

000 001 002 003 004 005 006 007 008 009 010 ON THE UNIVERSALITY AND COMPLEXITY OF GNN SOLVING SECOND-ORDER CONE PROGRAMS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Graph Neural Networks (GNNs) have demonstrated both empirical efficiency
 012 and universal expressivity for solving constrained optimization problems such as
 013 linear and quadratic programming. However, extending this paradigm to more
 014 general convex problems with universality guarantees, particularly Second-Order
 015 Cone Programs (SOCPs), remains largely unexplored. We address this challenge
 016 by proposing a novel graph representation that captures the inherent structure
 017 of conic constraints. We then establish a key universality theorem: *there exist*
 018 *GNNs that can provably approximate essential SOCP properties, such as instance*
 019 *feasibility and optimal solutions.* We further derive the sample complexity for
 020 GNN generalization based on Rademacher complexity, filling an important gap for
 021 Weisfeiler-Lehman-based GNNs in learning-to-optimize paradigms. Our results
 022 provide a rigorous foundation linking GNN expressivity and generalization power
 023 to conic optimization structure, opening new avenues for scalable, data-driven
 024 SOCP solvers. The approach extends naturally to p -order cone programming for
 025 any $p \geq 1$ while preserving universal expressivity and requiring no structural
 026 modifications to the GNN architecture. Numerical experiments on randomly
 027 generated SOCPs and real-world power grid problems demonstrate the effectiveness
 028 of our approach, achieving superior prediction accuracy with significantly fewer
 029 parameters than fully connected neural networks.

030 1 INTRODUCTION:

031 Second Order Cone Programming (SOCP) represents a fundamental class of convex optimization
 032 problems with numerous real-world applications (Lobo et al., 1998), including optimal power flow
 033 (Gan et al., 2014), trajectory planning (Liu et al., 2016), image restoration (Goldfarb & Yin, 2005),
 034 signal processing (Shi et al., 2014), and network localization (Tseng, 2007). However, traditional
 035 algorithms, such as primal-dual interior point methods, face computational limitations in large-scale
 036 applications, particularly in real-time scenarios where rapid response is crucial.

037 Recent advances in machine learning, such as
 038 the learn-to-optimize (L2O) paradigm (Chen
 039 et al., 2022a; Li & Malik, 2016), have enabled
 040 solving optimization problems in real-time.
 041 Specifically, graph neural networks (GNNs)
 042 have been proven efficient in training by lever-
 043 aging the inherent graph structures of the prob-
 044 lem. For instance, linear programs (LP) can be
 045 modeled as bipartite graphs with variable and
 046 constraint nodes (Chen et al., 2022b), enabling
 047 efficient learning with a parameter sharing mech-
 048 anism over GPUs. Beyond empirical success,
 049 theoretical foundations, including *universal approximation capabilities*, have been established for
 050 GNN applications in (mixed-integer) LP (Chen et al., 2022b; 2023), quadratic programming (QP)
 051 (Chen et al., 2024b), and convex quadratically constrained QP (Chen et al., 2024b; Wu et al., 2024).

052 Despite these advances, extending GNNs to more general convex programs like SOCP remains an
 053 open challenge. **A key difficulty lies in the hybrid structure of second-order cone constraints, which**
involve both linear parts and non-linear norms. Effectively modeling the interplay between them and

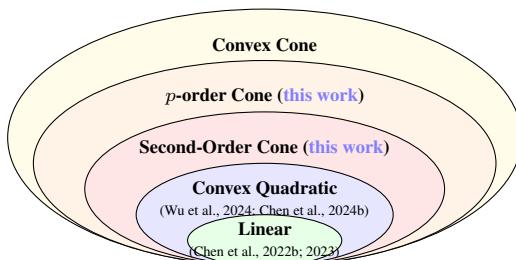


Figure 1: GNN expressivity for convex programs.

054 **encoding constraints into graphs remains largely open.** This paper proposes a novel GNN architecture
 055 with universal approximation capabilities for SOCPs, making the following contributions:
 056

- 057 ▷ We propose a novel graph representation for SOCPs, which exploits linear relationships within the
 058 non-linear conic constraint and decomposes it into separated nodes for efficient graph representations.
- 059 ▷ Based on proposed graph representations, we design SOCP-GNNs, to predict the key properties of
 060 SOCPs, including instance feasibility and optimal solutions, with universal expressivity guarantees.
 061 Our GNN design and expressivity guarantees can be extended to p -order conic programming for
 062 $p \geq 1$ without GNN structural modifications.
- 063 ▷ We further derive the sample complexity of the SOCP-GNNs for generalization. Such analysis is
 064 general and can also be extended to other Weisfeiler-Lehman-based GNN approaches in the L2O
 065 community (Chen et al., 2022b; 2023; Wu et al., 2024).
- 066 ▷ Our experiments demonstrate that the expressivity of designed GNNs, which use fewer parameters
 067 to achieve better prediction accuracy compared to fully connected NNs, in both the synthetic SOCP
 068 dataset and the real-world power grid optimization.

069 To the best of our knowledge, this is the first GNN design for SOCP with universal expressivity
 070 guarantees, and also the first work to analyze the generalization ability of Weisfeiler-Lehman-based
 071 GNNs designed in the L2O paradigm.

073 2 RELATED WORK

075 **GNN Expressivity in L2O Paradigms:** We review two primary paradigms for analyzing GNN
 076 expressivity for optimization problems: the *Weisfeiler-Lehman* (WL)-based and *Algorithm-Unrolling*
 077 (AU)-based frameworks.

078 The WL-based framework models optimization problems as graphs, where nodes represent variables
 079 and constraints, with edges modeling their interactions. It then links the GNN’s expressive power
 080 with WL tests on graphs. Building on established foundations for (mixed-integer) linear programs
 081 (LP) (Chen et al., 2022b; 2023), researchers have extended this framework to more complex problems
 082 such as quadratic programs (QP) (Chen et al., 2024b) and quadratically constrained QP (QCQP) (Wu
 083 et al., 2024). A key challenge is representing non-linear constraints, as encoding complex interactions
 084 into nodes and edges is non-trivial. Recent work has addressed convex quadratic constraints through
 085 dynamic edge updates (Chen et al., 2024b) or augmented quadratic variable nodes (Wu et al., 2024).
 086 However, extending existing frameworks to represent general conic constraints like second-order
 087 cones remains an open question (see Appendix A.1.1 for details).

088 The AU-based paradigm maps iterative steps of specialized algorithms (e.g., primal-dual methods)
 089 onto GNN layers. By aligning GNN layers with known algorithms for specific problems, such as
 090 LP (Qian et al., 2024; Li et al., 2024a;b; 2025), QP (Qian & Morris, 2025a; Yang et al., 2024a), and
 091 combinatorial problems (Yau et al., 2025; He & Vitercik, 2025), universality and parameter com-
 092 plexity can be naturally established through existing algorithmic convergence properties. However,
 093 representing more complex algorithmic steps involving non-linear operations (e.g., factorization or
 094 projection) is non-trivial. Furthermore, the GNN’s expressivity is inherently limited by the underlying
 095 capability of the algorithm itself (see Appendix A.1.2 for details).

096 **Generalization of GNNs and L2O:** We briefly review several studies on the generalization ability of
 097 both GNNs and L2O paradigms (see Appendix A.2 for details).

098 To study the generalization capability of GNN and its variants, researchers have leveraged multiple
 099 ways, such as **Vapnik–Chervonenkis(VC) dimension** (Scarselli et al., 2018; Morris et al., 2023; Franks
 100 et al., 2024; D’Inverno et al., 2025), Rademacher complexity (Garg et al., 2020; Pellizzoni et al.,
 101 2024), PAC-Bayes bound (Ju et al., 2023; Liao et al., 2020), and stochastic optimization (Tang &
 102 Liu, 2023). However, these works cannot be directly applied to WL-based GNN frameworks under
 103 the L2O paradigm due to the continuous feature space of optimization problems and the difference
 104 in GNN structures. The generalization performance of L2O or data-driven methods has also been
 105 studied from many perspectives, including VC dimension (and pseudo dimension) (Balcan et al.,
 106 2021), loss landscape (Yang et al., 2023), and PAC-Bayes bound (Sucker & Ochs, 2025; Sambharya
 107 & Stellato, 2024). However, these works are not **specifically** designed for WL-based GNNs in L2O
 paradigms.

108 In this work, we extend the WL-based framework to optimization problems with second-order cone
 109 constraints, a general class that encompasses LP, QP, and convex QCQP, with extensive real-world
 110 applications. Our specialized GNN achieves universal expressivity capabilities while maintaining
 111 computational efficiency, establishing a foundational approach for extending GNNs to broader conic
 112 programming domains. Additionally, we provide the first generalization analysis for WL-based GNNs
 113 in the learning-to-optimize paradigm, establishing theoretical foundations for sample complexity
 114 when applying GNNs to solve optimization problems.

115 3 PROBLEM DEFINITION AND OPEN ISSUES

116 We consider a general second-order cone programming (SOCP) (Alizadeh & Goldfarb, 2003) as:

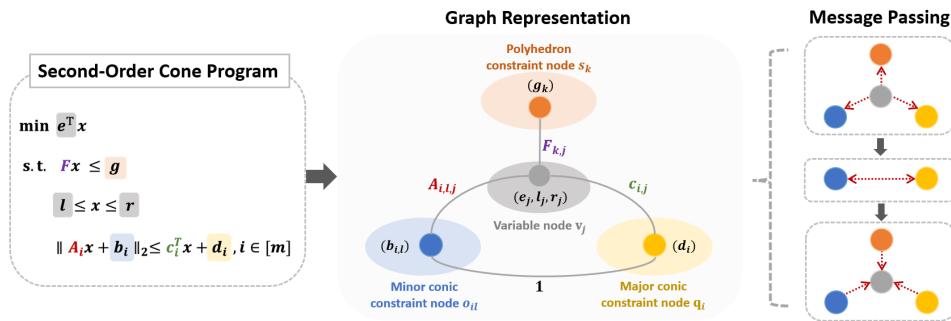
$$117 \min_{l \leq x \leq r} e^T x \quad \text{s.t.} \quad Fx \leq g, \quad \|A_i x + b_i\|_2 \leq c_i^T x + d_i, \quad i \in [m] \quad (1)$$

118 where decision variables are $x \in \mathbb{R}^n$ and the problem parameters are $e \in \mathbb{R}^n$, $A_i \in \mathbb{R}^{k_i \times n}$, $b_i \in \mathbb{R}^{k_i}$,
 119 $c_i \in \mathbb{R}^n$, $d_i \in \mathbb{R}$, $F \in \mathbb{R}^{b \times n}$, $g \in \mathbb{R}^b$, $l \in \mathbb{R}^n$, and $r \in \mathbb{R}^n$.

120 **Open issue:** While GNNs have successfully modeled linear and convex quadratic constraints
 121 with expressivity guarantees, handling more general second-order cone (SOC) constraints remains
 122 challenging. Additionally, the generalization capacity of GNNs for optimization problems remains
 123 largely unexplored. While previous work focused on expressivity, understanding how many training
 124 samples are needed for good performance over new instances is critical for trustworthy applications.

125 4 METHODOLOGY

126 We design the following layered graph [representation](#) to address the expressivity of GNN for SOCP:



127 Figure 2: The graph representation of SOCPs and the message passing steps in GNN design. A
 128 specific SOCP instance and its corresponding SOCP-graph are included in Fig. 6, Appendix B.4.

129 4.1 GRAPH REPRESENTATION OF SOCPs

130 As shown in Fig. 2, the graph representation of an SOCP consists of four types of nodes, to represent
 131 decision variables (V_1), polyhedron constraints (V_2), minor conic constraints (V_3), and major conic
 132 constraints (V_4):

- 133 • $V_1 := \{v_j\}_{j \in [n]}$ denotes decision variables, where each node v_j is associated with a feature tuple
 134 (e_j, l_j, r_j) , representing the objective coefficient, variable lower and upper bounds.
- 135 • $V_2 := \{s_k\}_{k \in [b]}$ denotes polyhedron constraints equipped with feature (g_k) for each node.
- 136 • $V_3 := \{o_{il}\}_{i \in [m]}^{l \in [k_i]}$ denotes the minor conic constraint, where each node o_{il} represents the i -th conic
 137 constraint's l -th component, with feature $(b_{i,l})$.
- 138 • $V_4 := \{q_i\}_{i \in [m]}$ denotes the i -th conic constraint with feature (d_i) .

139 Meanwhile, the SOCP graph includes four types of edges to model the interactions between the
 140 decision variables and different constraint nodes:

- $e_{jk} \in V_1 \times V_2$ denote the edges between the variable node v_j and the polyhedron constraint node s_k , with weight F_{kj} .
- $e_{j,il} \in V_1 \times V_3$ denote the edge between variable node v_j and minor conic constraint node o_{il} , with weight $A_{i,lj}$.
- $e_{ji} \in V_1 \times V_4$ denote the edge between the variable node v_j and major conic constraint node q_i , with weight $c_{i,j}$.
- $e_{il,i} \in V_3 \times V_4$ denote the edge between node o_{il} and node q_i , with a constant weight 1.

Remark 1 (Insights of Graph Design). For linear objectives and polyhedral constraints, our structure builds upon foundational works (Chen et al., 2022b). To deal with nonlinear second-order cone constraints, we exploit the linear relationships within the conic constraint, specifically, between A_i and x , and between c_i and x . By representing the left-hand side and right-hand side as separate constraint nodes (V_3 and V_4), with linear interactions to decision nodes separately, and connecting V_3 and V_4 via additional edges, we decompose the challenging nonlinear conic constraint into components amenable to efficient graph representations. Such decomposition and representation are not limited to the second-order cone, and we provide more discussion after Theorem 2

Remark 2 (SOCP → QCQP¹). One may note that SOC constraints, $\|Ax + b\|_2 \leq c^\top x + d$, can be transformed into quadratic constraints by squaring both sides, potentially enabling the application of previous work on quadratic constraints (Wu et al., 2024; Chen et al., 2024b). However, this transformation introduces two significant challenges: (i) the resulting quadratic coefficient matrix $A^\top A - cc^\top$ may not be positive semidefinite, rendering previous work theoretically inapplicable for such a non-convex QC; and (ii) the quadratic coefficient matrix $A^\top A - cc^\top$ may be dense, losing the potential sparse/low-rank structure of A and c in the SOC constraint and making the graph representation and message passing inefficient.

Remark 3 (Convex QCQP → SOCP). Conversely, we may transform convex quadratic constraints of the form $x^\top Qx + c^\top x + d \leq 0$ into SOC constraints for more effective graph representation. For example, we can apply matrix decomposition $Q = LL^\top$ where $L \in \mathbb{R}^{n \times r}$, and reformulate the constraint as $\|[(1 + c^\top x + d)/2; L^\top x]\|_2 \leq (1 - c^\top x - d)/2$. Such a transformation is particularly efficient for low-rank matrices Q where $r \ll n$, as it reduces the complexity of the graph representation for original convex quadratic constraints, from quadratic node (Wu et al., 2024) to minor conic constraint node via SOC graph representation. The convex quadratic objective in QCQP can also be converted to a linear objective by adding the epigraph constraint (Alizadeh & Goldfarb, 2003). Thus, a convex QCQP with n variables and m quadratic constraints is equivalent to an SOCP with $n + 1$ variables and $m + 1$ conic constraints (potentially low-rank). We further provide a quantitative comparison in the next section (Table 3).

4.2 MESSAGE PASSING IN SOCP-GNNs

Given the established graph representation of SOCPs, we propose message-passing (MP)-GNNs, consisting of an embedding layer, T message-passing layers (each comprised of three sub-layers), and a readout layer, detailed as follows:

- **Embedding Layer:** For all nodes, the input features $h^{0,v}, h^{0,s}, h^{0,o}, h^{0,q}$ are initialized by embedding the node features into a hidden space \mathbb{R}^{h_0} , where h_0 is the space dimension. Specifically,

$$\begin{aligned} h^{0,v} &\leftarrow \hat{g}_1^0(h^v), \forall v \in V_1, & h^{0,s} &\leftarrow \hat{g}_2^0(h^s), \forall s \in V_2 \\ h^{0,o} &\leftarrow \hat{g}_3^0(h^o), \forall o \in V_3, & h^{0,q} &\leftarrow \hat{g}_4^0(h^q), \forall q \in V_4 \end{aligned}$$

where \hat{g}_l^0 are learnable embedding functions for $l = 1, 2, 3, 4$, and h^v, h^s, h^o, h^q denotes the node features for $v \in V_1, s \in V_2, o \in V_3, q \in V_4$, respectively.

- **Message-Passing Layer:** As shown in Fig. 2, each message-passing layer consists of three sub-layers for updating the features of nodes with learnable functions f_l^t, g_l^t . For notation simplicity, w_{ij} represents the weight of edge e_{ij} and $\tau(n) \in \{1, 2, 3, 4\}$ denotes the index of the node set for a node n .

¹Please refer to Appendix B.2 for detailed equivalent SOCP formulations.

216 – **Updating for all constraint nodes** ($V_1 \rightarrow V_2 + V_3 + V_4$): $\forall s \in V_2$ and $\forall n \in V_3 \cup V_4$, we
 217 update the embedding as:

219
$$h^{t+1,s} \leftarrow g_1^t \left(h^{t,s}, \sum_{v \in V_1} w_{v,s} f_1^t(h^{t,v}) \right), \bar{h}^{t,n} \leftarrow g_{\tau(n)-1}^t \left(h^{t,n}, \sum_{v \in V_1} w_{v,n} f_{\tau(n)-1}^t(h^{t,v}) \right)$$

 220
 221

222 – **Updating between major and minor conic constraint nodes** ($V_3 \rightarrow V_4$ and $V_4 \rightarrow V_3$):
 223 $\forall q \in V_4$ and $\forall o \in V_3$, we update the embedding as:

225
$$h^{t+1,q} \leftarrow g_4^t \left(\bar{h}^{t,q}, \sum_{o \in V_3} w_{o,q} f_4^t(\bar{h}^{t,o}) \right), h^{t+1,o} \leftarrow g_5^t \left(\bar{h}^{t,o}, \sum_{q \in V_4} w_{q,o} f_5^t(h^{t+1,q}) \right)$$

 226
 227

228 – **Updating for variable nodes** ($V_2 + V_3 + V_4 \rightarrow V_1$): $\forall v \in V_1$, we update the embedding as:

230
$$h^{t+1,v} \leftarrow g_6^t \left(h^{t,v}, \sum_{s \in V_2} w_{s,v} f_6^t(h^{t+1,s}), \sum_{o \in V_3} w_{o,v} f_7^t(h^{t+1,o}), \sum_{q \in V_4} w_{q,v} f_8^t(h^{t+1,q}) \right)$$

 231
 232

233 • **Readout layer:** The readout layer leverages a learnable function f_{out} to map the node embedding
 234 $h^{T,v}$ output by the T -th (i.e., last) message-passing layer for $v \in V_1 \cup V_2 \cup V_3 \cup V_4$, to a readout
 235 y in a desired output space \mathbb{R}^a , where a is the output dimension. For example:

236 – Graph-level scalar output (e.g., predicting SOCP feasibility with $a = 1$):

237
$$y = f_{\text{out}}(I_1, I_2, I_3, I_4)$$

 238

239 – Node-level vector output (e.g., predicting SOCP optimal solutions with $a = n$):
 240

241
$$y_i = f_{\text{out}}(h^{T,v_i}, I_1, I_2, I_3, I_4)$$

 242

243 where $I_1 = \sum_{v \in V_1} h^{T,v}$, $I_2 = \sum_{s \in V_2} h^{T,s}$, $I_3 = \sum_{o \in V_3} h^{T,o}$, $I_4 = \sum_{q \in V_4} h^{T,q}$.
 244

245 As mentioned in Remarks 2 and 3, our
 246 SOCP-GNN also efficiently handles con-
 247 vex QCQPs by reformulating them into
 248 SOCP. Based on the GNN architecture de-
 249 scribed above, we analyze both the node
 250 and message passing complexity compared
 251 to previous works on convex QCQP (Wu
 252 et al., 2024; Chen et al., 2024b). Our
 253 SOCP-GNN achieves the same order of
 254 node and message passing complexity as
 255 state-of-the-art GNNs designed specifically
 256 for QCQP with general parameter coeffi-
 257 cients. In practice, the coefficient matrices may exhibit
 258 sparse or low-rank structure, resulting in different empirical performance: (i) When the quadratic
 259 coefficients Q_i are sparse, previous GNNs benefit from reduced connections and message passing.
 260 After reformulating to SOCP via decomposition $Q_i = L_i L_i^T$, the resulting graph may lose this
 261 sparsity. However, for structured sparse matrices (e.g., banded or block diagonal (Davis, 2006; Golub
 262 & Van Loan, 2013)), sparsity is preserved in the SOCP-graph, and our SOCP-GNN inherits the
 263 computational benefits. (ii) When the quadratic matrices exhibit low-rank structure, SOCP-GNN
 264 becomes more efficient with reduced graph size and message passing complexity.

265 Therefore, SOCP-GNN not only extends theoretical applicability to the broader class of SOCP beyond
 266 convex QCQPs, but also maintains competitive computational complexity when restricted to the
 267 convex QCQP subclass. See detailed discussion in Appendix B.5.

5 UNIVERSALITY OF SOCP-GNN

268 With the established graph representation and corresponding GNN, we formally prove the universality
 269 of the GNN for predicting key properties of SOCPs, like the instance feasibility and optimal solutions.

270 5.1 BASIC DEFINITIONS
271272 **Definition 5.1** (Spaces of SOCP-Graphs). Let $\mathcal{G}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}$ denote the set of graph representations
273 for all SOCPs with n variables, m conic constraints with dimension k_1, \dots, k_m , and b polyhedron
274 constraints.275 **Definition 5.2** (Spaces of SOCP-GNNs). Let $\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R}^a)$ be the set of message passing
276 GNNs proposed in Sec. 4.2 that map the input graph in $\mathcal{G}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}$ to a target output in \mathbb{R}^a . Each
277 GNN is parameterized by continuous embedding functions $g_{l_1}^0, l_1 \in [4]$, continuous hidden functions
278 in the message passing layers $g_{l_2}^t, l_2 \in [6]$ and $f_{l_3}^t, l_3 \in [8]$, and the continuous readout function f_{out} .
279280 **Definition 5.3** (Target mappings²). Let $\mathcal{G}_{\text{SOCP}}$ be a graph representation of a SOCP problem. We
281 define the following target mappings.
282283

- **Feasibility mapping:** $\Phi_{\text{feas}}(\mathcal{G}_{\text{SOCP}}) = 1$ if the SOCP is feasible and $\Phi_{\text{feas}}(\mathcal{G}_{\text{SOCP}}) = 0$ otherwise.
- **Optimal solution mapping:** $\Phi_{\text{sol}}(\mathcal{G}_{\text{SOCP}}) = x^*$, where x^* is the optimal solution of the SOCP³.

285286 5.2 SEPARATION POWER OF THE SOCP WEISFEILER–LEHMAN TEST
287288 To investigate the relationship between target properties and SOCP-GNNs, we first analyze the
289 separation power of SOCP-GNNs. The separation power of traditional GNNs is closely related to the
290 Weisfeiler-Lehman (WL) test (Weisfeiler & Leman, 1968), a classical algorithm to identify whether
291 two given graphs are isomorphic. To apply the WL test on SOCP-graphs, we design a modified WL
292 test, called the SOCP-WL test, in Algorithm 1. Below, we provide the main theoretical result about
293 the separation power of the SOCP-WL test.294 **Theorem 1.** *Let $\mathcal{I}, \hat{\mathcal{I}}$ (with given sizes n, m, k_1, \dots, k_m, b , encoded by $G, \hat{G} \in \mathcal{G}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}$) be
295 two SOCP instances. If the G and \hat{G} cannot be distinguished by the SOCP-WL test, then: For any
296 target mapping $\Phi : \mathcal{G}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b} \rightarrow \mathbb{R}^a$, $\Phi(G) = \Phi(\hat{G})$ always holds up to permutations.*
297298 The detailed proof can be found in Appendix C. By Theorem 1, we can see that: *any two instances
299 which the SOCP-WL test cannot separate share the same target property we want (up to permutations).*
300 Hence, demonstrating SOCP-GNN is equivalent to SOCP-WL guarantees its sufficient separation
301 power, as shown in Appendix C.302 5.3 UNIVERSAL APPROXIMATION OF SOCP-GNNs
303304 **Beyond separation power, expressive power (i.e., approximation capability) is also critical.** Here, we
305 provide the main theoretical results to validate the SOCP-GNN’s universal expressivity for SOCP,
306 i.e., *there always exists an SOCP-GNN that can universally approximate target mappings in Def. 5.3*
307 *within given error tolerance:*308 **Theorem 2.** *For any Borel regular probability measure \mathbb{P} on the space of SOCPs $\mathcal{G}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}$,
309 any target mapping $\Phi : \mathcal{G}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b} \rightarrow \mathbb{R}^a$ defined in Def. 5.3, and any $\delta, \epsilon > 0$, there exists
310 $F \in \mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R}^a)$ such that:*
311

312
$$\mathbb{P}\{||F(\mathcal{G}_{\text{SOCP}}) - \Phi(\mathcal{G}_{\text{SOCP}})|| > \delta\} < \epsilon. \quad (2)$$

313

314 The detailed proof is provided in Appendix C. This Theorem formally establishes the universal
315 expressivity of the proposed SOCP-GNNs. The high-level proof structure follows established
316 foundations for LP in (Chen et al., 2022b). However, previous graph design and expressivity proof
317 can not directly be extended to the challenging non-linear SOC constraints. To this end, we leverage
318 the *equivariance*, *convexity*, and *separability*⁴ of the ℓ_2 norm in SOC, and then establish the expressive
319 power of proposed SOCP-GNNs. We further extend the universal expressivity of the proposed GNN
320 to p -order cone programming in Appendix C.6, since the core lemmas in our proof are also satisfied
321 for the ℓ_p norm.322 ²For more target mappings, please refer to Def. B.1. Theorem 2 also holds for these target mappings.
323 ³Since SOCP may admit multiple optimum, we choose the one with minimum l_2 norm (Chen et al., 2022b).
324 ⁴Please refer to those definitions in Definition C.2 and C.3.

324 6 GENERALIZATION ABILITY OF SOCP-GNNs

326 Beyond expressivity, the generalization capability of GNNs, i.e., *how many samples are needed*
 327 *for training to achieve good performance on unseen instances*, is critical for real-world trustworthy
 328 applications. While previous foundational works have focused on expressivity (Chen et al., 2022b;
 329 2024b), the generalization ability of GNNs designed for optimization remains largely unexplored.
 330 Addressing this gap, our work takes an initial step towards formally analyzing the generalization
 331 properties of these models.

332 We consider a subclass of SOCP problems denoted as $\mathcal{X} \subset \mathcal{G}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}$ with **bounded** parameters
 333 ($e, \{A_i\}_{i=1}^m, \{b_i\}_{i=1}^m, \{c_i\}_{i=1}^m, \{d_i\}_{i=1}^m, F, g, l, r$), and denote N as the problem size, i.e., the total
 334 dimension of all parameters. Without loss of generality, it is sufficient to consider the problem
 335 parameters lie in a ball $\mathcal{B}_{r_i} = \{x \mid \|x\|_2 \leq r_i\}$ with some positive radius r_i .

