equivalent SOC constraint with corresponding A’ € RF' % of
k' < n + 1. This reformulation makes SOCP-GNN more scalable for the large and structured
problems in real-world applications.

C PROOF OF MAIN THEOREM

C.1 SOCP WL-TEST

The separation power of traditional GNNS is closely related to the Weisfeiler-Lehman (WL) test, a
classical algorithm to identify whether two given graphs are isomorphic. To apply the WL test on
SOCP-graphs, we design a modified WL test in Algorithm [T}

We denote Algorithmby WLsoce(+) and we assume that there is no collision of Hash functions and
their linear combination in the following proof (Chen et al.| 2024b; Wu et al., [2024). We say that two
SOCP-graphs G, G can be distinguished by Algorithm 1 if and only if there exist a positive integer L
and injective hash functions mentioned above such that the output multisets of G, G are different.
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C.2 THE CONNECTION BETWEEN THE WL-INDISTINGUISHABLITY AND TARGET PROPERTY

Here, we analyze the WL test’s convergence and corresponding stable properties to lead to the core
lemma

Lemma 1. Assume all hash functions satisfy conditions in Appendix|C_1} and we terminate the SOCP
WL-test when the number of distinct colors no longer changes in an iteration. Then the SOCP WL-test
terminates in finite iterations.

Proof. Here, notice that the SOCP WL-test satisfies the following two properties:

* If two nodes v, w have different colors in one (sub)iteration, then they will always have
different colors in the following (sub)iterations.

* If after one full iteration, the nodes’ color doesn’t change under some one-to-one color
mapping, then for all iterations after this iteration, the algorithm will always return the same
result.

These two facts have shown that, after one iteration, the color collections either get strictly finer or
remain unchanged for all following iterations. Since the number of nodes is finite, the algorithm
terminates in finite iterations. O

And now, we study the convergence properties of the SOCP-WL test

Lemma 2. Given the SOCP graph G, assume the SOCP WL-test stabilizes after T > 0 iterations.
The sum of weights from a certain node of one color to all nodes of another color only depends on the
color of the given node. Specifically, the sum (taking W for variable nodes and Wy, for polyhederon
constraint nodes as an example) is:

S(Wa, WisG) = Y way
CT.v=W;

and is well-defined for all s, such that CT% = Wy

Similarly, for any color of variables W1, color of polyhedron constraints Wy, color of minor conic
constraints Wy and color of major conic constraints Wy, the following sums are well-defined:

SWs, Wi;G) = Y wen, CT°=W;

CTv=W;

S(VV47 Wg; G) = Z Wq, 0, OT’q =Wy
CTo=W3

S(W17 W27 G) = Z wv,S7 CT,U = Wl
CT:s=W,

S(Wh Wg; G) = Z Wy, 0, CT’U = W1
CT.o=Wj5

S(Wl, W4; G) = Z Wy, q5 CT’U = W1
CT.a=W,

S(‘/V47 Wl; G) = Z Wq,vs CT’q =Wy
CTv=W;

Proof. Let vy, vy be two nodes with color W; = CT*t = CT¥2. Since the SOCP WL-test has
stabilized, the node pairs won’t be finer, i.e.

> wy, HASH(CT®) = " w,, HASH(CT*).
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Rearranging according to Wy = C'T>%, we get:
>> 0 wy, HASHW,) => " > w,, HASH(W:).
Wa CTs =W, Wo CTs=W,

Assuming that the hash function is collision-free and maps different colors into different linearly
independent vectors, we conclude that:

§ Wy, ,s = § Wy, s

CT:s=W, CTs=W,
ie., S(Wh Wa; G) = ZCT,s:W2 Wy, sy CcTv = W is well-defined.

Other proofs are similar.

An immediate conclusion is listed following.

Corollary 1. If all the SOCP WL-test cannot separate the two instances: T . I (with given sizes
n, M, , k1, ..., km, b, encoded by G,G € Q;O’?,;kl""’k”“b), then: All the sum in lemma 3 is well defined
for G and G and equal each other respectively.

Meanwhile, we define: W;; to be the collection of nodes with node type i and color j. By summing
the cross terms and rearranging the sum, we have:

S(Wij, Wa; G)|Wij| = S(Wak, Why; G)|[Wag|
S(W1j, Way; G)|[Wej| = S(Way, Wij; G)|[Ws|
S(Wij, Wapm; G)|[Wij| = S(Wap,, Wij5 G)|[Wap, |

Now, we begin to prove the following lemma.

n,m,ki,...

Lemma 3. Let Z,7 (with given sizes n,m, ky, ..., kpy,, b, encoded by G, Ge Geoep ’k”"b) be two
SOCP instances. If the following holds:

e The SOCP WL-test cannot separate the two instances,

e x is a feasible solution of T.

Then there exists a feasible solution I for 7 whose objective and ly-norm are controlled by x, such
that:

e-z<e-x

[12]]2 < [l
Proof. The key to this proof is to take the average among the nodes in the same node pair. Formally,
we define &, = |W71U\(ZCT‘U’:W1] ) for all v, such that: CT¥ = W

By the Cauchy-Schwarz inequality, we have:

2 1 2
> %'Z|W1j|[m( > oz

CT"U/:WU cT’ =Wy
Summing over all possible Wy ;, we get: ||Z||2 < ||z||2
Meanwhile, notice that: for all v/, such that: cTv' = W1, their corresponding e, l,, 7, and

€y, lyr, Ty are the same, respectively.

Hence, we have:
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E ev/xvl = E évliv/
CTv =Wy CTv =Wy,

Ty € [ly, 7]

for all possible variable node v and color Wy;.

Summing over W ; yields:

E ev/xv/ = E év’i.'u/
!

v’
Further, consider the edge properties brought by the above lemma, we get:

For the 1-th and t-th polyhedron constraint both with color Woy, I, ¢t € {1,2,--- , b} (Here, we assume

in both G and G, the I-th and t-th polyhedron constraint are both with color Wy, respectively) the
following inequality holds:

ZFl,jxjﬁgm = WVI%‘ Z Z Z F oz, < gy,
j=1

leEWs, Wi veWy;

Exchange the order of the sum, we get:

1

|W2k| Z Z Z E,wxv < gt,

Wi veWr; leWsy

Notice that:

1 1 .
Tl T T Ams > Y Y A

W1]' ’UEle 1eEWsp W1j UEle leWsp

1 LN
:mz Z Z E,vx1)

le T)Ele leWsk

:Z Z Fl,vjj'u

Thus, ZWU ZUGWU Fl,vfi'v < g1 = g+ = §;, which shows that the polyhedron constraint is satisfied.
Similarly, for the u-th and r-th (major) conic constraints both with color Wy,,, we have:
* After proper rearranging of nodes o, and o, , where s, = 1,2, ... ky; s, = 1,2, ... k;,

the color of 0,5, and o5, where s,, = 1,2, ..., ky; s, = 1,2, ..., k,, are the same regarding
the order, i.e. CTooui — CTori i =1,2,..., k, (Notice that :k,, = k,.).

. d,=d,.

* For any node op; and 0;;, € V3 with the same stable color, either A = j or the color of node
gn and g; are the same.

Now let’s prove the conic part. For the u-th and r-th major conic constraint node both with color
W, in both G and G and the minor conic node j; corresponds to r-th major conic constraint node
in both GG and G, we have:

Right constraint:

1
T
W], 2 uot
m CT'“':W4NL
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1 .
= (|W4m‘ Z Z Z Cuvxv) +dr

CTou=Wyy, Wi; vEWq;

"Gl XL cwn)rd,

Wl ver CT =Wy,

|w4m\Z 2 S Wami Gzo) + dr

Wi; veWy;
|W ‘Z Z SW1J7W47YL7G) v) dr
Al vewn;
|W4 ‘lelj‘s Wl]aW4maG> v)“!‘dAr
|W ‘Z|W4m\5(w4m,wu,0) o)+ dy
= ZS W4m;W1j;G)5E1))+JT = (Z Z ém)jv)“i’czr :é$£+dr
Wi, Wi veEWy;

Left Constraint: Recall: two nodes in V3 has the same stable color W3, if their corresponding major
conic constraint node’s stable color is the same. So for each stable color W3; in V3, the corresponding

major conic node’s stable colors are all the same, denoted by Wy,,. And each major conic node
W, . . . . . .
have \|W43H| minor nodes with stable color W3;. And we use j € u denotes a minor conic node j

corresponds to node u

1 Wyl

CTw=Wi,, j€Way,j€u sl

N 1
=0di by 2 2

CTu=Wy,, j€W31,j€u

=t XY 3 Y (e

CTv=Wy,, JEW3,j€Eu Wi vEWyy,

s+ sz DR DRERIES

Win veEWip CT v =Wy, J€EWs1,j€U

(IA) )]1 |W3[| Z Z S W1h7W3laG)I’U

Winp v€Wip
(l; )]1 |W | Z Z S W1h7W3]1G)$1}
3l Win v€EW1p
(8 ) |W | Z|W1h|S(Wlh7WSI7G)
= (67‘)J1 |W | Z |W3Z|S W317W1ha G) Ty

= (br)j, + Y S(War, Wip; G) i

Wlh
(br)iy +20 > (A
Win v€EWip

= (Br)jl + (Ari‘)ﬁ = (l;r + Ari’)ﬁ
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Conic feasibility for I

For the u-th conic constraint with stable color Wy,,and its corresponds minor conic node j with color
W, without loss of generality, we assume (A, x + b,,) ’s first N = % rows’ corresponding to
all the minor conic nodes with color W3; for such u and j, Thus, we have:

N
2 P I"[3l| 1 |”4m| 2
) br + Ar2) 115 = | > ) Ay +by);
||( )J1||2 |W4m‘ || |W4m| o ‘WSZ‘ ( )JHQ

J1€ETJ1EWS U=Wy,, j=1
N
1 2
j=1 Al orow,,

Hence, summing over all possible Ws; for fixed Wy,,,, we have:

o . 1
b+ Acgll3 =" D> N+ Ad) s <M= D (Auz +bu)lI3

Wy
Wi j1€r,j1€EWsy Wil CT =Wy,

This yields that:

S 1 1
e + Az < |- S (A b)) < > Auz 4 b)|l2

CT =W, CTu=Wym,
1 . ~
< — Z cfx+du:cfx+dr
|W47n| CT"“:W4m
Since r is arbitrarily chosen from Wy,,, the conic feasibility holds obviously. O

Corollary 2. If two SOCP instances T, T with their graph representations are indistinguishable by
the SOCP-WL test, then the two problems share the same feasibility.

