
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON THE UNIVERSALITY AND COMPLEXITY OF GNN
SOLVING SECOND-ORDER CONE PROGRAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have demonstrated both empirical efficiency
and universal expressivity for solving constrained optimization problems such as
linear and quadratic programming. However, extending this paradigm to more
general convex problems with universality guarantees, particularly Second-Order
Cone Programs (SOCPs), remains largely unexplored. We address this challenge
by proposing a novel graph representation that captures the inherent structure
of conic constraints. We then establish a key universality theorem: there exist
GNNs that can provably approximate essential SOCP properties, such as instance
feasibility and optimal solutions. We further derive the sample complexity for
GNN generalization based on Rademacher complexity, filling an important gap for
Weisfeiler-Lehman-based GNNs in learning-to-optimize paradigms. Our results
provide a rigorous foundation linking GNN expressivity and generalization power
to conic optimization structure, opening new avenues for scalable, data-driven
SOCP solvers. The approach extends naturally to p-order cone programming for
any p ≥ 1 while preserving universal expressivity and requiring no structural
modifications to the GNN architecture. Numerical experiments on randomly
generated SOCPs and real-world power grid problems demonstrate the effectiveness
of our approach, achieving superior prediction accuracy with significantly fewer
parameters than fully connected neural networks.

1 INTRODUCTION:
Second Order Cone Programming (SOCP) represents a fundamental class of convex optimization
problems with numerous real-world applications (Lobo et al., 1998), including optimal power flow
(Gan et al., 2014), trajectory planning (Liu et al., 2016), image restoration (Goldfarb & Yin, 2005),
signal processing (Shi et al., 2014), and network localization (Tseng, 2007). However, traditional
algorithms, such as primal-dual interior point methods, face computational limitations in large-scale
applications, particularly in real-time scenarios where rapid response is crucial.

Convex Cone

p-order Cone (this work)

Second-Order Cone (this work)

Convex Quadratic
(Wu et al., 2024; Chen et al., 2024b)

Linear
(Chen et al., 2022b; 2023)

Figure 1: GNN expressivity for convex programs.

Recent advances in machine learning, such as
the learn-to-optimize (L2O) paradigm (Chen
et al., 2022a; Li & Malik, 2016), have enabled
solving optimization problems in real-time.
Specifically, graph neural networks (GNNs)
have been proven efficient in training by lever-
aging the inherent graph structures of the prob-
lem. For instance, linear programs (LP) can be
modeled as bipartite graphs with variable and
constraint nodes (Chen et al., 2022b), enabling
efficient learning with a parameter sharing mech-
anism over GPUs. Beyond empirical success,
theoretical foundations, including universal approximation capabilities, have been established for
GNN applications in (mixed-integer) LP (Chen et al., 2022b; 2023), quadratic programming (QP)
(Chen et al., 2024b), and convex quadratically constrained QP (Chen et al., 2024b; Wu et al., 2024).

Despite these advances, extending GNNs to more general convex programs like SOCP remains an
open challenge. A key difficulty lies in the hybrid structure of second-order cone constraints, which
involve both linear parts and non-linear norms. Effectively modeling the interplay between them and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

encoding constraints into graphs remains largely open. This paper proposes a novel GNN architecture
with universal approximation capabilities for SOCPs, making the following contributions:

▷ We propose a novel graph representation for SOCPs, which exploits linear relationships within the
non-linear conic constraint and decomposes it into separated nodes for efficient graph representations.

▷ Based on proposed graph representations, we design SOCP-GNNs, to predict the key properties of
SOCPs, including instance feasibility and optimal solutions, with universal expressivity guarantees.
Our GNN design and expressivity guarantees can be extended to p-order conic programming for
p ≥ 1 without GNN structural modifications.

▷ We further derive the sample complexity of the SOCP-GNNs for generalization. Such analysis is
general and can also be extended to other Weisfeiler-Lehman-based GNN approaches in the L2O
community (Chen et al., 2022b; 2023; Wu et al., 2024).

▷ Our experiments demonstrate that the expressivity of designed GNNs, which use fewer parameters
to achieve better prediction accuracy compared to fully connected NNs, in both the synthetic SOCP
dataset and the real-world power grid optimization.

To the best of our knowledge, this is the first GNN design for SOCP with universal expressivity
guarantees, and also the first work to analyze the generalization ability of Weisfeiler-Lehman-based
GNNs designed in the L2O paradigm.

2 RELATED WORK

GNN Expressivity in L2O Paradigms: We review two primary paradigms for analyzing GNN
expressivity for optimization problems: the Weisfeiler-Lehman (WL)-based and Algorithm-Unrolling
(AU)-based frameworks.

The WL-based framework models optimization problems as graphs, where nodes represent variables
and constraints, with edges modeling their interactions. It then links the GNN’s expressive power
with WL tests on graphs. Building on established foundations for (mixed-integer) linear programs
(LP) (Chen et al., 2022b; 2023), researchers have extended this framework to more complex problems
such as quadratic programs (QP) (Chen et al., 2024b) and quadratically constrained QP (QCQP) (Wu
et al., 2024). A key challenge is representing non-linear constraints, as encoding complex interactions
into nodes and edges is non-trivial. Recent work has addressed convex quadratic constraints through
dynamic edge updates (Chen et al., 2024b) or augmented quadratic variable nodes (Wu et al., 2024).
However, extending existing frameworks to represent general conic constraints like second-order
cones remains an open question (see Appendix A.1.1 for details).

The AU-based paradigm maps iterative steps of specialized algorithms (e.g., primal-dual methods)
onto GNN layers. By aligning GNN layers with known algorithms for specific problems, such as
LP (Qian et al., 2024; Li et al., 2024a;b; 2025), QP (Qian & Morris, 2025a; Yang et al., 2024a), and
combinatorial problems (Yau et al., 2025; He & Vitercik, 2025), universality and parameter com-
plexity can be naturally established through existing algorithmic convergence properties. However,
representing more complex algorithmic steps involving non-linear operations (e.g., factorization or
projection) is non-trivial. Furthermore, the GNN’s expressivity is inherently limited by the underlying
capability of the algorithm itself (see Appendix A.1.2 for details).

Generalization of GNNs and L2O: We briefly review several studies on the generalization ability of
both GNNs and L2O paradigms (see Appendix A.2 for details).

To study the generalization capability of GNN and its variants, researchers have leveraged multiple
ways, such as Vapnik–Chervonenkis(VC) dimension (Scarselli et al., 2018; Morris et al., 2023; Franks
et al., 2024; D’Inverno et al., 2025), Rademacher complexity (Garg et al., 2020; Pellizzoni et al.,
2024), PAC-Bayes bound (Ju et al., 2023; Liao et al., 2020), and stochastic optimization (Tang &
Liu, 2023). However, these works cannot be directly applied to WL-based GNN frameworks under
the L2O paradigm due to the continuous feature space of optimization problems and the difference
in GNN structures. The generalization performance of L2O or data-driven methods has also been
studied from many perspectives, including VC dimension (and pseudo dimension) (Balcan et al.,
2021), loss landscape (Yang et al., 2023), and PAC-Bayes bound (Sucker & Ochs, 2025; Sambharya
& Stellato, 2024). However, these works are not specifically designed for WL-based GNNs in L2O
paradigms.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In this work, we extend the WL-based framework to optimization problems with second-order cone
constraints, a general class that encompasses LP, QP, and convex QCQP, with extensive real-world
applications. Our specialized GNN achieves universal expressivity capabilities while maintaining
computational efficiency, establishing a foundational approach for extending GNNs to broader conic
programming domains. Additionally, we provide the first generalization analysis for WL-based GNNs
in the learning-to-optimize paradigm, establishing theoretical foundations for sample complexity
when applying GNNs to solve optimization problems.

3 PROBLEM DEFINITION AND OPEN ISSUES

We consider a general second-order cone programming (SOCP) (Alizadeh & Goldfarb, 2003) as:

min
l≤x≤r

e⊤x s.t. Fx ≤ g, ∥Aix+ bi∥2 ≤ cTi x+ di, i ∈ [m] (1)

where decision variables are x ∈ Rn and the problem parameters are e ∈ Rn, Ai ∈ Rki×n, bi ∈ Rki ,
ci ∈ Rn, di ∈ R, F ∈ Rb×n, g ∈ Rb, l ∈ Rn, and r ∈ Rn.

Open issue: While GNNs have successfully modeled linear and convex quadratic constraints
with expressivity guarantees, handling more general second-order cone (SOC) constraints remains
challenging. Additionally, the generalization capacity of GNNs for optimization problems remains
largely unexplored. While previous work focused on expressivity, understanding how many training
samples are needed for good performance over new instances is critical for trustworthy applications.

4 METHODOLOGY

We design the following layered graph representation to address the expressivity of GNN for SOCP:

Figure 2: The graph representation of SOCPs and the message passing steps in GNN design. A
specific SOCP instance and its corresponding SOCP-graph are included in Fig. 6, Appendix B.4.