336 **Definition 6.1** (Lipschitz GNN). A SOCP-GNN $f \in \mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R}^a)$ is said to be Lipschitz
 337 with respect to the input domain \mathcal{X} if and only if $\exists L > 0$ such that for each output component f_i ,
 338 $|f_i(x) - f_i(x')| \leq L\|x - x'\|$ holds for all $x, x' \in \mathcal{X}$. And L denotes the Lipschitz constant of f .
 339

340 We also assume the GNN is **Lipschitz** (Def. 6.1) and denote all the SOCP-GNNs whose Lipschitz
 341 constant is no more than L with respect to the input domain $\mathcal{B}_{r_i} \subseteq \mathbb{R}^N$ by $\mathcal{A}_{L,N}$. We remark that this
 342 Lipschitz assumption is widely adopted in related works on the sample complexity/generalization
 343 ability of graph neural networks (Pellizzoni et al., 2024; Garg et al., 2020; Tang & Liu, 2023; Huang
 344 et al., 2024a). The Lipschitz condition holds in general if both the input domain and the parameter
 345 space are bounded, while the GNNs are differentiable with respect to the inputs and parameters. We
 346 then present the main theorem for the generalization capability of our GNN:

347 **Theorem 3** (Generalization Bound for SOCP-GNNs). *Consider the hypothesis class $\mathcal{A}_{L,N}$ of SOCP-
 348 GNNs with outputs in \mathcal{Y} and input SOCP instances \mathcal{X} with parameters in \mathcal{B}_{r_i} . Let D be the uniform
 349 distribution over \mathcal{X} . Assume the loss function $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ is bounded by p and q -Lipschitz
 350 with respect to the first parameter when the second parameter is fixed. For a training set S of m
 351 samples drawn i.i.d. from D , let $h^* = \arg \min_{h \in \mathcal{A}_{L,N}} L_D(h)$ ⁵ be the population risk minimizer and
 352 $\hat{h}_S = \arg \min_{h \in \mathcal{A}_{L,N}} \hat{L}_S(h)$ be the empirical risk minimizer. Then with probability at least $1 - \delta$:*

$$353 L_D(\hat{h}_S) - L_D(h^*) \leq \mathcal{C}_{\text{task}} \cdot \mathcal{B}(m, N, L, r) + 2p\sqrt{2\log(1/\delta)/m}$$

354 where the complexity term is $\mathcal{B}(m, N, L, r) = \inf_{\epsilon \in [0, r/2]} \left[4\epsilon + \frac{12}{\sqrt{m}} \int_{\epsilon}^{r/2} C(v) dv \right]$, with $C(v) =$
 355 $\sqrt{(\frac{4Lr_i+v}{v})^N (1 - (1 - \min((\frac{v}{2Lr_i})^N, 1))^m) \log(\frac{2r}{v} + 2)}$. The task-dependent constant are defined
 356 as: $\mathcal{C}_{\text{task}} = 4q$ for graph-level predictions with outputs in $[-r, r]$; and $\mathcal{C}_{\text{task}} = 4\sqrt{2}nq$ for node-level
 357 predictions with outputs in $[-r, r]^n$. Here, n denotes the number of decision variables.
 358

360 The detailed proof can be found in Appendix D.3. The conditions in Theorem 3 are satisfied by
 361 many common loss functions, including margin loss and MSE loss under mild regularity conditions.
 362 Theorem 3 provides the first sample complexity analysis for WL-test based GNNs, particularly
 363 SOCP-GNNs, establishing a solid theoretical foundation for task-specific sample complexity research.
 364 As demonstrated in Theorem 3, sample complexity deteriorates as GNN complexity or problem
 365 dimension increases (i.e., as L or N grows larger). This relationship is directly evident from the
 366 proofs in Theorems 13 and 14.

367 **Remark 4.** We also analyze the VC dimension and pseudo dimension of SOCP-GNNs with scalar
 368 outputs in Appendices D.1 and D.2, respectively, for SOCPs whose parameters can be encoded into
 369 discrete labels (e.g., problems where all coefficients are binary-valued). However, these theoretical
 370 results reveal practical limitations: for continuous problem parameters typical in real-world SOCPs,
 371 the resulting VC and pseudo dimensions are often infinite. This necessitates more powerful analytical
 372 tools capable of handling continuous feature spaces, such as Theorem 3. Under the same assumptions
 373 as Theorem 3, our theoretical framework extends directly to other distributions over different SOCP
 374 problems and other WL-based approaches in L2O paradigms, since the application of Tonelli's
 375 theorem, Jensen's inequality, and contraction lemmas all remain valid as proven in Appendix D.3.

376 ⁵Here, the population(true) risk is defined as $L_D(h) = \mathbb{E}_{x \sim D}(l(h(x), y(x)))$ and the empirical risk for
 377 training set S is defined as $\frac{\sum_{x \in S} l(h(x), y(x))}{|S|}$, where $y(x)$ is the true label of SOCP instance x , e.g. objective
 378 value.

378

7 NUMERICAL EXPERIMENTS

379
380 In this section, we demonstrate the efficiency of the proposed SOCP-GNN on both synthetic SOCP
381 instances and real-world power grid optimization problems.382 To validate the empirical advantages of SOCP-Graphs (Sec. 4.1), we employ a fully-connected
383 neural network (FCNN) as one baseline, where the FCNN receives the same problem parameters
384 as input in vectorized form. This comparison isolates the benefits of the graph structure inherent
385 in SOCP-GNN relative to a standard neural network approach. To validate the designed message-
386 passing mechanisms (Sec. 4.2), we compare our SOCP-GNN with vanilla Message Passing Neural
387 Network (MPNN) (Gilmer et al., 2017) and Graph Isomorphism Network (GIN) (Xu et al., 2019).
388 We note that no existing graph representation has been specifically designed for SOCP problems
389 with non-linear constraints. Therefore, we compare all of those GNN-based baselines to the same
390 graph structure proposed in this work. Notably, vanilla MPNN and GIN perform message passing
391 based on the adjacency relationships, whereas our approach incorporates well-designed constraint-to-
392 variable and variable-to-constraint message passing. While SOCP instances can be reformulated as
393 QCQP, previous QCQP-GNN (Wu et al., 2024; Chen et al., 2024b) do not provide publicly available
394 implementations, and more importantly, they lack theoretical universal approximation guarantees for
395 SOCP instances since the associated quadratic constraints are not necessarily positive semidefinite.
396 Consequently, we focus our experimental comparison on vanilla MPNN, GIN and FCNN baselines.
397398

7.1 SYNTHETIC SOCP INSTANCE

399 For dataset generation, we randomly sample coefficient matrices and constraint parameters following
400 the CVXPY example code structure and parameter settings (Chen et al., 2024b). Each instance
401 is solved in CVXPY to obtain ground truth solutions, forming our training dataset. We then train
402 SOCP-GNN using regular supervised learning procedures for optimal solution predictions. We also
403 test the feasibility classification in Appendix F.404 As shown in Fig. 4(a), 4(b) and 4(c), we compare the solution relative error⁶ of our SOCP-GNN
405 against the FCNN, Vanilla MPNN, and GIN baselines across three different problem scales over
406 100 training epochs. SOCP-GNN demonstrates superior performance across all scales, achieving
407 substantially lower error on both training and validation sets. For the large-scale 500-dim SOCP
408 with input dimension 452, 400, our GNN achieves better prediction accuracy while using only
409 0.35Mb parameters compared to 110Mb for the FCNN baseline (shown in Fig. 5(c))—a 300×
410 reduction in model complexity. This demonstrates SOCP-GNN’s parameter efficiency and its ability
411 to effectively learn target mappings in SOCPs by leveraging the natural sparse graph structure of these
412 problems. All graph-based neural networks outperform FCNN significantly on synthetic datasets,
413 further validating the effectiveness of our graph representation. Notably, SOCP-GNN substantially
414 surpasses other GNN baselines, demonstrating the advantage of SOCP-GNN’s three-sublayer message
415 passing mechanism over methods relying solely on adjacency relationships.416

7.2 SOC-BASED OPTIMAL POWER FLOW

417 Optimal power flow (OPF) is the fundamental problem in power systems optimization, determining
418 the most economical operating point while satisfying all constraints. The second-order cone (SoC)
419 relaxation transforms the non-convex AC power flow equations into tractable convex conic forms (see
420 formulations in Appendix E). This relaxation is exact for radial networks and provides near-optimal
421 solutions for meshed transmission systems (Gan et al., 2014; Madani et al., 2014), making it preferred
422 for real-time operations⁷.423 We evaluate SOCP-GNN on IEEE test systems ranging from 118 to 500-bus power grids (Babaeine-
424 jadsarookolae et al., 2019). For each grid, we generate problem instances by randomly varying load425 ⁶The solution relative error (Chen et al., 2024b) between prediction \hat{x} and ground truth x^* is as $\frac{\|\hat{x} - x^*\|_2^2}{\max(1, \|x^*\|_2^2)}$ 426
427 ⁷We note that GNN-based methods have been directly applied to non-convex AC-OPF problems using the
428 physical graph structure of power grids (Yang et al., 2024b; Owerko et al., 2020; Varbella et al., 2024). However,
429 we do not compare with these methods directly because: (1) the SOC relaxation provides a lower bound for the
430 original AC-OPF problem, making direct performance comparison unfair, and (2) our focus is on demonstrating
431 GNN universality for convex SOC-relaxed problems. Nevertheless, extending our theoretical framework to
432 establish universality guarantees for non-convex AC-OPF remains an important direction for future work with
433 significant practical value.

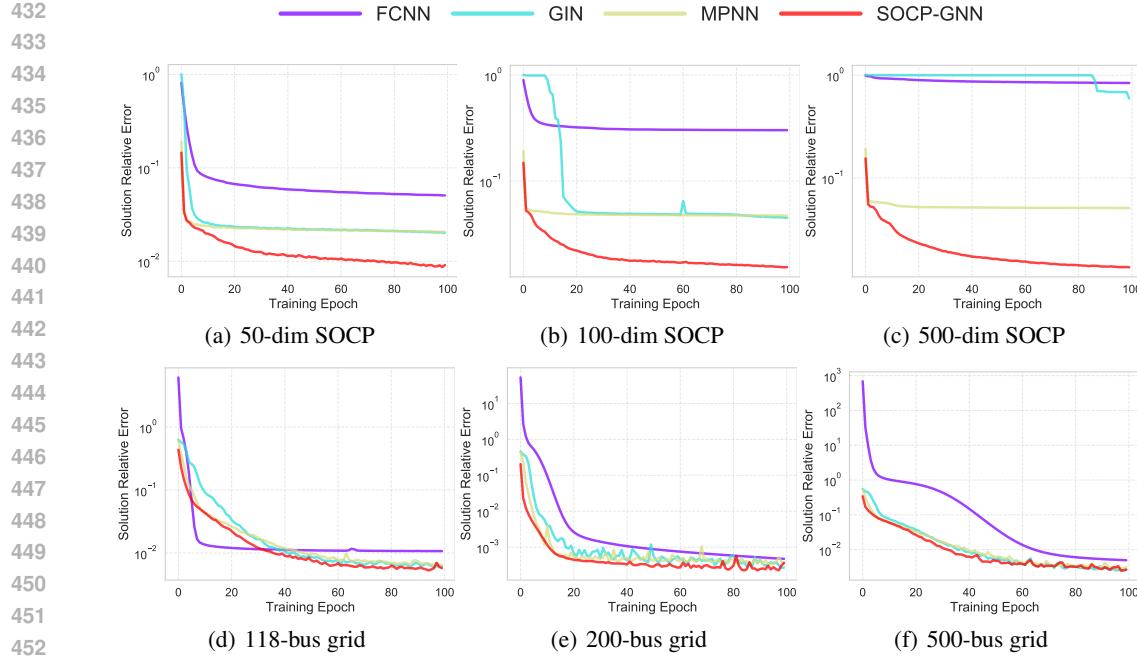


Figure 4: (a)-(c): Performance comparison in predicting solutions of synthetic SOCP instances. The SOCP size are $(50, 10, 10)$, $(100, 50, 50)$, and $(500, 100, 100)$, respectively. (d)-(f): Performance comparison in predicting solutions of SoC-OPF. The SOCP size are $(596, 854, 555)$, $(764, 1288, 732)$, and $(2182, 3454, 2181)$, respectively. Here, we denote the size of an SOCP instance by a tuple (n, b, m) , where n represents the number of decision variables, b denotes the number of polyhedral constraints, and m indicates the number of second-order cone constraints. The total input parameters for an SOCP (n, b, m) are of dimension $\mathcal{O}(n \cdot (b + m))$.

demands and generator costs, and introducing random line outages (i.e., loss of line connection) to simulate realistic operational scenarios. We compare against CVXPY with MOSEK solver (on CPU) and learning-based approaches, including various GNNs and FCNN (on both CPU and GPU for a fair comparison). Results in Fig.4(d),4(e), and 4(f) show that SOCP-GNN achieves lower errors across all problem scales with significantly fewer parameters than the FCNN baseline in real-world scenarios. For real-world OPF problems with sparse structures, SOCP-GNN performs better than on randomly generated instances in both prediction errors and inference time (shown in Fig. 5(a) and Fig. 5(b)), highlighting the potential for real-world applications. Consistent with the results obtained from the synthetic dataset, experiments on real-world OPF problems further demonstrate the effectiveness of our graph representation and the benefits of our three-layer message passing mechanism.

7.3 EMPIRICAL STUDY ON SAMPLE/MODEL COMPLEXITY AND SIZE GENERALIZATION

In this section, we investigate the performance of SOCP-GNNs under different model sizes and training samples. The detailed experiment settings can be found in Appendix F.4. As shown in Fig. 5(a)-5(d), SOCP-GNNs are both scalable and fast at solving SOCPs with superior accuracy. Since the learnable functions are applied feature-wise, independent of the number of nodes and edges, the memory cost of SOCP-GNNs remains constant across different problem sizes. We then analyze the sensitivity of SOCP-GNN to different hidden sizes and training samples as shown in Fig. 5(e). Both training and validation losses decrease as hidden layer size or number of training samples increases, demonstrating the model’s capacity to benefit from additional parameters and data while validating Theorem 3.

To further validate the Lipschitz assumption in Theorem 3, we use projected optimization method (Gouk et al., 2020) to control the Lipschitz coefficient of SOCP-GNN. The results can be found in Appendix F.5. From the result, we can see that: the generalization gap decreases as the model becomes less complex (i.e. we decrease the Lipschitz constant L of SOCP-GNN) as the train error

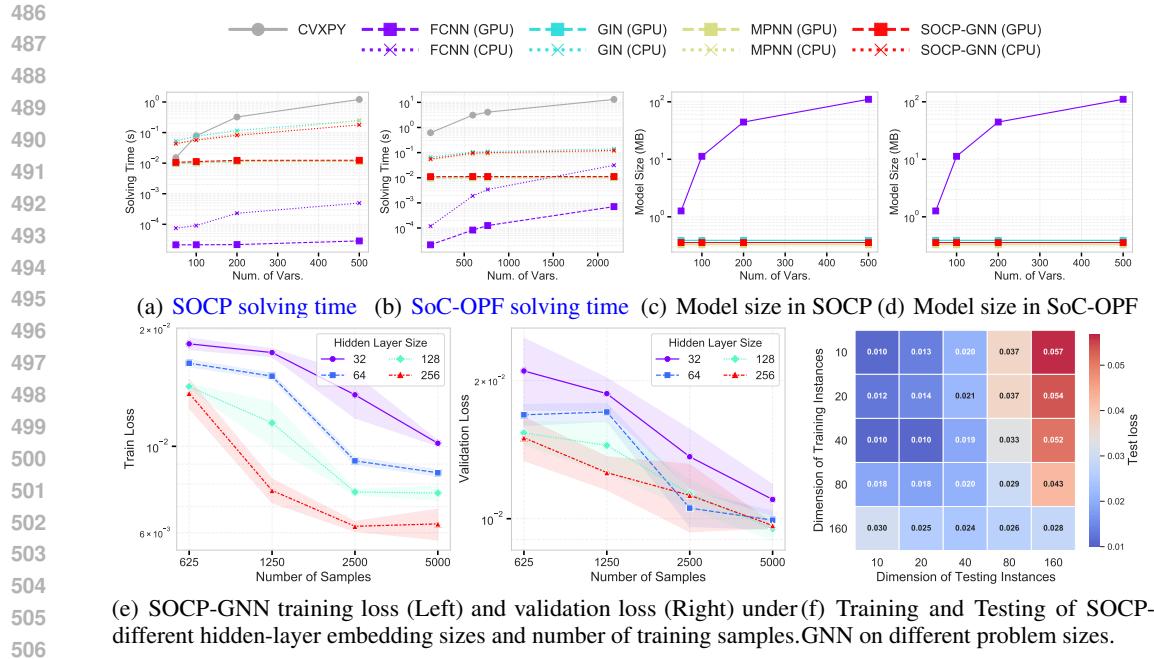


Figure 5: (a)-(d): inference time and model size comparison between GNN and FCNN in SOCP and SoC-OPF problems. (e): sensitivity analysis of GNN on hidden-layer embedding sizes and number of training samples. (f): generalization ability analysis of GNN on SOCP problems of different sizes.

Figure 5: (a)-(d): inference time and model size comparison between GNN and FCNN in SOCP and SoC-OPF problems. (e): sensitivity analysis of GNN on hidden-layer embedding sizes and number of training samples. (f): generalization ability analysis of GNN on SOCP problems of different sizes.

increases. This enhances the tradeoff between the expressive power and generalization ability of SOCP-GNNs, as indicated in Theorem 3.

We also investigate the size generalization capability from small to large-scale problems, with results shown in Fig. 5(f). Models trained on larger training samples perform well on smaller testing instances, while those trained on small samples generalize less effectively to larger SOCP instances. This observation motivates further research to theoretically characterize the size generalization ability of GNN training (Huang et al., 2024b).

8 CONCLUSIONS, LIMITATIONS, AND FUTURE WORKS

This paper introduces a novel graph representation for SOCP, a fundamental class of convex optimization problems covering LP, QP, and convex QCQP. We design a novel GNN architecture that exploits inherent SOC structure for predicting key properties, including feasibility and optimal solutions, with established universal expressivity guarantees. Our framework extends to p -order cone programming, broadening GNN applicability in a subclass of conic and polynomial optimization. We establish the first general framework for analyzing the generalization capability of SOCP-GNN or other WL-based GNNs, bridging an important research gap. Comprehensive experiments validate both our theoretical predictions and practical performance.

While our work establishes universality and sample complexity guarantees, several important limitations suggest promising future directions. The parameter complexity of GNNs for optimization problems remains a significant challenge shared by prior WL-test-based frameworks. One promising avenue involves combining algorithm-unrolling approaches with the WL-based framework to develop a unified theoretical analysis of GNNs for optimization. Another important direction is extending the GNN paradigm beyond convex settings to handle semidefinite programs and general polynomial optimization problems. Such extensions would require developing new graph representations and theoretical frameworks capable of capturing the more complex variable-constraint relations. Furthermore, exploring metrics beyond the naive ℓ_2 norm for the SOCP parameter space is crucial. An optimization-property-aware distance could significantly lower the covering number by better fitting the problem's intrinsic structure, directly yielding a tighter generalization bound.

540 REFERENCES

541

542 Farid Alizadeh and Donald Goldfarb. Second-order cone programming. *Mathematical programming*,
543 95(1):3–51, 2003.

544 Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural networks.
545 *arXiv preprint arXiv:2006.15646*, 2020.

546

547 Sogol Babaieejadsarookolaee, Adam Birchfield, Richard D Christie, Carleton Coffrin, Christopher
548 DeMarco, Ruisheng Diao, Michael Ferris, Stephane Fliscounakis, Scott Greene, Renke Huang,
549 et al. The power grid library for benchmarking ac optimal power flow algorithms. *arXiv preprint
arXiv:1908.02788*, 2019.

550

551 Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen
552 Vitercik. How much data is sufficient to learn high-performing algorithms? generalization
553 guarantees for data-driven algorithm design. In *Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing*, pp. 919–932, 2021.

554

555 Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch:
556 Generalization guarantees and limits of data-independent discretization. *Journal of the ACM*, 71
557 (2):1–73, 2024.

558

559 Qian Chen, Tianjian Zhang, Linxin Yang, Qingyu Han, Akang Wang, Ruoyu Sun, Xiaodong Luo, and
560 Tsung-Hui Chang. Symilo: A symmetry-aware learning framework for integer linear optimization.
561 *Advances in Neural Information Processing Systems*, 37:24411–24434, 2024a.

562

563 Qian Chen, Lei Li, Qian Li, Jianghua Wu, Akang Wang, Ruoyu Sun, Xiaodong Luo, Tsung-Hui
564 Chang, and Qingjiang Shi. When gnns meet symmetry in ilps: an orbit-based feature augmentation
565 approach. *arXiv preprint arXiv:2501.14211*, 2025.

566

567 Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
568 Wotao Yin. Learning to optimize: A primer and a benchmark. *Journal of Machine Learning
Research*, 23(189):1–59, 2022a.

569

570 Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear
571 programs by graph neural networks. *arXiv preprint arXiv:2209.12288*, 2022b.

572

573 Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing mixed-integer
574 linear programs by graph neural networks, 2023.

575

576 Ziang Chen, Xiaohan Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. Expressive power of graph
577 neural networks for (mixed-integer) quadratic programs. *arXiv preprint arXiv:2406.05938*, 2024b.

578

579 Ziang Chen, Jialin Liu, Xiaohan Chen, Xinshang Wang, and Wotao Yin. Rethinking the capacity of
580 graph neural networks for branching strategy. *arXiv preprint arXiv:2402.07099*, 2024c.

581

582 Timothy A Davis. *Direct methods for sparse linear systems*. SIAM, 2006.

583

584 Giuseppe Alessio D’Inverno, Monica Bianchini, and Franco Scarselli. Vc dimension of graph neural
585 networks with pfaffian activation functions. *Neural Networks*, 182:106924, 2025. ISSN 0893-6080.
586 doi: <https://doi.org/10.1016/j.neunet.2024.106924>. URL <https://www.sciencedirect.com/science/article/pii/S0893608024008530>.

587

588 Billy J Franks, Christopher Morris, Ameya Velingker, and Floris Geerts. Weisfeiler-leman at the
589 margin: When more expressivity matters. *arXiv preprint arXiv:2402.07568*, 2024.

590

591 Lingwen Gan, Na Li, Ufuk Topcu, and Steven H Low. Exact convex relaxation of optimal power
592 flow in radial networks. *IEEE transactions on automatic control*, 60(1):72–87, 2014.

593

594 Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
595 graph neural networks. In *International conference on machine learning*, pp. 3419–3430. PMLR,
596 2020.

597

598 Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
599 torial optimization with graph convolutional neural networks, 2019.

594 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 595 message passing for quantum chemistry. In *International conference on machine learning*, pp.
 596 1263–1272. Pmlr, 2017.

597 Donald Goldfarb and Wotao Yin. Second-order cone programming methods for total variation-based
 598 image restoration. *SIAM Journal on Scientific Computing*, 27(2):622–645, 2005.

600 Gene H Golub and Charles F Van Loan. *Matrix computations*. JHU press, 2013.

601 Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
 602 In *Proceedings. 2005 IEEE international joint conference on neural networks, 2005.*, volume 2,
 603 pp. 729–734. IEEE, 2005.

605 Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regularisation of neural networks
 606 by enforcing lipschitz continuity, 2020. URL <https://arxiv.org/abs/1804.04368>.

607 Yu He and Ellen Vitercik. Primal-dual neural algorithmic reasoning, 2025.

609 Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan Li.
 610 On the stability of expressive positional encodings for graphs, 2024a.

612 Zheng Huang, Qihui Yang, Dawei Zhou, and Yujun Yan. Enhancing size generalization in graph neural
 613 networks through disentangled representation learning. In *Proceedings of the 41st International
 614 Conference on Machine Learning*, pp. 20365–20381, 2024b.

615 Haotian Ju, Dongyue Li, Aneesh Sharma, and Hongyang R Zhang. Generalization in graph neural
 616 networks: Improved pac-bayesian bounds on graph diffusion. In *International conference on
 617 artificial intelligence and statistics*, pp. 6314–6341. PMLR, 2023.

618 Bingheng Li, Linxin Yang, Yupeng Chen, Senmiao Wang, Qian Chen, Haitao Mao, Yao Ma, Akang
 619 Wang, Tian Ding, Jiliang Tang, et al. Pdhg-unrolled learning-to-optimize method for large-scale
 620 linear programming. *arXiv preprint arXiv:2406.01908*, 2024a.

622 Ke Li and Jitendra Malik. Learning to optimize, 2016. URL <https://arxiv.org/abs/1606.01885>.

624 Qian Li, Tian Ding, Linxin Yang, Minghui Ouyang, Qingjiang Shi, and Ruoyu Sun. On the power of
 625 small-size graph neural networks for linear programming. In *The Thirty-eighth Annual Conference
 626 on Neural Information Processing Systems*, 2024b.

628 Qian Li, Minghui Ouyang, Tian Ding, Yuyi Wang, Qingjiang Shi, and Ruoyu Sun. Towards explaining
 629 the power of constant-depth graph neural networks for linear programming. In *The Thirteenth
 630 International Conference on Learning Representations*, 2025.

631 Renjie Liao, Raquel Urtasun, and Richard S. Zemel. A pac-bayesian approach to generalization
 632 bounds for graph neural networks. *CoRR*, abs/2012.07690, 2020.

633 Xinfu Liu, Zuojun Shen, and Ping Lu. Entry trajectory optimization by second-order cone program-
 634 ming. *Journal of Guidance, Control, and Dynamics*, 39(2):227–241, 2016.

636 Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. Applications of
 637 second-order cone programming. *Linear algebra and its applications*, 284(1-3):193–228, 1998.

638 Ramtin Madani, Somayeh Sojoudi, and Javad Lavaei. Convex relaxation for optimal power flow
 639 problem: Mesh networks. *IEEE Transactions on Power Systems*, 30(1):199–211, 2014.

641 Ian Horrocks, Matthew Morris, Bernardo Cuenca Grau. Orbit-equivariant graph neural networks. In
 642 *2024 The International Conference on Learning Representations (ICLR)*, pp. 7056–7062. ICLR,
 643 2024.

644 Andreas Maurer. A vector-contraction inequality for rademacher complexities. In *International
 645 Conference on Algorithmic Learning Theory*, pp. 3–17. Springer, 2016.

647 Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep
 648 learning for signal and image processing. *IEEE Signal Processing Magazine*, 38(2):18–44, 2021.

648 Christopher Morris, Floris Geerts, Jan Tönshoff, and Martin Grohe. WI meet vc. In *International*
 649 *conference on machine learning*, pp. 25275–25302. PMLR, 2023.
 650

651 Damian Owerko, Fernando Gama, and Alejandro Ribeiro. Optimal power flow using graph neural
 652 networks. In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal*
 653 *Processing (ICASSP)*, pp. 5930–5934. IEEE, 2020.

654 Xiang Pan, Tianyu Zhao, Minghua Chen, and Shengyu Zhang. Deepopf: A deep neural network
 655 approach for security-constrained dc optimal power flow. *IEEE Transactions on Power Systems*,
 656 36(3):1725–1735, 2020.
 657

658 Paolo Pellizzoni, Till Hendrik Schulz, Dexiong Chen, and Karsten Borgwardt. On the expressivity and
 659 sample complexity of node-individualized graph neural networks. *Advances in Neural Information*
 660 *Processing Systems*, 37:120221–120251, 2024.

661 Chendi Qian and Christopher Morris. Towards graph neural networks for provably solving convex
 662 optimization problems. *arXiv preprint arXiv:2502.02446*, 2025a.
 663

664 Chendi Qian and Christopher Morris. Principled data augmentation for learning to solve quadratic
 665 programming problems. *arXiv preprint arXiv:2506.01728*, 2025b.
 666

667 Chendi Qian, Didier Chételat, and Christopher Morris. Exploring the power of graph neural networks
 668 in solving linear optimization problems. In *International conference on artificial intelligence and*
 669 *statistics*, pp. 1432–1440. PMLR, 2024.

670 Rajiv Sambharya and Bartolomeo Stellato. Data-driven performance guarantees for classical and
 671 learned optimizers, 2024.
 672

673 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
 674 graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2008.
 675

676 Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis dimension
 677 of graph and recursive neural networks. *Neural Networks*, 108:248–259, 2018.
 678

679 Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to*
 680 *algorithms*. Cambridge university press, 2014.
 681

682 Mohamed Shamseldein. A hybrid gnn-lse method for fast, robust, and physically-consistent ac power
 683 flow. *Electric Power Systems Research*, 252:112380, 2026.
 684

685 Qingjiang Shi, Weiqiang Xu, Tsung-Hui Chang, Yongchao Wang, and Enbin Song. Joint beamforming
 686 and power splitting for miso interference channel with swipt: An socp relaxation and decentralized
 687 algorithm. *IEEE Transactions on Signal Processing*, 62(23):6194–6208, 2014.
 688

689 Michael Sucker and Peter Ochs. A generalization result for convergence in learning-to-optimize,
 690 2025.
 691

692 Huayi Tang and Yong Liu. Towards understanding generalization of graph neural networks. In
 693 *Proceedings of the 40th International Conference on Machine Learning*. PMLR, 2023.
 694

695 Paul Tseng. Second-order cone programming relaxation of sensor network localization. *SIAM*
 696 *Journal on Optimization*, 18(1):156–185, 2007.
 697

698 Anna Varbella, Damien Briens, Blazhe Gjorgiev, Giuseppe Alessio D’Inverno, and Giovanni
 699 Sansavini. Physics-informed gnn for non-linear constrained optimization: Pinco a solver for
 700 the ac-optimal power flow, 2024. URL <https://arxiv.org/abs/2410.04818>.
 701

Martin J. Wainwright. *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*. Cambridge Series
 in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

B. Ju. Weisfeiler and A. A. Leman. A reduction of a graph to a canonical form and an algebra arising
 during this reduction. *Nauchno-Tekhnicheskaya Informatsiya, Seriya 2*, (9):19–21, 1968.