Proof. Let x be a feasible solution for Z, then by lemma (3| there exists a feasible solution & for
T. ]

Corollary 3. Iftwo SOCP instances T, 7 with their graph representations are indistinguishable by
the SOCP-WL test, then the two problems share the same boundness.

Proof. * If one instance is infeasible, by corollary [2| the other instance is infeasible as well,
i.e., they are not bounded.

* If one instance is not bounded from below, denoted by Z. Since we can always find a feasible
solution of Z which has a smaller objective value than any fixed feasible solution of Z by

Lemma[3] the conclusion is obvious.
O

Corollary 4. Iftwo SOCP instances T, 7T with their graph representations are indistinguishable by
the SOCP-WL test, then the two problems share the same optimal objective value.

Proof. By corollary we only need to consider the case when both instances are feasible and
bounded.

Notice that the feasibility with boundness may not lead to the existence of an optimal solution for
SOCP problems, for example:
min 7 s.t. H(Z,Qﬁl—l‘g)HQS.’L‘l + 20,21 20,220 >0

T1,T2

So, we prove by “infimum” argument, let p and p be the optimal value of Z and 7 respectively. Then
for any € > 0, there exists feasible solution z, s.t. eTe < p + €. By lemma 4, there exists a feasible
solution 7 of Z, such that p < é74 < eTx < p+e. Let € — 0 yields p < p. Similarly, we have:
P > p, which finishes the proof. U
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Corollary 5. Iftwo SOCP instances T, T with their graph representations are indistinguishable by
the SOCP-WL test and one of these instances admits an optimal solution, then the other instance has
an optimal solution as well.

Proof. See the proof of corollary [6] O

Corollary 6. If two SOCP instances T, 7T with their graph representations are indistinguishable by
the SOCP-WL test, then the two problems share the same optimal solution with the smallest Euclidean
norm if one instance admits an optimal solution up to permutation.

Proof. Without loss of generality, we assume that for each variable j, its corresponding stable color in
7, 7 after the SOCP-WL test is the same, and Z has an optimal solution = with the smallest Euclidean
norm. By using lemma twice, we can construct a feasible solution # for Z and construct a feasible
solution & for Z again with

Te>eTs>eTd and llz|l2 > [|1Z]]2 > ||§:H2

Hence, z = #. Recall the proof of the lemma |3| the variables in & with the same stable color after
SOCP-WL test already have the same value, so averaging them again won’t change it anymore, i.e.

# = &. Hence, z = & = %. By corollary @ Z is an optimal solution of 7

Now, if there exists an optimal solution y of Z with ||y||2 < ||#||2 = ||2||2, by similar proof above,
we can get: y is also an optimal solution of Z, which contradicts the fact that: x is the optimal

solution of Z with the smallest Euclidean norm. Hence, Z is an optimal solution of 7 with the smallest
Euclidean norm O

C.3 THE MEASURABLE PROPERTY OF TARGET MAPPING

Definition C.1. For an SOCP instance G:
minimize e’z
subjectto ||A;x +blla <cla+d;, i=1,...,m
Fr<g
li S xZ; § T'i,i = 1,...,Tl

Its parameter is defined as (e, {A; }7™, {0}, {c:}y, {di} ™, F, g,1, ), and all the parameter
form the parameter space P

n,m,ki,...

Notice that: For an SOCP instance, there exists a bijective mapping I : G/ p b — P with
I(G) = (e, {A: 2y, {bi}q, {ci Yy, {di} 4, F, g, 1, 7) for any SOCP 1nstancerarametrlzed by

(e, {A 3 by {ei by, {di} ™y, F, g, 1, 7). And we equip both ggomc’j; """ Fm:b and P with the
standard Euclidean topology and product topology in its feature space. Then I is a homeomorphism.

Remark: If we can prove that ®4,.gc; : P — R is measurable, then ®;q,ge01 : GogFm? 5 R
is measurable as well.

Theorem 4. For any Borel regular measure (i defined on P, ®fpps : P — {0, 1} is p—measurable.

Proof. Below, we use measurable to denote —measurable for simplicity.

To prove that Py, is measurable, it suffices to show that the preimage of {1}, denoted Preps = {P €
P | Bsens(P) = 1}, is a measurable set.

First, we define a feasibility violation function Vi, : P x R™ — R>¢. Let (y)+ = max(0, y).

m p n
Viea(Pyw) = > ([Aiw + billa = (cf w4+ di)) , + > (Fz); —g5), + > (ks — xk) 4 + (@ —74)1)
=1 k=1

j=1
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This function Vie,s (P, x) is continuous with respect to both P and z, as it is a sum and composition
of continuous functions (norms, linear maps, max function). Furthermore, Ve,s( P, ) = 0 if and only
if x is a feasible point for the problem instance P.

A problem P is feasible if and only if there exists an x € R™ such that Vie,s(P,z) = 0. This is
equivalent to the condition 3R € N, s.t.inf,crnnpy Vieas(P, z) = 0.

We can now express the set of feasible problems Pk, by restricting the infimum to a countable dense
set. Let By be the closed ball of radius R centered at the origin. By continuity of Vi, in x, we have:

Preas = {PeP inf eras(P,x):O}

ReN+ veRTnBr
1
= U ﬂ {PGP3$€RHDBR,8$-eras(P,$)<k}
ReNT* keNt

S0, Preas can be written as:
1
Pes=J [ U {P €P | Vieas(P,7) < k}
ReNt keN+t ze BRnQn

For any fixed z € Q", the function P +— Vieos(P, ) is continuous. Thus, for each tuple (R, k, ), the
set {P | Vieas(P, ) < 1/k} is a Borel set. Since Pk, is formed by countable unions and intersections
of measurable sets, it is itself a measurable (Borel) set. Therefore, ®y.,s is a measurable function.

O

Theorem 5. For any Borel regular measure i defined on P, ®ppung : P — {0, 1} is p—measurable.

Proof. Below, we use measurable to denote —measurable for simplicity.

Let Preas = <I>f;als(1), which is a measurable set. We only need to show that the set Pygg = {P €
Preas | Poouna(P) = 1} is measurable.

A problem P € P, is bounded if and only if there exists M & Z such that for all feasible solutions
x of P, eTxz > M. This can be stated as:

Poaa = | J {P € Preas | V2 € R", 5.t Vieus(P,2) = 0 = "w > M}
MEZ

= U P € Preys | inf eTa > M
Mez TER™ 8.t Vieas (P,2)=0
Let’s define the boundness violation function:

Voaa (P, x) = inf elx
TER™, 8.t Vieas (P,x)=0

Now,we have:
Proad = U {P € Preas | Voaa(P,z) > M}
MEZ

So it suffices to prove Viga(P, ) is measurable and we only need to show that: for any M € R, the
sublevel set { P € Press | Voaa(P) < M} is a measurable set.

The condition Vigq(P) < M is equivalent to the existence of a feasible point z such that e "z < M.
This can be expressed as:
1
{P € Preas | Voaa(P) < M} = U {P € Preas | Iz € R" 5.t elz< M — % and z is feasible} )
k€N+

Let us define an auxiliary violation function Vigq.viol : P X R™ X R = R>q:

Vi)dd,viol(PaZ7M) = max ((eTZ - M)—Q—;‘/feas(PaZ)) .
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This function is continuous in (P, z, M). The condition Vogq_yiol (P, 2, M') = 0 holds if and only if 2
is a feasible point and its objective value satisfies e "z < M’.

Thus, similar to the proof of feasibility, the condition Viaq(P) < M is equivalent to:

. 1
U U {P € Pfeas | zeRl’I}ff\BR Vbdd,viol (P,Z,M - k) = 0} .

kEN, ReN+
By continuity of Vi44_viol in 2, We can restrict the infimum to the countable dense set Q™:
. 1
U U Pe Pfeas ‘ inf ‘/bdd,viol Pa Z, M-—-])=0¢.
2€Q"NBR k
k€N, ReNTt

For any fixed z € Q" , R € NT and M’ € R, the function P — Vigq.viol(P, 2, M') is continuous,
hence measurable. The infimum of a countable collection of such measurable functions is also

measurable. Therefore, the set {P | inf,cqn Vodd.viot(P, 2, M') = 0} is measurable for any fixed
M.

Since the sublevel set { P € Preas | Voaa(P) < M} is a countable union of such measurable sets, it is
measurable. This holds for all M € R, so Vi4q is a measurable function. O

Theorem 6. For any Borel regular measure ji defined on P, @4 : P — R is uy—measurable.

Proof. Below, we use measurable to denote —measurable for simplicity.

To prove that @ is measurable, we only need to show that for any ¢ € R, the sublevel set
{P € P | ®uj(P) < ¢} is measurable.

Let us define an objective violation function Vj,; : P x R™ x R — R>¢:

‘/Obj(Pa x, ¢) = max ((6Tx - d))-‘rv ‘/feas(Pa ‘T))

This function is continuous in (P, z, ¢). Vipi(P, x, ¢) = 0 if and only if z is a feasible point and its
objective value satisfies e’z < ¢.

The condition ®;(P) < ¢ is equivalent to the existence of a feasible point z such that e’z < ¢.
This can be expressed as:

1
{PeP|Pwi(P) <o} = U {PeP|IreRst.efa<¢— z and z is feasible}
keN+

Similar to the previous proof, this is equivalent to:

. 1
U U {rer s, (res ) o)

keNt ReN+

. 1
= U U {P€P|xed£1;;33%bj(]3,l‘,¢—k>—O}

keNt ReNt

For any fixed z € Q", the function P +— Vy,(P,x,¢") is continuous, hence measurable.
The infimum of a countable collection of measurable functions is measurable. Hence, the set
{P | infyeqn Vonj(P,z,¢’) = 0} is measurable for any fixed ¢’. Since the sublevel set {P |
Dupi(P) < ¢} is a countable union of such measurable sets, it is measurable. This holds for
all ¢ € R, so @y is a measurable function. ]

Theorem 7. For any Borel regular measure p defined on P, ®ugin : P — {0, 1} is u—measurable.

Proof. Below, we use measurable to denote —measurable for simplicity.

Let Pg, = <I>(;)} (R), which is a measurable set. We only need to show that the set Pso; = {P € P |

®ain(P) = 1} is measurable.
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A problem P € Py, attains its optimal solution if and only if there exists a point z € R™ such that
is feasible and its objective value is equal to the optimal value, ®uy;(P). This can be stated as:

7)501 = {P € Pﬁn | 31‘ = Rn s.t. ‘/feaS(P7 x) — O and eT,T,‘ — (I)obJ(P)}
Let’s define the optimality violation function:
‘/SOILl(Pa l‘) = max ((eT-r - (I)obj(P))—'m eras(Pa $))
Notice that:

* For a fixed z, the function P +— Vu, (P, x) is measurable because it is a “composition” of
continuous functions and the measurable function ®y;.