4.1 GRAPH REPRESENTATION OF SOCPS

As shown in Fig. 2, the graph representation of an SOCP consists of four types of nodes, to represent
decision variables (V1), polyhedron constraints (V2), minor conic constraints (V3), and major conic
constraints (V4):

• V1 := {vj}j∈[n] denotes decision variables, where each node vj is associated with a feature tuple
(ej , lj , rj), representing the objective coefficient, variable lower and upper bounds.

• V2 := {sk}k∈[b] denotes polyhedron constraints equipped with feature (gk) for each node.

• V3 := {oil}l∈[ki]
i∈[m] denotes the minor conic constraint, where each node oil represents the i-th conic

constraint’s l-th component, with feature (bi,l).
• V4 := {qi}i∈[m] denotes the i-th conic constraint with feature (di).

Meanwhile, the SOCP graph includes four types of edges to model the interactions between the
decision variables and different constraint nodes:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• ejk ∈ V1 × V2 denote the edges between the variable node vj and the polyhedron constraint node
sk, with weight Fkj .

• ej,il ∈ V1 × V3 denote the edge between variable node vj and minor conic constraint node oil,
with weight Ai,lj .

• eji ∈ V1 × V4 denote the edge between the variable node vj and major conic constraint node qi,
with weight ci,j .

• eil,i ∈ V3 × V4 denote the edge between node oil and node qi, with a constant weight 1.

Remark 1 (Insights of Graph Design). For linear objectives and polyhedral constraints, our structure
builds upon foundational works (Chen et al., 2022b). To deal with nonlinear second-order cone
constraints, we exploit the linear relationships within the conic constraint, specifically, between Ai

and x, and between ci and x. By representing the left-hand side and right-hand side as separate
constraint nodes (V3 and V4), with linear interactions to decision nodes separately, and connecting
V3 and V4 via additional edges, we decompose the challenging nonlinear conic constraint into
components amenable to efficient graph representations. Such decomposition and representation are
not limited to the second-order cone, and we provide more discussion after Theorem 2
Remark 2 (SOCP→ QCQP1). One may note that SOC constraints, ∥Ax+ b∥2 ≤ c⊤x+ d, can be
transformed into quadratic constraints by squaring both sides, potentially enabling the application
of previous work on quadratic constraints (Wu et al., 2024; Chen et al., 2024b). However, this
transformation introduces two significant challenges: (i) the resulting quadratic coefficient matrix
A⊤A − cc⊤ may not be positive semidefinite, rendering previous work theoretically inapplicable
for such a non-convex QC; and (ii) the quadratic coefficient matrix A⊤A − cc⊤ may be dense,
losing the potential sparse/low-rank structure of A and c in the SOC constraint and making the graph
representation and message passing inefficient.
Remark 3 (Convex QCQP→ SOCP). Conversely, we may transform convex quadratic constraints
of the form x⊤Qx + c⊤x + d ≤ 0 into SOC constraints for more effective graph representation.
For example, we can apply matrix decomposition Q = LL⊤ where L ∈ Rn×r, and reformulate the
constraint as

∥∥[(1 + c⊤x+ d)/2; LTx]
∥∥
2
≤ (1− c⊤x− d)/2. Such a transformation is particularly

efficient for low-rank matrices Q where r ≪ n, as it reduces the complexity of the graph representa-
tion for original convex quadratic constraints, from quadratic node (Wu et al., 2024) to minor conic
constraint node via SOC graph representation. The convex quadratic objective in QCQP can also
be converted to a linear objective by adding the epigraph constraint (Alizadeh & Goldfarb, 2003).
Thus, a convex QCQP with n variables and m quadratic constraints is equivalent to an SOCP with
n+ 1 variables and m+ 1 conic constraints (potentially low-rank). We further provide a quantitative
comparison in the next section (Table 3).

4.2 MESSAGE PASSING IN SOCP-GNNS

Given the established graph representation of SOCPs, we propose message-passing (MP)-GNNs,
consisting of an embedding layer, T message-passing layers (each comprised of three sub-layers),
and a readout layer, detailed as follows:

• Embedding Layer: For all nodes, the input features h0,v, h0,s, h0,o, h0,q are initialized by embed-
ding the node features into a hidden space Rh0 , where h0 is the space dimension. Specifically,

h0,v ← ĝ01(h
v), ∀v ∈ V1, h0,s ← ĝ02(h

s),∀s ∈ V2

h0,o ← ĝ03(h
o), ∀o ∈ V3, h0,q ← ĝ04(h

q), ∀q ∈ V4

where ĝ0l are learnable embedding functions for l = 1, 2, 3, 4, and hv, hs, ho, hq denotes the node
features for v ∈ V1, s ∈ V2, o ∈ V3, q ∈ V4, respectively.

• Message-Passing Layer: As shown in Fig. 2, each message-passing layer consists of three sub-
layers for updating the features of nodes with learnable functions f t

l , g
t
l . For notation simplicity,

wij represents the weight of edge eij and τ(n) ∈ {1, 2, 3, 4} denotes the index of the node set for
a node n.

1Please refer to Appendix B.2 for detailed equivalent SOCP formulations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

– Updating for all constraint nodes (V1 → V2 + V3 + V4): ∀s ∈ V2 and ∀n ∈ V3 ∪ V4, we
update the embedding as:

ht+1,s ← gt1

(
ht,s,

∑
v∈V1

wv,sf
t
1(h

t,v)

)
, h̄t,n ← gtτ(n)−1

(
ht,n,

∑
v∈V1

wv,nf
t
τ(n)−1(h

t,v)

)

– Updating between major and minor conic constraint nodes (V3 → V4 and V4 → V3):
∀q ∈ V4 and ∀o ∈ V3, we update the embedding as:

ht+1,q ← gt4

(
h̄t,q,

∑
o∈V3

wo,qf
t
4(h̄

t,o)

)
, ht+1,o ← gt5

(
h̄t,o,

∑
q∈V4

wq,of
t
5(h

t+1,q)

)

– Updating for variable nodes (V2 + V3 + V4 → V1): ∀v ∈ V1, we update the embedding as:

ht+1,v ← gt6

(
ht,v,

∑
s∈V2

ws,vf
t
6(h

t+1,s),
∑
o∈V3

wo,vf
t
7(h

t+1,o),
∑
q∈V4

wq,vf
t
8(h

t+1,q)

)

• Readout layer: The readout layer leverages a learnable function fout to map the node embedding
hT,v output by the T -th (i.e., last) message-passing layer for v ∈ V1 ∪ V2 ∪ V3 ∪ V4, to a readout
y in a desired output space Ra, where a is the output dimension. For example:

– Graph-level scalar output (e.g., predicting SOCP feasibility with a = 1):

y = fout (I1, I2, I3, I4)

– Node-level vector output (e.g., predicting SOCP optimal solutions with a = n):

yi = fout
(
hT,vi , I1, I2, I3, I4

)
where I1 =

∑
v∈V1

hT,v, I2 =
∑

s∈V2
hT,s, I3 =

∑
o∈V3

hT,o, I4 =
∑

q∈V4
hT,q .

Num. of Nodes MP Complexity

(Wu et al., 2024) O(n2 +m) O(n3 +mn2)
(Chen et al., 2024b) O(mn) O(mn2)
Ours O(n+

∑m
i=0 ri) O(n ·

∑m
i=0 ri)

Figure 3: Complexity comparison of GNNs for con-
vex QCQP with n variables, m quadratic constraints, and
quadratic coefficient matrix of ranks ri ≤ n, i = 0, . . . ,m,
where i = 0 indicate the quadratic matrix from objective.

As mentioned in Remarks 2 and 3, our
SOCP-GNN also efficiently handles con-
vex QCQPs by reformulating them into
SOCP. Based on the GNN architecture de-
scribed above, we analyze both the node
and message passing complexity compared
to previous works on convex QCQP (Wu
et al., 2024; Chen et al., 2024b). Our
SOCP-GNN achieves the same order of
node and message passing complexity as
state-of-the-art GNNs designed specifically
for QCQP with general parameter coefficients. In practice, the coefficient matrices may exhibit
sparse or low-rank structure, resulting in different empirical performance: (i) When the quadratic
coefficients Qi are sparse, previous GNNs benefit from reduced connections and message passing.
After reformulating to SOCP via decomposition Qi = LiL

T
i , the resulting graph may lose this

sparsity. However, for structured sparse matrices (e.g., banded or block diagonal (Davis, 2006; Golub
& Van Loan, 2013)), sparsity is preserved in the SOCP-graph, and our SOCP-GNN inherits the
computational benefits. (ii) When the quadratic matrices exhibit low-rank structure, SOCP-GNN
becomes more efficient with reduced graph size and message passing complexity.