702 Chenyang Wu, Qian Chen, Akang Wang, Tian Ding, Ruoyu Sun, Wenguo Yang, and Qingjiang Shi.
703 On representing convex quadratically constrained quadratic programs via graph neural networks.
704 *arXiv preprint arXiv:2411.13805*, 2024.

705 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
706 networks? In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ryGs6iA5Km>.

709 Junjie Yang, Tianlong Chen, Mingkang Zhu, Fengxiang He, Dacheng Tao, Yingbin Liang, and
710 Zhangyang Wang. Learning to generalize provably in learning to optimize. In *Proceedings of
711 The 26th International Conference on Artificial Intelligence and Statistics*, pp. 9807–9825. PMLR,
712 2023.

713 Linxin Yang, Bingheng Li, Tian Ding, Jianghua Wu, Akang Wang, Yuyi Wang, Jiliang Tang, Ruoyu
714 Sun, and Xiaodong Luo. An efficient unsupervised framework for convex quadratic programs via
715 deep unrolling, 2024a.

717 Mei Yang, Gao Qiu, Junyong Liu, Youbo Liu, Tingjian Liu, Zhiyuan Tang, Lijie Ding, Yue Shui, and
718 Kai Liu. Topology-transferable physics-guided graph neural network for real-time optimal power
719 flow. *IEEE Transactions on Industrial Informatics*, 20(9):10857–10872, 2024b.

720 Morris Yau, Nikolaos Karalias, Eric Lu, Jessica Xu, and Stefanie Jegelka. Are graph neural networks
721 optimal approximation algorithms? *Advances in Neural Information Processing Systems*, 37:
722 73124–73181, 2025.

723 Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small relu networks are powerful memorizers: a tight
724 analysis of memorization capacity. *Advances in neural information processing systems*, 32, 2019.

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **Contents**

757		
758	A Discussions on Related Works	16
759	A.1 GNN for Constrained Optimization	16
760	A.2 Generalization Analysis of GNNs and L2O paradigms	17
761		
762	B Preliminary and Basic Concepts	18
763	B.1 Basic concepts of SOCPs	18
764	B.2 Equivalent Formulations of SOCP	18
765	B.3 Target Mappings for SOCP	20
766	B.4 An Example for SOCP graphs	20
767	B.5 Complexity Comparison with SOTA Works:	20
768		
769	C Proof of Main Theorem	21
770	C.1 SOCP WL-test	21
771	C.2 The connection between the WL-indistinguishability and target property	22
772	C.3 The measurable property of target mapping	27
773	C.4 Relation between SOCP-GNN's separation power and SOCP-WL test's separation power	31
774	C.5 Main theorem's proof	32
775	C.6 Extension to p -order cone programming	34
776		
777	D Proof of theorem 3	35
778	D.1 VC-dimension based approaches for binary classification	35
779	D.2 Pseudo-dimension based approaches for real-valued scalar prediction	35
780	D.3 Rademacher complexity based approaches	36
781		
782	E SOCP-based Formulation for OPF	46
783		
784	F Experiment Settings and Supplementary Results	47
785	F.1 Data generation	47
786	F.2 Implementations and training settings for predicting the optimal solution and feasibility	48
787	F.3 Results for predicting optimal solutions and feasibility	49
788		
789		
790		
791		
792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 LLM USAGE
811812 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
813814
815 A DISCUSSIONS ON RELATED WORKS
816817 A.1 GNN FOR CONSTRAINED OPTIMIZATION
818819 In response to the growing demand for solving large-scale optimization problems in real-time,
820 “learning to optimize” paradigms have emerged across multiple domains (Pan et al., 2020) (Monga
821 et al., 2021). Among various neural approaches, Graph Neural Networks (GNNs) have demonstrated
822 particular effectiveness for optimization problems with inherent graph structures, leveraging the
823 natural correspondence between problem formulations and graph representations (Chen et al., 2022b;
824 Wu et al., 2024; Chen et al., 2023)(Varbella et al., 2024; Shamseldein, 2026).825 To understand the fundamental capabilities of GNNs in optimization contexts, research has examined
826 multiple theoretical and practical aspects, including expressivity (Chen et al., 2022b; 2024c), generalization
827 properties (Balcan et al., 2021; 2024), and symmetry preservation (Chen et al., 2024a;
828 Matthew Morris, 2024; Chen et al., 2025; Qian & Morris, 2025b). The analysis of GNN expressive
829 power in optimization is primarily guided by two complementary theoretical paradigms: the
830 **Weisfeiler-Lehman (WL)-test-based framework**, which characterizes what optimization properties
831 GNNs can theoretically distinguish, and the **Algorithm-Unrolling (AU)-based framework**, which
832 establishes connections between classical optimization algorithms and GNN architectures through
833 direct algorithmic simulation.834
835 A.1.1 WL-BASED FRAMEWORKS
836837 This section reviews optimization problems where GNNs have been proven to achieve universal
838 approximation capabilities through theoretical frameworks based on Weisfeiler-Leman (WL) tests.839 **Linear Programming (LP) (Chen et al., 2022b):** It establishes a foundational theoretical framework
840 for analyzing GNN expressivity in solving LPs through WL-tests. Building upon the bipartite graph
841 representation introduced by (Gasse et al., 2019), they demonstrate a formal connection between
842 GNN expressivity and WL-tests on graph structures. Their key theoretical contribution proves that
843 GNNs achieve universality over the parameter space of LPs. Specifically, they show the existence
844 of message-passing GNNs capable of reliably approximating fundamental LP properties, including
845 feasibility, optimal objective value, and optimal solutions.846 **Mixed-Integer Linear Programming (MILP) (Chen et al., 2023):** The extension to MILP presents
847 significant theoretical challenges not encountered in the continuous LP setting. The fundamental
848 limitation arises from the discrete nature of integer variables, where GNN expressivity remains
849 constrained by the discriminative power of WL-tests. A critical issue emerges: two MILP instances
850 that are indistinguishable under WL-tests may exhibit fundamentally different properties regarding
851 feasibility and optimal solutions. To address these challenges, the authors identify a restricted
852 class of MILPs satisfying the “unfoldable” property, for which universality guarantees can be
853 established. Additionally, they demonstrate that augmenting the graph representation with random
854 node features enables GNNs to achieve universality over the complete class of MILP problems,
855 effectively circumventing the limitations imposed by deterministic WL-tests.856 **Linearly Constrained Quadratic Programming (LCQP) (Chen et al., 2024b):** While modeling
857 linear constraints through a bipartite graph is relatively straightforward, extending graph-based ap-
858 proaches to handle quadratic objective functions presents challenges. It addresses this by introducing
859 self-connections within variable nodes to capture quadratic interactions in the objective function.
860 Their framework extends a broader class of mixed-integer LCQP problems satisfying the MP-tractable
861 property, establishing universality results for GNNs on specific computational tasks within this class.862 The authors further extend their approach to convex quadratically constrained quadratic programming
863 (QCQP) through dynamic edge update mechanisms, as detailed in their supplementary materials,
demonstrating the framework’s adaptability to more complex constraint structures.

864 **Convex Quadratically Constrained Quadratic Programming (QCQP) (Wu et al., 2024):** It pro-
 865 vides a comprehensive treatment of convex QCQPs, addressing the significant complexity introduced
 866 by multiple convex quadratic constraints. The key innovation lies in their sophisticated design of edge
 867 weights and specialized GNN architecture, which together ensure that the resulting message-passing
 868 framework achieves universality for the complete class of convex QCQP problems. This represents
 869 a significant advancement in handling optimization problems with complex constraint structures
 870 through GNNs.

871 **A.1.2 AU-BASED FRAMEWORKS**

873 Algorithm unrolling represents a fundamental approach in learning-based optimization, enhancing
 874 interpretability by directly simulating classical algorithmic procedures through neural network archi-
 875 tectures. This section reviews successful applications of GNNs in unrolling established optimization
 876 algorithms.

877 **Interior Point Method :** The unrolling of Interior Point Methods (IPM) establishes a direct and
 878 interpretable correspondence between classical optimization algorithms and GNNs. (Qian et al.,
 879 2024) first provides theoretical foundations demonstrating that standard IPM iterations for LPs can
 880 be precisely simulated through sequences of GNN message-passing operations. This framework
 881 was extended to the broader class of LCQPs (Qian & Morris, 2025a), maintaining the fundamental
 882 correspondence between algorithmic steps and neural computations.

883 **Primal-Dual Hybrid Gradient:** The unrolling of Primal-Dual Hybrid Gradient (PDHG) algorithms
 884 provides a scalable framework for accelerating first-order optimization methods through learning-
 885 based approaches. (Li et al., 2024a) introduces PDHG-Net for large-scale LPs, demonstrating
 886 that optimal LP solutions can be approximated using polynomial-sized neural networks. This
 887 foundational work establishes both theoretical guarantees and practical scalability for the unrolled
 888 PDHG framework. The extension to QP represents another advancement (Yang et al., 2024a), which
 889 introduces an innovative unsupervised training methodology that directly incorporates Karush-Kuhn-
 890 Tucker (KKT) optimality conditions into the loss function.

891 **Specialized Algorithms for Structured Problems:** For optimization problems with specialized
 892 structures, researchers have developed tailored algorithmic approaches that leverage problem-specific
 893 properties for effective GNN unrolling.

894 For covering and packing LPs, (Li et al., 2024b) design variants of the Awerbuch-Khandekar al-
 895 gorithm, successfully unrolling these through careful exploitation of activation function properties.
 896 Specifically, they utilize ELU and sigmoid activation functions to simulate exponential operations and
 897 Heaviside step functions, respectively, enabling reproduction of the classical algorithm's behavior
 898 within the GNN framework.

899 In the context of sparse binary LPs, (Li et al., 2025) proposes a constant-round distributed algorithm
 900 that applies to almost all sparse binary LP instances. This algorithm naturally aligns with constant-
 901 depth, constant-width GNN architectures, providing theoretical justification for the empirical success
 902 of shallow networks in this domain.

903 (Yau et al., 2025) demonstrates that polynomial-sized GNNs can effectively learn powerful approx-
 904 imation algorithms for Maximum Constraint Satisfaction Problems (Max-CSP). Their approach
 905 leverages the equivalence between projected gradient descent on low-rank vector formulations of
 906 relaxed semidefinite programs and local message-passing operations inherent in GNN architectures.

907 Additionally, (He & Vitercik, 2025) aligns GNN architectures with primal-dual algorithmic reasoning
 908 for minimum hitting set problems, achieving empirical success in generalization across problem sizes
 909 and out-of-distribution scenarios.

912 **A.2 GENERALIZATION ANALYSIS OF GNNs AND L2O PARADIGMS**

913 **Generalization of GNNs:** Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli et al.,
 914 2008) are state-of-the-art architectures proposed for graph learning. They leverage neighborhood
 915 information to capture the structured properties of a graph. To ensure effective learning, several
 916 approaches have been introduced to study their sample complexity, which is defined as the number
 917 of data required to generalize well to unseen data from the same underlying distribution. (Scarselli
 et al., 2018) connects the VC dimension to network parameters, activation functions (like piecewise

918 polynomial activation functions), and graph size. Furthermore, (D’Inverno et al., 2025) derives upper
 919 bounds for the VC dimension of Graph Neural Networks using more general Pfaffian activation
 920 functions (like sigmoid and tanh), relating generalization capacity to network hyperparameters and
 921 the number of colors determined by the Weisfeiler-Lehman test. (Morris et al., 2023) then tightly link
 922 the generalization ability to GNN expressivity via the Weisfeiler-Leman(WL) test. Further, (Franks
 923 et al., 2024) uses margin theory to show that greater expressivity only improves generalization if it
 924 also increases the margin between classes. Based on Rademacher complexity, (Garg et al., 2020)
 925 gives the first data-dependent generalization bounds for GNNs using Rademacher complexity, which
 926 are significantly tighter than previous VC-dimension-based guarantees. For node individualization
 927 schemes emerging these days, (Pellizzoni et al., 2024) uses both VC dimension and Rademacher
 928 complexity to give the generalization bound via WL-test and covering number bounds. Moreover,
 929 several researches (Ju et al., 2023; Liao et al., 2020; Tang & Liu, 2023) give the generalization bound
 930 from other perspectives, like the PAC-Bayes bound and stochastic optimization.

931 **Generalization of L2O paradigms:** There are two main parts of researches in the study of general-
 932 ization ability of L2O paradigms: optimizer generalization, i.e., the performance gap between trained
 933 optimizers(tasks) and unseen optimizers, and optimizee generalization, i.e., the performance gap
 934 between training data and unseen test data of the same underlying optimizers (Yang et al., 2023).
 935 We only review the optimzee generalization part and the data-driven method generalization studies
 936 below.

937 (Balcan et al., 2021) first proposes a unified sample complexity framework for the algorithm parameter
 938 configuration based on pseudo-dimension. (Yang et al., 2023) shows that local entropy measures
 939 loss landscape flatness, similar to the Hessian. It then uses both metrics as regularizers to meta-train
 940 optimizers that provably learn to find generalizable models. (Sucker & Ochs, 2025) combines PAC-
 941 Bayesian generalization theory with variational analysis to show that a learned algorithm’s trajectory
 942 will converge to a critical point with high probability on unseen problems. (Sambharya & Stellato,
 943 2024) develops a general data-driven framework using PAC-Bayes theory to provide probabilistic
 944 performance guarantees for both classical and learned optimizers over a fixed number of iterations.

945 B PRELIMINARY AND BASIC CONCEPTS

946 B.1 BASIC CONCEPTS OF SOCPs

947 For problem 1, we denote all the feasible solution by:

$$948 \mathcal{X}_{\text{feasible}} := \{x \in \mathbb{R}^n \mid Fx \leq g; l \leq x \leq r; \|A_i x + b_i\|_2 \leq c_i^T x + d_i, \forall i \in [m]\}. \quad (3)$$

949 If $\mathcal{X}_{\text{feasible}}$ is not empty, problem 1 is said to be **feasible**; otherwise, it is said to be **infeasible**. A
 950 feasible SOCP is **bounded** if and only if the objective function is bounded from below in $\mathcal{X}_{\text{feasible}}$,
 951 i.e., $\exists a \in \mathbb{R}$ such that

$$952 e^T x \geq a, \forall x \in \mathcal{X}_{\text{feasible}}$$

953 Otherwise, the SOCP instance is **unbounded**.

954 For a feasible and bounded SOCP, its optimal value is defined as: $\inf \{e^T x, \forall x \in \mathcal{X}_{\text{feasible}}\}$.
 955 Moreover, x^* is said to be an **optimal solution** if it’s feasible and

$$956 e^T x^* \leq e^T x, \forall x \in \mathcal{X}_{\text{feasible}}$$

957 Unlike convex QCQP, an SOCP instance may not admit an optimal solution even when it’s feasible
 958 and bounded (see corollary 4). Moreover, an SOCP instance can also have multiple solutions.

959 B.2 EQUIVALENT FORMULATIONS OF SOCP

960 **Dimension Reduction of SOC Constraints:** Consider a second-order cone (SOC) constraint of
 961 the form $\|Ax + b\|_2 \leq c^T x + d$, where $A \in \mathbb{R}^{k \times n}$ has rank $r \leq \min(k, n)$. Let the singular value
 962 decomposition of A be $A = U\Sigma V^T$, where $U \in \mathbb{R}^{k \times r}$ has orthonormal columns, $\Sigma \in \mathbb{R}^{r \times r}$ is
 963 diagonal with positive entries, and $V \in \mathbb{R}^{n \times r}$ has orthonormal columns.

972 Since U has orthonormal columns, we have $U^T U = I_r$ and UU^T is the orthogonal projection onto
 973 the column space of A . We can decompose the vector b as

$$974 \quad b = b_{\parallel} + b_{\perp}, \quad \text{where } b_{\parallel} = UU^T b, \quad b_{\perp} = (I_k - UU^T)b \quad (4)$$

975 where b_{\parallel} lies in the column space of A and b_{\perp} is orthogonal to it.

977 Define $A' = \Sigma V^T \in \mathbb{R}^{r \times n}$ and $b' = U^T b_{\parallel} \in \mathbb{R}^r$. Then:

$$978 \quad A = U\Sigma V^T = UA' \quad (5)$$

980 and

$$981 \quad Ax + b = UA'x + UU^T b + (I_k - UU^T)b = U(A'x + U^T b_{\parallel}) + b_{\perp} \quad (6)$$

982 Since U has orthonormal columns and b_{\perp} is orthogonal to the column space of U , we have:

$$984 \quad \|Ax + b\|_2 = \|U(A'x + U^T b_{\parallel}) + b_{\perp}\|_2 = \left\| \begin{pmatrix} A'x + U^T b_{\parallel} \\ \|b_{\perp}\|_2 \end{pmatrix} \right\|_2 \quad (7)$$

986 This reformulation reduces the constraint to at most $r + 1$ rows, which is beneficial when $k \gg r$.

988 **Reformulation of SOCP to QCQP:** A SOC constraint $\|Ax + b\|_2 \leq c^T x + d$ can be equivalently
 989 written as the quadratic constraint (may be non-convex) by squaring both sides as:

$$990 \quad (Ax + b)^T (Ax + b) \leq (c^T x + d)^2$$

$$991 \quad x^T A^T Ax + 2b^T Ax + \|b\|_2^2 \leq x^T c c^T x + 2dc^T x + d^2$$

992 provided that $c^T x + d \geq 0$. Rearranging terms yields:

$$994 \quad x^T (A^T A - cc^T) x + 2(b^T A - dc^T) x + (\|b\|_2^2 - d^2) \leq 0 \quad (8)$$

995 This transformation is valid only when the right-hand side of the original SOC constraint is non-
 996 negative, which must be enforced as an additional linear constraint $c^T x + d \geq 0$.

997 **Reformulation of Convex QCQP to SOCP:** Conversely, we may transform convex quadratic
 998 constraints of the form $x^T Qx + c^T x + d \leq 0$ into SOC constraints. Since $Q \in \mathbb{S}_+^n$ is positive
 999 semidefinite, we can apply matrix decomposition $Q = LL^T$ where $L \in \mathbb{R}^{n \times r}$ with $r = \text{rank}(Q)$.
 1000 This decomposition can be obtained through Cholesky factorization when Q is positive definite, or
 1001 through eigenvalue decomposition in the general case.

1003 The quadratic constraint can then be reformulated as:

$$1004 \quad x^T Qx + c^T x + d \leq 0$$

$$1005 \quad x^T LL^T x + c^T x + d \leq 0$$

$$1006 \quad \|L^T x\|_2^2 + c^T x + d \leq 0$$

1008 Using the rotated second-order cone representation, we can reformulate the constraint as:

$$1010 \quad \left\| \begin{pmatrix} \frac{1+c^T x+d}{2} \\ L^T x \end{pmatrix} \right\|_2 \leq \frac{1-c^T x-d}{2} \quad (9)$$

1012 This formulation is valid when $1 - c^T x - d \geq 0$, which ensures that the right-hand side is non-negative.
 1013 The constraint $c^T x + d \leq 0$ from the original quadratic form is automatically satisfied when the SOC
 1014 constraint holds.

1016 For the convex quadratic objective function $\min_x x^T Qx + c^T x + d$, we can reformulate it using an
 1017 epigraph variable τ :

$$1018 \quad \min_{x, \tau} \quad \tau$$

$$1019 \quad \text{s.t.} \quad x^T Qx + c^T x + d \leq \tau$$

1021 Using the matrix decomposition $Q = LL^T$, this becomes:

$$1023 \quad \min_{x, \tau} \quad \tau$$

$$1024 \quad \text{s.t.} \quad \left\| \begin{pmatrix} \frac{1-\tau+c^T x+d}{2} \\ L^T x \end{pmatrix} \right\|_2 \leq \frac{1+\tau-c^T x-d}{2}$$

1026 B.3 TARGET MAPPINGS FOR SOCP
1027

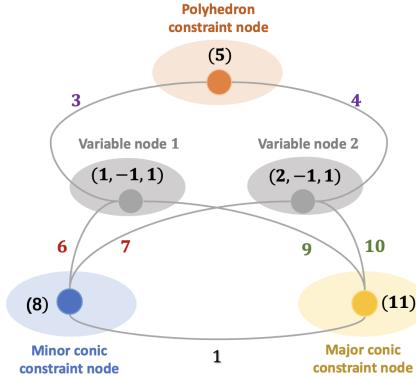
1028 Then, we propose all our target mappings.

1029 **Definition B.1** (Target mappings). Let $\mathcal{G}_{\text{SOCP}}$ be a graph representation of a SOCP problem. We
1030 define the following target mappings.
1031

- **Feasibility mapping:** We define $\Phi_{\text{feas}}(\mathcal{G}_{\text{SOCP}}) = 1$ if the SOCP problem is feasible and $\Phi_{\text{feas}}(\mathcal{G}_{\text{SOCP}}) = 0$ otherwise.
- **Boundedness mapping:** For a feasible SOCP problem, we define $\Phi_{\text{bound}}(\mathcal{G}_{\text{SOCP}}) = 1$ if the SOCP problem is bounded and $\Phi_{\text{bound}}(\mathcal{G}_{\text{SOCP}}) = 0$ otherwise.
- **Optimal value mapping:** For a feasible and bounded SOCP problem, we set $\Phi_{\text{opt}}(\mathcal{G}_{\text{SOCP}})$ to be its optimal objective value.
- **Solution Attainability Mapping :** For a feasible and bounded SOCP problem, its optimal value (infimum) is finite, but this value is not necessarily attained by a feasible point. Therefore, we introduce a mapping $\Phi_{\text{attain}}(\mathcal{G}_{\text{SOCP}})$ which equals 1 if an optimal solution exists, and 0 otherwise.
- **Optimal solution mapping:** For an SOCP problem that admits a solution, its optimal solution might not be unique. Therefore, we define the optimal solution mapping to be $\Phi_{\text{sol}}(\mathcal{G}_{\text{SOCP}}) = x^*$, where x^* is the solution with the smallest l_2 norm of the corresponding SOCP

1048 B.4 AN EXAMPLE FOR SOCP GRAPHS
10491050 Figure 6 is an example of a toy SOCP and its corresponding graph representation:
1051

$$\begin{aligned}
 & \min \mathbf{1} x_1 + \mathbf{2} x_2 \\
 \text{s.t. } & \mathbf{3} x_1 + \mathbf{4} x_2 \leq 5 \\
 & -\mathbf{1} \leq x_j \leq \mathbf{1}, j = 1, 2 \\
 & \|\mathbf{6} x_1 + \mathbf{7} x_2 + \mathbf{8}\|_2 \leq \mathbf{9} x_1 + \mathbf{10} x_2 + \mathbf{11}
 \end{aligned}$$

1066 Figure 6: A toy SOCP instance with its graph representation
10671068 B.5 COMPLEXITY COMPARISON WITH SOTA WORKS:
1069

Complexity for representing convex QCQP: We discuss further about what we mentioned in remark 1, 2, 3. For a convex QCQP instance with m quadratic constraints and n variables, where the i -th constraint matrix has rank $r_i \leq n$, our graph representation requires $n + m + 2 + \sum_{i=0}^m (r_i + 1)$ nodes while the architecture in (Wu et al., 2024) requires $n + m + \frac{1}{2}n(n + 1)$ nodes and architecture in (Chen et al., 2024b) requires $m + n + mn$ “nodes” that need to be updated dynamically. It’s noteworthy that our graph representation only uses sparse connections between these nodes via using minor conic nodes as a **sparse intermediate information passing layer** between variables and conic constraints. As a result, our SOCP-GNN requires only $\mathcal{O}(n(\sum_{i=0}^m r_i))$ messages per iteration. This is in sharp contrast to the architecture by (Wu et al., 2024), which models each quadratic term explicitly and thus incurs a much higher per-iteration cost of $\mathcal{O}(n^3 + mn^2)$. And result in (Chen et al., 2024b) use $\mathcal{O}(mn^2)$ messages each iteration.

1080 **Algorithm 1** The WL test for SOCP-Graphs (denoted by WL_{SOCP})

1081 1: **Require:** A graph instance $\mathcal{G} = (V, E)$ with node sets V_1, V_2, V_3, V_4 , initial node features
1082 h^v, h^s, h^o, h^q , and an iteration limit $L > 0$.

1083 2: **Initialize** initial colors for all nodes:

1084 3: $C^{0,v} \leftarrow \text{HASH}_{0,V}(h^v), \quad \forall v \in V_1$

1085 4: $C^{0,s} \leftarrow \text{HASH}_{0,S}(h^s), \quad \forall s \in V_2$

1086 5: $C^{0,o} \leftarrow \text{HASH}_{0,O}(h^o), \quad \forall o \in V_3$

1087 6: $C^{0,q} \leftarrow \text{HASH}_{0,Q}(h^q), \quad \forall q \in V_4$

1088 7: **for** $l = 1$ to L **do**

1089 8: **Update colors for polyhedron constraint nodes (V_2):**

1090 9: $C^{l,s} \leftarrow \text{HASH}\left(C^{l-1,s}, \sum_{v \in V_1} w_{s,v} \text{HASH}(C^{l-1,v})\right)$

1091 10: **Update colors for minor conic constraint nodes (V_3):**

1092 11: $\bar{C}^{l-1,o} \leftarrow \text{HASH}\left(C^{l-1,o}, \sum_{v \in V_1} w_{o,v} \text{HASH}(C^{l-1,v})\right)$

1093 12: **Update colors for major conic constraint nodes (V_4):**

1094 13: $\bar{C}^{l-1,q} \leftarrow \text{HASH}\left(C^{l-1,q}, \sum_{v \in V_1} w_{q,v} \text{HASH}(C^{l-1,v})\right)$

1095 14: **Update colors for major conic constraint nodes (V_4):**

1096 15: $C^{l,q} \leftarrow \text{HASH}\left(\bar{C}^{l-1,q}, \sum_{o \in V_3} w_{q,o} \text{HASH}(\bar{C}^{l-1,o})\right)$

1097 16: **Update colors for minor conic constraint nodes (V_3):**

1098 17: $C^{l,o} \leftarrow \text{HASH}\left(\bar{C}^{l-1,o}, \sum_{q \in V_4} w_{o,q} \text{HASH}(C^{l,q})\right)$

1099 18: **Update colors for variable nodes (V_1):**

1100 19: $C^{l,v} \leftarrow \text{HASH}\left(C^{l-1,v}, M_1, M_2, M_3\right)$, where:

1101

1102
$$M_1 = \sum_{s \in V_2} w_{v,s} \text{HASH}(C^{l,s})$$

1103
$$M_2 = \sum_{o \in V_3} w_{v,o} \text{HASH}(C^{l,o})$$

1104
$$M_3 = \sum_{q \in V_4} w_{v,q} \text{HASH}(C^{l,q})$$

1105

1106 20: **end for**

1107 21: **Return** The multisets of final colors: $\{\{C^{L,v}\}_{v \in V_1}, \{\{C^{L,s}\}_{s \in V_2}, \{\{C^{L,o}\}_{o \in V_3}, \{\{C^{L,q}\}_{q \in V_4}$

1115

1116 **Reducing the Node Complexity of SOCP-GNNs:** One may note that for SOC constraints $\|Ax + b\|_2 \leq c^\top x + d$ with $A \in \mathbb{R}^{k \times n}$ of a large $k \gg n$, the GNN need k minor conic constraint
1117 nodes to represent it. However, as shown in Appendix B.1, we can reduce the complexity to $\mathcal{O}(n)$
1118 by reformulating it into another equivalent SOC constraint with corresponding $A' \in \mathbb{R}^{k' \times n}$ of
1119 $k' \leq n + 1$. This reformulation makes SOCP-GNN more scalable for the large and structured
1120 problems in real-world applications.