* For a fixed P, the function x — V), (P, ) is continuous.

A SOCP instance P attains its solution if and only if there exists R € N¥, s.t. the infimum of
Viol (P, z) over x € Bp is zero, i.e. :

Psol = U {P € Phin | e inf ‘/solu(Pv :C) = 0}

ot R"NBg
c

Following the same logic used for ®y.,5, we can write:

Pool = U {P € Prn | meﬂglrgBR ‘/solu(Pv x) = 0}

ReNt

. 1
U N {P € Pun | _jnf  Viu(Pz) < k}

ReNt+ keNt+

For any fixed x, P — Vi, (P, z) is measurable. The infimum over a countable set of measurable
functions is measurable. Therefore, the set

1
{P S Pﬁn | aseégg(@” ‘/;olu(Pa .’E) < }

k
is a measurable subset of Pg,. Since Pso is formed by countable unions and intersections of
measurable sets, it is measurable. Thus, ® ., 1S @ measurable function. O

Theorem 8. For any Borel regular measure i defined on P, @y, - P — R™ is u—measurable.

Proof. Below, we use measurable to denote —measurable for simplicity.

Forany P € Pyy = &} (1), @i is well-defined. And if suffices to prove that: (Pl ); is

attain

measurable for any 7 € [n], i.e. for any ¢ € R, the set: {P € Pso; | (Psorn)i < ¢} is measurable.

Notice that: the followings are equivalent for P € Pg;:

e Pc {P € Psol ‘ (q)solu)i < ¢}

* There exists z € R™ with z; < ¢, such that Vi, (P, ) = 0 and Vo (P, 2’) > 0, V' €
Bjjg|) i 2 6.

* There exists R € Q4,r € Ny, and z € Bg with x; < ¢ — 1/r, such that Vo (P, z) = 0
and Vtsolu(Py ZL'/) > 0, Vfﬂ/ c BR, :L’{L Z (ZS

* There exists R € Q4 and r € N, such that forall v’ € Ny, 32 € BpNQ", x; < ¢p—1/r,
s.t. Veow(P,z) < 1/7" and that Ir” € N, s.t.,, Viou(P,2’') > 1/r", Vo' € Bp N Q",
7 >
Hence, we can rewrite {P € Py | (Psorn)i < ¢} as:

U U (ﬂr’€N+ UIEBRHQ",L:qu—% {P S Psal | V;olu(Pv 1’) <
ReQ4 reNL N (UTHGN+ nm’eBRan,x;Z(b {P € 7Dsol | ‘/SOIU(Pa -’13/) > %

, which is measurable. 0
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C.4 RELATION BETWEEN SOCP-GNN’S SEPARATION POWER AND SOCP-WL TEST’S
SEPARATION POWER

Remark 5. Thanks to the universality of MLPs, it’s noteworthy that we can assume all learnable
functions in SOCP-GNN are continuous in the following proof without loss of generality, since they
are always parametrized by MLPs.

Theorem 9. SOCP-GNN has the same separation power as the SOCP-WL test.

Proof. We only need to show: For any SOCP instance I and I, encoded by G, G, respectively, the
following holds:

» For graph-level output, two instances can’t be separated by ]—'S”é’gl;kl"“’k"“b(R), ie.,

F(G) = F(é)’ VF e fglé?l;klwwknub(R)
if and only if the two instances can’t be separated by the SOCP-WL test either.

« For node-level output, the two instances can’t be separated by Foges™ - Fm P (R"), ie.,

F(G)=F(G), YF e Fahgkhmbgn)

if and only if the two instances can’t be separated by the SOCP-WL test either, with
CTwi = CT"% hold for all j € [n], i.e. the variables are reindexed according to the
SOCP-WL test for both instances.

We first prove that SOCP-GNN can simulate the SOCP WL-test for any fixed SOCP instance. This
can be proved by showing that: For any special SOCP-WL test and given graph G, there exists an
SOCP-GNN that can simulate arbitrary iterations of this test given the same input for G under the
one-hot encoding.

Let F denote the set of all the initial features for all nodes in G. Then we select Q?, i1=1,2,3,4to
map these features in F to their one-hot encoding respectively by theorem 3.2 of (Yun et al.,[2019).
So for any initial round in the SOCP-WL test, there exists an SOCP-GNN that can simulate it.

Assume now, we already have: we get an SOCP-GNN which can simulate the first t rounds of a
special SOCP-WL test, so that: h*™ is just the one-hot encoding of C'**™ for all nodes n. For the
first refinement round for the polyhedron constraint node s, we choose f{ as an identity mapping,

so that: if (Ct’S,ZUeVI ws,vHASH(Ct’v)) and (C‘*S',Z ws/ﬂ,HASH(Ct’”)) are different,
then (h“, Y ven ws,vff(ht’”)) and (ht’sl, Y e, ws/yvff(ht’”)) are different. Then, by The-
orem 3.2 of (Yun et al., 2019), there exists 4-layered MLP gi() with ReLU activation can map

these inputs: (h“, ZveVl W,y f{(ht’“)) to their corresponding output in SOCP-WL test’s one-hot
encoding.

veV;

Similarly, we can prove that: there exists {g;(-)} and {f}(-)}, such that the corresponding SOCP-
GNN can simulate the t+1 round of the SOCP-WL test for G. By mathematical induction, for any
possible output of G for SOCP-WL test, there exists SOCP-GNNs can output the corresponding
one-hot encoding of the stable color, respectively. Consider the two possible outputs:

* Graph-level scalar output. In this case, we set

Yy= fOUt (115127137[4)

* Node-level vector output. In this case, we only consider the output associated with the
variable nodes in V7, given by

Yi = fou (W7, 11, 15, I3, 1) i € [n]
where, I; = Zvevl v I, = ZS€V2 hTs Iy = ZoéVa hT° and I, = quw hla,
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If two instances Z and 7 can’t be separated by any SOCP-GNNs but can be separated by some
SOCP-WL test WW. By applying the results discussed above to the disjoint union of these two
instances’ corresponding graphs, we get: h”"" is just one-hot encoding of C7*", respectively. Then we
can conclude that their output multisets under }V are the same, which causes a contradiction. Hence,

if two instances Z and Z can’t be separated by any SOCP-GNN:g, then they can’t be separated by any
SOCP-WL test W as well. Similarly, we have:

For any node n’, n'" in SOCP instance Z, 7 respectively, if k™ = ht"" VF e fgc’,rg};’kl""’km’b(R)
holds for any ¢ € N, then n’, n”” have the same stable color for any possible SOCP-WL test.

Now, assume two instances Z and Z can’t be separated by any SOCP-WL test. Now, we show that:

Cbs = (b — hb* = hb*, V¥ polyhedron constraint s,s' and F € f;g’cnf;’kl"”’k"'“b(R),

while a similar result can be derived for other sublayer-iterations using the same method.
When ¢ = 0, the conclusion holds obviously.

When ¢t > 1, assume the conclusion for all nodes holds for ¢ — 1, then we have:

(CF1, vy wo o HASH(CH 1) ) = (CH71, 50,y g HASH(CT 1))

Hence, we have:

o Ot—1s — C«t—l,s’ = pt—ls — ilt—l,s’

* For any color W7y; in the collection of colors at the t-1 th iteration for varaible nodes,
Zuewlj Wy = Zuewlj Wy . This can be shown by assuming Hash function maps
different colors to linearly independent vectors.

t—1 — ~ t—1/7¢— .
« For any color W7, Zvewlj ws o fiH(ATHY) = ZUGWU Wy o f1 7 (RE~1) (By induc-
tive assumption for node v at iteration t — 1)

* ZWU Z’UGle wsavffil(ht_lﬂj) = Zle Z’UEle wslavffil(ht_ljv)'
Therefore, ht* = ht*", which finishes the proof. O

An immediate corollary is:

Corollary 7. For any node n,n’ in SOCP instance I,i’ respectively, Ct" = ctn' holds for all
possible SOCP-WL test and any t € N if and only if ht™ = ht"' \VF € .FS"O’TC"I;’]“"“’]C"“Z’(R) holds
foranyt e N.

By the proof of lemma [3] you can see that:

Corollary 8. For any node n,n’ in SOCP instance I,i’ respectively, Ct" = ctn' holds for all
possible SOCP-WL test and any t € N if and only if k™ = "' VF € .FS"O’TC"I;’]“"“’]C"“Z’(R) holds

for any t € N. Under such assumption, (®sorution(Z))n = (Psotution(Z))n if n,n' are variable
nodes.

C.5 MAIN THEOREM’S PROOF

Consider the following theorems, which play an important role in real analysis:

Lusin theorem: Let ;1 be a Borel regular measure on R™ and let f : R — R™ be p-measurable.
Then for any p-measurable X C R™ with p(X) < oo and any € > 0, there exists a compact set
E C X with u(X \ E) < ¢, such that f|g is continuous.

n,m k. ko,

By this fundamental but important theorem, we get Ve > 0, 3 compact X C Ggjcp * with

u(ggggf;’“*“-’km’b \ X)) < ¢, such that ®;4,4¢¢| x is continuous holds for any ®;,..: mentioned in
Definition [B.1]
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Moreover, using similar tricks in (Chen et al.;|[2022b)), we can assume that: X remains the same under
the action of the permutation group S,, without loss of generality.

Generalized Stone-Weierstrass theorem:[Theorem 22 of (Azizian & Lelargel 2020)] Let X be a
compact topology space and let G be a finite group that acts continuously on X and R™. Define the
collection of all equivariant continuous functions from X to R" as follows:

Cr(X,R")={FeC(X,R"): F(gxx)=gx F(x),Vx € X, g € G}.
Consider any F C Cg(X,R™) and any ® € Cg(X,R"). Suppose the following conditions hold:

(i) Fis a subalgebra of C(X,R™)and 1 € F.

(ii) Forany x, 2’ € X, if f(x) = f(2’) holds for any f € C(X,R) with f1 € F, then for any
F € F, there exists g € G such that F/(x) = g * F(2').