Therefore, SOCP-GNN not only extends theoretical applicability to the broader class of SOCP beyond
convex QCQPs, but also maintains competitive computational complexity when restricted to the
convex QCQP subclass. See detailed discussion in Appendix B.5.

5 UNIVERSALITY OF SOCP-GNN

With the established graph representation and corresponding GNN, we formally prove the universality
of the GNN for predicting key properties of SOCPs, like the instance feasibility and optimal solutions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5.1 BASIC DEFINITIONS

Definition 5.1 (Spaces of SOCP-Graphs). Let Gn,m,k1,...,km,b
SOCP denote the set of graph representations

for all SOCPs with n variables, m conic constraints with dimension k1, ..., km, and b polyhedron
constraints.
Definition 5.2 (Spaces of SOCP-GNNs). Let Fn,m,k1,...,km,b

SOCP (Ra) be the set of message passing
GNNs proposed in Sec. 4.2 that map the input graph in Gn,m,k1,...,km,b

SOCP to a target output in Ra. Each
GNN is parameterized by continuous embedding functions g0l1 , l1 ∈ [4], continuous hidden functions
in the message passing layers gtl2 , l2 ∈ [6] and f t

l3
, l3 ∈ [8], and the continuous readout function fout.

Definition 5.3 (Target mappings2). Let GSOCP be a graph representation of a SOCP problem. We
define the following target mappings.

• Feasibility mapping: Φfeas(GSOCP) = 1 if the SOCP is feasible and Φfeas(GSOCP) = 0 otherwise.

• Optimal solution mapping: Φsol(GSOCP) = x∗, where x∗ is the optimal solution of the SOCP3.

5.2 SEPARATION POWER OF THE SOCP WEISFEILER–LEHMAN TEST

To investigate the relationship between target properties and SOCP-GNNs, we first analyze the
separation power of SOCP-GNNs. The separation power of traditional GNNs is closely related to the
Weisfeiler-Lehman (WL) test (Weisfeiler & Leman, 1968), a classical algorithm to identify whether
two given graphs are isomorphic. To apply the WL test on SOCP-graphs, we design a modified WL
test, called the SOCP-WL test, in Algorithm 1. Below, we provide the main theoretical result about
the separation power of the SOCP-WL test.

Theorem 1. Let I, Î (with given sizes n,m, k1, ..., km, b, encoded by G, Ĝ ∈ Gn,m,k1,...,km,b
SOCP) be

two SOCP instances. If the G and Ĝ cannot be distinguished by the SOCP-WL test, then: For any
target mapping Φ : Gn,m,k1,...,km,b

SOCP → Ra,Φ(G) = Φ(Ĝ) always holds up to permutations.

The detailed proof can be found in Appendix C. By Theorem 1, we can see that: any two instances
which the SOCP-WL test cannot separate share the same target property we want (up to permutations).
Hence, demonstrating SOCP-GNN is equivalent to SOCP-WL guarantees its sufficient separation
power, as shown in Appendix C.

5.3 UNIVERSAL APPROXIMATION OF SOCP-GNNS

Beyond separation power, expressive power (i.e., approximation capability) is also critical. Here, we
provide the main theoretical results to validate the SOCP-GNN’s universal expressivity for SOCP,
i.e., there always exists an SOCP-GNN that can universally approximate target mappings in Def. 5.3
within given error tolerance:

Theorem 2. For any Borel regular probability measure P on the space of SOCPs Gn,m,k1,...,km,b
SOCP ,

any target mapping Φ : Gn,m,k1,...,km,b
SOCP → Ra defined in Def. 5.3, and any δ, ϵ > 0, there exists

F ∈ Fn,m,k1,...,km,b
SOCP (Ra) such that:

P{||F (GSOCP)− Φ(GSOCP)|| > δ} < ϵ. (2)

The detailed proof is provided in Appendix C. This Theorem formally establishes the universal
expressivity of the proposed SOCP-GNNs. The high-level proof structure follows established
foundations for LP in (Chen et al., 2022b). However, previous graph design and expressivity proof
can not directly be extended to the challenging non-linear SOC constraints. To this end, we leverage
the equivariance, convexity, and separability4 of the ℓ2 norm in SOC, and then establish the expressive
power of proposed SOCP-GNNs. We further extend the universal expressivity of the proposed GNN
to p-order cone programming in Appendix C.6, since the core lemmas in our proof are also satisfied
for the ℓp norm.

2For more target mappings, please refer to Def. B.1. Theorem 2 also holds for these target mappings.
3Since SOCP may admit multiple optimum, we choose the one with minimum l2 norm (Chen et al., 2022b).
4Please refer to those definitions in Definition C.2 and C.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6 GENERALIZATION ABILITY OF SOCP-GNNS

Beyond expressivity, the generalization capability of GNNs, i.e., how many samples are needed
for training to achieve good performance on unseen instances, is critical for real-world trustworthy
applications. While previous foundational works have focused on expressivity (Chen et al., 2022b;
2024b), the generalization ability of GNNs designed for optimization remains largely unexplored.
Addressing this gap, our work takes an initial step towards formally analyzing the generalization
properties of these models.

We consider a subclass of SOCP problems denoted as X ⊂ Gn,m,k1,...,km,b
SOCP with bounded parameters

(e, {Ai}mi=1, {bi}mi=1, {ci}mi=1, {di}mi=1, F, g, l, r), and denote N as the problem size, i.e., the total
dimension of all parameters. Without loss of generality, it is sufficient to consider the problem
parameters lie in a ball Bri = {x |∥x∥2 ≤ ri} with some positive radius ri.

Definition 6.1 (Lipschitz GNN). A SOCP-GNN f ∈ Fn,m,k1,...,km,b
SOCP (Ra) is said to be Lipschitz

with respect to the input domain X if and only if ∃L > 0 such that for each output component fi,
|fi(x)− fi(x

′)| ≤ L∥x− x′∥ holds for all x, x′ ∈ X . And L denotes the Lipschitz constant of f .

We also assume the GNN is Lipschitz (Def. 6.1) and denote all the SOCP-GNNs whose Lipschitz
constant is no more than L with respect to the input domain Bri ⊆ RN by AL,N . We remark that this
Lipschitz assumption is widely adopted in related works on the sample complexity/generalization
ability of graph neural networks (Pellizzoni et al., 2024; Garg et al., 2020; Tang & Liu, 2023; Huang
et al., 2024a). The Lipschitz condition holds in general if both the input domain and the parameter
space are bounded, while the GNNs are differentiable with respect to the inputs and parameters. We
then present the main theorem for the generalization capability of our GNN:
Theorem 3 (Generalization Bound for SOCP-GNNs). Consider the hypothesis class AL,N of SOCP-
GNNs with outputs in Y and input SOCP instances X with parameters in Bri . Let D be the uniform
distribution over X . Assume the loss function ℓ : Y × Y → R is bounded by p and q-Lipschitz
with respect to the first parameter when the second parameter is fixed. For a training set S of m
samples drawn i.i.d. from D, let h∗ = argminh∈AL,N

LD(h)5 be the population risk minimizer and
ĥS = argminh∈AT,N

L̂S(h) be the empirical risk minimizer. Then with probability at least 1− δ:

LD(ĥS))− LD(h∗) ≤ Ctask · B(m,N,L, r) + 2p
√
2 log(1/δ)/m

where the complexity term is B(m,N,L, r) = infϵ∈[0,r/2]

[
4ϵ+ 12√

m

∫ r/2

ϵ
C(v) dv

]
, with C(v) =√

(4Lri+v
v)N (1− (1−min((v

2Lri
)N , 1))m) log

(
2r
v + 2

)
. The task-dependent constant are defined

as: Ctask = 4q for graph-level predictions with outputs in [−r, r]; and Ctask = 4
√
2nq for node-level

predictions with outputs in [−r, r]n. Here, n denotes the number of decision variables.

The detailed proof can be found in Appendix D.3. The conditions in Theorem 3 are satisfied by
many common loss functions, including margin loss and MSE loss under mild regularity conditions.
Theorem 3 provides the first sample complexity analysis for WL-test based GNNs, particularly
SOCP-GNNs, establishing a solid theoretical foundation for task-specific sample complexity research.
As demonstrated in Theorem 3, sample complexity deteriorates as GNN complexity or problem
dimension increases (i.e., as L or N grows larger). This relationship is directly evident from the
proofs in Theorems 13 and 14.
Remark 4. We also analyze the VC dimension and pseudo dimension of SOCP-GNNs with scalar
outputs in Appendices D.1 and D.2, respectively, for SOCPs whose parameters can be encoded into
discrete labels (e.g., problems where all coefficients are binary-valued). However, these theoretical
results reveal practical limitations: for continuous problem parameters typical in real-world SOCPs,
the resulting VC and pseudo dimensions are often infinite. This necessitates more powerful analytical
tools capable of handling continuous feature spaces, such as Theorem 3. Under the same assumptions
as Theorem 3, our theoretical framework extends directly to other distributions over different SOCP
problems and other WL-based approaches in L2O paradigms, since the application of Tonelli’s
theorem, Jensen’s inequality, and contraction lemmas all remain valid as proven in Appendix D.3.