1122

1123

C PROOF OF MAIN THEOREM

1124

1125

C.1 SOCP WL-TEST

1126

1127

The separation power of traditional GNNs is closely related to the Weisfeiler-Lehman (WL) test, a
1128 classical algorithm to identify whether two given graphs are isomorphic. To apply the WL test on
1129 SOCP-graphs, we design a modified WL test in Algorithm 1.

1130

1131

1132

1133

We denote Algorithm 1 by $\text{WL}_{\text{SOCP}}(\cdot)$ and we assume that there is no collision of Hash functions and
1134 their linear combination in the following proof (Chen et al., 2024b; Wu et al., 2024). We say that two
1135 SOCP-graphs G, \hat{G} can be distinguished by Algorithm 1 if and only if there exist a positive integer L
1136 and injective hash functions mentioned above such that the output multisets of G, \hat{G} are different.

1134 C.2 THE CONNECTION BETWEEN THE WL-INDISTINGUISHABILITY AND TARGET PROPERTY
11351136 Here, we analyze the WL test's convergence and corresponding stable properties to lead to the core
1137 lemma1138 **Lemma 1.** *Assume all hash functions satisfy conditions in Appendix C.1, and we terminate the SOCP
1139 WL-test when the number of distinct colors no longer changes in an iteration. Then the SOCP WL-test
1140 terminates in finite iterations.*1141
1142 *Proof.* Here, notice that the SOCP WL-test satisfies the following two properties:
11431144

- 1145 • If two nodes v, w have different colors in one (sub)iteration, then they will always have
1146 different colors in the following (sub)iterations.
- 1147 • If after one full iteration, the nodes' color doesn't change under some one-to-one color
1148 mapping, then for all iterations after this iteration, the algorithm will always return the same
1149 result.

1150
1151 These two facts have shown that, after one iteration, the color collections either get strictly finer or
1152 remain unchanged for all following iterations. Since the number of nodes is finite, the algorithm
1153 terminates in finite iterations. \square 1154
1155 And now, we study the convergence properties of the SOCP-WL test1156 **Lemma 2.** *Given the SOCP graph G , assume the SOCP WL-test stabilizes after $T \geq 0$ iterations.
1157 The sum of weights from a certain node of one color to all nodes of another color only depends on the
1158 color of the given node. Specifically, the sum (taking W_1 for variable nodes and W_2 for polyhedron
1159 constraint nodes as an example) is:*

1160
1161
$$S(W_2, W_1; G) := \sum_{C^{T,v} = W_1} w_{s,v}$$

1162
1163 and is well-defined for all s , such that $C^{T,s} = W_2$ 1164
1165 Similarly, for any color of variables W_1 , color of polyhedron constraints W_2 , color of minor conic
1166 constraints W_3 and color of major conic constraints W_4 , the following sums are well-defined:

1167
1168
$$S(W_3, W_1; G) := \sum_{C^{T,v} = W_1} w_{o,v}, \quad C^{T,o} = W_3$$

1169
1170
$$S(W_4, W_3; G) := \sum_{C^{T,o} = W_3} w_{q,o}, \quad C^{T,q} = W_4$$

1171
1172
$$S(W_1, W_2; G) := \sum_{C^{T,s} = W_2} w_{v,s}, \quad C^{T,v} = W_1$$

1173
1174
$$S(W_1, W_3; G) := \sum_{C^{T,o} = W_3} w_{v,o}, \quad C^{T,v} = W_1$$

1175
1176
$$S(W_1, W_4; G) := \sum_{C^{T,q} = W_4} w_{v,q}, \quad C^{T,v} = W_1$$

1177
1178
$$S(W_4, W_1; G) := \sum_{C^{T,v} = W_1} w_{q,v}, \quad C^{T,q} = W_4$$

1179
1180
1181

1182
1183
1184 *Proof.* Let v_1, v_2 be two nodes with color $W_1 = C^{T,v_1} = C^{T,v_2}$. Since the SOCP WL-test has
1185 stabilized, the node pairs won't be finer, i.e.

1186
1187
$$\sum_s w_{v_1,s} \text{HASH}(C^{T,s}) = \sum_s w_{v_2,s} \text{HASH}(C^{T,s}).$$

1188 Rearranging according to $W_2 = C^{T,s}$, we get:
 1189

$$1190 \sum_{W_2} \sum_{C^{T,s}=W_2} w_{v_1,s} \text{HASH}(W_2) = \sum_{W_2} \sum_{C^{T,s}=W_2} w_{v_2,s} \text{HASH}(W_2).$$

1192 Assuming that the hash function is collision-free and maps different colors into different linearly
 1193 independent vectors, we conclude that:
 1194

$$1195 \sum_{C^{T,s}=W_2} w_{v_1,s} = \sum_{C^{T,s}=W_2} w_{v_2,s},$$

1198 i.e., $S(W_1, W_2; G) := \sum_{C^{T,s}=W_2} w_{v,s}$, $C^{T,v} = W_1$ is well-defined.
 1199

1200 Other proofs are similar. □

1203 An immediate conclusion is listed following.

1204 **Corollary 1.** *If all the SOCP WL-test cannot separate the two instances: $\mathcal{I}, \hat{\mathcal{I}}$ (with given sizes
 1205 n, m, k_1, \dots, k_m, b , encoded by $G, \hat{G} \in \mathcal{G}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}$), then: All the sum in lemma 3 is well defined
 1206 for G and \hat{G} and equal each other respectively.*
 1207

1208 Meanwhile, we define: W_{ij} to be the collection of nodes with node type i and color j . By summing
 1209 the cross terms and rearranging the sum, we have:
 1210

$$1211 S(W_{1j}, W_{2k}; G) |W_{1j}| = S(W_{2k}, W_{1j}; G) |W_{2k}|$$

$$1212 S(W_{1j}, W_{3l}; G) |W_{1j}| = S(W_{3l}, W_{1j}; G) |W_{3l}|$$

$$1213 S(W_{1j}, W_{4m}; G) |W_{1j}| = S(W_{4m}, W_{1j}; G) |W_{4m}|$$

1216 Now, we begin to prove the following lemma.
 1217

1218 **Lemma 3.** *Let $\mathcal{I}, \hat{\mathcal{I}}$ (with given sizes n, m, k_1, \dots, k_m, b , encoded by $G, \hat{G} \in \mathcal{G}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}$) be two
 1219 SOCP instances. If the following holds:*

- 1220 • The SOCP WL-test cannot separate the two instances;
- 1221 • x is a feasible solution of \mathcal{I} .

1224 Then there exists a feasible solution \hat{x} for $\hat{\mathcal{I}}$ whose objective and ℓ_2 -norm are controlled by x , such
 1225 that:
 1226

$$\hat{e} \cdot \hat{x} \leq e \cdot x$$

$$||\hat{x}||_2 \leq ||x||_2$$

1229 *Proof.* The key to this proof is to take the average among the nodes in the same node pair. Formally,
 1230 we define $\hat{x}_v = \frac{1}{|W_{1j}|} (\sum_{C^{T,v'}=W_{1j}} x_{v'})$ for all v , such that: $C^{T,v} = W_{1j}$

1232 By the Cauchy-Schwarz inequality, we have:
 1233

$$1235 \sum_{C^{T,v'}=W_{1j}} x_{v'}^2 \geq |W_{1j}| \left[\frac{1}{|W_{1j}|} \left(\sum_{C^{T,v'}=W_{1j}} x_{v'} \right) \right]^2$$

1237 Summing over all possible W_{1j} , we get: $||\hat{x}||_2 \leq ||x||_2$

1239 Meanwhile, notice that: for all v' , such that: $C^{T,v'} = W_{1j}$, their corresponding $e_{v'}, l_{v'}, r_{v'}$ and
 1240 $\hat{e}_{v'}, \hat{l}_{v'}, \hat{r}_{v'}$ are the same, respectively.
 1241

Hence, we have:

1242
 1243
$$\sum_{C^{T,v'}=W_{1j}} e_{v'} x_{v'} = \sum_{C^{T,v'}=W_{1j}} \hat{e}_{v'} \hat{x}_{v'}$$

 1244
 1245
 1246
$$\hat{x}_v \in [\hat{l}_v, \hat{r}_v]$$

1247 for all possible variable node v and color W_{1j} .
 1248

1249 Summing over W_{1j} yields:
 1250

1251
$$\sum_{v'} e_{v'} x_{v'} = \sum_{v'} \hat{e}_{v'} \hat{x}_{v'}$$

 1252
 1253

1254 Further, consider the edge properties brought by the above lemma, we get:
 1255

1256 For the l -th and t -th polyhedron constraint both with color W_{2k} , $l, t \in \{1, 2, \dots, b\}$ (Here, we assume
 1257 in both G and \hat{G} , the l -th and t -th polyhedron constraint are both with color W_{2k} respectively) the
 1258 following inequality holds:
 1259

1260
$$\sum_{j=1}^n F_{l,j} x_j \leq g_t, \Rightarrow \frac{1}{|W_{2k}|} \sum_{l \in W_{2k}} \sum_{W_{1j}} \sum_{v \in W_{1j}} F_{l,v} x_v \leq g_t,$$

 1261
 1262

1263 Exchange the order of the sum, we get:
 1264

1265
$$\frac{1}{|W_{2k}|} \sum_{W_{1j}} \sum_{v \in W_{1j}} \sum_{l \in W_{2k}} F_{l,v} x_v \leq g_t,$$

 1266
 1267

1268 Notice that:
 1269

1270
$$\frac{1}{|W_{2k}|} \sum_{W_{1j}} \sum_{v \in W_{1j}} \sum_{l \in W_{2k}} F_{l,v} x_v = \frac{1}{|W_{2k}|} \sum_{W_{1j}} \sum_{v \in W_{1j}} \sum_{l \in W_{2k}} F_{l,v} \hat{x}_v$$

 1271
 1272
$$= \frac{1}{|W_{2k}|} \sum_{W_{1j}} \sum_{v \in W_{1j}} \sum_{l \in W_{2k}} \hat{F}_{l,v} \hat{x}_v$$

 1273
 1274
$$= \sum_{W_{1j}} \sum_{v \in W_{1j}} \hat{F}_{l,v} \hat{x}_v$$

 1275
 1276
 1277

1278 Thus, $\sum_{W_{1j}} \sum_{v \in W_{1j}} \hat{F}_{l,v} \hat{x}_v \leq g_t = \hat{g}_t = \hat{g}_l$, which shows that the polyhedron constraint is satisfied.
 1279

1280 Similarly, for the u -th and r -th (major) conic constraints both with color W_{4m} , we have:
 1281

- 1282 • After proper rearranging of nodes o_{us_u} and o_{rs_r} , where $s_u = 1, 2, \dots, k_u$; $s_r = 1, 2, \dots, k_r$,
 1283 the color of o_{us_u} and o_{rs_r} , where $s_u = 1, 2, \dots, k_u$; $s_r = 1, 2, \dots, k_r$, are the same regarding
 1284 the order, i.e. $C^{T,o_{ui}} = C^{T,o_{ri}}$, $\forall i = 1, 2, \dots, k_u$ (Notice that $k_u = k_r$).
- 1285 • $d_u = d_r$.
- 1286 • For any node o_{hi} and $o_{jk} \in V_3$ with the same stable color, either $h = j$ or the color of node
 1287 q_h and q_j are the same.
 1288

1289 Now let's prove the conic part. For the u -th and r -th major conic constraint node both with color
 1290 W_{4m} in both G and \hat{G} and the minor conic node j_1 corresponds to r -th major conic constraint node
 1291 in both G and \hat{G} , we have:
 1292

1293 **Right constraint:**
 1294

1295
$$\frac{1}{|W_{4m}|} \sum_{C^{T,u}=W_{4m}} c_u^T x + d_u$$

$$\begin{aligned}
1296 &= \left(\frac{1}{|W_{4m}|} \sum_{C^{T,u} = W_{4m}} \sum_{W_{1j}} \sum_{v \in W_{1j}} c_{uv} x_v \right) + \hat{d}_r \\
1297 &= \left(\frac{1}{|W_{4m}|} \sum_{W_{1j}} \sum_{v \in W_{1j}} \sum_{C^{T,u} = W_{4m}} c_{uv} x_v \right) + \hat{d}_r \\
1298 &= \left(\frac{1}{|W_{4m}|} \sum_{W_{1j}} \sum_{v \in W_{1j}} S(W_{1j}, W_{4m}; G) x_v \right) + \hat{d}_r \\
1299 &= \left(\frac{1}{|W_{4m}|} \sum_{W_{1j}} \sum_{v \in W_{1j}} S(W_{1j}, W_{4m}; G) \hat{x}_v \right) + \hat{d}_r \\
1300 &= \left(\frac{1}{|W_{4m}|} \sum_{W_{1j}} \sum_{v \in W_{1j}} S(W_{1j}, W_{4m}; G) \hat{x}_v \right) + \hat{d}_r \\
1301 &= \left(\frac{1}{|W_{4m}|} \sum_{W_{1j}} \sum_{v \in W_{1j}} S(W_{1j}, W_{4m}; G) \hat{x}_v \right) + \hat{d}_r \\
1302 &= \left(\frac{1}{|W_{4m}|} \sum_{W_{1j}} \sum_{v \in W_{1j}} S(W_{1j}, W_{4m}; G) \hat{x}_v \right) + \hat{d}_r \\
1303 &= \left(\frac{1}{|W_{4m}|} \sum_{W_{1j}} |W_{1j}| S(W_{1j}, W_{4m}; G) \hat{x}_v \right) + \hat{d}_r \\
1304 &= \left(\frac{1}{|W_{4m}|} \sum_{W_{1j}} |W_{4m}| S(W_{4m}, W_{1j}; G) \hat{x}_v \right) + \hat{d}_r \\
1305 &= \left(\frac{1}{|W_{4m}|} \sum_{W_{1j}} |W_{4m}| S(W_{4m}, W_{1j}; G) \hat{x}_v \right) + \hat{d}_r \\
1306 &= \left(\sum_{W_{1j}} S(W_{4m}, W_{1j}; G) \hat{x}_v \right) + \hat{d}_r = \left(\sum_{W_{1j}} \sum_{v \in W_{1j}} \hat{c}_{rv} \hat{x}_v \right) + \hat{d}_r = \hat{c}_r^T \hat{x} + \hat{d}_r
\end{aligned}$$

Left Constraint: Recall: two nodes in V_3 has the same stable color W_{3l} if their corresponding major conic constraint node's stable color is the same. So for each stable color W_{3l} in V_3 , the corresponding major conic node's stable colors are all the same, denoted by W_{4m} . And each major conic node have $\frac{|W_{3l}|}{|W_{4m}|}$ minor nodes with stable color W_{3l} . And we use $j \in u$ denotes a minor conic node j corresponds to node u

$$\begin{aligned}
1323 &= \left(\frac{1}{|W_{4m}|} \sum_{C^{T,u} = W_{4m}} \sum_{j \in W_{3l}, j \in u} \frac{|W_{4m}|}{|W_{3l}|} (A_u x + b_u)_j \right) \\
1324 &= (\hat{b}_r)_{j_1} + \frac{1}{|W_{3l}|} \sum_{C^{T,u} = W_{4m}} \sum_{j \in W_{3l}, j \in u} (A_u x)_j \\
1325 &= (\hat{b}_r)_{j_1} + \frac{1}{|W_{3l}|} \sum_{C^{T,u} = W_{4m}} \sum_{j \in W_{3l}, j \in u} \sum_{W_{1h}} \sum_{v \in W_{1h}} (A_u)_{jv} x_v \\
1326 &= (\hat{b}_r)_{j_1} + \frac{1}{|W_{3l}|} \sum_{W_{1h}} \sum_{v \in W_{1h}} \sum_{C^{T,u} = W_{4m}} \sum_{j \in W_{3l}, j \in u} (A_u)_{jv} x_v \\
1327 &= (\hat{b}_r)_{j_1} + \frac{1}{|W_{3l}|} \sum_{W_{1h}} \sum_{v \in W_{1h}} S(W_{1h}, W_{3l}; G) x_v \\
1328 &= (\hat{b}_r)_{j_1} + \frac{1}{|W_{3l}|} \sum_{W_{1h}} \sum_{v \in W_{1h}} S(W_{1h}, W_{3l}; G) \hat{x}_v \\
1329 &= (\hat{b}_r)_{j_1} + \frac{1}{|W_{3l}|} \sum_{W_{1h}} |W_{1h}| S(W_{1h}, W_{3l}; G) \hat{x}_v \\
1330 &= (\hat{b}_r)_{j_1} + \frac{1}{|W_{3l}|} \sum_{W_{1h}} |W_{3l}| S(W_{3l}, W_{1h}; G) \hat{x}_v \\
1331 &= (\hat{b}_r)_{j_1} + \sum_{W_{1h}} S(W_{3l}, W_{1h}; G) \hat{x}_v \\
1332 &= (\hat{b}_r)_{j_1} + \sum_{W_{1h}} \sum_{v \in W_{1h}} (\hat{A}_r)_{j_1 v} \hat{x}_v \\
1333 &= (\hat{b}_r)_{j_1} + (\hat{A}_r \hat{x})_{j_1} = (\hat{b}_r + \hat{A}_r \hat{x})_{j_1}
\end{aligned}$$

1350 **Conic feasibility for $\hat{\mathcal{I}}$**
1351

1352 For the u -th conic constraint with stable color W_{4m} and its corresponds minor conic node j with color
1353 W_{3l} , without loss of generality, we assume $(A_u x + b_u)$'s first $N = \frac{|W_{3l}|}{|W_{4m}|}$ rows' corresponding to
1354 all the minor conic nodes with color W_{3l} for such u and j , Thus, we have:

$$\begin{aligned} 1355 \sum_{j_1 \in r, j_1 \in W_{3l}} \|(\hat{b}_r + \hat{A}_r \hat{x})_{j_1}\|_2^2 &= \frac{|W_{3l}|}{|W_{4m}|} \left\| \frac{1}{|W_{4m}|} \sum_{C^{T,u} = W_{4m}} \sum_{j=1}^N \frac{|W_{4m}|}{|W_{3l}|} (A_u x + b_u)_j \right\|_2^2 \\ 1356 &\leq \sum_{j=1}^N \left\| \frac{1}{|W_{4m}|} \sum_{C^{T,u} = W_{4m}} (A_u x + b_u)_j \right\|_2^2 \end{aligned}$$

1361 Hence, summing over all possible W_{3l} for fixed W_{4m} , we have:

$$1363 \|\hat{b}_r + \hat{A}_r \hat{x}\|_2^2 = \sum_{W_{3l}} \sum_{j_1 \in r, j_1 \in W_{3l}} \|(\hat{b}_r + \hat{A}_r \hat{x})_{j_1}\|_2^2 \leq \left\| \frac{1}{|W_{4m}|} \sum_{C^{T,u} = W_{4m}} (A_u x + b_u) \right\|_2^2$$

1366 This yields that:

$$\begin{aligned} 1368 \|\hat{b}_r + \hat{A}_r \hat{x}\|_2 &\leq \left\| \frac{1}{|W_{4m}|} \sum_{C^{T,u} = W_{4m}} (A_u x + b_u) \right\|_2 \leq \frac{1}{|W_{4m}|} \sum_{C^{T,u} = W_{4m}} \|(A_u x + b_u)\|_2 \\ 1369 &\leq \frac{1}{|W_{4m}|} \sum_{C^{T,u} = W_{4m}} c_u^T x + d_u = \hat{c}_r^T \hat{x} + \hat{d}_r \end{aligned}$$

1374 Since r is arbitrarily chosen from W_{4m} , the conic feasibility holds obviously. \square

1375 **Corollary 2.** *If two SOCP instances $\mathcal{I}, \hat{\mathcal{I}}$ with their graph representations are indistinguishable by
1376 the SOCP-WL test, then the two problems share the same feasibility.*

1378 *Proof.* Let x be a feasible solution for \mathcal{I} , then by lemma 3, there exists a feasible solution \hat{x} for
1379 $\hat{\mathcal{I}}$. \square

1381 **Corollary 3.** *If two SOCP instances $\mathcal{I}, \hat{\mathcal{I}}$ with their graph representations are indistinguishable by
1382 the SOCP-WL test, then the two problems share the same boundness.*

1383 *Proof.* • If one instance is infeasible, by corollary 2, the other instance is infeasible as well,
1384 i.e., they are not bounded.

1386 • If one instance is not bounded from below, denoted by \mathcal{I} . Since we can always find a feasible
1387 solution of $\hat{\mathcal{I}}$ which has a smaller objective value than any fixed feasible solution of \mathcal{I} by
1388 Lemma 3, the conclusion is obvious.

1389 \square

1391 **Corollary 4.** *If two SOCP instances $\mathcal{I}, \hat{\mathcal{I}}$ with their graph representations are indistinguishable by
1392 the SOCP-WL test, then the two problems share the same optimal objective value.*

1394 *Proof.* By corollary 3, we only need to consider the case when both instances are feasible and
1395 bounded.

1396 Notice that the feasibility with boundness may not lead to the existence of an optimal solution for
1397 SOCP problems, for example:

$$1398 \min_{x_1, x_2} x_1 \text{ s.t. } \|2, x_1 - x_2\|_2 \leq x_1 + x_2, x_1 \geq 0, x_2 \geq 0$$

1401 So, we prove by "infimum" argument, let p and \hat{p} be the optimal value of \mathcal{I} and $\hat{\mathcal{I}}$ respectively. Then
1402 for any $\epsilon > 0$, there exists feasible solution x , s.t. $e^T x \leq p + \epsilon$. By lemma 4, there exists a feasible
1403 solution \hat{x} of $\hat{\mathcal{I}}$, such that $\hat{p} \leq \hat{e}^T \hat{x} \leq e^T x \leq p + \epsilon$. Let $\epsilon \rightarrow 0$ yields $\hat{p} \leq p$. Similarly, we have:
1404 $\hat{p} \geq p$, which finishes the proof. \square

1404
 1405 **Corollary 5.** *If two SOCP instances $\mathcal{I}, \hat{\mathcal{I}}$ with their graph representations are indistinguishable by*
 1406 *the SOCP-WL test and one of these instances admits an optimal solution, then the other instance has*
 1407 *an optimal solution as well.*

1408 *Proof.* See the proof of corollary 6. □
 1409

1410 **Corollary 6.** *If two SOCP instances $\mathcal{I}, \hat{\mathcal{I}}$ with their graph representations are indistinguishable by*
 1411 *the SOCP-WL test, then the two problems share the same optimal solution with the smallest Euclidean*
 1412 *norm if one instance admits an optimal solution up to permutation.*
 1413

1414 *Proof.* Without loss of generality, we assume that for each variable j , its corresponding stable color in
 1415 $\mathcal{I}, \hat{\mathcal{I}}$ after the SOCP-WL test is the same, and \mathcal{I} has an optimal solution x with the smallest Euclidean
 1416 norm. By using lemma 3 twice, we can construct a feasible solution \hat{x} for $\hat{\mathcal{I}}$ and construct a feasible
 1417 solution \hat{x} for \mathcal{I} again with
 1418

$$1419 \quad e^T x \geq e^T \hat{x} \geq e^T \hat{\hat{x}} \quad \text{and} \quad \|x\|_2 \geq \|\hat{x}\|_2 \geq \|\hat{\hat{x}}\|_2$$

1421 Hence, $x = \hat{\hat{x}}$. Recall the proof of the lemma 3, the variables in \hat{x} with the same stable color after
 1422 SOCP-WL test already have the same value, so averaging them again won't change it anymore, i.e.
 1423 $\hat{x} = \hat{\hat{x}}$. Hence, $x = \hat{x} = \hat{\hat{x}}$. By corollary 4, \hat{x} is an optimal solution of $\hat{\mathcal{I}}$
 1424

1425 Now, if there exists an optimal solution y of $\hat{\mathcal{I}}$ with $\|y\|_2 < \|\hat{x}\|_2 = \|x\|_2$, by similar proof above,
 1426 we can get: y is also an optimal solution of \mathcal{I} , which contradicts the fact that: x is the optimal
 1427 solution of \mathcal{I} with the smallest Euclidean norm. Hence, \hat{x} is an optimal solution of $\hat{\mathcal{I}}$ with the smallest
 1428 Euclidean norm □
 1429

1430 C.3 THE MEASURABLE PROPERTY OF TARGET MAPPING

1431 **Definition C.1.** For an SOCP instance G :

$$\begin{aligned} 1433 \quad & \text{minimize} \quad e^T x \\ 1434 \quad & \text{subject to} \quad \|A_i x + b_i\|_2 \leq c_i^T x + d_i, \quad i = 1, \dots, m \\ 1435 \quad & \quad F x \leq g \\ 1436 \quad & \quad l_i \leq x_i \leq r_i, i = 1, \dots, n \end{aligned}$$

1439 Its parameter is defined as $(e, \{A_i\}_{i=1}^m, \{b_i\}_{i=1}^m, \{c_i\}_{i=1}^m, \{d_i\}_{i=1}^m, F, g, l, r)$, and all the parameter
 1440 form the parameter space \mathcal{P}

1441 Notice that: For an SOCP instance, there exists a bijective mapping $\mathbf{I} : \mathcal{G}_{SOCP}^{n, m, k_1, \dots, k_m, b} \rightarrow \mathcal{P}$ with
 1442 $\mathbf{I}(G) = (e, \{A_i\}_{i=1}^m, \{b_i\}_{i=1}^m, \{c_i\}_{i=1}^m, \{d_i\}_{i=1}^m, F, g, l, r)$ for any SOCP instance G parametrized by
 1443 $(e, \{A_i\}_{i=1}^m, \{b_i\}_{i=1}^m, \{c_i\}_{i=1}^m, \{d_i\}_{i=1}^m, F, g, l, r)$. And we equip both $\mathcal{G}_{SOCP}^{n, m, k_1, \dots, k_m, b}$ and \mathcal{P} with the
 1444 standard Euclidean topology and product topology in its feature space. Then \mathbf{I} is a homeomorphism.
 1445

1446 **Remark:** If we can prove that $\Phi_{target} : \mathcal{P} \rightarrow \mathbb{R}$ is measurable, then $\Phi_{target} \circ \mathbf{I} : \mathcal{G}_{SOCP}^{n, m, k_1, \dots, k_m, b} \rightarrow \mathbb{R}$
 1447 is measurable as well.

1448 **Theorem 4.** *For any Borel regular measure μ defined on \mathcal{P} , $\Phi_{feas} : \mathcal{P} \rightarrow \{0, 1\}$ is μ -measurable.*
 1449

1450 *Proof.* Below, we use measurable to denote μ -measurable for simplicity.
 1451

1452 To prove that Φ_{feas} is measurable, it suffices to show that the preimage of $\{1\}$, denoted $\mathcal{P}_{feas} = \{P \in$
 1453 $\mathcal{P} \mid \Phi_{feas}(P) = 1\}$, is a measurable set.

1454 First, we define a **feasibility violation function** $V_{feas} : \mathcal{P} \times \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0}$. Let $(y)_+ = \max(0, y)$.
 1455

$$1456 \quad V_{feas}(P, x) = \sum_{i=1}^m (\|A_i x + b_i\|_2 - (c_i^T x + d_i))_+ + \sum_{j=1}^p ((F x)_j - g_j)_+ + \sum_{k=1}^n ((l_k - x_k)_+ + (x_k - r_k)_+)$$

1458 This function $V_{\text{feas}}(P, x)$ is continuous with respect to both P and x , as it is a sum and composition
 1459 of continuous functions (norms, linear maps, max function). Furthermore, $V_{\text{feas}}(P, x) = 0$ if and only
 1460 if x is a feasible point for the problem instance P .

1461 A problem P is feasible if and only if there exists an $x \in \mathbb{R}^n$ such that $V_{\text{feas}}(P, x) = 0$. This is
 1462 equivalent to the condition $\exists R \in \mathbb{N}^+, s.t. \inf_{x \in \mathbb{R}^n \cap B_R} V_{\text{feas}}(P, x) = 0$.