(iii) For any x,2’ € X, if F(x) = F(2’) holds for any F' € F, then ®(z) = ®(z').
(iv) Forany z € X, it holds that ®(z); = ®(x);, V(j, ') € J(x), where
J(z)={{1,2,...,n}" : F(x); = F(x);, VF € F}.
Then for any € > 0, there exists I' € F such that

sup ||@(z) — F(x)] < e.
xeX

Now we leverage the theorems listed above to give a proof of the main theorem. And we let the
group G to be permutation group S,,. Since our SOCP-GNNs are permutation-equivariant, they are
obviously G — equivariant continuous functions. (The following a refers to 1 or n)

Property (i): Fgocs "™ *(R?) is a subalgebra of Cip(X,R®) and 1 € Fggtp™ " " (Ra)

Proof. If suffices to prove this by using similar channel expansion techniques mentioned in (Chen
et al.l 2022b). O

Property (ii): For any z,2' € X, if f(z) = f(2') holds for any f € C(X,R) with f1 €
Fappkokmb(Ra) then for any F € Fageu™ - Fm P (R%), there exists g € G such that F(z) =
g* F(z').

Proof. First notice that: ]:Snégbl;’kl """ k’""b(R) € C(X,R) with f1 € fgd?[;kl""’km’b(R“),Vf €

Fglégf;’kl""’k"“b(R). Then applying theorem |§Iand corollary is enough. O

Property (iii) and (iv):
« Forany z,2’ € X, if F(x) = F(2') holds for any ' € Fage™*m(R®), then ®(z) =
o).
* For any = € X, it holds that ®(z); = ®(x);, ¥(j,5') € J(z), where

J(x) = {{1,2,....a}* : F(z); = F(x)y, VF € Fggep" " (RY)}

Proof. Applying theorems in Appendix theorem[9] and corollary [8]is enough. O
Applying the generalized Stone-Weierstrass theorem gives us Theorem [2]immediately.
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C.6 EXTENSION TO p-ORDER CONE PROGRAMMING

A general p-order cone programming can be stated as:
minimize e
subjectto Fr<g, [ <z<r (10)
|Aiz 4+ b, < clz+d;i, i€[m]

where decision variables are € R™ and the problem parameters are e € R™, A; € RFkixn p. e Rk,
c; €RYd; eR, FeR> ge R [; € ({—o0} UR)", and r € ({+00} UR)™. Here, we only
consider the case: p € [1, +o0].

Here, we formally define some concepts that are helpful to the extension of p-order cone programming.
Definition C.2. A function f : R™ — R is said to be separable if f(z) can be expressed as a sum
f(x) = 375, fj(x;), where each function f; only depends on the scalar ;. (This definition is
stricter than traditional “block separable”.)

Definition C.3. A function f : R™ — R is said to be equivalent (w.r.t. permutation group S,,) if
for any rearranging {o(1),0(2),--- ,0(n)} of {1,2,--- ,n} and any = € R", f(x1, 22, -+ ,zp) =
F(To1) To@)s s Ta(n)

For p € [1,400), we have: ||z]|5 = >°" , |;|P, which is separable and equivalent according to
Definition [C.2]and

Situation 1:Use p as a fixed parameter: We don’t need to make any modifications to our archi-
tectures. As for the proof of the universality, we just need to change ||.||2 to ||.]|, for p > 1 in
our proof of lemma 3| and other theorems in Appendix [C] since our proof only uses the convexity,
permutation-invariant property, continuous property, and separability of the [5 norm, which holds
for the [, norm as well when p € [1,400). As for p = +o0, lemmacan be directly validated by
noticing that:

» N 1 |”4m|
|(br + Ard)jy| = [— > (Auz + bu)
Wil 22 2 Wl
=Wy, JEW3,jEU

< Loy oy Wl i,

‘W4m| CTu=Wypy, JEWa1,j€U |W3l|
1 W, 1
<l 2, ) = N k)
am CT =Wy, J€EWs1,j€EU 3l Am CT =Wy,

Ti+d,

IN
o>

, where the notions follow the settings in lemmaE} Since the above equation holds for all j;, we can
see that: lemma [3]still holds. Since || - || is continuous, the measurability holds as well.

Situation 2:Use p as a continuous parameter: Here, we need a little modification on our ar-
chitectures and proofs, while we only consider p € [1, +00) since ||z, is continuous in p when
p € [1,+00).

For the graph representation, we only need to augment our variable features from (e;, l;,7;) to
(e, 1,75, p). And the GNN and related WL test don’t need any modification. As for the proof, it
suffices to notice that:

* To prove lemma we just need to observe that: If two instances Z and 7 can’t be distin-
guished by the WL test, then their corresponding p must be the same. Then what remains is
just the situation one’s proof mentioned above. Other related results hold as well, like the
equivalence of the WL test and GNN in separation power.

* As for the measurability, we just need to repeat what we do in Appendix while taking p
as a parameter in the new parameter space.

Situation 3:Mix order conic programming: Here, similar to situation 2, we need to augment
features for minor constraint nodes. For the constraint ||A;z + b;||l, < /'@ + d;, we reset the
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minor conic node j’s feature to be ((b;);, p) ﬂ Then we can prove Lemmaby noticing that: two
major conic constraints have the same color if and only if their corresponding p are the same. The
measurability holds as well, similar to situation 1.

D PROOF OF THEOREM 3]

D.1 VC-DIMENSION BASED APPROACHES FOR BINARY CLASSIFICATION

Definition D.1 (Growth function). For binary classification, the growth function of a hypothesis class
A over the domain X is defined as:

Ta(n) = sup |[Aox|
xexn
, where Ao x = {(a(x1),a(zx2), - ,a(z,)) € {0,1}" | a € A}

Definition D.2 (VC-dimension). The Vapnik-Chervonenkis dimension, or VC-dimension, of A is
the largest integer n such that:74(n) = 2™. If 7.4(n) = 2™ for all possible n, then .4’s VC dimension
is +o00.

Below, we use VC(.A) to denote the VC dimension of the hypothesis class A for simplicity.

Definition D.3 (WL equivalence relation). We define the equivalence relation in Qg(’;gf,kl"”’k’"’b

as: two graphs GG; and G» are equivalent if and only if they can’t be distinguished by all possible
SOCP-WL tests. Given a space of graphs G C Q;’(’)’g}’,kl"“’k”’b, let G/w 1, denotes collections of the
equivalence class of G under such equivalence relation.

Theorem 10 (VC dimension of f;ggl};kl kb (RY over G). For hypothesis class F. ;5’3;’“ ook bR
VC(f;ég};kl""’km’b(R)) =1|G/wr| Here, fgé?;kl""’km’b(R) do binary classification in the follow-
ing way: any function f € F;O’TC",;kl""’k"“b(R) maps x to 1 if f(z) > 0.5. Otherwise, it maps x to
0.

Proof. First, we show that: VC(fS’légnf;kl""’km’b(R)) < |G/wr|- We prove by contradiction, if
VC(Flmkikmb(R)) > |G/w|, then there exists two graphs Gy, Gy € G which can’t be

distinguished by SOCP-WL test but have different output under some f € ]-'5”67&;]“ wokmb(R) This
contradicts with theorem [0]

Now, we show that: VC(Feges™*m(R)) > |G/wr|. Letu = |G/wr|. Take representative
elements G1,Ga, -, G, of G/w respectively. Consider v < +oo first, from theorem E], we
know that there exists a SOCP-GNN that can simulate the SOCP-WL test for Uj*_; G;. Hence, G;’s
output (I1, Is, I, I4) must be different respectively under this GNN after enough iterations. By
theorem 3.1 of (Yun et al.| 2019)), we can output all possible results for G; respectively by using
a 3-layer ReLU-like FNN as the output layer. Hence, VC(FaarsF2Fm2(R)) > |G /w1 | when
u < 400, which indicates VC(FgagsF-FmP(R)) = |G /w1 . In case where u = +oc, we have:

VC(Fitshikmb(R)) = 400 as well. Similar to the proof when u < 400, we can see that:

Y1 € N, T n,m,ky,...km by (1) = 2™, which finishes the proof.
]:SOCP (R)

O

D.2 PSEUDO-DIMENSION BASED APPROACHES FOR REAL-VALUED SCALAR PREDICTION

Definition D.4. Let G be a family of real-valued functions g : X — R. We say that a set of points
S ={z1,22,...,xn5} C X is pseudo-shattered by G if there exists a vector of thresholds (or targets)
z = (21, 22,...,2n) € RY such that for any binary vector b = (by,ba,...,by) € {+1, -1}V,
there is a function g € G satisfying:

Vie{l,...,N}, sign(g(z;)—z)=0b;

8Here, we use p = —1 to encode +oo into feature.
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The pseudo-dimension of G, denoted as Pdim(G), is the size of the largest set that can be pseudo-
shattered by G. If arbitrarily large sets can be pseudo-shattered, the pseudo-dimension is infinite.

A common result in learning theory shows that: For any family of functions H mapping from
a domain Y to a bounded interval [0, H], the following generalization guarantee holds: For any
§ € (0, 1), with probability at least 1 — & over the draw of a set S ~ DY of NV samples drawn i.i.d.
from an arbitrary distribution D over ), the following bound holds uniformly for all A € H:

\/Pdim(’H) +1n (%)

) - B <o (1 -

yeSs

Now, we begin to give the pseudo-dimension of SOCP-GNNss for real-valued scalar prediction (e.g.
predicting the objective value).

Theorem 11 (pseudo-dimension of FigrsFt-FmP(R) over G). For hypothesis class

sk, km b . ymuk1,.km b
F56¢p (R), Pdim(Fgcp (R)) =1G/wLl.

Proof. Similar to the proof above, we prove this theorem from two sides.

First, we show that:  Pdim(Feges™ " °(R)) < |G/wil. Otherwise,  if
Pdim(Figis™ ¥ (R)) > |G/w|, then there exists two graphs G, Ga € G which can’t
be distinguished by SOCP-WL test but have different output under some f € fgd?};kl""’km’b(R).
This contradicts with theorem [0] (Assume there exist 21,22 such that: for any binary vector
b = (b1, by) € {+1,—1}2, there is a function g € Fgps*(R) satisfying:

Vi€ {1,2}, sign(g(G;)—z)="b;

Without loss of generality, we assume z; > 22. Then there is a function g € fsngc'};kl kb (R) such

thatg(Gl) > 21 > 29 > g(Gg))

Now, we show that: Pdim(Figes**™*(R)) > |G/wz|. Letu = |G/w1|. Take representative
elements G1,Ga, -, G, of G/w respectively. Consider v < +oo first, from theorem @], we
know that there exists a SOCP-GNN that can simulate the SOCP-WL test for U}_; G;. Hence, G;’s
output (I1, Is, I, I,) must be different respectively under this GNN after enough iterations. By
theorem 3.1 of (Yun et al.| 2019)), we can output all possible results for G; respectively by using

a 3-layer ReLU-like FNN as the output layer. Hence, Pdim(Fggrs®Fm2(R)) > |G /v 1| when

u < 400, which indicates Pdim(Fegms™**(R)) = |G/wr| . In case where u = +oo, we
have: Pdim(Fgges™*m(R)) = oo as well, since any finite set composed of the representative

elements of G /v 1, can be pseudo-shattered. O

D.3 RADEMACHER COMPLEXITY BASED APPROACHES

Before we start, let’s recall some basic concepts first.