5Here, the population(true) risk is defined as LD(h) = Ex∼D(l(h(x), y(x))) and the empirical risk for
training set S is defined as

∑
x∈S l(h(x),y(x))

|S| , where y(x) is the true label of SOCP instance x, e.g. objective
value.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

7 NUMERICAL EXPERIMENTS

In this section, we demonstrate the efficiency of the proposed SOCP-GNN on both synthetic SOCP
instances and real-world power grid optimization problems.

To validate the empirical advantages of SOCP-Graphs (Sec. 4.1), we employ a fully-connected
neural network (FCNN) as one baseline, where the FCNN receives the same problem parameters
as input in vectorized form. This comparison isolates the benefits of the graph structure inherent
in SOCP-GNN relative to a standard neural network approach. To validate the designed message-
passing mechanisms (Sec. 4.2), we compare our SOCP-GNN with vanilla Message Passing Neural
Network (MPNN) (Gilmer et al., 2017) and Graph Isomorphism Network (GIN) (Xu et al., 2019).
We note that no existing graph representation has been specifically designed for SOCP problems
with non-linear constraints. Therefore, we compare all of those GNN-based baselines to the same
graph structure proposed in this work. Notably, vanilla MPNN and GIN perform message passing
based on the adjacency relationships, whereas our approach incorporates well-designed constraint-to-
variable and variable-to-constraint message passing. While SOCP instances can be reformulated as
QCQP, previous QCQP-GNN (Wu et al., 2024; Chen et al., 2024b) do not provide publicly available
implementations, and more importantly, they lack theoretical universal approximation guarantees for
SOCP instances since the associated quadratic constraints are not necessarily positive semidefinite.
Consequently, we focus our experimental comparison on vanilla MPNN, GIN and FCNN baselines.

7.1 SYNTHETIC SOCP INSTANCE

For dataset generation, we randomly sample coefficient matrices and constraint parameters following
the CVXPY example code structure and parameter settings (Chen et al., 2024b). Each instance
is solved in CVXPY to obtain ground truth solutions, forming our training dataset. We then train
SOCP-GNN using regular supervised learning procedures for optimal solution predictions. We also
test the feasibility classification in Appendix F.

As shown in Fig. 4(a), 4(b) and 4(c), we compare the solution relative error 6 of our SOCP-GNN
against the FCNN, Vanilla MPNN, and GIN baselines across three different problem scales over
100 training epochs. SOCP-GNN demonstrates superior performance across all scales, achieving
substantially lower error on both training and validation sets. For the large-scale 500-dim SOCP
with input dimension 452,400, our GNN achieves better prediction accuracy while using only
0.35Mb parameters compared to 110Mb for the FCNN baseline (shown in Fig. 5(c))—a 300×
reduction in model complexity. This demonstrates SOCP-GNN’s parameter efficiency and its ability
to effectively learn target mappings in SOCPs by leveraging the natural sparse graph structure of these
problems. All graph-based neural networks outperform FCNN significantly on synthetic datasets,
further validating the effectiveness of our graph representation. Notably, SOCP-GNN substantially
surpasses other GNN baselines, demonstrating the advantage of SOCP-GNN’s three-sublayer message
passing mechanism over methods relying solely on adjacency relationships.

7.2 SOC-BASED OPTIMAL POWER FLOW

Optimal power flow (OPF) is the fundamental problem in power systems optimization, determining
the most economical operating point while satisfying all constraints. The second-order cone (SoC)
relaxation transforms the non-convex AC power flow equations into tractable convex conic forms (see
formulations in Appendix E). This relaxation is exact for radial networks and provides near-optimal
solutions for meshed transmission systems (Gan et al., 2014; Madani et al., 2014), making it preferred
for real-time operations7

We evaluate SOCP-GNN on IEEE test systems ranging from 118 to 500-bus power grids (Babaeine-
jadsarookolaee et al., 2019). For each grid, we generate problem instances by randomly varying load

6The solution relative error (Chen et al., 2024b) between prediction x̂ and ground truth x∗ is as ∥x̂−x∗∥22
max(1,∥x∗∥22)

7We note that GNN-based methods have been directly applied to non-convex AC-OPF problems using the
physical graph structure of power grids (Yang et al., 2024b; Owerko et al., 2020; Varbella et al., 2024). However,
we do not compare with these methods directly because: (1) the SOC relaxation provides a lower bound for the
original AC-OPF problem, making direct performance comparison unfair, and (2) our focus is on demonstrating
GNN universality for convex SOC-relaxed problems. Nevertheless, extending our theoretical framework to
establish universality guarantees for non-convex AC-OPF remains an important direction for future work with
significant practical value.

8

https://www.cvxpy.org/examples/basic/socp.html

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

FCNN GIN MPNN SOCP-GNN

0 20 40 60 80 100
Training Epoch

10
2

10
1

10
0

S
ol

ut
io

n
R

el
at

iv
e

E
rr

or

(a) 50-dim SOCP

0 20 40 60 80 100
Training Epoch

10
1

10
0

S
ol

ut
io

n
R

el
at

iv
e

E
rr

or

(b) 100-dim SOCP

0 20 40 60 80 100
Training Epoch

10
1

10
0

S
ol

ut
io

n
R

el
at

iv
e

E
rr

or

(c) 500-dim SOCP

0 20 40 60 80 100
Training Epoch

10
2

10
1

10
0

S
ol

ut
io

n
R

el
at

iv
e

E
rr

or

(d) 118-bus grid

0 20 40 60 80 100
Training Epoch

10
3

10
2

10
1

10
0

10
1

S
ol

ut
io

n
R

el
at

iv
e

E
rr

or

(e) 200-bus grid

0 20 40 60 80 100
Training Epoch

10
2

10
1

10
0

10
1

10
2

10
3

S
ol

ut
io

n
R

el
at

iv
e

E
rr

or

(f) 500-bus grid

Figure 4: (a)-(c): Performance comparison in predicting solutions of synthetic SOCP instances.
The SOCP size are (50,10,10), (100,50,50), and (500,100,100), respectively. (d)-(f):
Performance comparison in predicting solutions of SoC-OPF. The SOCP size are (596,854,555),
(764,1288,732), and (2182,3454,2181), respectively. Here, we denote the size of an
SOCP instance by a tuple (n, b,m), where n represents the number of decision variables, b denotes
the number of polyhedral constraints, and m indicates the number of second-order cone constraints.
The total input parameters for an SOCP (n, b,m) are of dimension O(n · (b+m)).

demands and generator costs, and introducing random line outages (i.e., loss of line connection) to
simulate realistic operational scenarios. We compare against CVXPY with MOSEK solver (on CPU)
and learning-based approaches, including various GNNs and FCNN (on both CPU and GPU for a
fair comparison). Results in Fig.4(d),4(e), and 4(f) show that SOCP-GNN achieves lower errors
across all problem scales with significantly fewer parameters than the FCNN baseline in real-world
scenarios. For real-world OPF problems with sparse structures, SOCP-GNN performs better than on
randomly generated instances in both prediction errors and inference time (shown in Fig. 5(a) and Fig.
5(b)), highlighting the potential for real-world applications. Consistent with the results obtained from
the synthetic dataset, experiments on real-world OPF problems further demonstrate the effectiveness
of our graph representation and the benefits of our three-layer message passing mechanism.

7.3 EMPIRICAL STUDY ON SAMPLE/MODEL COMPLEXITY AND SIZE GENERALIZATION

In this section, we investigate the performance of SOCP-GNNs under different model sizes and
training samples. The detailed experiment settings can be found in Appendix F.4. As shown in
Fig. 5(a)-5(d), SOCP-GNNs are both scalable and fast at solving SOCPs with superior accuracy.
Since the learnable functions are applied feature-wise, independent of the number of nodes and
edges, the memory cost of SOCP-GNNs remains constant across different problem sizes. We then
analyze the sensitivity of SOCP-GNN to different hidden sizes and training samples as shown in
Fig. 5(e). Both training and validation losses decrease as hidden layer size or number of training
samples increases, demonstrating the model’s capacity to benefit from additional parameters and data
while validating Theorem 3.

To further validate the Lipschitz assumption in Theorem 3, we use projected optimization method
(Gouk et al., 2020) to control the Lipschitz coefficient of SOCP-GNN. The results can be found
in Appendix F.5. From the result, we can see that: the generalization gap decreases as the model
becomes less complex (i.e. we decrease the Lipschitz constant L of SOCP-GNN) as the train error

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

CVXPY FCNN (GPU)
FCNN (CPU)

GIN (GPU)
GIN (CPU)

MPNN (GPU)
MPNN (CPU)

SOCP-GNN (GPU)
SOCP-GNN (CPU)

100 200 300 400 500
Num. of Vars.