1463 We can now express the set of feasible problems $\mathcal{P}_{\text{feas}}$ by restricting the infimum to a countable dense
 1464 set. Let B_R be the closed ball of radius R centered at the origin. By continuity of V_{feas} in x , we have:

$$\begin{aligned} \mathcal{P}_{\text{feas}} &= \bigcup_{R \in \mathbb{N}^+} \left\{ P \in \mathcal{P} \mid \inf_{x \in \mathbb{R}^n \cap B_R} V_{\text{feas}}(P, x) = 0 \right\} \\ &= \bigcup_{R \in \mathbb{N}^+} \bigcap_{k \in \mathbb{N}^+} \left\{ P \in \mathcal{P} \mid \exists x \in \mathbb{R}^n \cap B_R, s.t. V_{\text{feas}}(P, x) < \frac{1}{k} \right\} \end{aligned}$$

1472 So, $\mathcal{P}_{\text{feas}}$ can be written as:

$$\mathcal{P}_{\text{feas}} = \bigcup_{R \in \mathbb{N}^+} \bigcap_{k \in \mathbb{N}^+} \bigcup_{x \in B_R \cap \mathbb{Q}^n} \left\{ P \in \mathcal{P} \mid V_{\text{feas}}(P, x) < \frac{1}{k} \right\}$$

1477 For any fixed $x \in \mathbb{Q}^n$, the function $P \mapsto V_{\text{feas}}(P, x)$ is continuous. Thus, for each tuple (R, k, x) , the
 1478 set $\{P \mid V_{\text{feas}}(P, x) < 1/k\}$ is a Borel set. Since $\mathcal{P}_{\text{feas}}$ is formed by countable unions and intersections
 1479 of measurable sets, it is itself a measurable (Borel) set. Therefore, Φ_{feas} is a measurable function.

□

1481 **Theorem 5.** For any Borel regular measure μ defined on \mathcal{P} , $\Phi_{\text{bound}} : \mathcal{P} \rightarrow \{0, 1\}$ is μ -measurable.

1483 *Proof.* Below, we use measurable to denote μ -measurable for simplicity.

1485 Let $\mathcal{P}_{\text{feas}} = \Phi_{\text{feas}}^{-1}(1)$, which is a measurable set. We only need to show that the set $\mathcal{P}_{\text{bdd}} = \{P \in \mathcal{P}_{\text{feas}} \mid \Phi_{\text{bound}}(P) = 1\}$ is measurable.

1487 A problem $P \in \mathcal{P}_{\text{feas}}$ is bounded if and only if there exists $M \in \mathbb{Z}$ such that for all feasible solutions
 1488 x of P , $e^T x \geq M$. This can be stated as:

$$\begin{aligned} \mathcal{P}_{\text{bdd}} &= \bigcup_{M \in \mathbb{Z}} \left\{ P \in \mathcal{P}_{\text{feas}} \mid \forall x \in \mathbb{R}^n, s.t. V_{\text{feas}}(P, x) = 0 \Rightarrow e^T x \geq M \right\} \\ &= \bigcup_{M \in \mathbb{Z}} \left\{ P \in \mathcal{P}_{\text{feas}} \mid \inf_{x \in \mathbb{R}^n, s.t. V_{\text{feas}}(P, x) = 0} e^T x \geq M \right\} \end{aligned}$$

1495 Let's define the **boundness violation function**:

$$V_{\text{bdd}}(P, x) = \inf_{x \in \mathbb{R}^n, s.t. V_{\text{feas}}(P, x) = 0} e^T x$$

1498 Now, we have:

$$\mathcal{P}_{\text{bdd}} = \bigcup_{M \in \mathbb{Z}} \{P \in \mathcal{P}_{\text{feas}} \mid V_{\text{bdd}}(P, x) \geq M\}$$

1502 So it suffices to prove $V_{\text{bdd}}(P, x)$ is measurable and we only need to show that: for any $M \in \mathbb{R}$, the
 1503 sublevel set $\{P \in \mathcal{P}_{\text{feas}} \mid V_{\text{bdd}}(P) < M\}$ is a measurable set.

1505 The condition $V_{\text{bdd}}(P) < M$ is equivalent to the existence of a feasible point z such that $e^T z < M$.
 1506 This can be expressed as:

$$\{P \in \mathcal{P}_{\text{feas}} \mid V_{\text{bdd}}(P) < M\} = \bigcup_{k \in \mathbb{N}_+} \left\{ P \in \mathcal{P}_{\text{feas}} \mid \exists z \in \mathbb{R}^n \text{ s.t. } e^T z \leq M - \frac{1}{k} \text{ and } z \text{ is feasible} \right\}.$$

1510 Let us define an auxiliary violation function $V_{\text{bdd_viol}} : \mathcal{P} \times \mathbb{R}^n \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$:

$$V_{\text{bdd_viol}}(P, z, M) = \max((e^T z - M)_+, V_{\text{feas}}(P, z)).$$

1512 This function is continuous in (P, z, M) . The condition $V_{\text{bdd}, \text{viol}}(P, z, M') = 0$ holds if and only if z
 1513 is a feasible point and its objective value satisfies $e^\top z \leq M'$.
 1514

1515 Thus, similar to the proof of feasibility, the condition $V_{\text{bdd}}(P) < M$ is equivalent to:

$$1516 \quad \bigcup_{k \in \mathbb{N}_+} \bigcup_{R \in \mathbb{N}^+} \left\{ P \in \mathcal{P}_{\text{feas}} \mid \inf_{z \in \mathbb{R}^n \cap B_R} V_{\text{bdd}, \text{viol}} \left(P, z, M - \frac{1}{k} \right) = 0 \right\}.$$

1519 By continuity of $V_{\text{bdd}, \text{viol}}$ in z , we can restrict the infimum to the countable dense set \mathbb{Q}^n :
 1520

$$1521 \quad \bigcup_{k \in \mathbb{N}_+} \bigcup_{R \in \mathbb{N}^+} \left\{ P \in \mathcal{P}_{\text{feas}} \mid \inf_{z \in \mathbb{Q}^n \cap B_R} V_{\text{bdd}, \text{viol}} \left(P, z, M - \frac{1}{k} \right) = 0 \right\}.$$

1524 For any fixed $z \in \mathbb{Q}^n$, $R \in \mathbb{N}^+$ and $M' \in \mathbb{R}$, the function $P \mapsto V_{\text{bdd}, \text{viol}}(P, z, M')$ is continuous,
 1525 hence measurable. The infimum of a countable collection of such measurable functions is also
 1526 measurable. Therefore, the set $\{P \mid \inf_{z \in \mathbb{Q}^n} V_{\text{bdd}, \text{viol}}(P, z, M') = 0\}$ is measurable for any fixed
 1527 M' .

1528 Since the sublevel set $\{P \in \mathcal{P}_{\text{feas}} \mid V_{\text{bdd}}(P) < M\}$ is a countable union of such measurable sets, it is
 1529 measurable. This holds for all $M \in \mathbb{R}$, so V_{bdd} is a measurable function. \square

1530 **Theorem 6.** *For any Borel regular measure μ defined on \mathcal{P} , $\Phi_{\text{obj}} : \mathcal{P} \rightarrow \mathbb{R}$ is μ -measurable.*

1532 *Proof.* Below, we use measurable to denote μ -measurable for simplicity.

1534 To prove that Φ_{obj} is measurable, we only need to show that for any $\phi \in \mathbb{R}$, the sublevel set
 1535 $\{P \in \mathcal{P} \mid \Phi_{\text{obj}}(P) < \phi\}$ is measurable.

1536 Let us define an **objective violation function** $V_{\text{obj}} : \mathcal{P} \times \mathbb{R}^n \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$:

$$1538 \quad V_{\text{obj}}(P, x, \phi) = \max((e^\top x - \phi)_+, V_{\text{feas}}(P, x))$$

1540 This function is continuous in (P, x, ϕ) . $V_{\text{obj}}(P, x, \phi) = 0$ if and only if x is a feasible point and its
 1541 objective value satisfies $e^\top x \leq \phi$.

1542 The condition $\Phi_{\text{obj}}(P) < \phi$ is equivalent to the existence of a feasible point x such that $e^\top x < \phi$.
 1543 This can be expressed as:

$$1545 \quad \{P \in \mathcal{P} \mid \Phi_{\text{obj}}(P) < \phi\} = \bigcup_{k \in \mathbb{N}^+} \{P \in \mathcal{P} \mid \exists x \in \mathbb{R}^n \text{ s.t. } e^\top x \leq \phi - \frac{1}{k} \text{ and } x \text{ is feasible}\}$$

1548 Similar to the previous proof, this is equivalent to:

$$1550 \quad \bigcup_{k \in \mathbb{N}^+} \bigcup_{R \in \mathbb{N}^+} \left\{ P \in \mathcal{P} \mid \inf_{x \in \mathbb{R}^n \cap B_R} V_{\text{obj}} \left(P, x, \phi - \frac{1}{k} \right) = 0 \right\}$$

$$1553 \quad = \bigcup_{k \in \mathbb{N}^+} \bigcup_{R \in \mathbb{N}^+} \left\{ P \in \mathcal{P} \mid \inf_{x \in \mathbb{Q}^n \cap B_R} V_{\text{obj}} \left(P, x, \phi - \frac{1}{k} \right) = 0 \right\}$$

1556 For any fixed $x \in \mathbb{Q}^n$, the function $P \mapsto V_{\text{obj}}(P, x, \phi')$ is continuous, hence measurable.
 1557 The infimum of a countable collection of measurable functions is measurable. Hence, the set
 1558 $\{P \mid \inf_{x \in \mathbb{Q}^n} V_{\text{obj}}(P, x, \phi') = 0\}$ is measurable for any fixed ϕ' . Since the sublevel set $\{P \mid$
 1559 $\Phi_{\text{obj}}(P) < \phi\}$ is a countable union of such measurable sets, it is measurable. This holds for
 1560 all $\phi \in \mathbb{R}$, so Φ_{obj} is a measurable function. \square

1561 **Theorem 7.** *For any Borel regular measure μ defined on \mathcal{P} , $\Phi_{\text{attain}} : \mathcal{P} \rightarrow \{0, 1\}$ is μ -measurable.*

1563 *Proof.* Below, we use measurable to denote μ -measurable for simplicity.

1564 Let $\mathcal{P}_{\text{fin}} = \Phi_{\text{obj}}^{-1}(\mathbb{R})$, which is a measurable set. We only need to show that the set $\mathcal{P}_{\text{sol}} = \{P \in \mathcal{P}_{\text{fin}} \mid$
 1565 $\Phi_{\text{attain}}(P) = 1\}$ is measurable.

1566 A problem $P \in \mathcal{P}_{\text{fin}}$ attains its optimal solution if and only if there exists a point $x \in \mathbb{R}^n$ such that x
 1567 is feasible and its objective value is equal to the optimal value, $\Phi_{\text{obj}}(P)$. This can be stated as:
 1568

$$1569 \mathcal{P}_{\text{sol}} = \{P \in \mathcal{P}_{\text{fin}} \mid \exists x \in \mathbb{R}^n \text{ s.t. } V_{\text{feas}}(P, x) = 0 \text{ and } e^T x = \Phi_{\text{obj}}(P)\}$$

1570 Let's define the **optimality violation function**:

$$1571 V_{\text{solu}}(P, x) = \max((e^T x - \Phi_{\text{obj}}(P))_+, V_{\text{feas}}(P, x))$$

1572 Notice that:

1574 • For a fixed x , the function $P \mapsto V_{\text{solu}}(P, x)$ is measurable because it is a "composition" of
 1575 continuous functions and the measurable function Φ_{obj} .
 1576

1577 • For a fixed P , the function $x \mapsto V_{\text{solu}}(P, x)$ is continuous.

1578 A SOCP instance P attains its solution if and only if there exists $R \in \mathbb{N}^+$, s.t. the infimum of
 1579 $V_{\text{solu}}(P, x)$ over $x \in B_R$ is zero, i.e. :

$$1581 \mathcal{P}_{\text{sol}} = \bigcup_{R \in \mathbb{N}^+} \left\{ P \in \mathcal{P}_{\text{fin}} \mid \inf_{x \in \mathbb{R}^n \cap B_R} V_{\text{solu}}(P, x) = 0 \right\}$$

1584 Following the same logic used for Φ_{feas} , we can write:

$$1585 \mathcal{P}_{\text{sol}} = \bigcup_{R \in \mathbb{N}^+} \left\{ P \in \mathcal{P}_{\text{fin}} \mid \inf_{x \in \mathbb{R}^n \cap B_R} V_{\text{solu}}(P, x) = 0 \right\}$$

$$1588 = \bigcup_{R \in \mathbb{N}^+} \bigcap_{k \in \mathbb{N}^+} \left\{ P \in \mathcal{P}_{\text{fin}} \mid \inf_{x \in B_R \cap \mathbb{Q}^n} V_{\text{solu}}(P, x) < \frac{1}{k} \right\}$$

1590 For any fixed x , $P \mapsto V_{\text{solu}}(P, x)$ is measurable. The infimum over a countable set of measurable
 1591 functions is measurable. Therefore, the set

$$1593 \left\{ P \in \mathcal{P}_{\text{fin}} \mid \inf_{x \in B_R \cap \mathbb{Q}^n} V_{\text{solu}}(P, x) < \frac{1}{k} \right\}$$

1595 is a measurable subset of \mathcal{P}_{fin} . Since \mathcal{P}_{sol} is formed by countable unions and intersections of
 1596 measurable sets, it is measurable. Thus, Φ_{attain} is a measurable function. \square

1597 **Theorem 8.** For any Borel regular measure μ defined on \mathcal{P} , $\Phi_{\text{solu}} : \mathcal{P} \rightarrow \mathbb{R}^n$ is μ -measurable.

1599 *Proof.* Below, we use measurable to denote μ -measurable for simplicity.

1600 For any $P \in \mathcal{P}_{\text{sol}} = \Phi_{\text{attain}}^{-1}(1)$, Φ_{solu} is well-defined. And it suffices to prove that: $(\Phi_{\text{solu}})_i$ is
 1601 measurable for any $i \in [n]$, i.e. for any $\phi \in \mathbb{R}$, the set: $\{P \in \mathcal{P}_{\text{sol}} \mid (\Phi_{\text{solu}})_i < \phi\}$ is measurable.

1603 Notice that: the followings are equivalent for $P \in \mathcal{P}_{\text{sol}}$:

- 1605 • $P \in \{P \in \mathcal{P}_{\text{sol}} \mid (\Phi_{\text{solu}})_i < \phi\}$.
- 1606 • There exists $x \in \mathbb{R}^n$ with $x_i < \phi$, such that $V_{\text{solu}}(P, x) = 0$ and $V_{\text{solu}}(P, x') > 0$, $\forall x' \in$
 1607 $B_{\|x\|}$, $x'_i \geq \phi$.
- 1608 • There exists $R \in \mathbb{Q}_+$, $r \in \mathbb{N}_+$, and $x \in B_R$ with $x_i \leq \phi - 1/r$, such that $V_{\text{solu}}(P, x) = 0$
 1609 and $V_{\text{solu}}(P, x') > 0$, $\forall x' \in B_R$, $x'_i \geq \phi$.
- 1610 • There exists $R \in \mathbb{Q}_+$ and $r \in \mathbb{N}_+$, such that for all $r' \in \mathbb{N}_+$, $\exists x \in B_R \cap \mathbb{Q}^n$, $x_i \leq \phi - 1/r$,
 1611 s.t. $V_{\text{solu}}(P, x) < 1/r'$ and that $\exists r'' \in \mathbb{N}_+$, s.t., $V_{\text{solu}}(P, x') \geq 1/r''$, $\forall x' \in B_R \cap \mathbb{Q}^n$,
 1612 $x'_i \geq \phi$.

1615 Hence, we can rewrite $\{P \in \mathcal{P}_{\text{sol}} \mid (\Phi_{\text{solu}})_i < \phi\}$ as:

$$1617 \bigcup_{R \in \mathbb{Q}_+} \bigcup_{r \in \mathbb{N}_+} \left(\begin{array}{l} \left(\bigcap_{r' \in \mathbb{N}_+} \bigcup_{x \in B_R \cap \mathbb{Q}^n, x_i \leq \phi - \frac{1}{r'}} \{P \in \mathcal{P}_{\text{sol}} \mid V_{\text{solu}}(P, x) < \frac{1}{r'}\} \right) \\ \cap \left(\bigcup_{r'' \in \mathbb{N}_+} \bigcap_{x' \in B_R \cap \mathbb{Q}^n, x'_i \geq \phi} \{P \in \mathcal{P}_{\text{sol}} \mid V_{\text{solu}}(P, x') \geq \frac{1}{r''}\} \right) \end{array} \right)$$

1619 , which is measurable. \square

1620 C.4 RELATION BETWEEN SOCP-GNN'S SEPARATION POWER AND SOCP-WL TEST'S
 1621 SEPARATION POWER
 1622

1623 *Remark 5.* Thanks to the universality of MLPs, it's noteworthy that we can assume all learnable
 1624 functions in SOCP-GNN are continuous in the following proof without loss of generality, since they
 1625 are always parametrized by MLPs.

1626 **Theorem 9.** *SOCP-GNN has the same separation power as the SOCP-WL test.*

1627

1628 *Proof.* We only need to show: For any SOCP instance I and \hat{I} , encoded by G, \hat{G} , respectively, the
 1629 following holds:

1630

- For graph-level output, two instances can't be separated by $\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})$, i.e.,

$$F(G) = F(\hat{G}), \quad \forall F \in \mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})$$

1631

if and only if the two instances can't be separated by the SOCP-WL test either.

1632

- For node-level output, the two instances can't be separated by $\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R}^n)$, i.e.,

$$F(G) = F(\hat{G}), \quad \forall F \in \mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R}^n)$$

1633

if and only if the two instances can't be separated by the SOCP-WL test either, with
 $C^{T,v_j} = C^{T,\hat{v}_j}$ hold for all $j \in [n]$, i.e. the variables are reindexed according to the
 1640 SOCP-WL test for both instances.

1641

We first prove that SOCP-GNN can simulate the SOCP WL-test for any fixed SOCP instance. This
 1644 can be proved by showing that: For any special SOCP-WL test and given graph G , there exists an
 1645 SOCP-GNN that can simulate arbitrary iterations of this test given the same input for G under the
 1646 one-hot encoding.

1647

Let \mathcal{F} denote the set of all the initial features for all nodes in G . Then we select $\hat{g}_i^0, i = 1, 2, 3, 4$ to
 1648 map these features in \mathcal{F} to their one-hot encoding respectively by theorem 3.2 of (Yun et al., 2019).
 1649 So for any initial round in the SOCP-WL test, there exists an SOCP-GNN that can simulate it.

1650

Assume now, we already have: we get an SOCP-GNN which can simulate the first t rounds of a
 1651 special SOCP-WL test, so that: $h^{t,n}$ is just the one-hot encoding of $C^{t,n}$ for all nodes n . For the
 1652 first refinement round for the polyhedron constraint node s , we choose f_1^t as an identity mapping,
 1653 so that: if $(C^{t,s}, \sum_{v \in V_1} w_{s,v} \text{HASH}(C^{t,v}))$ and $(C^{t,s'}, \sum_{v \in V_1} w_{s',v} \text{HASH}(C^{t,v}))$ are different,
 1654 then $(h^{t,s}, \sum_{v \in V_1} w_{s,v} f_1^t(h^{t,v}))$ and $(h^{t,s'}, \sum_{v \in V_1} w_{s',v} f_1^t(h^{t,v}))$ are different. Then, by The-
 1655 orem 3.2 of (Yun et al., 2019), there exists 4-layered MLP $g_1^t(\cdot)$ with ReLU activation can map
 1656 these inputs: $(h^{t,s}, \sum_{v \in V_1} w_{s,v} f_1^t(h^{t,v}))$ to their corresponding output in SOCP-WL test's one-hot
 1657 encoding.

1658

Similarly, we can prove that: there exists $\{g_i^t(\cdot)\}$ and $\{f_j^t(\cdot)\}$, such that the corresponding SOCP-
 1661 GNN can simulate the $t+1$ round of the SOCP-WL test for G . By mathematical induction, for any
 1662 possible output of G for SOCP-WL test, there exists SOCP-GNNs can output the corresponding
 1663 one-hot encoding of the stable color, respectively. Consider the two possible outputs:

1664

- Graph-level scalar output. In this case, we set

$$y = f_{\text{out}}(I_1, I_2, I_3, I_4)$$

1665

- Node-level vector output. In this case, we only consider the output associated with the
 1669 variable nodes in V_1 , given by

$$y_i = f_{\text{out}}(h^{T,v_i}, I_1, I_2, I_3, I_4), i \in [n]$$

1670

where, $I_1 = \sum_{v \in V_1} h^{T,v}$, $I_2 = \sum_{s \in V_2} h^{T,s}$, $I_3 = \sum_{o \in V_3} h^{T,o}$, and $I_4 = \sum_{q \in V_4} h^{T,q}$.

If two instances \mathcal{I} and $\hat{\mathcal{I}}$ can't be separated by any SOCP-GNNs but can be separated by some SOCP-WL test \mathcal{W} . By applying the results discussed above to the disjoint union of these two instances' corresponding graphs, we get: $h^{T,\cdot}$ is just one-hot encoding of $C^{T,\cdot}$, respectively. Then we can conclude that their output multisets under \mathcal{W} are the same, which causes a contradiction. Hence, if two instances \mathcal{I} and $\hat{\mathcal{I}}$ can't be separated by any SOCP-GNNs, then they can't be separated by any SOCP-WL test \mathcal{W} as well. Similarly, we have:

For any node n', n'' in SOCP instance $\mathcal{I}, \hat{\mathcal{I}}$ respectively, if $h^{t,n'} = \hat{h}^{t,n''}, \forall F \in \mathcal{F}_{\text{SOCP}}^{n,m,,k_1,\dots,k_m,b}(\mathbb{R})$ holds for any $t \in \mathbb{N}$, then n', n'' have the same stable color for any possible SOCP-WL test.

Now, assume two instances \mathcal{I} and $\hat{\mathcal{I}}$ can't be separated by any SOCP-WL test. Now, we show that:

$$C^{t,s} = \hat{C}^{t,s'} \implies h^{t,s} = \hat{h}^{t,s'}, \quad \forall \text{ polyhedron constraint } s, s' \quad \text{and} \quad F \in \mathcal{F}_{\text{SOCP}}^{n,m,,k_1,\dots,k_m,b}(\mathbb{R}),$$

while a similar result can be derived for other sublayer-iterations using the same method.

When $t = 0$, the conclusion holds obviously.

When $t \geq 1$, assume the conclusion for all nodes holds for $t - 1$, then we have:
 $(C^{t-1,s}, \sum_{v \in V_1} w_{s,v} \text{HASH}(C^{t-1,v})) = (\hat{C}^{t-1,s'}, \sum_{v \in V_1} \hat{w}_{s',v} \text{HASH}(\hat{C}^{t-1,v}))$

Hence, we have:

- $C^{t-1,s} = \hat{C}^{t-1,s'} \Rightarrow h^{t-1,s} = \hat{h}^{t-1,s'}$
- For any color W_{1j} in the collection of colors at the $t-1$ th iteration for variable nodes, $\sum_{v \in W_{1j}} w_{s,v} = \sum_{v \in W_{1j}} \hat{w}_{s',v}$. This can be shown by assuming Hash function maps different colors to linearly independent vectors.
- For any color W_{1j} , $\sum_{v \in W_{1j}} w_{s,v} f_1^{t-1}(h^{t-1,v}) = \sum_{v \in W_{1j}} \hat{w}_{s',v} f_1^{t-1}(\hat{h}^{t-1,v})$ (By inductive assumption for node v at iteration $t - 1$)
- $\sum_{W_{1j}} \sum_{v \in W_{1j}} w_{s,v} f_1^{t-1}(h^{t-1,v}) = \sum_{W_{1j}} \sum_{v \in W_{1j}} \hat{w}_{s',v} f_1^{t-1}(\hat{h}^{t-1,v})$.

Therefore, $h^{t,s} = \hat{h}^{t,s'}$, which finishes the proof. \square

An immediate corollary is:

Corollary 7. For any node n, n' in SOCP instance $\mathcal{I}, \hat{\mathcal{I}}$ respectively, $C^{t,n} = \hat{C}^{t,n'}$ holds for all possible SOCP-WL test and any $t \in \mathbb{N}$ if and only if $h^{t,n} = \hat{h}^{t,n'}, \forall F \in \mathcal{F}_{\text{SOCP}}^{n,m,,k_1,\dots,k_m,b}(\mathbb{R})$ holds for any $t \in \mathbb{N}$.

By the proof of lemma 3, you can see that:

Corollary 8. For any node n, n' in SOCP instance $\mathcal{I}, \hat{\mathcal{I}}$ respectively, $C^{t,n} = \hat{C}^{t,n'}$ holds for all possible SOCP-WL test and any $t \in \mathbb{N}$ if and only if $h^{t,n} = \hat{h}^{t,n'}, \forall F \in \mathcal{F}_{\text{SOCP}}^{n,m,,k_1,\dots,k_m,b}(\mathbb{R})$ holds for any $t \in \mathbb{N}$. Under such assumption, $(\Phi_{\text{solution}}(\mathcal{I}))_n = (\Phi_{\text{solution}}(\hat{\mathcal{I}}))_{n'}$ if n, n' are variable nodes.

C.5 MAIN THEOREM'S PROOF

Consider the following theorems, which play an important role in real analysis:

Lusin theorem: Let μ be a Borel regular measure on \mathbb{R}^n and let $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be μ -measurable. Then for any μ -measurable $X \subset \mathbb{R}^n$ with $\mu(X) < \infty$ and any $\epsilon > 0$, there exists a compact set $E \subset X$ with $\mu(X \setminus E) < \epsilon$, such that $f|_E$ is continuous.

By this fundamental but important theorem, we get $\forall \epsilon > 0, \exists$ compact $X \subset \mathcal{G}_{\text{SOCP}}^{n,m,,k_1,\dots,k_m,b}$ with $\mu(\mathcal{G}_{\text{SOCP}}^{n,m,,k_1,\dots,k_m,b} \setminus X) < \epsilon$, such that $\Phi_{\text{target}}|_X$ is continuous holds for any Φ_{target} mentioned in Definition B.1.