Definition D.5. For a SOCP problem X ¢ gggg;’“ """ kmb e define its size
N to be its parameter (e, {A4;}7,,{b;}", {ci}™y,{d:i}™, F,g,l,r)’s dimension
when equipped with product topology over these Euclidean spaces for predicting
boundedness, solution attainability, optimal value, optimal solution. And we define its problem size
N to be the dimension of its constraints’ parameter ({A4;}7,, {b;}7, {ci}y, {di} ™1, F, g, 1, 7)’s
dimension when equipped with product topology over these Euclidean space for predicting feasibility.

We make the task-specialized definitions above since predicting feasibility has nothing to do with the

objective function, while other tasks are all closely related to the objective function. Here, we focus
on the following set of problems and hypotheses:

Problem class: The problem class X we are solving satisfies the following properties:

* The problem size is N.
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* Its valid parameters lie in the bounded ball B,, = {x | ||z||2 < 7:i}.

Note that we can always transform a problem class whose valid parameters are bounded into a new
problem class whose valid parameters lie in the bounded ball by scaling. Moreover, real-world
large-scale problems always have sparsity. So it’s reasonable to assume that the /5 norm of the valid
parameters of the problems is bounded.

Hypothesis class: Here, we consider a subclass of SOCP-GNNs Ay, x such that each a € Ay v
satisfying the following property:

* Graph-level Output Lipschitz property: a is L-Lipshitz w.r.t. the input problem parame-
ters in B,

* Node-level Output Lipschitz property: For each variable i € [n], we have: a’s i-th output
is L-Lipshitz w.r.t. the input problem parameters in 3,, as well.

We remark that this kind of assumption is widely accepted by researchers in the sample complex-
ity/generalization ability of graph neural networks (Pellizzoni et al.||2024; Garg et al., 2020; [Tang &
Liul 2023). Now, we introduce some concepts which is helpful to our theory.

Definition D.6 (Rademacher Complexity of a set). Given a set A C R™, the Rademacher complexity
of A is defined as follows:

Rad(A) := —IE sup oia
( ) aeA Z ‘ l]
where 01, 09, ..., 0oy, are independent random variables drawn from the Rademacher distribution,
ie.,

Pr(o; = 41) =Pr(o; =-1)=1/2 fori=1,2,...,m,
and a = (a1,...,a,,) € A. The expectation E, is taken over the random variables o =
(01, y0m)-

Definition D.7 (pseudo metric space). A pseudometric space is an ordered pair (X, d) where X is a
setand d is a function d : X x X — R, called a pseudometric, satisfying the following conditions
forall x,y,z € X:

d(z,y) > 0 (Non-negativity)
0 (Identity of self)

)

d(z,z) =

d(z,y) = d(y, z) (Symmetry)

d(x, z) <d(z,y) + d(y, z) (Triangle inequality)

T,z

Unlike a metric space, a pseudometric space allows d(x, y) = 0 for distinct points = # y.

Definition D.8 (Covering number). Let (X, d) be a pseudometric space and let S be a subset of X.
For a given ¢ > 0, an e-covering for S is a set of points {x1,...,2y} C X such that for every point
s € S, there exists some x; in the set for which d(s, ;) < e. The e-covering number of .S, denoted
by Couv(S, d, €), is the minimum size N of e-coverings for S. Formally:

Cov(S,d,e) =min {|P| : P C X is an e-covering}

Definition D.9 (Packing number). Let (X, d) be a pseudometric space. For a given € > 0, an
e-packing of X is a subset P C X in which the distance between any two distinct points is strictly
greater than e, i.e., d(z,y) > e for all z,y € P with z # y. The e-packing number of X, denoted
by Pack(X,d, €), is the maximum possible cardinality of such a set. Formally, it is defined as the
supremum over the sizes of all possible e-packings:

Pack(X,d,e) = max {|P| : P C X is an e-packing} .
Now, let’s define the pseudo metric over Ay, n for both graph-level output and node-level output.

Pseudo metric for graph-level scalar output: Given a training set x = {z1,- - , Z,, }, we define

m NP1
lallpx = |W\E for a € Ay n with output dimension 1 as a pseudo norm. And define
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m ) — P, 1 . .
la —bllpx = |2 la(f;) b@)” |5 as the pseudo metric on Ay, n with scalar output, denoted by
Alp x-
Pseudo metric for node-level vector output: Given a training set x = {x1, - , 2, }, we define
D By NP L . . .
lallpx = | Lizs ijirll(a(w )i |» for a € Ap n with output dimension n as a pseudo norm. And

m s a(zi));—(b(xi));|P 1 . .
define ||a — b, x = |Zi:1 2=l n(m))‘ (=)l |11D as the pseudo metric on Ay, y with vector
output, denoted by ||. || x-

Without loss of generality, we assume our loss function is Lipshitz continuous with coefficient q.

Lemma 4 (Contraction lemma, (Shalev-Shwartz & Ben-David, 2014)’s Lemma 26.9). For each
i € [m], let ¢; : R — R be a p-Lipschitz function, namely for all o, 8 € R we have |¢;(a) — ¢:(B)] <
pla— B|. For a € R™ let ¢p(a) denote the vector (¢1(a1), ..., om(am)). Letpo A ={¢p(a):a €
A}, Then,

Rad(¢p o A) < pRad(A).

For the node-level scalar output, we have:

Lemma 5 (Contraction lemma for node-level output, (Maurer, 2016)). Let X be any set,
(x1,...,2n) € X™, let F be a class of functions f : X — {5 and let h; : {5 — R have Lips-
chitz norm L. Then

EsupZal W(f(z:)) <\fLEsupZUZkfk (25),
fer feEF

where o0, is an independent doubly indexed Rademacher sequence and fi,(x;) is the k-th component
of f(x;). And We use {5 to denote the Hilbert space of square summable sequences of real numbers.

By setting the after M-th coordinate of x € R to 0, we can see that any finite dimensional Euclidean
space is a special class of ¢ space.

Now, Let z; denote (x;,y;), where x; is the i-th socp instance and y; € R is the label of ;. We
denote the loss function as ¢(z) = ¢(a(x),y), which is g-Lipshitz w.r.t a(x) for all possible y. Let
¢(z) denote the vector (¢(21),...,0(zm)). Let g 0o A = {¢(z) : z € A}. Then, we have:

Rad(¢o{(z1, ..., zm) : zi = (a(x;),v:), Vi € [m] fora € Ap n}) < g Rad(Ap nof{(z1,...,xm)})
Meanwhile, Let z; denote (z;, y;), where x; is the i-th socp instance and y; € R™ is the label of x;

and we denote the loss function as ¢(z) = ¢(a(z),y), which is g-Lipshitz w.r.t a(z) € R™ for all
possible y. by lemma [3} we get:

Rad(¢ o{(21, .., 2m) : 2i = (a(z;),4:),Vi € [m] fora € Ar n}) < V2qn Rad(Ap no{(x1, ..., 2m)})

where Rad(Ap no{(z1, ... %m)} = = FEy [supaeALyN Dy Uia(xi)} for graph-level scalar output

and Rad(Ap Ny o {(z1,...,%m)} = ——Fs [SUPaeAL,N Sy Yoy oijla(x ))J} for node-level
vector output.

So, we only need to focus on Rad(Ar n o {(z1, ..., Zm)}) for fixed training sample (x1, - - , Tp,).
That’s just Rg(Ar,n) we defined following.

Lemma 6 (Dudley Entropy Integral for scalar output, chapter 5.3.3 of (Wainwright, [2019)). Let Ay, n
be the hypothesis class of SOCP-GNNs with scalar output as defined above. Let S = {x1,..., T}

be a fixed set of m SOCP problem instances. The empirical Rademacher complexity of Ar, n on S is
defined as

1 m
Rs(Ap.n)=—E, | sup oia(x;)
m a€AL N ; ' '
where o; are independent Rademacher random variables. Let || - ||2,s be the empirical Ly pseudo

metric on Ap N, given by ||a||2,s = /L Y a(x;)? for a € Ay, N. Assume that for some C's > 0,
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we have sup,¢ 4,  |lall2,s < Cs. Then,

A 12 [Cs/?
Rs(Arn) < inf de + ﬁ/g \/log Cov(AL,n, || - |25, v) dv

€€[0,Cs/2]

where COV(.AL,N, d, €) is the e-covering number of the set Ap N with respect to the pseudometric d.

Proof. We start by constructing a sequence of coverings for the hypothesis class Ay, x at progres-
sively finer scales. Define e; = Cs/27 for j = 1,2, ..., K . For each j, let A; be a minimal €;-cover
of Ar n with respect to the || - ||2,s pseudometric, so that its size is |A;| = Cov(AL N, || - ||2,s: €;)-

For any function a € Az n, we can define a sequence of approximations 7;(a) € .A; such that
l|a —mj(a)l|l2,s < €; and set my(a) = 0. For any integer K > 0, any function a € Ay n can be
decomposed into:

K
a = (a= (@) + Y (m)(a) = i1 (a)

By the sub-additivity of the supremum, the empirical Rademacher complexity 7@5(.,41;7 N) =
LEg [SUPgea, x Doins Jia(xi)} can be bounded by:

m

G.GSEEN ; cr,»(a(:vq;) - WK(G)(%‘))

Rs(Apn) < —E,

1
m

aG.AL,N i=1

The first term, representing the residual error, can be bounded using the Cauchy-Schwarz inequality.
For any a € Ay n, we have Y., 0;(a(z;) — mx(a)(z;)) < mlla — 7k (a)|l1,s < mlla —
i (a)||2,s < meg. Thus, the residual term is bounded by €.

For the second terms, we consider each term for j =0, ..., K. Let d;(a) = m;(a) — mj_1(a). This
difference function belongs to the set D; = {c — ¢ | ¢ € A;,¢’ € A;_1}, whose size is at most
|A;]|A;—1|. By the triangle inequality, the norm of any such difference is bounded by:

lld;j(@)ll2,s = lImj(a) = mj-1(a)llz,s <|lmj(a) —alla,s +[la = mj—1(a)ll2,s < € + €1 = 3.
We apply Massart’s Lemma to the Rademacher complexity of the finite set D;:

m

Y d(x)? - \/2log |Dj]
i=1

< sup (m||dj(a)||2,3) \/210g(\Aj||Aj,1|).