10
4

10
3

10
2

10
1

10
0

S
ol

vi
ng

 T
im

e
(s

)

(a) SOCP solving time

500 1000 1500 2000
Num. of Vars.

10
4

10
3

10
2

10
1

10
0

10
1

S
ol

vi
ng

 T
im

e
(s

)

(b) SoC-OPF solving time

100 200 300 400 500
Num. of Vars.

10
0

10
1

10
2

M
od

el
 S

iz
e

(M
B

)

(c) Model size in SOCP

100 200 300 400 500
Num. of Vars.

10
0

10
1

10
2

M
od

el
 S

iz
e

(M
B

)

(d) Model size in SoC-OPF

625 1250 2500 5000
Number of Samples

10
2

6 × 10
3

2 × 10
2

Tr
ai

n
Lo

ss

Hidden Layer Size
32
64

128
256

625 1250 2500 5000
Number of Samples

10
2

2 × 10
2

V
al

id
at

io
n

Lo
ss

Hidden Layer Size
32
64

128
256

(e) SOCP-GNN training loss (Left) and validation loss (Right) under
different hidden-layer embedding sizes and number of training samples.

10 20 40 80 160
Dimension of Testing Instances

10

20

40

80

160D
im

en
si

on
 o

f T
ra

in
in

g
In

st
an

ce
s 0.010 0.013 0.020 0.037 0.057

0.012 0.014 0.021 0.037 0.054

0.010 0.010 0.019 0.033 0.052

0.018 0.018 0.020 0.029 0.043

0.030 0.025 0.024 0.026 0.028

0.01

0.02

0.03

0.04

0.05

Te
st

 lo
ss

(f) Training and Testing of SOCP-
GNN on different problem sizes.

Figure 5: (a)-(d): inference time and model size comparison between GNN and FCNN in SOCP and
SoC-OPF problems. (e): sensitivity analysis of GNN on hidden-layer embedding sizes and number
of training samples. (f): generalization ability analysis of GNN on SOCP problems of different sizes.

increases. This enhances the tradeoff between the expressive power and generalization ability of
SOCP-GNNs, as indicated in Theorem 3.

We also investigate the size generalization capability from small to large-scale problems, with results
shown in Fig. 5(f). Models trained on larger training samples perform well on smaller testing
instances, while those trained on small samples generalize less effectively to larger SOCP instances.
This observation motivates further research to theoretically characterize the size generalization ability
of GNN training (Huang et al., 2024b).

8 CONCLUSIONS, LIMITATIONS, AND FUTURE WORKS

This paper introduces a novel graph representation for SOCP, a fundamental class of convex optimiza-
tion problems covering LP, QP, and convex QCQP. We design a novel GNN architecture that exploits
inherent SOC structure for predicting key properties, including feasibility and optimal solutions, with
established universal expressivity guarantees. Our framework extends to p-order cone programming,
broadening GNN applicability in a subclass of conic and polynomial optimization. We establish the
first general framework for analyzing the generalization capability of SOCP-GNN or other WL-based
GNNs, bridging an important research gap. Comprehensive experiments validate both our theoretical
predictions and practical performance.

While our work establishes universality and sample complexity guarantees, several important limi-
tations suggest promising future directions. The parameter complexity of GNNs for optimization
problems remains a significant challenge shared by prior WL-test-based frameworks. One promising
avenue involves combining algorithm-unrolling approaches with the WL-based framework to develop
a unified theoretical analysis of GNNs for optimization. Another important direction is extending
the GNN paradigm beyond convex settings to handle semidefinite programs and general polynomial
optimization problems. Such extensions would require developing new graph representations and
theoretical frameworks capable of capturing the more complex variable-constraint relations. Fur-
thermore, exploring metrics beyond the naive ℓ2 norm for the SOCP parameter space is crucial. An
optimization-property-aware distance could significantly lower the covering number by better fitting
the problem’s intrinsic structure, directly yielding a tighter generalization bound.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Farid Alizadeh and Donald Goldfarb. Second-order cone programming. Mathematical programming,
95(1):3–51, 2003.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural networks.
arXiv preprint arXiv:2006.15646, 2020.

Sogol Babaeinejadsarookolaee, Adam Birchfield, Richard D Christie, Carleton Coffrin, Christopher
DeMarco, Ruisheng Diao, Michael Ferris, Stephane Fliscounakis, Scott Greene, Renke Huang,
et al. The power grid library for benchmarking ac optimal power flow algorithms. arXiv preprint
arXiv:1908.02788, 2019.

Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen
Vitercik. How much data is sufficient to learn high-performing algorithms? generalization
guarantees for data-driven algorithm design. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pp. 919–932, 2021.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch:
Generalization guarantees and limits of data-independent discretization. Journal of the ACM, 71
(2):1–73, 2024.

Qian Chen, Tianjian Zhang, Linxin Yang, Qingyu Han, Akang Wang, Ruoyu Sun, Xiaodong Luo, and
Tsung-Hui Chang. Symilo: A symmetry-aware learning framework for integer linear optimization.
Advances in Neural Information Processing Systems, 37:24411–24434, 2024a.

Qian Chen, Lei Li, Qian Li, Jianghua Wu, Akang Wang, Ruoyu Sun, Xiaodong Luo, Tsung-Hui
Chang, and Qingjiang Shi. When gnns meet symmetry in ilps: an orbit-based feature augmentation
approach. arXiv preprint arXiv:2501.14211, 2025.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark. Journal of Machine Learning
Research, 23(189):1–59, 2022a.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear
programs by graph neural networks. arXiv preprint arXiv:2209.12288, 2022b.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing mixed-integer
linear programs by graph neural networks, 2023.

Ziang Chen, Xiaohan Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. Expressive power of graph
neural networks for (mixed-integer) quadratic programs. arXiv preprint arXiv:2406.05938, 2024b.

Ziang Chen, Jialin Liu, Xiaohan Chen, Xinshang Wang, and Wotao Yin. Rethinking the capacity of
graph neural networks for branching strategy. arXiv preprint arXiv:2402.07099, 2024c.

Timothy A Davis. Direct methods for sparse linear systems. SIAM, 2006.

Giuseppe Alessio D’Inverno, Monica Bianchini, and Franco Scarselli. Vc dimension of graph neural
networks with pfaffian activation functions. Neural Networks, 182:106924, 2025. ISSN 0893-6080.
doi: https://doi.org/10.1016/j.neunet.2024.106924. URL https://www.sciencedirect.
com/science/article/pii/S0893608024008530.

Billy J Franks, Christopher Morris, Ameya Velingker, and Floris Geerts. Weisfeiler-leman at the
margin: When more expressivity matters. arXiv preprint arXiv:2402.07568, 2024.

Lingwen Gan, Na Li, Ufuk Topcu, and Steven H Low. Exact convex relaxation of optimal power
flow in radial networks. IEEE transactions on automatic control, 60(1):72–87, 2014.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. In International conference on machine learning, pp. 3419–3430. PMLR,
2020.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks, 2019.

11

https://www.sciencedirect.com/science/article/pii/S0893608024008530
https://www.sciencedirect.com/science/article/pii/S0893608024008530

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. Pmlr, 2017.

Donald Goldfarb and Wotao Yin. Second-order cone programming methods for total variation-based
image restoration. SIAM Journal on Scientific Computing, 27(2):622–645, 2005.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE international joint conference on neural networks, 2005., volume 2,
pp. 729–734. IEEE, 2005.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regularisation of neural networks
by enforcing lipschitz continuity, 2020. URL https://arxiv.org/abs/1804.04368.

Yu He and Ellen Vitercik. Primal-dual neural algorithmic reasoning, 2025.

Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan Li.
On the stability of expressive positional encodings for graphs, 2024a.

Zheng Huang, Qihui Yang, Dawei Zhou, and Yujun Yan. Enhancing size generalization in graph neural
networks through disentangled representation learning. In Proceedings of the 41st International
Conference on Machine Learning, pp. 20365–20381, 2024b.

Haotian Ju, Dongyue Li, Aneesh Sharma, and Hongyang R Zhang. Generalization in graph neural
networks: Improved pac-bayesian bounds on graph diffusion. In International conference on
artificial intelligence and statistics, pp. 6314–6341. PMLR, 2023.

Bingheng Li, Linxin Yang, Yupeng Chen, Senmiao Wang, Qian Chen, Haitao Mao, Yao Ma, Akang
Wang, Tian Ding, Jiliang Tang, et al. Pdhg-unrolled learning-to-optimize method for large-scale
linear programming. arXiv preprint arXiv:2406.01908, 2024a.

Ke Li and Jitendra Malik. Learning to optimize, 2016. URL https://arxiv.org/abs/1606.
01885.