1728 Moreover, using similar tricks in (Chen et al., 2022b), we can assume that: X remains the same under
 1729 the action of the permutation group S_n without loss of generality.
 1730

1731 **Generalized Stone-Weierstrass theorem:** [Theorem 22 of (Azizian & Lelarge, 2020)] Let X be a
 1732 compact topology space and let \mathbf{G} be a finite group that acts continuously on X and \mathbb{R}^n . Define the
 1733 collection of all equivariant continuous functions from X to \mathbb{R}^n as follows:

$$1734 C_E(X, \mathbb{R}^n) = \{F \in C(X, \mathbb{R}^n) : F(g * x) = g * F(x), \forall x \in X, g \in \mathbf{G}\}.$$

1735 Consider any $\mathcal{F} \subset C_E(X, \mathbb{R}^n)$ and any $\Phi \in C_E(X, \mathbb{R}^n)$. Suppose the following conditions hold:
 1736

- 1738 (i) \mathcal{F} is a subalgebra of $C(X, \mathbb{R}^n)$ and $\mathbf{1} \in \mathcal{F}$.
- 1739 (ii) For any $x, x' \in X$, if $f(x) = f(x')$ holds for any $f \in C(X, \mathbb{R})$ with $f\mathbf{1} \in \mathcal{F}$, then for any
 1740 $F \in \mathcal{F}$, there exists $g \in \mathbf{G}$ such that $F(x) = g * F(x')$.
- 1741 (iii) For any $x, x' \in X$, if $F(x) = F(x')$ holds for any $F \in \mathcal{F}$, then $\Phi(x) = \Phi(x')$.
- 1742 (iv) For any $x \in X$, it holds that $\Phi(x)_j = \Phi(x)_{j'}, \forall (j, j') \in J(x)$, where

$$1744 J(x) = \{\{1, 2, \dots, n\}^n : F(x)_j = F(x)_{j'}, \forall F \in \mathcal{F}\}.$$

1745 Then for any $\epsilon > 0$, there exists $F \in \mathcal{F}$ such that
 1746

$$1748 \sup_{x \in X} \|\Phi(x) - F(x)\| < \epsilon.$$

1750 Now we leverage the theorems listed above to give a proof of the main theorem. And we let the
 1751 group \mathbf{G} to be permutation group S_n . Since our SOCP-GNNs are permutation-equivariant, they are
 1752 obviously \mathbf{G} – equivariant continuous functions. (The following a refers to 1 or n)
 1753

1754 **Property (i):** $\mathcal{F}_{\text{SOCP}}^{n, m, k_1, \dots, k_m, b}(\mathbb{R}^a)$ is a subalgebra of $C_E(X, \mathbb{R}^a)$ and $\mathbf{1} \in \mathcal{F}_{\text{SOCP}}^{n, m, k_1, \dots, k_m, b}(\mathbb{R}^a)$
 1755

1756 *Proof.* It suffices to prove this by using similar channel expansion techniques mentioned in (Chen
 1757 et al., 2022b). \square
 1758

1760 **Property (ii):** For any $x, x' \in X$, if $f(x) = f(x')$ holds for any $f \in C(X, \mathbb{R})$ with $f\mathbf{1} \in$
 1761 $\mathcal{F}_{\text{SOCP}}^{n, m, k_1, \dots, k_m, b}(\mathbb{R}^a)$, then for any $F \in \mathcal{F}_{\text{SOCP}}^{n, m, k_1, \dots, k_m, b}(\mathbb{R}^a)$, there exists $g \in \mathbf{G}$ such that $F(x) =$
 1762 $g * F(x')$.
 1763

1764 *Proof.* First notice that: $\mathcal{F}_{\text{SOCP}}^{n, m, k_1, \dots, k_m, b}(\mathbb{R}) \in C(X, \mathbb{R})$ with $f\mathbf{1} \in \mathcal{F}_{\text{SOCP}}^{n, m, k_1, \dots, k_m, b}(\mathbb{R}^a), \forall f \in$
 1765 $\mathcal{F}_{\text{SOCP}}^{n, m, k_1, \dots, k_m, b}(\mathbb{R})$. Then applying theorem 9 and corollary 7 is enough. \square
 1766

1768 **Property (iii) and (iv):**
 1769

- 1770 • For any $x, x' \in X$, if $F(x) = F(x')$ holds for any $F \in \mathcal{F}_{\text{SOCP}}^{n, m, k_1, \dots, k_m, b}(\mathbb{R}^a)$, then $\Phi(x) =$
 1771 $\Phi(x')$.
- 1773 • For any $x \in X$, it holds that $\Phi(x)_j = \Phi(x)_{j'}, \forall (j, j') \in J(x)$, where

$$1775 J(x) = \{\{1, 2, \dots, a\}^2 : F(x)_j = F(x)_{j'}, \forall F \in \mathcal{F}_{\text{SOCP}}^{n, m, k_1, \dots, k_m, b}(\mathbb{R}^a)\}$$

1778 *Proof.* Applying theorems in Appendix C.2, theorem 9, and corollary 8 is enough. \square
 1779

1780 Applying the generalized Stone-Weierstrass theorem gives us Theorem 2 immediately.
 1781

1782 C.6 EXTENSION TO p -ORDER CONE PROGRAMMING
17831784 A general p -order cone programming can be stated as:

1785
$$\begin{aligned} & \text{minimize} && e^\top x \\ 1786 & \text{subject to} && Fx \leq g, \quad l \leq x \leq r, \\ 1787 & && \|A_i x + b_i\|_p \leq c_i^\top x + d_i, \quad i \in [m] \end{aligned} \tag{10}$$

1788 where decision variables are $x \in \mathbb{R}^n$ and the problem parameters are $e \in \mathbb{R}^n$, $A_i \in \mathbb{R}^{k_i \times n}$, $b_i \in \mathbb{R}^{k_i}$,
1789 $c_i \in \mathbb{R}^n$, $d_i \in \mathbb{R}$, $F \in \mathbb{R}^{b \times n}$, $g \in \mathbb{R}^b$, $l_j \in (\{-\infty\} \cup \mathbb{R})^n$, and $r \in (\{+\infty\} \cup \mathbb{R})^n$. Here, we only
1790 consider the case: $p \in [1, +\infty]$.
17911792 Here, we formally define some concepts that are helpful to the extension of p -order cone programming.1793 **Definition C.2.** A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is said to be **separable** if $f(x)$ can be expressed as a sum
1794 $f(x) = \sum_{j=1}^n f_j(x_j)$, where each function f_j only depends on the scalar x_j . (This definition is
1795 stricter than traditional “block separable”).
17961797 **Definition C.3.** A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is said to be equivalent (w.r.t. permutation group S_n) if
1798 for any rearranging $\{\sigma(1), \sigma(2), \dots, \sigma(n)\}$ of $\{1, 2, \dots, n\}$ and any $x \in \mathbb{R}^n$, $f(x_1, x_2, \dots, x_n) =$
1799 $f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)})$ 1800 For $p \in [1, +\infty)$, we have: $\|x\|_p^p = \sum_{i=1}^n |x_i|^p$, which is separable and equivalent according to
1801 Definition C.2 and C.3.
18021803 **Situation 1: Use p as a fixed parameter:** We don't need to make any modifications to our archi-
1804 tectures. As for the proof of the universality, we just need to change $\|\cdot\|_2$ to $\|\cdot\|_p$ for $p \geq 1$ in
1805 our proof of lemma 3 and other theorems in Appendix C, since our proof only uses the convexity,
1806 permutation-invariant property, continuous property, and separability of the l_2 norm, which holds
1807 for the l_p norm as well when $p \in [1, +\infty)$. As for $p = +\infty$, lemma 3 can be directly validated by
1808 noticing that:

1809
$$\begin{aligned} & |(\hat{b}_r + \hat{A}_r \hat{x})_{j_1}| = \left| \frac{1}{|W_{4m}|} \sum_{C^{T,u}=W_{4m}} \sum_{j \in W_{3l}, j \in u} \frac{|W_{4m}|}{|W_{3l}|} (A_u x + b_u)_j \right| \\ 1810 & \leq \frac{1}{|W_{4m}|} \sum_{C^{T,u}=W_{4m}} \sum_{j \in W_{3l}, j \in u} \frac{|W_{4m}|}{|W_{3l}|} |(A_u x + b_u)_j| \\ 1811 & \leq \frac{1}{|W_{4m}|} \sum_{C^{T,u}=W_{4m}} \sum_{j \in W_{3l}, j \in u} \frac{|W_{4m}|}{|W_{3l}|} (c_u x + d_u) = \frac{1}{|W_{4m}|} \sum_{C^{T,u}=W_{4m}} (c_u x + d_u) \\ 1812 & \leq \hat{c}_r^T \hat{x} + \hat{d}_r \end{aligned}$$

1813 , where the notions follow the settings in lemma 3. Since the above equation holds for all j_1 , we can
1814 see that: lemma 3 still holds. Since $\|\cdot\|_\infty$ is continuous, the measurability holds as well.
18151816 **Situation 2: Use p as a continuous parameter:** Here, we need a little modification on our ar-
1817 chitectures and proofs, while we only consider $p \in [1, +\infty)$ since $\|x\|_p$ is continuous in p when
1818 $p \in [1, +\infty)$.
18191820 For the graph representation, we only need to augment our variable features from (e_i, l_i, r_i) to
1821 (e_i, l_i, r_i, p) . And the GNN and related WL test don't need any modification. As for the proof, it
1822 suffices to notice that:1823

- 1824 • To prove lemma 3, we just need to observe that: If two instances \mathcal{I} and $\hat{\mathcal{I}}$ can't be distin-
1825 guished by the WL test, then their corresponding p must be the same. Then what remains is
1826 just the situation one's proof mentioned above. Other related results hold as well, like the
1827 equivalence of the WL test and GNN in separation power.
- 1828 • As for the measurability, we just need to repeat what we do in Appendix C.3 while taking p
1829 as a parameter in the new parameter space.

1830 **Situation 3: Mix order conic programming:** Here, similar to situation 2, we need to augment
1831 features for minor constraint nodes. For the constraint $\|A_i x + b_i\|_p \leq c_i^\top x + d_i$, we reset the
1832

1836 minor conic node j 's feature to be $((b_i)_j, p)$ ⁸. Then we can prove Lemma 3 by noticing that: two
 1837 major conic constraints have the same color if and only if their corresponding p are the same. The
 1838 measurability holds as well, similar to situation 1.

1840 D PROOF OF THEOREM 3

1841 D.1 VC-DIMENSION BASED APPROACHES FOR BINARY CLASSIFICATION

1844 **Definition D.1** (Growth function). For binary classification, the growth function of a hypothesis class
 1845 \mathcal{A} over the domain \mathcal{X} is defined as:

$$1847 \tau_{\mathcal{A}}(n) = \sup_{\mathbf{x} \in \mathcal{X}^n} |\mathcal{A} \circ \mathbf{x}|$$

1850 , where $\mathcal{A} \circ \mathbf{x} = \{(a(x_1), a(x_2), \dots, a(x_n)) \in \{0, 1\}^n \mid a \in \mathcal{A}\}$

1851 **Definition D.2** (VC-dimension). The Vapnik-Chervonenkis dimension, or VC-dimension, of \mathcal{A} is
 1852 the largest integer n such that: $\tau_{\mathcal{A}}(n) = 2^n$. If $\tau_{\mathcal{A}}(n) = 2^n$ for all possible n , then \mathcal{A} 's VC dimension
 1853 is $+\infty$.

1854 Below, we use $\mathcal{VC}(\mathcal{A})$ to denote the VC dimension of the hypothesis class \mathcal{A} for simplicity.

1855 **Definition D.3** (WL equivalence relation). We define the equivalence relation in $\mathcal{G}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}$
 1856 as: two graphs G_1 and G_2 are equivalent if and only if they can't be distinguished by all possible
 1857 SOCP-WL tests. Given a space of graphs $\mathcal{G} \subset \mathcal{G}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}$, let $\mathcal{G}_{/WL}$ denotes collections of the
 1858 equivalence class of \mathcal{G} under such equivalence relation.

1860 **Theorem 10** (VC dimension of $\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})$ over \mathcal{G}). *For hypothesis class $\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})$,
 1861 $\mathcal{VC}(\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})) = |\mathcal{G}_{/WL}|$. Here, $\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})$ do binary classification in the following
 1862 way: any function $f \in \mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})$ maps x to 1 if $f(x) \geq 0.5$. Otherwise, it maps x to
 1863 0.*

1864 *Proof.* First, we show that: $\mathcal{VC}(\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})) \leq |\mathcal{G}_{/WL}|$. We prove by contradiction, if
 1865 $\mathcal{VC}(\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})) > |\mathcal{G}_{/WL}|$, then there exists two graphs $G_1, G_2 \in \mathcal{G}$ which can't be
 1866 distinguished by SOCP-WL test but have different output under some $f \in \mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})$. This
 1867 contradicts with theorem 9.

1868 Now, we show that: $\mathcal{VC}(\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})) \geq |\mathcal{G}_{/WL}|$. Let $u = |\mathcal{G}_{/WL}|$. Take representative
 1869 elements G_1, G_2, \dots, G_u of $\mathcal{G}_{/WL}$ respectively. Consider $u < +\infty$ first, from theorem 9, we
 1870 know that there exists a SOCP-GNN that can simulate the SOCP-WL test for $\cup_{i=1}^u G_i$. Hence, G_i 's
 1871 output (I_1, I_2, I_3, I_4) must be different respectively under this GNN after enough iterations. By
 1872 theorem 3.1 of (Yun et al., 2019), we can output all possible results for G_i respectively by using
 1873 a 3-layer ReLU-like FNN as the output layer. Hence, $\mathcal{VC}(\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})) \geq |\mathcal{G}_{/WL}|$ when
 1874 $u < +\infty$, which indicates $\mathcal{VC}(\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})) = |\mathcal{G}_{/WL}|$. In case where $u = +\infty$, we have:
 1875 $\mathcal{VC}(\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})) = +\infty$ as well. Similar to the proof when $u < +\infty$, we can see that:
 1876 $\forall n \in \mathbb{N}, \tau_{\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})}(n) = 2^n$, which finishes the proof.

1877 \square

1882 D.2 PSEUDO-DIMENSION BASED APPROACHES FOR REAL-VALUED SCALAR PREDICTION

1883 **Definition D.4.** Let \mathcal{G} be a family of real-valued functions $g : \mathcal{X} \rightarrow \mathbb{R}$. We say that a set of points
 1884 $S = \{x_1, x_2, \dots, x_N\} \subset \mathcal{X}$ is **pseudo-shattered** by \mathcal{G} if there exists a vector of thresholds (or targets)
 1885 $\mathbf{z} = (z_1, z_2, \dots, z_N) \in \mathbb{R}^N$ such that for any binary vector $\mathbf{b} = (b_1, b_2, \dots, b_N) \in \{+1, -1\}^N$,
 1886 there is a function $g \in \mathcal{G}$ satisfying:

$$1888 \forall i \in \{1, \dots, N\}, \quad \text{sign}(g(x_i) - z_i) = b_i$$

1889 ⁸Here, we use $p = -1$ to encode $+\infty$ into feature.

1890 The **pseudo-dimension** of \mathcal{G} , denoted as $\text{Pdim}(\mathcal{G})$, is the size of the largest set that can be pseudo-
 1891 shattered by \mathcal{G} . If arbitrarily large sets can be pseudo-shattered, the pseudo-dimension is infinite.
 1892

1893 A common result in learning theory shows that: For any family of functions \mathcal{H} mapping from
 1894 a domain \mathcal{Y} to a bounded interval $[0, H]$, the following generalization guarantee holds: For any
 1895 $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the draw of a set $S \sim \mathcal{D}^N$ of N samples drawn i.i.d.
 1896 from an arbitrary distribution \mathcal{D} over \mathcal{Y} , the following bound holds uniformly for all $h \in \mathcal{H}$:

$$1897 \quad \left| \frac{1}{N} \sum_{y \in S} h(y) - \mathbb{E}_{y \sim \mathcal{D}}[h(y)] \right| \leq O \left(H \sqrt{\frac{\text{Pdim}(\mathcal{H}) + \ln(\frac{1}{\delta})}{N}} \right)$$

1901 Now, we begin to give the pseudo-dimension of SOCP-GNNs for real-valued scalar prediction (e.g.
 1902 predicting the objective value).
 1903

1904 **Theorem 11** (pseudo-dimension of $\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})$ over \mathcal{G}). *For hypothesis class*
 1905 $\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})$, $\text{Pdim}(\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})) = |\mathcal{G}_{WL}|$.
 1906

1907 *Proof.* Similar to the proof above, we prove this theorem from two sides.

1908 First, we show that: $\text{Pdim}(\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})) \leq |\mathcal{G}_{WL}|$. Otherwise, if
 1909 $\text{Pdim}(\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})) > |\mathcal{G}_{WL}|$, then there exists two graphs $G_1, G_2 \in \mathcal{G}$ which can't
 1910 be distinguished by SOCP-WL test but have different output under some $f \in \mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})$.
 1911 This contradicts with theorem 9. (Assume there exist z_1, z_2 such that: for any binary vector
 1912 $\mathbf{b} = (b_1, b_2) \in \{+1, -1\}^2$, there is a function $g \in \mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})$ satisfying:

$$1914 \quad \forall i \in \{1, 2\}, \quad \text{sign}(g(G_i) - z_i) = b_i$$

1916 Without loss of generality, we assume $z_1 \geq z_2$. Then there is a function $g \in \mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})$ such
 1917 that $g(G_1) > z_1 \geq z_2 > g(G_2)$.
 1918

1919 Now, we show that: $\text{Pdim}(\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})) \geq |\mathcal{G}_{WL}|$. Let $u = |\mathcal{G}_{WL}|$. Take representative
 1920 elements G_1, G_2, \dots, G_u of \mathcal{G}_{WL} respectively. Consider $u < +\infty$ first, from theorem 9, we
 1921 know that there exists a SOCP-GNN that can simulate the SOCP-WL test for $\cup_{i=1}^u G_i$. Hence, G_i 's
 1922 output (I_1, I_2, I_3, I_4) must be different respectively under this GNN after enough iterations. By
 1923 theorem 3.1 of (Yun et al., 2019), we can output all possible results for G_i respectively by using
 1924 a 3-layer ReLU-like FNN as the output layer. Hence, $\text{Pdim}(\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})) \geq |\mathcal{G}_{WL}|$ when
 1925 $u < +\infty$, which indicates $\text{Pdim}(\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})) = |\mathcal{G}_{WL}|$. In case where $u = +\infty$, we
 1926 have: $\text{Pdim}(\mathcal{F}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}(\mathbb{R})) = +\infty$ as well, since any finite set composed of the representative
 1927 elements of \mathcal{G}_{WL} can be pseudo-shattered. \square
 1928

1929 D.3 RADEMACHER COMPLEXITY BASED APPROACHES

1930 Before we start, let's recall some basic concepts first.

1932 **Definition D.5.** For a SOCP problem $X \in \mathcal{G}_{\text{SOCP}}^{n,m,k_1,\dots,k_m,b}$, we define its size
 1933 N to be its parameter $(e, \{A_i\}_{i=1}^m, \{b_i\}_{i=1}^m, \{c_i\}_{i=1}^m, \{d_i\}_{i=1}^m, F, g, l, r)$'s dimension
 1934 when equipped with product topology over these Euclidean spaces for predicting
 1935 *boundedness, solution attainability, optimal value, optimal solution*. And we define its problem size
 1936 N to be the dimension of its constraints' parameter $(\{A_i\}_{i=1}^m, \{b_i\}_{i=1}^m, \{c_i\}_{i=1}^m, \{d_i\}_{i=1}^m, F, g, l, r)$'s
 1937 dimension when equipped with product topology over these Euclidean space for predicting *feasibility*.
 1938

1939 We make the task-specialized definitions above since predicting feasibility has nothing to do with the
 1940 objective function, while other tasks are all closely related to the objective function. Here, we focus
 1941 on the following set of problems and hypotheses:

1942 **Problem class:** The problem class \mathcal{X} we are solving satisfies the following properties:
 1943

- The problem size is N .

1944 • Its valid parameters lie in the bounded ball $\mathcal{B}_{r_i} = \{x \mid \|x\|_2 \leq r_i\}$.
 1945

1946 Note that we can always transform a problem class whose valid parameters are bounded into a new
 1947 problem class whose valid parameters lie in the bounded ball by scaling. Moreover, real-world
 1948 large-scale problems always have sparsity. So it's reasonable to assume that the ℓ_2 norm of the valid
 1949 parameters of the problems is bounded.

1950 **Hypothesis class:** Here, we consider a subclass of SOCP-GNNs $\mathcal{A}_{L,N}$ such that each $a \in \mathcal{A}_{L,N}$
 1951 satisfying the following property:

1952 • **Graph-level Output Lipschitz property:** a is L -Lipshitz w.r.t. the input problem parameters in \mathcal{B}_{r_i}
 1953
 1954 • **Node-level Output Lipschitz property:** For each variable $i \in [n]$, we have: a 's i -th output
 1955 is L -Lipshitz w.r.t. the input problem parameters in \mathcal{B}_{r_i} as well.
 1956

1958 We remark that this kind of assumption is widely accepted by researchers in the sample complexity/
 1959 generalization ability of graph neural networks (Pellizzoni et al., 2024; Garg et al., 2020; Tang &
 1960 Liu, 2023). Now, we introduce some concepts which is helpful to our theory.

1961 **Definition D.6** (Rademacher Complexity of a set). Given a set $A \subseteq \mathbb{R}^m$, the Rademacher complexity
 1962 of A is defined as follows:

$$1963 \quad Rad(A) := \frac{1}{m} \mathbb{E}_\sigma \left[\sup_{a \in A} \sum_{i=1}^m \sigma_i a_i \right]$$

1964 where $\sigma_1, \sigma_2, \dots, \sigma_m$ are independent random variables drawn from the Rademacher distribution,
 1965 i.e.,

$$1966 \quad \Pr(\sigma_i = +1) = \Pr(\sigma_i = -1) = 1/2 \quad \text{for } i = 1, 2, \dots, m,$$

1967 and $a = (a_1, \dots, a_m) \in A$. The expectation \mathbb{E}_σ is taken over the random variables $\sigma = (\sigma_1, \dots, \sigma_m)$.

1968 **Definition D.7** (pseudo metric space). A pseudometric space is an ordered pair (X, d) where X is a
 1969 set and d is a function $d : X \times X \rightarrow \mathbb{R}$, called a pseudometric, satisfying the following conditions
 1970 for all $x, y, z \in X$:

1971 1. $d(x, y) \geq 0$ (Non-negativity)
 1972 2. $d(x, x) = 0$ (Identity of self)
 1973 3. $d(x, y) = d(y, x)$ (Symmetry)
 1974 4. $d(x, z) \leq d(x, y) + d(y, z)$ (Triangle inequality)

1975 Unlike a metric space, a pseudometric space allows $d(x, y) = 0$ for distinct points $x \neq y$.

1976 **Definition D.8** (Covering number). Let (X, d) be a pseudometric space and let S be a subset of X .
 1977 For a given $\epsilon > 0$, an ϵ -covering for S is a set of points $\{x_1, \dots, x_N\} \subseteq X$ such that for every point
 1978 $s \in S$, there exists some x_i in the set for which $d(s, x_i) \leq \epsilon$. The ϵ -covering number of S , denoted
 1979 by $Cov(S, d, \epsilon)$, is the minimum size N of ϵ -coverings for S . Formally:

$$1980 \quad Cov(S, d, \epsilon) = \min \{ |P| : P \subseteq X \text{ is an } \epsilon\text{-covering} \}$$

1981 **Definition D.9** (Packing number). Let (X, d) be a pseudometric space. For a given $\epsilon > 0$, an
 1982 ϵ -packing of X is a subset $P \subseteq X$ in which the distance between any two distinct points is strictly
 1983 greater than ϵ , i.e., $d(x, y) > \epsilon$ for all $x, y \in P$ with $x \neq y$. The ϵ -packing number of X , denoted
 1984 by $Pack(X, d, \epsilon)$, is the maximum possible cardinality of such a set. Formally, it is defined as the
 1985 supremum over the sizes of all possible ϵ -packings:

$$1986 \quad Pack(X, d, \epsilon) = \max \{ |P| : P \subseteq X \text{ is an } \epsilon\text{-packing} \}.$$

1987 Now, let's define the pseudo metric over $\mathcal{A}_{L,N}$ for both graph-level output and node-level output.

1988 **Pseudo metric for graph-level scalar output:** Given a training set $\mathbf{x} = \{x_1, \dots, x_m\}$, we define
 1989 $\|a\|_{p, \mathbf{x}} = \left| \frac{\sum_{i=1}^m |a(x_i)|^p}{m} \right|^{\frac{1}{p}}$ for $a \in \mathcal{A}_{L,N}$ with output dimension 1 as a pseudo norm. And define
 1990

1998 $\|a - b\|_{p,\mathbf{x}} = \left| \frac{\sum_{i=1}^m |a(x_i) - b(x_i)|^p}{m} \right|^{\frac{1}{p}}$ as the pseudo metric on $\mathcal{A}_{L,N}$ with scalar output, denoted by
 1999 $\|\cdot\|_{p,\mathbf{x}}$.
 2000

2001 **Pseudo metric for node-level vector output:** Given a training set $\mathbf{x} = \{x_1, \dots, x_m\}$, we define
 2002 $\|a\|_{p,\mathbf{x}} = \left| \frac{\sum_{i=1}^m \sum_{j=1}^n |(a(x_i))_j|^p}{mn} \right|^{\frac{1}{p}}$ for $a \in \mathcal{A}_{L,N}$ with output dimension n as a pseudo norm. And
 2003 define $\|a - b\|_{p,\mathbf{x}} = \left| \frac{\sum_{i=1}^m \sum_{j=1}^n |(a(x_i))_j - (b(x_i))_j|^p}{mn} \right|^{\frac{1}{p}}$ as the pseudo metric on $\mathcal{A}_{L,N}$ with vector
 2004 output, denoted by $\|\cdot\|_{p,\mathbf{x}}$.
 2005

2006 Without loss of generality, we assume our loss function is Lipschitz continuous with coefficient q .
 2007

2008 **Lemma 4** (Contraction lemma, (Shalev-Shwartz & Ben-David, 2014)'s Lemma 26.9). *For each*
 2009 *i* $\in [m]$, *let* $\phi_i : \mathbb{R} \rightarrow \mathbb{R}$ *be a* ρ *-Lipschitz function, namely for all* $\alpha, \beta \in \mathbb{R}$ *we have* $|\phi_i(\alpha) - \phi_i(\beta)| \leq$
 2010 $\rho|\alpha - \beta|$. *For* $\mathbf{a} \in \mathbb{R}^m$ *let* $\phi(\mathbf{a})$ *denote the vector* $(\phi_1(a_1), \dots, \phi_m(a_m))$. *Let* $\phi \circ A = \{\phi(\mathbf{a}) : \mathbf{a} \in A\}$. *Then,*

$$Rad(\phi \circ A) \leq \rho Rad(A).$$

2011 For the node-level scalar output, we have:
 2012

2013 **Lemma 5** (Contraction lemma for node-level output, (Maurer, 2016)). *Let* \mathcal{X} *be any set,*
 2014 $(x_1, \dots, x_n) \in \mathcal{X}^n$, *let* F *be a class of functions* $f : \mathcal{X} \rightarrow \ell_2$ *and let* $h_i : \ell_2 \rightarrow \mathbb{R}$ *have Lips-*
 2015 *chitz norm L. Then*

$$\mathbb{E} \sup_{f \in F} \sum_i \sigma_i h_i(f(x_i)) \leq \sqrt{2} L \mathbb{E} \sup_{f \in F} \sum_{i,k} \sigma_{ik} f_k(x_i),$$

2016 where σ_{ik} is an independent doubly indexed Rademacher sequence and $f_k(x_i)$ is the k -th component
 2017 of $f(x_i)$. And We use ℓ_2 to denote the Hilbert space of square summable sequences of real numbers.
 2018

2019 By setting the after M -th coordinate of $x \in R^M$ to 0, we can see that any finite dimensional Euclidean
 2020 space is a special class of ℓ_2 space.
 2021

2022 Now, Let z_i denote (x_i, y_i) , where x_i is the i-th socp instance and $y_i \in \mathbb{R}$ is the label of x_i . We
 2023 denote the loss function as $\phi(z) = \phi(a(x), y)$, which is q -Lipschitz w.r.t $a(x)$ for all possible y . Let
 2024 $\phi(\mathbf{z})$ denote the vector $(\phi(z_1), \dots, \phi(z_m))$. Let $\phi \circ A = \{\phi(\mathbf{z}) : \mathbf{z} \in A\}$. Then, we have:
 2025

$$Rad(\phi \circ \{(z_1, \dots, z_m) : z_i = (a(x_i), y_i), \forall i \in [m] \text{ for } a \in \mathcal{A}_{L,N}\}) \leq q Rad(\mathcal{A}_{L,N} \circ \{(x_1, \dots, x_m)\})$$

2026 Meanwhile, Let z_i denote (x_i, y_i) , where x_i is the i-th socp instance and $y_i \in \mathbb{R}^n$ is the label of x_i
 2027 and we denote the loss function as $\phi(z) = \phi(a(x), y)$, which is q -Lipschitz w.r.t $a(x) \in \mathbb{R}^n$ for all
 2028 possible y . by lemma 5, we get:
 2029

$$Rad(\phi \circ \{(z_1, \dots, z_m) : z_i = (a(x_i), y_i), \forall i \in [m] \text{ for } a \in \mathcal{A}_{L,N}\}) \leq \sqrt{2} q n Rad(\mathcal{A}_{L,N} \circ \{(x_1, \dots, x_m)\})$$

2030 where $Rad(\mathcal{A}_{L,N} \circ \{(x_1, \dots, x_m)\}) = \frac{1}{m} E_{\sigma} \left[\sup_{a \in \mathcal{A}_{L,N}} \sum_{i=1}^m \sigma_i a(x_i) \right]$ for graph-level scalar output
 2031 and $Rad(\mathcal{A}_{L,N} \circ \{(x_1, \dots, x_m)\}) = \frac{1}{mn} E_{\sigma} \left[\sup_{a \in \mathcal{A}_{L,N}} \sum_{i=1}^m \sum_{j=1}^n \sigma_{ij} (a(x_i))_j \right]$ for node-level
 2032 vector output.
 2033

2034 So, we only need to focus on $Rad(\mathcal{A}_{L,N} \circ \{(x_1, \dots, x_m)\})$ for fixed training sample (x_1, \dots, x_m) .
 2035 That's just $\hat{\mathcal{R}}_S(\mathcal{A}_{L,N})$ we defined following.
 2036

2037 **Lemma 6** (Dudley Entropy Integral for scalar output, chapter 5.3.3 of (Wainwright, 2019)). *Let* $\mathcal{A}_{L,N}$
 2038 *be the hypothesis class of SOCP-GNNs with scalar output as defined above. Let* $S = \{x_1, \dots, x_m\}$
 2039 *be a fixed set of m SOCP problem instances. The empirical Rademacher complexity of* $\mathcal{A}_{L,N}$ *on S is*
 2040 *defined as*

$$\hat{\mathcal{R}}_S(\mathcal{A}_{L,N}) = \frac{1}{m} E_{\sigma} \left[\sup_{a \in \mathcal{A}_{L,N}} \sum_{i=1}^m \sigma_i a(x_i) \right]$$

2041 where σ_i are independent Rademacher random variables. Let $\|\cdot\|_{2,S}$ be the empirical L_2 pseudo
 2042 metric on $\mathcal{A}_{L,N}$, given by $\|a\|_{2,S} = \sqrt{\frac{1}{m} \sum_{i=1}^m a(x_i)^2}$ for $a \in \mathcal{A}_{L,N}$. Assume that for some $C_S > 0$,
 2043

2052 we have $\sup_{a \in \mathcal{A}_{L,N}} \|a\|_{2,S} \leq C_S$. Then,

$$2054 \hat{\mathcal{R}}_S(\mathcal{A}_{L,N}) \leq \inf_{\epsilon \in [0, C_S/2]} \left\{ 4\epsilon + \frac{12}{\sqrt{m}} \int_{\epsilon}^{C_S/2} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, v)} dv \right\}$$

2057 where $\text{Cov}(\mathcal{A}_{L,N}, d, \epsilon)$ is the ϵ -covering number of the set $\mathcal{A}_{L,N}$ with respect to the pseudometric d .