OLE.AL,N

Eq

sup Zaidxa)(xi)] < sup

acAL N ;7 deD;

Since the covering number is non-increasing with scale, |A;_1| < |4,|, which gives log |D;| <
2log|.A;|. Therefore, the bound on the j-th term of the Rademacher complexity is:

sup Zoidj(a)(xi)l < ﬁ(3ej)\/4log|,4j\ = %\/logCOV(AL,N, [

aE.AL,N i=1

1
—E,

m

2,5, 6])

Summing these bounds from j = 1 to K, and noting that ¢; = 2(€j — €j+1), we obtain a sum that
approximates an integral:

K K
6¢; 12
;:1 7\/7%\/1032 Cov(AL Nl - [l2,s,€5) = T ]E:l(ﬁj - €j+1)\/10g Cov(Arn, |l - ll2,s5 €5)

12 “
<= \/IOgCOV(ALJ\/, |- 1l2,5,v) dv.
VI Jeg i1

Combining all parts, we have for any chosen refinement level K:

12 [Cs/?

ﬁs(AL,N) < 2€x41 + — log Cov(AL N, || - ||2,5,v) dv.
- \/TTL €K1 \/
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Since this holds for any K, we can replace the cutoff scale ex 1 with an arbitrary € € [<5= ex11].

Taking the infimum over all such e yields the tightest bound:

5 12 [Cs/2
Rs(Ar,n) < inf de 4+ ﬁ/e \/IOgCOV(ALVN, [|-1l2,8,v)dv ¢ .

€€[0,Cs/2]
O

Lemma 7 (Dudley Entropy Integral for vector output). Let Ay, n be the hypothesis class of SOCP-
GNNs as defined above. Let S = {x1,...,xm} be a fixed set of m SOCP problem instances. The
empirical Rademacher complexity of Ar n with output dimension n on S is defined as

R 1 m n
Rs(Ap.n)= —F sup oiqilal(z;));
i) = B | swp 323 oate),
where ;; are independent Rademacher random variables. Let || - ||2,s be the empirical Lo pseu-

dometric on Ay, N, given by ||al|2,s = \/% >oisy 2= (a(x;))3 for a € Ap n. Assume that for

some Cs > 0, we have sup ¢ 4, . |lall2,s < Cs. Then,

. 12 [Os/2
R < inf 4 log C . d
s < ot e~ [ fog Cor |- flas.v) o

where Cov(ALN, d, €) is the e-covering number of the set Ap N with respect to the pseudometric d.

Proof. Similarly, we define e, = Cg/2" for k = 1,2,..., K . For each k, let A, be a minimal
ei-cover of Ay, y with respect to the || - ||2,s pseudometric, so that its size is | Ag| = Cov(AL N, || -
|2, €x)-

For any function a € Ay, y, we can define a sequence of approximations 7 (a) € A such that
l|a — mi(a)||2,s < € and set mp(a) = 0. For any integer K > 0, any function a € Ay, y can be
decomposed into:

K
a=(a—mx(a))+ Y (mr(a) = mk-1(a)).
k=1

By the sub-additivity of the supremum, the empirical Rademacher complexity ﬁs(AL N) =
—LE, [supaeALﬁN Sy e Uij(a(ﬂji))j} can be bounded by:

Ro(Arn) < —E, | swp SO o35(a(e:) — mic(a)(@);

mn a€ALN 51 j=1
K 1 m n
+> —F, | sup Y > oij(mi(a)(mi) — mo1(a)(2));
=1 " A€ALN T j=1
For any a € Ar n, we have 331°, >0 oyj(a(xi) — mx(a)(z)); < mnlla — mx(a)ll1,s <
mn|la — i (a)||2,s < mneg. Thus, the residual term is bounded by €.
For the second terms, we consider each term for k = 0, ..., K. Let di(a) = mx(a) — mr—1(a). This

difference function belongs to the set D, = {¢ — ¢’ | ¢ € Ak, € Ap_1}, whose size is at most
| Ag||Ax—1]|. By the triangle inequality, the norm of any such difference is bounded by:

ldk(a)ll2,s = l|mx(a) — mr—1(a)ll2,s < |[m(a) — allz,s +|la — Te—1(a)|l2,s < ek + €1 = ex.

We apply Massart’s Lemma to the Rademacher complexity of the finite set D;:

> (d(w:))? - /2log | Dy|

i=1 j=1

Eqs | sup szﬂj(dk(a)(%))j < sup

aE.AL’N i=1 j=1 de€ Dy
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< sup (vVmnlldi(a)ll2,s) v/2log(|Axl|Ak—1]).

a€AL N

Since the covering number is non-increasing with scale, | Ax_1| < |Ag|, which gives log | Dy | <
2log |Ag|. Therefore, the bound on the k-th term of the Rademacher complexity is:

1 1 6e
—E, | sup ZZJ” di(a)(x;)); SW(Sek)\/4log|Ak|=\/T%\/logCOV(ALJ\hH-||2,57ek).

mn ‘ZEALNz‘lgl

Summing these bounds from k& = 1 to K, and noting that €;, = 2(e;, — €j41), we obtain a sum that
approximates an integral:

6e
Z s \/1ogCov AL, || - €r) = )\/logCov(AL,N, IE €k)
k=
< 2 [ V10g Cov(Ar v || - [|2,5, ) d
S Og LOVIAL N, || " |]2,8,V)aV
vmn Je, .,
Combining all parts, we have for any chosen refinement level K:
192 Cs/2
Re(Apn) < 2eca1 + —— V108 Cov(AL x| - [|2,5.v) dv
\/7 EK+1
Since this holds for any K, we can replace the cutoff scale ex 1 with an arbitrary € € [“5= ex11].
Taking the infimum over all such e yields the tightest bound:
12 [Cs/?
Rs(Apy) < inf et —— VIogCov(AL v || - [|2,5,v) dv 3
s(ALn) < A Ry | og Cov(AL N, || - [2,5,v) dv
O
By the above lemma, it suffices to study the bound of Cov(AfL n,|| - ||2,5,v) now. And we will

consider two different situations here, i.e., the output dimension is 1 and n, respectively.

Lemma 8 (Estimation for covering number bounds in SOCP-parameter space, (Pellizzoni et al.,
2024) Lemma 2). Let A, v C {f : S — R} be the hypothesis class of SOCP-GNNs whose output
dimension is 1, where S = {x1,...,x,,} be a fixed set of m problem instances. We assume the
function outputs lie in the interval [—r,r]. For any € > 0, the logarithm of the e-covering number of
ic, || - ||27S, is bounded by:

2
&) < Cov(S, |- |l2: 57 )log <:+2).

log Cov(AL N, || -

Proof. Take S, to be the mlmmal 57 -covering of S. Consider function class O = {f : Sy —
{§+ke:k=—(Z]+ }f For each z € S, let m(x) € S be one of the closet point of

x in S satisfying: || (x ) — x||2 <op-LerO={f:9=R: f(z) = f(m(x)) for some f € O}.
Then |O] = |0] = (2[£] 4 2)¢V (&I ll2:37) So, it suffices to prove that: O is a e-covering of Ay,
under || - ||2.s.

Forany f € Ar v, take g € O such that [g(x) — f(x)| < § forall z € S,. Then we have:
1
I =gl = —(>_If (@) = g(@)*)

zeS

< %(Z[\f(x) — f(m(@)| + |f(7(2)) = g(n(2))] + |g(n(x)) — g(z)[]*)
eSS

gi(Z[M L5 +0P)=¢

€S

Taking square root of both sides, we get the proof. O
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Lemma 9. Let A, v C {f : S — R"} be the hypothesis class of SOCP-GNNs whose output
dimension is n, where S = {x1,...,2,} be a fixed set of m problem instances. We assume that
each component of the function output lies in the interval [—r,r]. For any € > 0, the logarithm of the
e-covering number of this class with respect to the empirical Ly pseudometric, || - ||2,s, is bounded

by:

€ 2r
log Cov(AL n, || - l2,5,€) < nCov(S, | - |2, E) log (e + 2> .

Proof. Take S to be the minimal ;%-covering of S. Consider function class O = {f : S, —
{§+ke:k=—([%]+1),...,0,[£]}"}. Foreach z € S, let m(x) € S, be one of the closest point of

x in S, satisfying: ||7(z) —z[j2 < 57. Let O = {f : S = R": f(x) = f(m(z)) for some f € O}.
Then |O] = |O| = (2[%] + 2)"¥(S:llll2:5T). So, it suffices to prove that: O is a e-covering of Ay,
under || - ||2.s.

For any f € A v, take g € O such that [g(z); — f(x);| < § forallz € S; and i € [n]. Then we
have:

15 = 9lB.s = — (3" S 17 - glahil?)

z€eS i=1

%(Z D o lf@)i = f((@))il + |f (w(@))i = g(m(2))| + lg(m(2))i — g(2)i]]*)

zeS i=1

< (VN L0 =

zeS i=1

IN

Taking square root of both sides, we get the proof. O

So, what remains is to discuss the covering number bounds of S in its valid parameter space B,

Lemma 10 (Estimation for covering number bounds in socp-parameter space). For any € > 0 and
the uniform distribution P over the valid parameter space B,,, we have:

)N (1~ (1 - min((=)V,1)™)

Ti

Egnpm (Cov(S, || - [[2;€)) < (

2ri +€
€

Proof. Notice that:

Cov(S, || - ||2,€) < Pack(S,] - ||2,€) < Pack(B,,,

| : H27 6)

Here, the first inequality holds since any maximum e-packing is a e-covering as well. Let P be
the maximum e-packing of B, and let P = {x1,--- ,x|p}. Then, we have: Ulille(xi, 5) C
B(0,7; + §), where B(x;, §) = { € RV : ||z; — 2||2 < §} are mutually disjoint. Hence, if let cy

denote the volume of the bounded ball in RY, we get:|P| < %(%)N .

Consider the collection of balls B = {B(x;,¢€) : ¢ € [|P|]}. For any ball b € B and m socp instances
51, ,Sm Which are sampled i.i.d. from the uniform distribution on B,,, we have:

P(s; ¢ b,Vi € [m]) > (1 — min((=)N, 1))™

i

. For any possible realization of S = {s1,--- , $;n }, we take all balls b € B, which contain some
points in S to form a new set of balls, denoted by C. Then C’s center forms a e-covering of S.
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(Here, notice that: B,;, C Upepb). Let I1,...,Ip| denote the indicator variables for the event:
Jy € S,s.t.y € B(xy, €) respectively. Then, we have:

|P|
B (Cov(S. | - s ) < Bswpm (Y1) < PI(1 = (1= min((5)™, 1))
< (BEN A - (1 - min((S)Y, 1)m)

€ Ty

Before we get our result finally, an important lemma is needed.