Qian Li, Tian Ding, Linxin Yang, Minghui Ouyang, Qingjiang Shi, and Ruoyu Sun. On the power of
small-size graph neural networks for linear programming. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024b.

Qian Li, Minghui Ouyang, Tian Ding, Yuyi Wang, Qingjiang Shi, and Ruoyu Sun. Towards explaining
the power of constant-depth graph neural networks for linear programming. In The Thirteenth
International Conference on Learning Representations, 2025.

Renjie Liao, Raquel Urtasun, and Richard S. Zemel. A pac-bayesian approach to generalization
bounds for graph neural networks. CoRR, abs/2012.07690, 2020.

Xinfu Liu, Zuojun Shen, and Ping Lu. Entry trajectory optimization by second-order cone program-
ming. Journal of Guidance, Control, and Dynamics, 39(2):227–241, 2016.

Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. Applications of
second-order cone programming. Linear algebra and its applications, 284(1-3):193–228, 1998.

Ramtin Madani, Somayeh Sojoudi, and Javad Lavaei. Convex relaxation for optimal power flow
problem: Mesh networks. IEEE Transactions on Power Systems, 30(1):199–211, 2014.

Ian Horrocks Matthew Morris, Bernardo Cuenca Grau. Orbit-equivariant graph neural networks. In
2024 The International Conference on Learning Representations(ICLR), pp. 7056–7062. ICLR,
2024.

Andreas Maurer. A vector-contraction inequality for rademacher complexities. In International
Conference on Algorithmic Learning Theory, pp. 3–17. Springer, 2016.

Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44, 2021.

12

https://arxiv.org/abs/1804.04368
https://arxiv.org/abs/1606.01885
https://arxiv.org/abs/1606.01885

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Christopher Morris, Floris Geerts, Jan Tönshoff, and Martin Grohe. Wl meet vc. In International
conference on machine learning, pp. 25275–25302. PMLR, 2023.

Damian Owerko, Fernando Gama, and Alejandro Ribeiro. Optimal power flow using graph neural
networks. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5930–5934. IEEE, 2020.

Xiang Pan, Tianyu Zhao, Minghua Chen, and Shengyu Zhang. Deepopf: A deep neural network
approach for security-constrained dc optimal power flow. IEEE Transactions on Power Systems,
36(3):1725–1735, 2020.

Paolo Pellizzoni, Till Hendrik Schulz, Dexiong Chen, and Karsten Borgwardt. On the expressivity and
sample complexity of node-individualized graph neural networks. Advances in Neural Information
Processing Systems, 37:120221–120251, 2024.

Chendi Qian and Christopher Morris. Towards graph neural networks for provably solving convex
optimization problems. arXiv preprint arXiv:2502.02446, 2025a.

Chendi Qian and Christopher Morris. Principled data augmentation for learning to solve quadratic
programming problems. arXiv preprint arXiv:2506.01728, 2025b.

Chendi Qian, Didier Chételat, and Christopher Morris. Exploring the power of graph neural networks
in solving linear optimization problems. In International conference on artificial intelligence and
statistics, pp. 1432–1440. PMLR, 2024.

Rajiv Sambharya and Bartolomeo Stellato. Data-driven performance guarantees for classical and
learned optimizers, 2024.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis dimension
of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Mohamed Shamseldein. A hybrid gnn-lse method for fast, robust, and physically-consistent ac power
flow. Electric Power Systems Research, 252:112380, 2026.

Qingjiang Shi, Weiqiang Xu, Tsung-Hui Chang, Yongchao Wang, and Enbin Song. Joint beamforming
and power splitting for miso interference channel with swipt: An socp relaxation and decentralized
algorithm. IEEE Transactions on Signal Processing, 62(23):6194–6208, 2014.

Michael Sucker and Peter Ochs. A generalization result for convergence in learning-to-optimize,
2025.

Huayi Tang and Yong Liu. Towards understanding generalization of graph neural networks. In
Proceedings of the 40th International Conference on Machine Learning. PMLR, 2023.

Paul Tseng. Second-order cone programming relaxation of sensor network localization. SIAM
Journal on Optimization, 18(1):156–185, 2007.

Anna Varbella, Damien Briens, Blazhe Gjorgiev, Giuseppe Alessio D’Inverno, and Giovanni
Sansavini. Physics-informed gnn for non-linear constrained optimization: Pinco a solver for
the ac-optimal power flow, 2024. URL https://arxiv.org/abs/2410.04818.

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

B. Ju. Weisfeiler and A. A. Leman. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Tekhnicheskaya Informatsiya, Seriya 2, (9):19–21, 1968.

13

https://arxiv.org/abs/2410.04818

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chenyang Wu, Qian Chen, Akang Wang, Tian Ding, Ruoyu Sun, Wenguo Yang, and Qingjiang Shi.
On representing convex quadratically constrained quadratic programs via graph neural networks.
arXiv preprint arXiv:2411.13805, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Junjie Yang, Tianlong Chen, Mingkang Zhu, Fengxiang He, Dacheng Tao, Yingbin Liang, and
Zhangyang Wang. Learning to generalize provably in learning to optimize. In Proceedings of
The 26th International Conference on Artificial Intelligence and Statistics, pp. 9807–9825. PMLR,
2023.

Linxin Yang, Bingheng Li, Tian Ding, Jianghua Wu, Akang Wang, Yuyi Wang, Jiliang Tang, Ruoyu
Sun, and Xiaodong Luo. An efficient unsupervised framework for convex quadratic programs via
deep unrolling, 2024a.

Mei Yang, Gao Qiu, Junyong Liu, Youbo Liu, Tingjian Liu, Zhiyuan Tang, Lijie Ding, Yue Shui, and
Kai Liu. Topology-transferable physics-guided graph neural network for real-time optimal power
flow. IEEE Transactions on Industrial Informatics, 20(9):10857–10872, 2024b.

Morris Yau, Nikolaos Karalias, Eric Lu, Jessica Xu, and Stefanie Jegelka. Are graph neural networks
optimal approximation algorithms? Advances in Neural Information Processing Systems, 37:
73124–73181, 2025.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small relu networks are powerful memorizers: a tight
analysis of memorization capacity. Advances in neural information processing systems, 32, 2019.

14

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Contents
A Discussions on Related Works 16

A.1 GNN for Constrained Optimization . 16
A.2 Generalization Analysis of GNNs and L2O paradigms 17

B Preliminary and Basic Concepts 18
B.1 Basic concepts of SOCPs . 18
B.2 Equivalent Formulations of SOCP . 18
B.3 Target Mappings for SOCP . 20
B.4 An Example for SOCP graphs . 20
B.5 Complexity Comparison with SOTA Works: . 20

C Proof of Main Theorem 21
C.1 SOCP WL-test . 21
C.2 The connection between the WL-indistinguishablity and target property 22
C.3 The measurable property of target mapping . 27
C.4 Relation between SOCP-GNN’s separation power and SOCP-WL test’s separation

power . 31
C.5 Main theorem’s proof . 32
C.6 Extension to p-order cone programming . 34

D Proof of theorem 3 35
D.1 VC-dimension based approaches for binary classification 35
D.2 Pseudo-dimension based approaches for real-valued scalar prediction 35
D.3 Rademacher complexity based approaches . 36

E SOCP-based Formulation for OPF 46

F Experiment Settings and Supplementary Results 47
F.1 Data generation . 47
F.2 Implementations and training settings for predicting the optimal solution and feasibility 48
F.3 Results for predicting optimal solutions and feasibility 49
F.4 Empirical study on sample/model complexity and size generalization 49
F.5 Empirical study on the Lipschitz regularization 49

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.

A DISCUSSIONS ON RELATED WORKS

A.1 GNN FOR CONSTRAINED OPTIMIZATION

In response to the growing demand for solving large-scale optimization problems in real-time,
“learning to optimize” paradigms have emerged across multiple domains (Pan et al., 2020) (Monga
et al., 2021). Among various neural approaches, Graph Neural Networks (GNNs) have demonstrated
particular effectiveness for optimization problems with inherent graph structures, leveraging the
natural correspondence between problem formulations and graph representations (Chen et al., 2022b;
Wu et al., 2024; Chen et al., 2023)(Varbella et al., 2024; Shamseldein, 2026).

To understand the fundamental capabilities of GNNs in optimization contexts, research has examined
multiple theoretical and practical aspects, including expressivity (Chen et al., 2022b; 2024c), gen-
eralization properties (Balcan et al., 2021; 2024), and symmetry preservation (Chen et al., 2024a;
Matthew Morris, 2024; Chen et al., 2025; Qian & Morris, 2025b). The analysis of GNN expres-
sive power in optimization is primarily guided by two complementary theoretical paradigms: the
Weisfeiler-Lehman (WL)-test-based framework, which characterizes what optimization properties
GNNs can theoretically distinguish, and the Algorithm-Unrolling (AU)-based framework, which
establishes connections between classical optimization algorithms and GNN architectures through
direct algorithmic simulation.