2059 *Proof.* We start by constructing a sequence of coverings for the hypothesis class $\mathcal{A}_{L,N}$ at progressively finer scales. Define $\epsilon_j = C_S/2^j$ for $j = 1, 2, \dots, K$. For each j , let \mathcal{A}_j be a minimal ϵ_j -cover of $\mathcal{A}_{L,N}$ with respect to the $\|\cdot\|_{2,S}$ pseudometric, so that its size is $|\mathcal{A}_j| = \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, \epsilon_j)$.

2062 For any function $a \in \mathcal{A}_{L,N}$, we can define a sequence of approximations $\pi_j(a) \in \mathcal{A}_j$ such that $\|a - \pi_j(a)\|_{2,S} \leq \epsilon_j$ and set $\pi_0(a) = 0$. For any integer $K \geq 0$, any function $a \in \mathcal{A}_{L,N}$ can be decomposed into:

$$2065 \quad a = (a - \pi_K(a)) + \sum_{j=1}^K (\pi_j(a) - \pi_{j-1}(a)).$$

2068 By the sub-additivity of the supremum, the empirical Rademacher complexity $\hat{\mathcal{R}}_S(\mathcal{A}_{L,N}) =$
2069 $\frac{1}{m} \mathbb{E}_\sigma \left[\sup_{a \in \mathcal{A}_{L,N}} \sum_{i=1}^m \sigma_i a(x_i) \right]$ can be bounded by:

$$2071 \quad \hat{\mathcal{R}}_S(\mathcal{A}_{L,N}) \leq \frac{1}{m} \mathbb{E}_\sigma \left[\sup_{a \in \mathcal{A}_{L,N}} \sum_{i=1}^m \sigma_i (a(x_i) - \pi_K(a)(x_i)) \right] + \sum_{j=1}^K \frac{1}{m} \mathbb{E}_\sigma \left[\sup_{a \in \mathcal{A}_{L,N}} \sum_{i=1}^m \sigma_i (\pi_j(a)(x_i) - \pi_{j-1}(a)(x_i)) \right].$$

2074 The first term, representing the residual error, can be bounded using the Cauchy-Schwarz inequality.
2075 For any $a \in \mathcal{A}_{L,N}$, we have $\sum_{i=1}^m \sigma_i (a(x_i) - \pi_K(a)(x_i)) \leq m \|a - \pi_K(a)\|_{1,S} \leq m \|a -$
2076 $\pi_K(a)\|_{2,S} \leq m \epsilon_K$. Thus, the residual term is bounded by ϵ_K .

2078 For the second terms, we consider each term for $j = 0, \dots, K$. Let $d_j(a) = \pi_j(a) - \pi_{j-1}(a)$. This
2079 difference function belongs to the set $D_j = \{c - c' \mid c \in \mathcal{A}_j, c' \in \mathcal{A}_{j-1}\}$, whose size is at most
2080 $|\mathcal{A}_j||\mathcal{A}_{j-1}|$. By the triangle inequality, the norm of any such difference is bounded by:

$$2081 \quad \|d_j(a)\|_{2,S} = \|\pi_j(a) - \pi_{j-1}(a)\|_{2,S} \leq \|\pi_j(a) - a\|_{2,S} + \|a - \pi_{j-1}(a)\|_{2,S} \leq \epsilon_j + \epsilon_{j-1} = 3\epsilon_j.$$

2082 We apply Massart's Lemma to the Rademacher complexity of the finite set D_j :

$$2084 \quad \mathbb{E}_\sigma \left[\sup_{a \in \mathcal{A}_{L,N}} \sum_{i=1}^m \sigma_i d_j(a)(x_i) \right] \leq \sup_{d \in D_j} \sqrt{\sum_{i=1}^m d(x_i)^2} \cdot \sqrt{2 \log |D_j|}$$

$$2088 \quad \leq \sup_{a \in \mathcal{A}_{L,N}} (\sqrt{m} \|d_j(a)\|_{2,S}) \sqrt{2 \log (|\mathcal{A}_j||\mathcal{A}_{j-1}|)}.$$

2090 Since the covering number is non-increasing with scale, $|\mathcal{A}_{j-1}| \leq |\mathcal{A}_j|$, which gives $\log |D_j| \leq$
2091 $2 \log |\mathcal{A}_j|$. Therefore, the bound on the j -th term of the Rademacher complexity is:

$$2092 \quad \frac{1}{m} \mathbb{E}_\sigma \left[\sup_{a \in \mathcal{A}_{L,N}} \sum_{i=1}^m \sigma_i d_j(a)(x_i) \right] \leq \frac{1}{\sqrt{m}} (3\epsilon_j) \sqrt{4 \log |\mathcal{A}_j|} = \frac{6\epsilon_j}{\sqrt{m}} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, \epsilon_j)}.$$

2095 Summing these bounds from $j = 1$ to K , and noting that $\epsilon_j = 2(\epsilon_j - \epsilon_{j+1})$, we obtain a sum that
2096 approximates an integral:

$$2098 \quad \sum_{j=1}^K \frac{6\epsilon_j}{\sqrt{m}} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, \epsilon_j)} = \frac{12}{\sqrt{m}} \sum_{j=1}^K (\epsilon_j - \epsilon_{j+1}) \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, \epsilon_j)}$$

$$2101 \quad \leq \frac{12}{\sqrt{m}} \int_{\epsilon_{K+1}}^{\epsilon_1} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, v)} dv.$$

2103 Combining all parts, we have for any chosen refinement level K :

$$2105 \quad \hat{\mathcal{R}}_S(\mathcal{A}_{L,N}) \leq 2\epsilon_{K+1} + \frac{12}{\sqrt{m}} \int_{\epsilon_{K+1}}^{C_S/2} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, v)} dv.$$

2106 Since this holds for any K , we can replace the cutoff scale ϵ_{K+1} with an arbitrary $\epsilon \in [\frac{\epsilon_{K+1}}{2}, \epsilon_{K+1}]$.
 2107 Taking the infimum over all such ϵ yields the tightest bound:
 2108

$$2109 \hat{\mathcal{R}}_S(\mathcal{A}_{L,N}) \leq \inf_{\epsilon \in [0, C_S/2]} \left\{ 4\epsilon + \frac{12}{\sqrt{m}} \int_{\epsilon}^{C_S/2} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, v)} dv \right\}.$$

□

2113 **Lemma 7** (Dudley Entropy Integral for vector output). *Let $\mathcal{A}_{L,N}$ be the hypothesis class of SOCP-
 2114 GNNs as defined above. Let $S = \{x_1, \dots, x_m\}$ be a fixed set of m SOCP problem instances. The
 2115 empirical Rademacher complexity of $\mathcal{A}_{L,N}$ with output dimension n on S is defined as*

$$2117 \hat{\mathcal{R}}_S(\mathcal{A}_{L,N}) = \frac{1}{mn} E_{\sigma} \left[\sup_{a \in \mathcal{A}_{L,N}} \sum_{i=1}^m \sum_{j=1}^n \sigma_{ij}(a(x_i))_j \right]$$

2120 where σ_{ij} are independent Rademacher random variables. Let $\|\cdot\|_{2,S}$ be the empirical L_2 pseu-
 2121 dometric on $\mathcal{A}_{L,N}$, given by $\|a\|_{2,S} = \sqrt{\frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n (a(x_i))_j^2}$ for $a \in \mathcal{A}_{L,N}$. Assume that for
 2122 some $C_S > 0$, we have $\sup_{a \in \mathcal{A}_{L,N}} \|a\|_{2,S} \leq C_S$. Then,
 2123

$$2125 \hat{\mathcal{R}}_S(\mathcal{A}_{L,N}) \leq \inf_{\epsilon \in [0, C_S/2]} \left\{ 4\epsilon + \frac{12}{\sqrt{mn}} \int_{\epsilon}^{C_S/2} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, v)} dv \right\}$$

2127 where $\text{Cov}(\mathcal{A}_{L,N}, d, \epsilon)$ is the ϵ -covering number of the set $\mathcal{A}_{L,N}$ with respect to the pseudometric d .
 2128

2129 *Proof.* Similarly, we define $\epsilon_k = C_S/2^k$ for $k = 1, 2, \dots, K$. For each k , let \mathcal{A}_k be a minimal
 2130 ϵ_k -cover of $\mathcal{A}_{L,N}$ with respect to the $\|\cdot\|_{2,S}$ pseudometric, so that its size is $|\mathcal{A}_k| = \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, \epsilon_k)$.
 2131

2132 For any function $a \in \mathcal{A}_{L,N}$, we can define a sequence of approximations $\pi_k(a) \in \mathcal{A}_k$ such that
 2133 $\|a - \pi_k(a)\|_{2,S} \leq \epsilon_k$ and set $\pi_0(a) = 0$. For any integer $K \geq 0$, any function $a \in \mathcal{A}_{L,N}$ can be
 2134 decomposed into:
 2135

$$2136 a = (a - \pi_K(a)) + \sum_{k=1}^K (\pi_k(a) - \pi_{k-1}(a)).$$

2138 By the sub-additivity of the supremum, the empirical Rademacher complexity $\hat{\mathcal{R}}_S(\mathcal{A}_{L,N}) =$
 2139 $\frac{1}{mn} \mathbb{E}_{\sigma} \left[\sup_{a \in \mathcal{A}_{L,N}} \sum_{i=1}^m \sum_{j=1}^n \sigma_{ij}(a(x_i))_j \right]$ can be bounded by:
 2140

$$2142 \hat{\mathcal{R}}_S(\mathcal{A}_{L,N}) \leq \frac{1}{mn} \mathbb{E}_{\sigma} \left[\sup_{a \in \mathcal{A}_{L,N}} \sum_{i=1}^m \sum_{j=1}^n \sigma_{ij}(a(x_i) - \pi_K(a)(x_i))_j \right]$$

$$2144 + \sum_{k=1}^K \frac{1}{mn} \mathbb{E}_{\sigma} \left[\sup_{a \in \mathcal{A}_{L,N}} \sum_{i=1}^m \sum_{j=1}^n \sigma_{ij}(\pi_k(a)(x_i) - \pi_{k-1}(a)(x_i))_j \right].$$

2149 For any $a \in \mathcal{A}_{L,N}$, we have $\sum_{i=1}^m \sum_{j=1}^n \sigma_{ij}(a(x_i) - \pi_K(a)(x_i))_j \leq mn\|a - \pi_K(a)\|_{1,S} \leq$
 2150 $mn\|a - \pi_K(a)\|_{2,S} \leq mne_K$. Thus, the residual term is bounded by ϵ_K .
 2151

2152 For the second terms, we consider each term for $k = 0, \dots, K$. Let $d_k(a) = \pi_k(a) - \pi_{k-1}(a)$. This
 2153 difference function belongs to the set $D_k = \{c - c' \mid c \in \mathcal{A}_k, c' \in \mathcal{A}_{k-1}\}$, whose size is at most
 2154 $|\mathcal{A}_k||\mathcal{A}_{k-1}|$. By the triangle inequality, the norm of any such difference is bounded by:
 2155

$$2155 \|d_k(a)\|_{2,S} = \|\pi_k(a) - \pi_{k-1}(a)\|_{2,S} \leq \|\pi_k(a) - a\|_{2,S} + \|a - \pi_{k-1}(a)\|_{2,S} \leq \epsilon_k + \epsilon_{k-1} = 3\epsilon_k.$$

2156 We apply Massart's Lemma to the Rademacher complexity of the finite set D_j :
 2157

$$2158 \mathbb{E}_{\sigma} \left[\sup_{a \in \mathcal{A}_{L,N}} \sum_{i=1}^m \sum_{j=1}^n \sigma_{ij}(d_k(a)(x_i))_j \right] \leq \sup_{d \in D_k} \sqrt{\sum_{i=1}^m \sum_{j=1}^n (d(x_i))_j^2} \cdot \sqrt{2 \log |D_k|}$$

$$\leq \sup_{a \in \mathcal{A}_{L,N}} (\sqrt{mn} \|d_k(a)\|_{2,S}) \sqrt{2 \log(|\mathcal{A}_k| |\mathcal{A}_{k-1}|)}.$$

Since the covering number is non-increasing with scale, $|\mathcal{A}_{k-1}| \leq |\mathcal{A}_k|$, which gives $\log |D_k| \leq 2 \log |\mathcal{A}_k|$. Therefore, the bound on the k -th term of the Rademacher complexity is:

$$\frac{1}{mn} \mathbb{E}_\sigma \left[\sup_{a \in \mathcal{A}_{L,N}} \sum_{i=1}^m \sum_{j=1}^n \sigma_{ij}(d_k(a)(x_i))_j \right] \leq \frac{1}{\sqrt{mn}} (3\epsilon_k) \sqrt{4 \log |\mathcal{A}_k|} = \frac{6\epsilon_k}{\sqrt{mn}} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, \epsilon_k)}.$$

Summing these bounds from $k = 1$ to K , and noting that $\epsilon_k = 2(\epsilon_k - \epsilon_{k+1})$, we obtain a sum that approximates an integral:

$$\begin{aligned} \sum_{k=1}^K \frac{6\epsilon_k}{\sqrt{mn}} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, \epsilon_k)} &= \frac{12}{\sqrt{mn}} \sum_{k=1}^K (\epsilon_k - \epsilon_{k+1}) \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, \epsilon_k)} \\ &\leq \frac{12}{\sqrt{mn}} \int_{\epsilon_{K+1}}^{\epsilon_1} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, v)} dv. \end{aligned}$$

Combining all parts, we have for any chosen refinement level K :

$$\hat{\mathcal{R}}_S(\mathcal{A}_{L,N}) \leq 2\epsilon_{K+1} + \frac{12}{\sqrt{m}} \int_{\epsilon_{K+1}}^{C_S/2} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, v)} dv.$$

Since this holds for any K , we can replace the cutoff scale ϵ_{K+1} with an arbitrary $\epsilon \in [\frac{\epsilon_{K+1}}{2}, \epsilon_{K+1}]$. Taking the infimum over all such ϵ yields the tightest bound:

$$\hat{\mathcal{R}}_S(\mathcal{A}_{L,N}) \leq \inf_{\epsilon \in [0, C_S/2]} \left\{ 4\epsilon + \frac{12}{\sqrt{m}} \int_{\epsilon}^{C_S/2} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, v)} dv \right\}.$$

□

By the above lemma, it suffices to study the bound of $\text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, v)$ now. And we will consider two different situations here, i.e., the output dimension is 1 and n, respectively.

Lemma 8 (Estimation for covering number bounds in SOCP-parameter space, (Pellizzoni et al., 2024) Lemma 2). *Let $\mathcal{A}_{L,N} \subset \{f : S \rightarrow \mathbb{R}\}$ be the hypothesis class of SOCP-GNNs whose output dimension is 1, where $S = \{x_1, \dots, x_m\}$ be a fixed set of m problem instances. We assume the function outputs lie in the interval $[-r, r]$. For any $\epsilon > 0$, the logarithm of the ϵ -covering number of this class with respect to the empirical L_2 pseudometric, $\|\cdot\|_{2,S}$, is bounded by:*

$$\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, \epsilon) \leq \text{Cov}(S, \|\cdot\|_2, \frac{\epsilon}{2L}) \log \left(\frac{2r}{\epsilon} + 2 \right).$$

Proof. Take S_s to be the minimal $\frac{\epsilon}{2L}$ -covering of S . Consider function class $O = \{f : S_s \rightarrow \{\frac{\epsilon}{2} + k\epsilon : k = -(\lceil \frac{r}{\epsilon} \rceil + 1), \dots, 0, \lceil \frac{r}{\epsilon} \rceil\}\}$. For each $x \in S$, let $\pi(x) \in S_s$ be one of the closest point of x in S_s satisfying: $\|\pi(x) - x\|_2 \leq \frac{\epsilon}{2L}$. Let $\mathcal{O} = \{f : S \rightarrow \mathbb{R} : f(x) = \hat{f}(\pi(x)) \text{ for some } \hat{f} \in O\}$. Then $|\mathcal{O}| = |O| = (2\lceil \frac{r}{\epsilon} \rceil + 2)^{\text{Cov}(S, \|\cdot\|_2, \frac{\epsilon}{2L})}$. So, it suffices to prove that: \mathcal{O} is a ϵ -covering of $\mathcal{A}_{L,N}$ under $\|\cdot\|_{2,S}$.

For any $f \in \mathcal{A}_{L,N}$, take $g \in \mathcal{O}$ such that $|g(x) - f(x)| \leq \frac{\epsilon}{2}$ for all $x \in S_s$. Then we have:

$$\begin{aligned} \|f - g\|_{2,S}^2 &= \frac{1}{m} \left(\sum_{x \in S} |f(x) - g(x)|^2 \right) \\ &\leq \frac{1}{m} \left(\sum_{x \in S} [|f(x) - f(\pi(x))| + |f(\pi(x)) - g(\pi(x))| + |g(\pi(x)) - g(x)|]^2 \right) \\ &\leq \frac{1}{m} \left(\sum_{x \in S} \left[\frac{\epsilon}{2L} \cdot L + \frac{\epsilon}{2} + 0 \right]^2 \right) = \epsilon^2 \end{aligned}$$

Taking square root of both sides, we get the proof. □

2214 **Lemma 9.** Let $\mathcal{A}_{L,N} \subset \{f : S \rightarrow \mathbb{R}^n\}$ be the hypothesis class of SOCP-GNNs whose output
 2215 dimension is n , where $S = \{x_1, \dots, x_m\}$ be a fixed set of m problem instances. We assume that
 2216 each component of the function output lies in the interval $[-r, r]$. For any $\epsilon > 0$, the logarithm of the
 2217 ϵ -covering number of this class with respect to the empirical L_2 pseudometric, $\|\cdot\|_{2,S}$, is bounded
 2218 by:

$$\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S}, \epsilon) \leq n \text{Cov}(S, \|\cdot\|_2, \frac{\epsilon}{2L}) \log \left(\frac{2r}{\epsilon} + 2 \right).$$

2222 *Proof.* Take S_s to be the minimal $\frac{\epsilon}{2L}$ -covering of S . Consider function class $O = \{f : S_s \rightarrow$
 2223 $\{\frac{\epsilon}{2} + k\epsilon : k = -(\lceil \frac{r}{\epsilon} \rceil + 1), \dots, 0, \lceil \frac{r}{\epsilon} \rceil\}^n\}$. For each $x \in S$, let $\pi(x) \in S_s$ be one of the closest point of
 2224 x in S_s satisfying: $\|\pi(x) - x\|_2 \leq \frac{\epsilon}{2L}$. Let $\mathcal{O} = \{f : S \rightarrow \mathbb{R}^n : f(x) = \hat{f}(\pi(x)) \text{ for some } \hat{f} \in O\}$.
 2225 Then $|\mathcal{O}| = |O| = (2\lceil \frac{r}{\epsilon} \rceil + 2)^{n \text{Cov}(S, \|\cdot\|_2, \frac{\epsilon}{2L})}$. So, it suffices to prove that: \mathcal{O} is a ϵ -covering of $\mathcal{A}_{L,N}$
 2226 under $\|\cdot\|_{2,S}$.

2227 For any $f \in \mathcal{A}_{L,N}$, take $g \in \mathcal{O}$ such that $|g(x)_i - f(x)_i| \leq \frac{\epsilon}{2}$ for all $x \in S_s$ and $i \in [n]$. Then we
 2228 have:

$$\begin{aligned} 2231 \quad \|f - g\|_{2,S}^2 &= \frac{1}{mn} \left(\sum_{x \in S} \sum_{i=1}^n |f(x)_i - g(x)_i|^2 \right) \\ 2232 \quad &\leq \frac{1}{mn} \left(\sum_{x \in S} \sum_{i=1}^n [|f(x)_i - f(\pi(x))_i| + |f(\pi(x))_i - g(\pi(x))_i| + |g(\pi(x))_i - g(x)_i|]^2 \right) \\ 2233 \quad &\leq \frac{1}{mn} \left(\sum_{x \in S} \sum_{i=1}^n \left[\frac{\epsilon}{2L} \cdot L + \frac{\epsilon}{2} + 0 \right]^2 \right) = \epsilon^2 \end{aligned}$$

2241 Taking square root of both sides, we get the proof. □

2243 So, what remains is to discuss the covering number bounds of S in its valid parameter space \mathcal{B}_{r_i}

2245 **Lemma 10** (Estimation for covering number bounds in socp-parameter space). *For any $\epsilon > 0$ and
 2246 the uniform distribution \mathbb{P} over the valid parameter space \mathcal{B}_{r_i} , we have:*

$$\begin{aligned} 2248 \quad \mathbb{E}_{S \sim \mathbb{P}^m} (\text{Cov}(S, \|\cdot\|_2, \epsilon)) &\leq \left(\frac{2r_i + \epsilon}{\epsilon} \right)^N (1 - (1 - \min((\frac{\epsilon}{r_i})^N, 1))^m) \\ 2249 \quad , \end{aligned}$$

2252 *Proof.* Notice that:

$$2255 \quad \text{Cov}(S, \|\cdot\|_2, \epsilon) \leq \text{Pack}(S, \|\cdot\|_2, \epsilon) \leq \text{Pack}(\mathcal{B}_{r_i}, \|\cdot\|_2, \epsilon)$$

2257 Here, the first inequality holds since any maximum ϵ -packing is a ϵ -covering as well. Let P be
 2258 the maximum ϵ -packing of \mathcal{B}_{r_i} and let $P = \{x_1, \dots, x_{|P|}\}$. Then, we have: $\bigcup_{i=1}^{|P|} B(x_i, \frac{\epsilon}{2}) \subset$
 2259 $\mathcal{B}(\mathbf{0}, r_i + \frac{\epsilon}{2})$, where $B(x_i, \frac{\epsilon}{2}) = \{x \in \mathbb{R}^N : \|x_i - x\|_2 \leq \frac{\epsilon}{2}\}$ are mutually disjoint. Hence, if let α_N
 2260 denote the volume of the bounded ball in \mathbb{R}^N , we get: $|P| \leq \frac{\alpha_N}{\alpha_N} \left(\frac{2r_i + \epsilon}{\epsilon} \right)^N$.

2262 Consider the collection of balls $\mathcal{B} = \{B(x_i, \epsilon) : i \in [|P|]\}$. For any ball $b \in \mathcal{B}$ and m socp instances
 2263 s_1, \dots, s_m which are sampled i.i.d. from the uniform distribution on \mathcal{B}_{r_i} , we have:

$$2264 \quad \mathbb{P}(s_i \notin b, \forall i \in [m]) \geq (1 - \min((\frac{\epsilon}{r_i})^N, 1))^m$$

2266 . For any possible realization of $S = \{s_1, \dots, s_m\}$, we take all balls $b \in \mathcal{B}$, which contain some
 2267 points in S to form a new set of balls, denoted by \mathcal{C} . Then \mathcal{C} 's center forms a ϵ -covering of S .

(Here, notice that: $\mathcal{B}_{r_i} \subset \cup_{b \in \mathcal{B}} b$). Let $I_1, \dots, I_{|P|}$ denote the indicator variables for the event: $\exists y \in S, s.t. y \in B(x_i, \epsilon)$ respectively. Then, we have:

$$\begin{aligned} \mathbb{E}_{S \sim \mathbb{P}^m}(\text{Cov}(S, \|\cdot\|_2, \epsilon)) &\leq \mathbb{E}_{S \sim \mathbb{P}^m}(\sum_{i=1}^{|P|} I_i) \leq |P|(1 - (1 - \min((\frac{\epsilon}{r_i})^N, 1))^m) \\ &\leq (\frac{2r_i + \epsilon}{\epsilon})^N (1 - (1 - \min((\frac{\epsilon}{r_i})^N, 1))^m) \end{aligned}$$

□

Before we get our result finally, an important lemma is needed.

Theorem 12 (Theorem 26.5 of (Shalev-Shwartz & Ben-David, 2014); Algorithmic Foundations of Learning). *Assume that for all z and $h \in \mathcal{H}$ we have that $|\ell(h, z)| \leq c$. Then,*

1. *With probability of at least $1 - \delta$, for all $h \in \mathcal{H}$,*

$$L_D(h) - L_S(h) \leq 2 \mathbb{E}_{S' \sim D^m} \text{Rad}(\ell \circ \mathcal{H} \circ S') + c \sqrt{\frac{2 \ln(2/\delta)}{m}}.$$

In particular, this holds for $h = \text{ERM}_{\mathcal{H}}(S)$.

2. *With probability of at least $1 - \delta$, for all $h \in \mathcal{H}$,*

$$L_D(h) - L_S(h) \leq 2 \text{Rad}(\ell \circ \mathcal{H} \circ S) + 4c \sqrt{\frac{2 \ln(4/\delta)}{m}}.$$

In particular, this holds for $h = \text{ERM}_{\mathcal{H}}(S)$.

3. *For any h^* , with probability of at least $1 - \delta$,*

$$L_D(\text{ERM}_{\mathcal{H}}(S)) - L_D(h^*) \leq 2 \text{Rad}(\ell \circ \mathcal{H} \circ S) + 5c \sqrt{\frac{2 \ln(8/\delta)}{m}}.$$

4. *For any h^* , with probability of at least $1 - \delta$,*

$$L_D(\text{ERM}_{\mathcal{H}}(S)) - L_D(h^*) \leq 4 \mathbb{E}_{S' \sim D^m} [\text{Rad}(\ell \circ \mathcal{H} \circ S')] + 2c \sqrt{\frac{2 \log(1/\delta)}{m}}.$$

Here, z denotes the sample point, S and S' denotes the training set of size m , \mathcal{H} denotes the hypothesis class, ℓ denotes the loss function, h^* denote the hypothesis in \mathcal{H} with the smallest generalization error and $\text{ERM}_{\mathcal{H}}(S)$ denotes the hypothesis in \mathcal{H} with the smallest empirical error on S .

Before we go further, we need a further lemma to apply Tonelli's theorem in the following proof.

Lemma 11. *The function $\Phi(S, v) = \text{Cov}(S, \|\cdot\|, v)$ is measurable w.r.t. the standard lebesgue measure, where $S \in (\mathcal{B}_{r_i})^m, v \in \mathbb{R}^+$. Here, \mathbb{R}^+ denotes all non-negative real numbers.*

Proof. Here, it suffices to prove that: for any $n \in \mathbb{N}$, the set $\{(S, v) : \Phi(S, v) \leq n\}$ is measurable. Let $S = (s_1, \dots, s_m), X = (x_1, \dots, x_n)$, we define $h(S, X) = \max_{i \in [m]} \min_{j \in [n]} \|s_i - x_j\|_2$, which is continuous in S, X . By Berge's theorem of maximum, $g(S) = \inf_{x_1, \dots, x_n \in \mathcal{B}_{r_i}} h(S, X)$ is continuous in S . Hence $g(S) - v$ is continuous. Notice that:

$$\{(S, v) : \Phi(S, v) \leq n\} = \{(S, v) : g(S) - v \leq 0\}$$

Hence, this set is measurable, which indicates that $\text{Cov}(S, \|\cdot\|, v)$ is measurable w.r.t. (S, v) . □

It's time to get our integral sample complexity result.