Theorem 12 (Theorem 26.5 of (Shalev-Shwartz & Ben-David, 2014)); Algorithmic Foundations of
Learning). Assume that for all z and h € H we have that |((h, z)| < c. Then,

1. With probability of at least 1 — 6, for all h € H,

21n(2/9)
— < / 7
Lp(h) — Lg(h) < ZS/NJETDmRad(E oHoS)+ec -
In particular, this holds for h = ERMy (S).
2. With probability of at least 1 — 6, for all h € H,
21n(4/4)

Lp(h) — Ls(h) <2Rad(foH o S)+ dey/| ———=.
m
In particular, this holds for h = ERM3/(S).
3. For any h*, with probability of at least 1 — 9,

Lp(ERMy(S)) — Lp(h*) < 2Rad(toH o S) + 5c %

4. For any h*, with probability of at least 1 — §,

Lp(ERM3(S)) — Lp(h*) < 4Eg/pm[Rad(l o H o S")] + 2¢ MLS/(S),

Here, z denotes the sample point, S and S’ denotes the training set of size m, H denotes the hypothesis
class, { denotes the loss function, h* denote the hypothesis in H with the smallest generalization
error and ERMy(S) denotes the hypothesis in H with the smallest empirical error on S.

Before we go further, we need a further lemma to apply Tonelli’s theorem in the following proof.

Lemma 11. The function ®(S,v) = Cov(S, || - ||,v) is measurable w.r.t. the standard lebesgue
measure, where S € (B,.)™,v € RY. Here, RY denotes all non-negative real numbers.

Proof. Here, if suffices to prove that: for any n € N, the set {(S, v) : ®(S,v) < n} is measurable.
Let S = (51, ,8m), X = (x1,---,2y), we define h(S, X) = max;cpm minjcpy) [|si — ;]|2,
which is continuous in S, X. By Berge’s theorem of maximum, g(S5) = infs, .z, es, h(S, X) is
continuous in S. Hence g(.S) — v is continuous. Notice that:

{(S,v) : ©(5,v) < n} = {(S5,0) : g(5) —v <0}

Hence, this set is measurable, which indicates that Cov(S, || - ||, v) is measurable w.r.t. (S,v). O

It’s time to get our integral sample complexity result.
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Theorem 13 (estimation risk for graph level output). For graph-level prediction tasks, let Ay, v be
the hypothesis class of SOCP-GNNs defined above for a graph-level prediction task on the set X of
SOCP instances whose valid parameters lie in B,,, with outputs in [—r,r] and loss functions that
are q-Lipshitz and bounded by p. Then, for any training set S of m samples which are i.i.d. sampled
from the uniform distribution D over X, let h* denote the hypothesis in Ay, n with the smallest
generalization error and ERM 4, (S) denotes the hypothesis in Ar, N with the smallest empirical
error on S, we have: with probability of at least 1 — §,

* ’ 2log(1/6
Lp(ERMa,, «(S)) — Lp(h") < 4Eg/ pm[Rad(f o Ap,n o S7)] +2p #
12 ("2 | ALri+v v 2r
< i [ 1 C\N(1— — mi m =
< 4q€€[15}£/2][4e + \/m/6 \/( Y WA -(1 mm((ZLrl ,1))m) log ( . + 2) dv]
1 opy ) 2108(1/9)
m

Proof. By theorem above, it suffices to notice that:
Eg/pm|[Rad(f o Ap.n 0 S')]
< qEs/pm[Rad(Ar,n o S")](lemma [

12 r/2
< gEgipm| inf {45 + ﬁ/ \/logCOV(.AL,N, I|-1]2,575v) dv}](lemma @)

ec[0,7/2]
2

<ot Baoml{ter 22 [\ fogCotAi, - lasna)d
<q jnf Eswp [ e+\ﬁ 0g Cov(AL N, || - 2.5/, v) dv b]
< inf [4e + 12 E /T [\/10 Cov(A [|-1] v)] dv)
- qse[o,r/Q] vm S'~Dm g L,N 2,55
<q _jnf [4e+\FEs,NDm [\/COVS I- |2,2L (%w) ] dv](lemma )
< inf [de 2 T/2E [4/Cov(S", | - |l r +2 v](Tonelli’s Theorem)
_q 0 /2] \/7 SND’"L 2’ v

12 r/2
< qse[ig}f/Q][ZLe + ﬁ/e \/]ES/NDm [Cov(S7, | - ||2, 2L < + 2) dv](Jensen Inequality)

12 /2 4Lri +v v 2r
< i P _—— ' "\N _ _ i N m -
< qee[l(]r,lf/2][46 + \/>/€ \/( " N(1—(1 mm((QLri) ,1))™) log ( ot 2) dv](lemma [10)

Here, \/ Cov(S", || - l2, 3 ) log (2 + 2) is measurable since it’s the square root of the multiplication

of two finite-valued positive measurable functions. Since it’s positive, we can exchange the order of
integration by Tonelli’s theorem. O

Theorem 14 (estimation risk for node level output). For node-level prediction tasks, let Ay, n be
the hypothesis class of SOCP-GNNs defined above for a node-level prediction task on the set X of
SOCP instances whose valid parameters lie in B,.., with outputs in [—r,r]™ and loss functions that
are q-Lipshitz and bounded by p. Then, for any training set S of m samples which are i.i.d. sampled
Sfrom the uniform distribution D over X, let h* denote the hypothesis in Ay, n with the smallest
generalization error and ERM 4,  (S) denotes the hypothesis in Ay, n with the smallest empirical
error on S, we have: with probability of at least 1 — 6,

Lp(ERM 4, (S)) — Lp(h*) < 4Eg . pm[Rad(f o Arn 0 S')] + 2 21%(1/5)

< 4v2nq inf 45 + —/ \/ AL —l—v N(1— (1 —min(( )N, 1))™) log <% + 2) dv]
eclo,r/ 2L v
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2log(1/6)

+ 2p

Proof. By theorem @above, it suffices to notice that:
ES’NDm [Rad(ﬁ [e] .AL,N (e} Sl)]
< V2ngEg:pm[Rad(Ar,x o S")](lemma [3)

/2
< V2ngEg: . pm [ee[i({lfm { \/12— \/log Cov(AL,n, |+ [l2,575v) dv}](lemma 1)

/2
<V2nq inf Eswam[{%—&— N \/logCOV(AL,N,||~||2,51,v)dv}]

ec[0,r/2]

12 r/2
<Vang inf [de+ ES/ND,”/ (/108 Cov (AL . [ - [[2,57 v)] o]

eel0,r/2] vmn
<V2nq inf [de+ iES, pm /T/2[ nCov(S, || - Hz )log r + 2 )] dv](lemma [I)
- e€l0,r/2] N . ’ v
<V2nq inf [de+ i i Eg/wpm [ nCov(S’, | - |2 )log r — + 2 )] dv](Tonelli’s Theorem)
- e€[0,7/2] vmn " 2L
<V2ng [iglf/ nEgspm[Cov(S’, || - Hg, )] log (21 + 2) dv](Jensen Inequality)
ec|0,r v

e€[0,r/2]

<Vong inf [4€+7/ \/A‘LT”L”) (1= (1= min((57—)N, 1) )log< +2) dv](lemma [T0)

O
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E SOCP-BASED FORMULATION FOR OPF

* Decision Variables

w; € Ry voltage magnitude squared at bus ¢ an
¢ij,Sij € R cosine and sine terms for line (4, j) (12)
g i»Qg,s € R real and reactive power generation at bus ¢ (13)
P;;,Qq; € R real and reactive power flows on line (g, j) (14)
where:
Cij = W;Wj cos(@,» — (9]) (15)
Sij = WiWj sin(9i — 9]) (16)

* Objective Function min ), s c; - Py ;

*» Second-Order Cone Constraints For each line (i, j) € £, the rotated second-order cone
constraint:

c —|—5 5 < wiw; (17

can be directly reformulated as the following standard second-order cone constraint:

2Cij
252’]’
W; — Wy

* Power Flow Equations Real power flow from bus ¢ to bus j:

2

Pij = gijwi — gijcij — bijsi; (19)
Reactive power flow from bus ¢ to bus j:
Qij = —bijw; + bijcij — gijsij (20)
where g;; and b;; are the conductance and susceptance of line (3, 7).

* Nodal Power Balance For each bus 7 € N:

Z Pij + giiwi (21)
JEN (i)

Qg,i _Qd,i = Z sz - zz i (22)
JEN ()

where N (7) is the set of buses connected to bus , and g;;, b;; are shunt elements.

* Voltage Magnitude Limits

(V;_min)Q S w; S (‘/imax)Q Vl c N (23)
¢ Generation Limits
PN < Py S PIYVieg 24)
< Qg QI VieG (25)
¢ Line Flow Limits
[(Pij. Qij)lly < S55™ V(i,j) €€ (26)
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F EXPERIMENT SETTINGS AND SUPPLEMENTARY RESULTS

F.1 DATA GENERATION
F.1.1 GENERATION OF FEASIBLE SOCP INSTANCES

Following the SOCP generating scheme in CVXPY), we use the following steps to generate feasible
and random SOCP instances, which admit at least an optimal solution.

(I) : Generate a secret point s € R™ by sampling from a standard normal distribution, i.e.,
x5 ~ N(0,I). Then generate the objective coefficient e ~ N(0, 0.25I).

(II) : Impose lower bounds and upper bounds on variables | < x4 < r for the problem. Here
l=uxzs—|A1| —0.1,7 = zs + |Ag| + 0.1, where A; are sampled i.i.d. from A(0, 0.251)
and | - | denotes component-wise absolute value.

(Il) : Generate F' € R**™, whose nonzero entries are sampled i.i.d. from A(0,0.01) and
components are nonzero with probability 0.5. The vector g is subsequently sampled by
g = Fzs + |As] + 0.1, where Az ~ N(0,0.25I).

(IV) : For each conic constraint, randomly sample the cone dimension (the number of rows
of A;,b;)in [1,7] with equal probability. Then, generate A;, ¢;, b;, whose nonzero entries
are sampled i.i.d. from N(0,0.0025). Each component of the coefficient matrix A;, c;
is nonzero with probability 0.5. Then, generate d; = ||A;zs + bil|2 — ¢] v + €, where
e~U(0.5,1).