A.1.1 WL-BASED FRAMEWORKS

This section reviews optimization problems where GNNs have been proven to achieve universal
approximation capabilities through theoretical frameworks based on Weisfeiler-Leman (WL) tests.

Linear Programming (LP) (Chen et al., 2022b): It establishes a foundational theoretical framework
for analyzing GNN expressivity in solving LPs through WL-tests. Building upon the bipartite graph
representation introduced by (Gasse et al., 2019), they demonstrate a formal connection between
GNN expressivity and WL-tests on graph structures. Their key theoretical contribution proves that
GNNs achieve universality over the parameter space of LPs. Specifically, they show the existence
of message-passing GNNs capable of reliably approximating fundamental LP properties, including
feasibility, optimal objective value, and optimal solutions.

Mixed-Integer Linear Programming (MILP) (Chen et al., 2023): The extension to MILP presents
significant theoretical challenges not encountered in the continuous LP setting. The fundamental
limitation arises from the discrete nature of integer variables, where GNN expressivity remains
constrained by the discriminative power of WL-tests. A critical issue emerges: two MILP instances
that are indistinguishable under WL-tests may exhibit fundamentally different properties regarding
feasibility and optimal solutions. To address these challenges, the authors identify a restricted
class of MILPs satisfying the “unfoldable” property, for which universality guarantees can be
established. Additionally, they demonstrate that augmenting the graph representation with random
node features enables GNNs to achieve universality over the complete class of MILP problems,
effectively circumventing the limitations imposed by deterministic WL-tests.

Linearly Constrained Quadratic Programming (LCQP) (Chen et al., 2024b): While modeling
linear constraints through a bipartite graph is relatively straightforward, extending graph-based ap-
proaches to handle quadratic objective functions presents challenges. It addresses this by introducing
self-connections within variable nodes to capture quadratic interactions in the objective function.
Their framework extends a broader class of mixed-integer LCQP problems satisfying the MP-tractable
property, establishing universality results for GNNs on specific computational tasks within this class.

The authors further extend their approach to convex quadratically constrained quadratic programming
(QCQP) through dynamic edge update mechanisms, as detailed in their supplementary materials,
demonstrating the framework’s adaptability to more complex constraint structures.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Convex Quadratically Constrained Quadratic Programming (QCQP) (Wu et al., 2024): It pro-
vides a comprehensive treatment of convex QCQPs, addressing the significant complexity introduced
by multiple convex quadratic constraints. The key innovation lies in their sophisticated design of edge
weights and specialized GNN architecture, which together ensure that the resulting message-passing
framework achieves universality for the complete class of convex QCQP problems. This represents
a significant advancement in handling optimization problems with complex constraint structures
through GNNs.

A.1.2 AU-BASED FRAMEWORKS

Algorithm unrolling represents a fundamental approach in learning-based optimization, enhancing
interpretability by directly simulating classical algorithmic procedures through neural network archi-
tectures. This section reviews successful applications of GNNs in unrolling established optimization
algorithms.

Interior Point Method : The unrolling of Interior Point Methods (IPM) establishes a direct and
interpretable correspondence between classical optimization algorithms and GNNs. (Qian et al.,
2024) first provides theoretical foundations demonstrating that standard IPM iterations for LPs can
be precisely simulated through sequences of GNN message-passing operations. This framework
was extended to the broader class of LCQPs (Qian & Morris, 2025a), maintaining the fundamental
correspondence between algorithmic steps and neural computations.

Primal-Dual Hybrid Gradient: The unrolling of Primal-Dual Hybrid Gradient (PDHG) algorithms
provides a scalable framework for accelerating first-order optimization methods through learning-
based approaches. (Li et al., 2024a) introduces PDHG-Net for large-scale LPs, demonstrating
that optimal LP solutions can be approximated using polynomial-sized neural networks. This
foundational work establishes both theoretical guarantees and practical scalability for the unrolled
PDHG framework. The extension to QP represents another advancement (Yang et al., 2024a), which
introduces an innovative unsupervised training methodology that directly incorporates Karush-Kuhn-
Tucker (KKT) optimality conditions into the loss function.

Specialized Algorithms for Structured Problems: For optimization problems with specialized
structures, researchers have developed tailored algorithmic approaches that leverage problem-specific
properties for effective GNN unrolling.

For covering and packing LPs, (Li et al., 2024b) design variants of the Awerbuch-Khandekar al-
gorithm, successfully unrolling these through careful exploitation of activation function properties.
Specifically, they utilize ELU and sigmoid activation functions to simulate exponential operations and
Heaviside step functions, respectively, enabling reproduction of the classical algorithm’s behavior
within the GNN framework.

In the context of sparse binary LPs, (Li et al., 2025) proposes a constant-round distributed algorithm
that applies to almost all sparse binary LP instances. This algorithm naturally aligns with constant-
depth, constant-width GNN architectures, providing theoretical justification for the empirical success
of shallow networks in this domain.

(Yau et al., 2025) demonstrates that polynomial-sized GNNs can effectively learn powerful approx-
imation algorithms for Maximum Constraint Satisfaction Problems (Max-CSP). Their approach
leverages the equivalence between projected gradient descent on low-rank vector formulations of
relaxed semidefinite programs and local message-passing operations inherent in GNN architectures.

Additionally, (He & Vitercik, 2025) aligns GNN architectures with primal-dual algorithmic reasoning
for minimum hitting set problems, achieving empirical success in generalization across problem sizes
and out-of-distribution scenarios.

A.2 GENERALIZATION ANALYSIS OF GNNS AND L2O PARADIGMS

Generalization of GNNs: Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli et al.,
2008) are state-of-the-art architectures proposed for graph learning. They leverage neighborhood
information to capture the structured properties of a graph. To ensure effective learning, several
approaches have been introduced to study their sample complexity, which is defined as the number
of data required to generalize well to unseen data from the same underlying distribution. (Scarselli
et al., 2018) connects the VC dimension to network parameters, activation functions (like piecewise

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

polynomial activation functions), and graph size. Furthermore, (D’Inverno et al., 2025) derives upper
bounds for the VC dimension of Graph Neural Networks using more general Pfaffian activation
functions (like sigmoid and tanh), relating generalization capacity to network hyperparameters and
the number of colors determined by the Weisfeiler-Lehman test. (Morris et al., 2023) then tightly link
the generalization ability to GNN expressivity via the Weisfeiler-Leman(WL) test. Further, (Franks
et al., 2024) uses margin theory to show that greater expressivity only improves generalization if it
also increases the margin between classes. Based on Rademacher complexity, (Garg et al., 2020)
gives the first data-dependent generalization bounds for GNNs using Rademacher complexity, which
are significantly tighter than previous VC-dimension-based guarantees. For node individualization
schemes emerging these days, (Pellizzoni et al., 2024) uses both VC dimension and Rademacher
complexity to give the generalization bound via WL-test and covering number bounds. Moreover,
several researches (Ju et al., 2023; Liao et al., 2020; Tang & Liu, 2023) give the generalization bound
from other perspectives, like the PAC-Bayes bound and stochastic optimization.

Generalization of L2O paradigms: There are two main parts of researches in the study of general-
ization ability of L2O paradigms: optimizer generalization, i.e., the performance gap between trained
optimizees(tasks) and unseen optimizees, and optimizee generalization, i.e., the performance gap
between training data and unseen test data of the same underlying optimizees (Yang et al., 2023).
We only review the optimzee generalization part and the data-driven method generalization studies
below.

(Balcan et al., 2021) first proposes a unified sample complexity framework for the algorithm parameter
configuration based on pseudo-dimension. (Yang et al., 2023) shows that local entropy measures
loss landscape flatness, similar to the Hessian. It then uses both metrics as regularizers to meta-train
optimizers that provably learn to find generalizable models. (Sucker & Ochs, 2025) combines PAC-
Bayesian generalization theory with variational analysis to show that a learned algorithm’s trajectory
will converge to a critical point with high probability on unseen problems. (Sambharya & Stellato,
2024) develops a general data-driven framework using PAC-Bayes theory to provide probabilistic
performance guarantees for both classical and learned optimizers over a fixed number of iterations.

B PRELIMINARY AND BASIC CONCEPTS

B.1 BASIC CONCEPTS OF SOCPS

For problem 1, we denote all the feasible solution by:

Xfeasible :=
{
x ∈ Rn | Fx ≤ g; l ≤ x ≤ r; ∥Aix+ bi∥2 ≤ cTi x+ di, ∀i ∈ [m]

}
. (3)

If Xfeasible is not empty, problem 1 is said to be feasible; otherwise, it is said to be infeasible. A
feasible SOCP is bounded if and only if the objective function is bounded from below in Xfeasible,
i.e., ∃a ∈ R such that

eTx ≥ a,∀x ∈ Xfeasible

Otherwise, the SOCP instance is unbounded.