2322 **Theorem 13** (estimation risk for graph level output). *For graph-level prediction tasks, let $\mathcal{A}_{L,N}$ be
2323 the hypothesis class of SOCP-GNNs defined above for a graph-level prediction task on the set \mathcal{X} of
2324 SOCP instances whose valid parameters lie in \mathcal{B}_{r_i} , with outputs in $[-r, r]$ and loss functions that
2325 are q -Lipshitz and bounded by p . Then, for any training set S of m samples which are i.i.d. sampled
2326 from the uniform distribution D over \mathcal{X} , let h^* denote the hypothesis in $\mathcal{A}_{L,N}$ with the smallest
2327 generalization error and $ERM_{\mathcal{A}_{L,N}}(S)$ denotes the hypothesis in $\mathcal{A}_{L,N}$ with the smallest empirical
2328 error on S , we have: with probability of at least $1 - \delta$,*

$$2329 L_D(ERM_{\mathcal{A}_{L,N}}(S)) - L_D(h^*) \leq 4\mathbb{E}_{S' \sim D^m} [Rad(\ell \circ \mathcal{A}_{L,N} \circ S')] + 2p\sqrt{\frac{2\log(1/\delta)}{m}} \\ 2330 \leq 4q \inf_{\epsilon \in [0, r/2]} [4\epsilon + \frac{12}{\sqrt{m}} \int_{\epsilon}^{r/2} \sqrt{(\frac{4Lr_i + v}{v})^N (1 - (1 - \min((\frac{v}{2Lr_i})^N, 1))^m) \log(\frac{2r}{v} + 2)} dv] \\ 2331 + 2p\sqrt{\frac{2\log(1/\delta)}{m}}$$

2336 *Proof.* By theorem 12 above, it suffices to notice that:

$$2338 \mathbb{E}_{S' \sim D^m} [Rad(\ell \circ \mathcal{A}_{L,N} \circ S')] \\ 2339 \leq q\mathbb{E}_{S' \sim D^m} [Rad(\mathcal{A}_{L,N} \circ S')](\text{lemma 4}) \\ 2340 \leq q\mathbb{E}_{S' \sim D^m} [\inf_{\epsilon \in [0, r/2]} \left\{ 4\epsilon + \frac{12}{\sqrt{m}} \int_{\epsilon}^{r/2} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S'}, v)} dv \right\}](\text{lemma 6}) \\ 2341 \leq q \inf_{\epsilon \in [0, r/2]} \mathbb{E}_{S' \sim D^m} \left[\left\{ 4\epsilon + \frac{12}{\sqrt{m}} \int_{\epsilon}^{r/2} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S'}, v)} dv \right\} \right] \\ 2342 \leq q \inf_{\epsilon \in [0, r/2]} [4\epsilon + \frac{12}{\sqrt{m}} \mathbb{E}_{S' \sim D^m} \int_{\epsilon}^{r/2} [\sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S'}, v)}] dv] \\ 2343 \leq q \inf_{\epsilon \in [0, r/2]} [4\epsilon + \frac{12}{\sqrt{m}} \mathbb{E}_{S' \sim D^m} \int_{\epsilon}^{r/2} [\sqrt{\text{Cov}(S', \|\cdot\|_2, \frac{v}{2L}) \log(\frac{2r}{v} + 2)}] dv](\text{lemma 8}) \\ 2344 \leq q \inf_{\epsilon \in [0, r/2]} [4\epsilon + \frac{12}{\sqrt{m}} \int_{\epsilon}^{r/2} \mathbb{E}_{S' \sim D^m} [\sqrt{\text{Cov}(S', \|\cdot\|_2, \frac{v}{2L}) \log(\frac{2r}{v} + 2)}] dv](\text{Tonelli's Theorem}) \\ 2345 \leq q \inf_{\epsilon \in [0, r/2]} [4\epsilon + \frac{12}{\sqrt{m}} \int_{\epsilon}^{r/2} \sqrt{\mathbb{E}_{S' \sim D^m} [\text{Cov}(S', \|\cdot\|_2, \frac{v}{2L})] \log(\frac{2r}{v} + 2)} dv](\text{Jensen Inequality}) \\ 2346 \leq q \inf_{\epsilon \in [0, r/2]} [4\epsilon + \frac{12}{\sqrt{m}} \int_{\epsilon}^{r/2} \sqrt{(\frac{4Lr_i + v}{v})^N (1 - (1 - \min((\frac{v}{2Lr_i})^N, 1))^m) \log(\frac{2r}{v} + 2)} dv](\text{lemma 10})$$

2358
2359
2360 Here, $\sqrt{\text{Cov}(S', \|\cdot\|_2, \frac{v}{2L}) \log(\frac{2r}{v} + 2)}$ is measurable since it's the square root of the multiplication
2361 of two finite-valued positive measurable functions. Since it's positive, we can exchange the order of
2362 integration by Tonelli's theorem. \square

2364 **Theorem 14** (estimation risk for node level output). *For node-level prediction tasks, let $\mathcal{A}_{L,N}$ be
2365 the hypothesis class of SOCP-GNNs defined above for a node-level prediction task on the set \mathcal{X} of
2366 SOCP instances whose valid parameters lie in \mathcal{B}_{r_i} , with outputs in $[-r, r]^n$ and loss functions that
2367 are q -Lipshitz and bounded by p . Then, for any training set S of m samples which are i.i.d. sampled
2368 from the uniform distribution D over \mathcal{X} , let h^* denote the hypothesis in $\mathcal{A}_{L,N}$ with the smallest
2369 generalization error and $ERM_{\mathcal{A}_{L,N}}(S)$ denotes the hypothesis in $\mathcal{A}_{L,N}$ with the smallest empirical
2370 error on S , we have: with probability of at least $1 - \delta$,*

$$2371 L_D(ERM_{\mathcal{A}_{L,N}}(S)) - L_D(h^*) \leq 4\mathbb{E}_{S' \sim D^m} [Rad(\ell \circ \mathcal{A}_{L,N} \circ S')] + 2p\sqrt{\frac{2\log(1/\delta)}{m}} \\ 2372 \leq 4\sqrt{2}nq \inf_{\epsilon \in [0, r/2]} [4\epsilon + \frac{12}{\sqrt{m}} \int_{\epsilon}^{r/2} \sqrt{(\frac{4Lr_i + v}{v})^N (1 - (1 - \min((\frac{v}{2Lr_i})^N, 1))^m) \log(\frac{2r}{v} + 2)} dv]$$

$$+ 2p\sqrt{\frac{2\log(1/\delta)}{m}}$$

2379 *Proof.* By theorem 12 above, it suffices to notice that:

$$\begin{aligned}
& \mathbb{E}_{S' \sim D^m} [Rad(\ell \circ \mathcal{A}_{L,N} \circ S')] \\
& \leq \sqrt{2}nq\mathbb{E}_{S' \sim D^m} [Rad(\mathcal{A}_{L,N} \circ S')](\text{lemma 5}) \\
& \leq \sqrt{2}nq\mathbb{E}_{S' \sim D^m} \left[\inf_{\epsilon \in [0, r/2]} \left\{ 4\epsilon + \frac{12}{\sqrt{mn}} \int_{\epsilon}^{r/2} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S'}, v)} dv \right\} \right] (\text{lemma 7}) \\
& \leq \sqrt{2}nq \inf_{\epsilon \in [0, r/2]} \mathbb{E}_{S' \sim D^m} \left[\left\{ 4\epsilon + \frac{12}{\sqrt{mn}} \int_{\epsilon}^{r/2} \sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S'}, v)} dv \right\} \right] \\
& \leq \sqrt{2}nq \inf_{\epsilon \in [0, r/2]} \left[4\epsilon + \frac{12}{\sqrt{mn}} \mathbb{E}_{S' \sim D^m} \int_{\epsilon}^{r/2} [\sqrt{\log \text{Cov}(\mathcal{A}_{L,N}, \|\cdot\|_{2,S'}, v)}] dv \right] \\
& \leq \sqrt{2}nq \inf_{\epsilon \in [0, r/2]} \left[4\epsilon + \frac{12}{\sqrt{mn}} \mathbb{E}_{S' \sim D^m} \int_{\epsilon}^{r/2} [\sqrt{n\text{Cov}(S', \|\cdot\|_2, \frac{v}{2L}) \log \left(\frac{2r}{v} + 2 \right)}] dv \right] (\text{lemma 9}) \\
& \leq \sqrt{2}nq \inf_{\epsilon \in [0, r/2]} \left[4\epsilon + \frac{12}{\sqrt{mn}} \int_{\epsilon}^{r/2} \mathbb{E}_{S' \sim D^m} [\sqrt{n\text{Cov}(S', \|\cdot\|_2, \frac{v}{2L}) \log \left(\frac{2r}{v} + 2 \right)}] dv \right] (\text{Tonelli's Theorem}) \\
& \leq \sqrt{2}nq \inf_{\epsilon \in [0, r/2]} \left[4\epsilon + \frac{12}{\sqrt{mn}} \int_{\epsilon}^{r/2} \sqrt{n\mathbb{E}_{S' \sim D^m} [\text{Cov}(S', \|\cdot\|_2, \frac{v}{2L})] \log \left(\frac{2r}{v} + 2 \right)} dv \right] (\text{Jensen Inequality}) \\
& \leq \sqrt{2}nq \inf_{\epsilon \in [0, r/2]} \left[4\epsilon + \frac{12}{\sqrt{m}} \int_{\epsilon}^{r/2} \sqrt{\left(\frac{4Lr_i + v}{v} \right)^N (1 - (1 - \min((\frac{v}{2Lr_i})^N, 1))^m) \log \left(\frac{2r}{v} + 2 \right)} dv \right] (\text{lemma 10})
\end{aligned}$$

2401 \square

2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

2430 E SOCP-BASED FORMULATION FOR OPF
24312432 • Decision Variables
2433

2434 $w_i \in \mathbb{R}_+$ voltage magnitude squared at bus i (11)
2435

2436 $c_{ij}, s_{ij} \in \mathbb{R}$ cosine and sine terms for line (i, j) (12)
2437

2438 $P_{g,i}, Q_{g,i} \in \mathbb{R}$ real and reactive power generation at bus i (13)
2439

2440 $P_{ij}, Q_{ij} \in \mathbb{R}$ real and reactive power flows on line (i, j) (14)
2441

2442 where:
2443

2444 $c_{ij} = w_i w_j \cos(\theta_i - \theta_j)$ (15)
2445

2446 $s_{ij} = w_i w_j \sin(\theta_i - \theta_j)$ (16)
2447

2448 • Objective Function $\min \sum_{i \in \mathcal{G}} c_i \cdot P_{g,i}$
24492450 • Second-Order Cone Constraints For each line $(i, j) \in \mathcal{E}$, the rotated second-order cone
2451 constraint:
2452

2453 $c_{ij}^2 + s_{ij}^2 \leq w_i w_j$ (17)
2454

2455 can be directly reformulated as the following standard second-order cone constraint:
2456

2457
$$\left\| \begin{bmatrix} 2c_{ij} \\ 2s_{ij} \\ w_i - w_j \end{bmatrix} \right\|_2 \leq w_i + w_j$$
 (18)
2458

2459 • Power Flow Equations Real power flow from bus i to bus j :
2460

2461 $P_{ij} = g_{ij} w_i - g_{ij} c_{ij} - b_{ij} s_{ij}$ (19)
2462

2463 Reactive power flow from bus i to bus j :
2464

2465 $Q_{ij} = -b_{ij} w_i + b_{ij} c_{ij} - g_{ij} s_{ij}$ (20)
2466

2467 where g_{ij} and b_{ij} are the conductance and susceptance of line (i, j) .
24682469 • Nodal Power Balance For each bus $i \in \mathcal{N}$:
2470

2471 $P_{g,i} - P_{d,i} = \sum_{j \in \mathcal{N}(i)} P_{ij} + g_{ii} w_i$ (21)
2472

2473 $Q_{g,i} - Q_{d,i} = \sum_{j \in \mathcal{N}(i)} Q_{ij} - b_{ii} w_i$ (22)
2474

2475 where $\mathcal{N}(i)$ is the set of buses connected to bus i , and g_{ii} , b_{ii} are shunt elements.
24762477 • Voltage Magnitude Limits
2478

2479 $(V_i^{\min})^2 \leq w_i \leq (V_i^{\max})^2 \quad \forall i \in \mathcal{N}$ (23)
2480

2481 • Generation Limits
2482

2483 $P_{g,i}^{\min} \leq P_{g,i} \leq P_{g,i}^{\max} \quad \forall i \in \mathcal{G}$ (24)
2484

2485 $Q_{g,i}^{\min} \leq Q_{g,i} \leq Q_{g,i}^{\max} \quad \forall i \in \mathcal{G}$ (25)
2486

2487 • Line Flow Limits
2488

2489 $\|(P_{ij}, Q_{ij})\|_2 \leq S_{ij}^{\max} \quad \forall (i, j) \in \mathcal{E}$ (26)
2490

2484 **F EXPERIMENT SETTINGS AND SUPPLEMENTARY RESULTS**

2485 **F.1 DATA GENERATION**

2486 **F.1.1 GENERATION OF FEASIBLE SOCP INSTANCES**

2487 Following the SOCP generating scheme in CVXPY, we use the following steps to generate feasible
2488 and random SOCP instances, which admit at least an optimal solution.

2489 (I) : Generate a secret point $x_s \in \mathbb{R}^n$ by sampling from a standard normal distribution, i.e.,
2490 $x_s \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. Then generate the objective coefficient $e \sim \mathcal{N}(0, 0.25\mathbf{I})$.
2491
2492 (II) : Impose lower bounds and upper bounds on variables $l \leq x_s \leq r$ for the problem. Here
2493 $l = x_s - |\Delta_1| - 0.1$, $r = x_s + |\Delta_2| + 0.1$, where Δ_i are sampled i.i.d. from $\mathcal{N}(0, 0.25\mathbf{I})$
2494 and $|\cdot|$ denotes component-wise absolute value.
2495
2496 (III) : Generate $F \in \mathbb{R}^{b \times n}$, whose nonzero entries are sampled i.i.d. from $\mathcal{N}(0, 0.01)$ and
2497 components are nonzero with probability 0.5. The vector g is subsequently sampled by
2498 $g = Fx_s + |\Delta_3| + 0.1$, where $\Delta_3 \sim \mathcal{N}(0, 0.25\mathbf{I})$.
2499
2500 (IV) : For each conic constraint, randomly sample the cone dimension (the number of rows
2501 of A_i, b_i) in $[1, 7]$ with equal probability. Then, generate A_i, c_i, b_i , whose nonzero entries
2502 are sampled i.i.d. from $\mathcal{N}(0, 0.0025)$. Each component of the coefficient matrix A_i, c_i
2503 is nonzero with probability 0.5. Then, generate $d_i = \|A_i x_s + b_i\|_2 - c_i^\top x_s + \epsilon$, where
2504 $\epsilon \sim \mathcal{U}(0.5, 1)$.

2505 Step (II) ensures that the generated SOCP instances always have an optimal solution. Furthermore,
2506 the coefficients are intentionally sampled from distributions with different variances, introducing
2507 varying numerical scales to create more challenging test instances.

2508 **F.1.2 GENERATION OF (POSSIBLE) INFEASIBLE SOCP INSTANCES**

2509 We use the following steps to generate a (possible) infeasible SOCP instance with pre-determined
2510 probability $h \in [0, 1]$.

2511 (I) : Sample a feasible SOCP instance by methods in Appendix F.1.1.
2512
2513 (II) : Execute step III-IV with probability h and execute step V-VI with probability $1 - h$.
2514
2515 (III) : Sample a random integer p in $[3, 20]$ and a scale coefficient $a \sim \mathcal{U}(0, 1)$. Then repeat step
2516 IV for p times
2517
2518 (IV) : Randomly choose a type of constraint to break with equal probability. If the polyhedral
2519 constraint is chosen, we randomly choose one component of g with equal probability,
2520 denoted by g_i , and then replace g_i by $(Fx_s)_i - \delta - 3$. If the conic constraint is chosen,
2521 we randomly choose one with equal probability and then replace its corresponding d_i by
2522 $\|A_i x_s + b_i\|_2 - c_i^\top x_s - \delta - 3$. Here $\delta \sim \mathcal{U}(0, a)$.
2523
2524 (V) : Sample a random integer p in $[3, 20]$ and a scale coefficient $a \sim \mathcal{U}(0, 1)$. Then repeat step
2525 VI for p times
2526
2527 (VI) : Randomly choose a type of constraint to enhance with equal probability. If the polyhedral
2528 constraint is chosen, we randomly choose one component of g with equal probability,
2529 denoted by g_i , and then replace g_i by $g_i + \delta$. If the conic constraint is chosen, we randomly
2530 choose one with equal probability and then replace its corresponding d_i by $d_i + \delta$. Here
2531 $\delta \sim \mathcal{U}(0, a)$.

2532 **F.1.3 GENERATION OF OPF-SOCP INSTANCES**

2533 We use the following steps to generate feasible SOCP instances that admit an optimal solution (Here,
2534 initial problem settings are the same as Appendix E):

2535 (I) : Read the reference problem in the IEEE test systems (Babaeinejadsarookolae et al., 2019)
2536 which has the pre-determined number of buses.

2538 (II) : Randomly remove one branch from the grid topology while making sure the resulting
 2539 graph is still connected.
 2540 (III) : Apply multiplicative perturbations to the base real and reactive power demands, $P_{d,i}$ and
 2541 $Q_{d,i}$, at each bus i , and to the linear generator cost coefficients, c_i . Each perturbation factor
 2542 is drawn i.i.d. from a uniform distribution $\mathcal{U}[0.9, 1.1]$.
 2543 (IV) : Check if the problem has an optimal solution. If yes, then return the problem. Otherwise,
 2544 repeat steps I-IV again.
 2545

2546 **F.1.4 DATA GENERATION FOR PREDICTING OPTIMAL SOLUTIONS**
 2547

2548 We randomly generate 5000 feasible SOCP instances by methods in Appendix F.1.1 of size (50,10,10),
 2549 (100,50,50), and (500,100,100) respectively. Each instance is solved in CVXPY to obtain a ground
 2550 truth solution as the label.⁹ Then, we divide these instances into training, validation, and test data
 2551 classes by the ratio 8 : 1 : 1.

2552 To further validate our theorem on real-world situations, we use methods in section F.1.3 to randomly
 2553 generate 1000 samples based on IEEE test systems. Then, we divide these instances into training,
 2554 validation, and test data classes by the ratio 8 : 1 : 1.
 2555

2556 **F.1.5 DATA GENERATION FOR PREDICTING THE FEASIBILITY:**
 2557

2558 We randomly generate 5000 infeasible SOCP instances with probability $h = 0.5$ by methods in
 2559 Appendix F.1.2 of size (50,10,10), (100,50,50) and (500,100,100) respectively. We use CVXPY to
 2560 detect the feasibility of these instances as well. Then, we divide these instances into training class
 2561 and validation class by the same ratio.
 2562

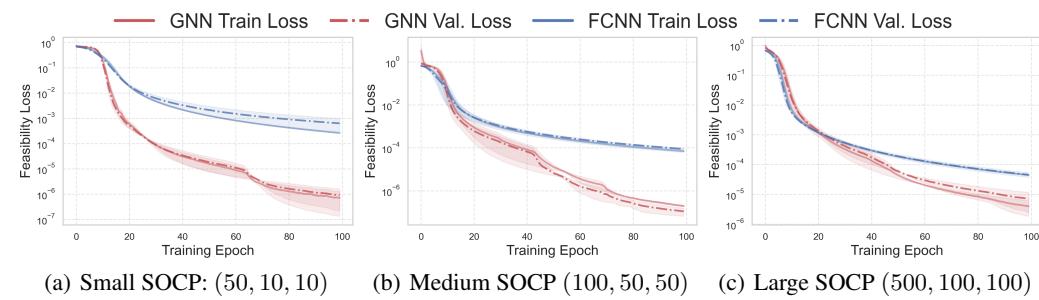
2563 **F.2 IMPLEMENTATIONS AND TRAINING SETTINGS FOR PREDICTING THE OPTIMAL SOLUTION
 2564 AND FEASIBILITY**

2565 For predicting the optimal solution, our SOCP-GNN is implemented with four message-passing
 2566 layers. The learnable functions, denoted by $g_{l_1}^0$, $g_{l_2}^t$, $f_{l_3}^t$, and f_{out} (where $l_1 \in \{1, \dots, 4\}$, $l_2 \in$
 2567 $\{1, \dots, 6\}$, and $l_3 \in \{1, \dots, 8\}$), are all parameterized by neural networks. Specifically, $g_{l_1}^0$ and
 2568 $g_{l_2}^t$ are simple linear layers, while $f_{l_3}^t$ and f_{out} are constructed with a single hidden layer containing
 2569 64 neurons. For comparison, our baseline FCNN is implemented with four hidden layers with
 2570 residual connections, each containing 64 neurons. The other GNNs are implemented based on
 2571 the basic message-passing method with the same embedding layer as SOCP-GNN, i.e. $h^{n,t+1} =$
 2572 $\text{Update}(h^{n,t}, \text{Aggregate}(\{\{e_{nn'}, h^{n',t} \mid n' \in \mathcal{N}(n)\}\}))$. Here $h^{n,t}$ is the feature of node n at the
 2573 t -th message passing process, $e_{nn'}$ is the edge weight connecting node n and its neighbor n' , and
 2574 $\mathcal{N}(n)$ denotes the neighborhood of node n . In the vanilla MPNN, we first concatenate $e_{nn'}$ and
 2575 $h^{n',t}$ to form $[e_{nn'}, h^{n',t}]$. This vector is processed by an MLP with two hidden layers (64 neurons
 2576 each) to generate a message vector matching the dimension of $h^{n,t}$. We then compute the mean
 2577 of these messages over the neighborhood of n , denoted as $\hat{h}^{n,t}$. Finally, a distinct MLP with an
 2578 identical architecture maps the concatenation $[h^{n,t}, \hat{h}^{n,t}]$ to the updated feature $h^{n,t+1}$. For the Graph
 2579 Isomorphism Network (GIN), we employ the same MLP architecture as in the vanilla MPNN to map
 2580 $h^{n,t} + |\mathcal{N}(n)|\hat{h}^{n,t}$ to the updated feature $h^{n,t+1}$. Vanilla MPNNs and GINs both have five message
 2581 passing layers. We use normalized MSE loss (Section 7) as the loss function.
 2582

2583 For predicting the feasibility, our SOCP-GNN follows a similar structure to the one in solution
 2584 prediction. Since the binary classification is simpler than the solution regression, we set the hidden
 2585 layer with 16 neurons. For comparison, our baseline FCNN is implemented with three hidden layers,
 2586 each containing 16 neurons. We use binary cross-entropy loss as the loss function.
 2587

2588 All MLPs mentioned above use ReLU as the activation function. We use AdamW to optimize our
 2589 learnable parameters for both FCNNs and GNNs with a maximum learning rate of 5×10^{-4} and a
 2590 batch size of 40. All experiments were conducted on an NVIDIA H200 GPU, with the exception of
 2591 the inference time evaluation.

2592 ⁹We denote an SOCP instance by a tuple (n, b, m) , where n represents the number of decision variables, b
 2593 denotes the number of polyhedral constraints, and m indicates the number of second-order cone constraints.

2592 F.3 RESULTS FOR PREDICTING OPTIMAL SOLUTIONS AND FEASIBILITY
2593

2604 Figure 7: Comparison between the proposed GNN and FCNN for feasibility classification for random
2605 SOCP instances. The GNN uses approximately 0.01M parameters across three scales, while the
2606 FCNN uses approximately 0.07M, 0.7M, and 7M parameters for all three problem scales, respectively.
2607

2608 As shown in Figures 4 and 7, the proposed SOCP-GNN surpasses the baseline FCNNs in both optimal
2609 solution prediction and feasibility classification tasks in both synthetic and real-world SOCP instances.
2610 Across all problem scales—small, medium, and large—the GNN achieves substantially lower relative
2611 MSE and binary cross-entropy loss compared to the FCNN baseline. This superior performance
2612 is particularly evident in its parameter efficiency: on large-scale problems, the GNN, with only
2613 approximately 0.35Mb parameters, outperforms the FCNN, which requires 110Mb parameters for
2614 the solution prediction task, representing a nearly 300-fold reduction in model complexity. We also
2615 observe similar trends in the feasibility classification tasks.

2616 This dramatic improvement in both performance and efficiency validates the effectiveness of exploiting
2617 the inherent sparse geometric structure of optimization problems through graph representations
2618 and message passing. These results confirm the potential of our approach as a scalable, data-driven
2619 framework for solving complex optimization problems.

2620 *Remark 6.* Since we have already proved that all target mappings are measurable, it follows that:
2621 FCNNs can provably approximate these target mappings within any given error tolerance. Hence, it's
2622 reasonable to use FCNNs as a baseline for comparison.

2623 F.4 EMPIRICAL STUDY ON SAMPLE/MODEL COMPLEXITY AND SIZE GENERALIZATION
2624

2625 As shown in Fig 5(e), we randomly generate 625, 1250, 2500, and 5000 synthetic training samples of
2626 size (50,10,10) and divide these instances into training, validation, and test data classes by the ratio
2627 8 : 1 : 1 respectively. We use four SOCP-GNNs with the hidden layer sizes 32, 64, 128, and 256,
2628 respectively. Then, we train these four models on the four different datasets, respectively, and then
2629 measure their training and validation losses. When the hidden layer size or the number of training
2630 samples increases, both the training loss and validation loss decrease. This demonstrates that: with a
2631 sufficient number of training samples, the SOCP-GNN can achieve near-zero approximation error
2632 and generalize effectively to unseen instances.

2633 Moreover, we randomly generate 6000 synthetic training samples of size (10,5,5), (20,10,10),
2634 (40,20,20), (80,40,40) and (160,80,80) respectively. Then we divide these samples into training and
2635 test data classes by the ratio 5 : 1. Then, we train the SOCP-GNN model with hidden layer size 64 on
2636 these datasets, respectively. Finally, each trained model was evaluated on all five test sets to measure
2637 its cross-size generalization performance, reported as test loss. The results are summarized in Fig 5(f).
2638 It's observed that: models trained on larger problem instances demonstrate superior generalization
2639 capabilities, particularly when tested on smaller, unseen problem sizes. Meanwhile, models trained
2640 entirely on smaller datasets also have the surprising ability to generalize to unseen larger datasets.
2641 This has validated the good size generalization probability of SOCP-GNNs, which motivates future
2642 research on efficient training of SOCP-GNNs leveraging this size generalization ability.

2643 F.5 EMPIRICAL STUDY ON THE LIPSCHITZ REGULARIZATION
2644

2645 To show how the Lipschitz assumption can be controlled in the experimental setting, we use projection-
2646 based methods to train our SOCP-GNN (Gouk et al., 2020). The method operates as follows: for

2646 predefined constants $\lambda > 0$ and $p \geq 1$, we project each weight matrix W onto an ℓ_p -norm ball after
 2647 each standard optimizer update. Specifically, at the end of every epoch, the weights are updated via
 2648 the assignment:

$$2649 \quad W \leftarrow \frac{W}{\max \left(1, \frac{\|W\|_p}{\lambda} \right)}$$

$$2650$$

$$2651$$

2652 To validate this approach, we conducted an experiment on the IEEE 118-bus dataset. The number
 2653 of samples and the dividing rules are the same as above, The results are summarized in Table 1. In
 2654 the table, p1_lambda0.5 refers to a configuration with $p = 1$ and $\lambda = 0.5$. The generalization
 2655 gap is measured by the difference between train loss and true loss, approximating the difference
 2656 between empirical risk and true risk. The Lipschitz coefficient L is measured by randomly picking
 2657 10000 pairs of instances x, y in dataset and then take the supremum of $\frac{\|f(x) - f(y)\|_2}{\|x - y\|_2}$. We repeat the
 2658 experiment for 3 times and take the average.

2659
 2660 Table 1: Training and test results for different configurations.

2662 Config	2663 Train Loss	2664 Test Loss	2665 Gen Gap	2666 Lip-L
baseline	0.004885	0.005076	0.000191	0.5186
p1_lambda0.5	0.008184	0.008208	0.000024	0.4011
p1_lambda0.7	0.006707	0.006905	0.000199	0.4782

2667 The experimental results indicate that selecting a smaller radius for the norm ball leads to a lower
 2668 Lipschitz constant for the model. This suggests that the Lipschitz constant can be effectively
 2669 controlled by constraining the norm of the weight matrices.

2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699