Step (II) ensures that the generated SOCP instances always have an optimal solution. Furthermore,
the coefficients are intentionally sampled from distributions with different variances, introducing
varying numerical scales to create more challenging test instances.

F.1.2 GENERATION OF (POSSIBLE) INFEASIBLE SOCP INSTANCES

We use the following steps to generate a (possible) infeasible SOCP instance with pre-determined
probability h € [0, 1].

(I) : Sample a feasible SOCP instance by methods in Appendix [F1.1]
(II) : Execute step II-IV with probability i and execute step V-VI with probability 1 — h.

(ITI) : Sample a random integer p in [3, 20] and a scale coefficient a ~ 2£(0, 1). Then repeat step
IV for p times

(IV) : Randomly choose a type of constraint to break with equal probability. If the polyhedral
constraint is chosen, we randomly choose one component of g with equal probability,
denoted by g;, and then replace g; by (Fzs); — 6 — 3. If the conic constraint is chosen,
we randomly choose one with equal probability and then replace its corresponding d; by
|Aizs + bill2 — ¢ x5 — 5 — 3. Here § ~ U(0, a).

(V) : Sample a random integer p in [3, 20] and a scale coefficient a ~ U/(0, 1). Then repeat step
VI for p times

(VD : Randomly choose a type of constraint to enhance with equal probability. If the polyhedral
constraint is chosen, we randomly choose one component of g with equal probability,
denoted by g;, and then replace g; by g; + d. If the conic constraint is chosen, we randomly
choose one with equal probability and then replace its corresponding d; by d; + 6. Here
0 ~U(0,a).

F.1.3 GENERATION OF OPF-SOCP INSTANCES

We use the following steps to generate feasible SOCP instances that admit an optimal solution (Here,
initial problem settings are the same as Appendix [E):

(D : Read the reference problem in the IEEE test systems (Babaeinejadsarookolaee et al.,[2019)
which has the pre-determined number of buses.
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(II) : Randomly remove one branch from the grid topology while making sure the resulting
graph is still connected.

(IIT) : Apply multiplicative perturbations to the base real and reactive power demands, Py ; and
Qa,i» at each bus ¢, and to the linear generator cost coefficients, ¢;. Each perturbation factor
is drawn 1.i.d. from a uniform distribution 2/[0.9, 1.1].

(IV) : Check if the problem has an optimal solution. If yes, then return the problem. Otherwise,
repeat steps I-IV again.

F.1.4 DATA GENERATION FOR PREDICTING OPTIMAL SOLUTIONS

We randomly generate 5000 feasible SOCP instances by methods in Appendix [FI.T]of size (50,10,10),
(100,50,50), and (500,100,100) respectively. Each instance is solved in CVXPY to obtain a ground
truth solution as the label. ﬂThen, we divide these instances into training, validation, and test data
classes by the ratio 8 : 1 : 1.

To further validate our theorem on real-world situations, we use methods in sectionto randomly
generate 1000 samples based on IEEE test systems. Then, we divide these instances into training,
validation, and test data classes by the ratio 8 : 1 : 1.

F.1.5 DATA GENERATION FOR PREDICTING THE FEASIBILITY:

We randomly generate 5000 infeasible SOCP instances with probability h = 0.5 by methods in
Appendix 0f size (50,10,10), (100,50,50) and (500,100,100) respectively. We use CVXPY to
detect the feasibility of these instances as well. Then, we divide these instances into training class
and validation class by the same ratio.

F.2 IMPLEMENTATIONS AND TRAINING SETTINGS FOR PREDICTING THE OPTIMAL SOLUTION
AND FEASIBILITY

For predicting the optimal solution, our SOCP-GNN is implemented with four message-passing
layers. The learnable functions, denoted by g?l, gfz, flt3, and fou (where l; € {1,...,4}, 15 €
{1,...,6},and I3 € {1,...,8}), are all parameterized by neural networks. Specifically, g/ and
gth are simple linear layers, while flt3 and f,y are constructed with a single hidden layer containing
64 neurons. For comparison, our baseline FCNN is implemented with four hidden layers with
residual connections, each containing 64 neurons. The other GNNs are implemented based on
the basic message-passing method with the same embedding layer as SOCP-GNN, i.e. A1 =
Update(h™*, Aggregate({{enn/, k™' |0’ € N(n)}})). Here h™! is the feature of node 7 at the
t-th message passing process, e, is the edge weight connecting node n and its neighbor n’, and
N (n) denotes the neighborhood of node n. In the vanilla MPNN, we first concatenate e,,,,» and
R+t to form [enn, h"l’t]. This vector is processed by an MLP with two hidden layers (64 neurons
each) to generate a message vector matching the dimension of h™*. We then compute the mean

of these messages over the neighborhood of n, denoted as Rt Finally, a distinct MLP with an
identical architecture maps the concatenation [h™*, ﬁ”’t] to the updated feature h™**1. For the Graph
Isomorphism Network (GIN), we employ the same MLP architecture as in the vanilla MPNN to map
Bt 4+ | N (n)]h™* to the updated feature h"**!. Vanilla MPNNs and GINs both have five message
passing layers. We use normalized MSE loss (Section [7) as the loss function.

For predicting the feasibility, our SOCP-GNN follows a similar structure to the one in solution
prediction. Since the binary classification is simpler than the solution regression, we set the hidden
layer with 16 neurons. For comparison, our baseline FCNN is implemented with three hidden layers,
each containing 16 neurons. We use binary cross-entropy loss as the loss function.

All MLPs mentioned above use ReLU as the activation function. We use AdamW to optimize our
learnable parameters for both FCNNs and GNNs with a maximum learning rate of 5 x 10~* and a
batch size of 40. All experiments were conducted on an NVIDIA H200 GPU, with the exception of
the inference time evaluation.

“We denote an SOCP instance by a tuple (n, b, m), where n represents the number of decision variables, b
denotes the number of polyhedral constraints, and m indicates the number of second-order cone constraints.
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F.3 RESULTS FOR PREDICTING OPTIMAL SOLUTIONS AND FEASIBILITY
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Figure 7: Comparison between the proposed GNN and FCNN for feasibility classification for random
SOCEP instances. The GNN uses approximately 0.01M parameters across three scales, while the
FCNN uses approximately 0.07M, 0.7M, and 7M parameters for all three problem scales, respectively.

As shown in Figuresf]and[7] the proposed SOCP-GNN surpasses the baseline FCNNs in both optimal
solution prediction and feasibility classification tasks in both synthetic and real-world SOCP instances.
Across all problem scales—small, medium, and large—the GNN achieves substantially lower relative
MSE and binary cross-entropy loss compared to the FCNN baseline. This superior performance
is particularly evident in its parameter efficiency: on large-scale problems, the GNN, with only
approximately 0 . 35Mb parameters, outperforms the FCNN, which requires 11 0Mb parameters for
the solution prediction task, representing a nearly 300-fold reduction in model complexity. We also
observe similar trends in the feasibility classification tasks.

This dramatic improvement in both performance and efficiency validates the effectiveness of exploit-
ing the inherent sparse geometric structure of optimization problems through graph representations
and message passing. These results confirm the potential of our approach as a scalable, data-driven
framework for solving complex optimization problems.

Remark 6. Since we have already proved that all target mappings are measurable, it follows that:
FCNNs can provably approximate these target mappings within any given error tolerance. Hence, it’s
reasonable to use FCNNs as a baseline for comparison.

F.4 EMPIRICAL STUDY ON SAMPLE/MODEL COMPLEXITY AND SIZE GENERALIZATION

As shown in Fig we randomly generate 625, 1250, 2500, and 5000 synthetic training samples of
size (50,10,10) and divide these instances into training, validation, and test data classes by the ratio
8 : 1 : 1 respectively. We use four SOCP-GNNs with the hidden layer sizes 32, 64, 128, and 256,
respectively. Then, we train these four models on the four different datasets, respectively, and then
measure their training and validation losses. When the hidden layer size or the number of training
samples increases, both the training loss and validation loss decrease. This demonstrates that: with a
sufficient number of training samples, the SOCP-GNN can achieve near-zero approximation error
and generalize effectively to unseen instances.

Moreover, we randomly generate 6000 synthetic training samples of size (10,5,5), (20,10,10),
(40,20,20), (80,40,40) and (160,80,80) respectively. Then we divide these samples into training and
test data classes by the ratio 5 : 1. Then, we train the SOCP-GNN model with hidden layer size 64 on
these datasets, respectively. Finally, each trained model was evaluated on all five test sets to measure
its cross-size generalization performance, reported as test loss. The results are summarized in Fig
It’s observed that: models trained on larger problem instances demonstrate superior generalization
capabilities, particularly when tested on smaller, unseen problem sizes. Meanwhile, models trained
entirely on smaller datasets also have the surprising ability to generalize to unseen larger datasets.
This has validated the good size generalization probability of SOCP-GNNs, which motivates future
research on efficient training of SOCP-GNNSs leveraging this size generalization ability.

F.5 EMPIRICAL STUDY ON THE LIPSCHITZ REGULARIZATION

To show how the Lipschitz assumption can be controlled in the experimental setting, we use projection-
based methods to train our SOCP-GNN (Gouk et al.| 2020)). The method operates as follows: for
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predefined constants A > 0 and p > 1, we project each weight matrix 1/ onto an £,-norm ball after
each standard optimizer update. Specifically, at the end of every epoch, the weights are updated via

the assignment:
W

Wiy
max (1, T)

To validate this approach, we conducted an experiment on the IEEE 118-bus dataset. The number
of samples and the dividing rules are the same as above, The results are summarized in Table[T] In
the table, p1_lambdaO0. 5 refers to a configuration with p = 1 and A = 0.5. The generalization
gap is measured by the difference between train loss and true loss, approximating the difference

between empirical risk and true risk. The Lipschitz coefficient L is measured by randomly picking
10000 pairs of instances x, y in dataset and then take the supremum of W We repeat the

experiment for 3 times and take the average.

W «+

Table 1: Training and test results for different configurations.
Config Train Loss Test Loss Gen Gap Lip-L
baseline 0.004885  0.005076 0.000191 0.5186

pllambda0.5  0.008184  0.008208 0.000024 0.4011
pllambda0.7  0.006707  0.006905 0.000199 0.4782

The experimental results indicate that selecting a smaller radius for the norm ball leads to a lower
Lipschitz constant for the model. This suggests that the Lipschitz constant can be effectively
controlled by constraining the norm of the weight matrices.
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