For a feasible and bounded SOCP, its optimal value is defined as: inf {eTx, ∀x ∈ Xfeasible}.
Moreover, x∗ is said to be an optimal solution if it’s feasible and

eTx∗ ≤ eTx, ∀x ∈ Xfeasible

Unlike convex QCQP, an SOCP instance may not admit an optimal solution even when it’s feasible
and bounded (see corollary 4). Moreover, an SOCP instance can also have multiple solutions.

B.2 EQUIVALENT FORMULATIONS OF SOCP

Dimension Reduction of SOC Constraints: Consider a second-order cone (SOC) constraint of
the form ∥Ax+ b∥2 ≤ cTx+ d, where A ∈ Rk×n has rank r ≤ min(k, n). Let the singular value
decomposition of A be A = UΣV T , where U ∈ Rk×r has orthonormal columns, Σ ∈ Rr×r is
diagonal with positive entries, and V ∈ Rn×r has orthonormal columns.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Since U has orthonormal columns, we have UTU = Ir and UUT is the orthogonal projection onto
the column space of A. We can decompose the vector b as

b = b∥ + b⊥, where b∥ = UUT b, b⊥ = (Ik − UUT)b (4)
where b∥ lies in the column space of A and b⊥ is orthogonal to it.

Define A′ = ΣV T ∈ Rr×n and b′ = UT b∥ ∈ Rr. Then:

A = UΣV T = UA′ (5)
and

Ax+ b = UA′x+ UUT b+ (Ik − UUT)b = U(A′x+ UT b∥) + b⊥ (6)

Since U has orthonormal columns and b⊥ is orthogonal to the column space of U , we have:

∥Ax+ b∥2 = ∥U(A′x+ UT b∥) + b⊥∥2 =

∥∥∥∥(A′x+ UT b∥
∥b⊥∥2

)∥∥∥∥
2

(7)

This reformulation reduces the constraint to at most r + 1 rows, which is beneficial when k ≫ r.

Reformulation of SOCP to QCQP: A SOC constraint ∥Ax+ b∥2 ≤ cTx+ d can be equivalently
written as the quadratic constraint (may be non-convex) by squaring both sides as:

(Ax+ b)T (Ax+ b) ≤ (cTx+ d)2

xTATAx+ 2bTAx+ ∥b∥22 ≤ xT ccTx+ 2dcTx+ d2

provided that cTx+ d ≥ 0. Rearranging terms yields:

xT (ATA− ccT)x+ 2(bTA− dcT)x+ (∥b∥22 − d2) ≤ 0 (8)
This transformation is valid only when the right-hand side of the original SOC constraint is non-
negative, which must be enforced as an additional linear constraint cTx+ d ≥ 0.

Reformulation of Convex QCQP to SOCP: Conversely, we may transform convex quadratic
constraints of the form x⊤Qx + c⊤x + d ≤ 0 into SOC constraints. Since Q ∈ Sn+ is positive
semidefinite, we can apply matrix decomposition Q = LL⊤ where L ∈ Rn×r with r = rank(Q).
This decomposition can be obtained through Cholesky factorization when Q is positive definite, or
through eigenvalue decomposition in the general case.

The quadratic constraint can then be reformulated as:

x⊤Qx+ c⊤x+ d ≤ 0

x⊤LL⊤x+ c⊤x+ d ≤ 0

∥L⊤x∥22 + c⊤x+ d ≤ 0

Using the rotated second-order cone representation, we can reformulate the constraint as:∥∥∥∥(1+c⊤x+d
2

L⊤x

)∥∥∥∥
2

≤ 1− c⊤x− d

2
(9)

This formulation is valid when 1−c⊤x−d ≥ 0, which ensures that the right-hand side is non-negative.
The constraint c⊤x+ d ≤ 0 from the original quadratic form is automatically satisfied when the SOC
constraint holds.

For the convex quadratic objective function minx x⊤Qx+ c⊤x+ d, we can reformulate it using an
epigraph variable τ :

min
x,τ

τ

s.t. x⊤Qx+ c⊤x+ d ≤ τ

Using the matrix decomposition Q = LL⊤, this becomes:
min
x,τ

τ

s.t.
∥∥∥∥(1−τ+c⊤x+d

2
L⊤x

)∥∥∥∥
2

≤ 1 + τ − c⊤x− d

2

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.3 TARGET MAPPINGS FOR SOCP

Then, we propose all our target mappings.
Definition B.1 (Target mappings). Let GSOCP be a graph representation of a SOCP problem. We
define the following target mappings.

• Feasibility mapping: We define Φfeas(GSOCP) = 1 if the SOCP problem is feasible and
Φfeas(GSOCP) = 0 otherwise.

• Boundedness mapping: For a feasible SOCP problem, we define Φbound(GSOCP) = 1 if the
SOCP problem is bounded and Φbound(GSOCP) = 0 otherwise.

• Optimal value mapping: For a feasible and bounded SOCP problem, we set Φopt(GSOCP)
to be its optimal objective value.

• Solution Attainability Mapping : For a feasible and bounded SOCP problem, its optimal
value (infimum) is finite, but this value is not necessarily attained by a feasible point.
Therefore, we introduce a mapping Φattain(GSOCP) which equals 1 if an optimal solution
exists, and 0 otherwise.

• Optimal solution mapping: For an SOCP problem that admits a solution, its optimal
solution might not be unique. Therefore, we define the optimal solution mapping to be
Φsol(GSOCP) = x∗, where x∗ is the solution with the smallest l2 norm of the corresponding
SOCP

B.4 AN EXAMPLE FOR SOCP GRAPHS

Figure 6 is an example of a toy SOCP and its corresponding graph representation:

Figure 6: A toy SOCP instance with its graph representation

B.5 COMPLEXITY COMPARISON WITH SOTA WORKS:

Complexity for representing convex QCQP: We discuss further about what we mentioned in remark
1, 2, 3. For a convex QCQP instance with m quadratic constraints and n variables, where the i-th
constraint matrix has rank ri ≤ n, our graph representation requires n + m + 2 +

∑m
i=0(ri + 1)

nodes while the architecture in (Wu et al., 2024) requires n+m+ 1
2n(n+ 1) nodes and architecture

in (Chen et al., 2024b) requires m + n + mn “nodes” that need to be updated dynamically. It’s
noteworthy that our graph representation only uses sparse connections between these nodes via using
minor conic nodes as a sparse intermediate information passing layer between variables and conic
constraints. As a result, our SOCP-GNN requires onlyO(n(

∑m
i=0 ri)) messages per iteration. This is

in sharp contrast to the architecture by (Wu et al., 2024), which models each quadratic term explicitly
and thus incurs a much higher per-iteration cost of O(n3 +mn2). And result in (Chen et al., 2024b)
use O(mn2) messages each iteration.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 1 The WL test for SOCP-Graphs (denoted by WLSOCP)
1: Require: A graph instance G = (V,E) with node sets V1, V2, V3, V4, initial node features

hv, hs, ho, hq , and an iteration limit L > 0.
2: Initialize initial colors for all nodes:
3: C0,v ← HASH0,V (h

v), ∀v ∈ V1

4: C0,s ← HASH0,S(h
s), ∀s ∈ V2

5: C0,o ← HASH0,O(h
o), ∀o ∈ V3

6: C0,q ← HASH0,Q(h
q), ∀q ∈ V4

7: for l = 1 to L do
8: Update colors for polyhedron constraint nodes (V2):
9: Cl,s ← HASH

(
Cl−1,s,

∑
v∈V1

ws,vHASH(Cl−1,v)
)

10: Update colors for minor conic constraint nodes (V3):
11: C̄l−1,o ← HASH

(
Cl−1,o,

∑
v∈V1

wo,vHASH(Cl−1,v)
)

12: Update colors for major conic constraint nodes (V4):
13: C̄l−1,q ← HASH

(
Cl−1,q,

∑
v∈V1

wq,vHASH(Cl−1,v)
)

14: Update colors for major conic constraint nodes (V4):
15: Cl,q ← HASH

(
C̄l−1,q,

∑
o∈V3

wq,oHASH(C̄l−1,o)
)

16: Update colors for minor conic constraint nodes (V3):
17: Cl,o ← HASH

(
C̄l−1,o,

∑
q∈V4

wo,qHASH(Cl,q)
)

18: Update colors for variable nodes (V1):
19: Cl,v ← HASH

(
Cl−1,v,M1,M2,M3

)
,where:

M1 =
∑
s∈V2

wv,sHASH(Cl,s)

M2 =
∑
o∈V3

wv,oHASH(Cl,o)

M3 =
∑
q∈V4

wv,qHASH(Cl,q)

20: end for
21: Return The multisets of final colors: {{CL,v}}v∈V1 , {{CL,s}}s∈V2 , {{CL,o}}o∈V3 , {{CL,q}}q∈V4

Reducing the Node Complexity of SOCP-GNNs: One may note that for SOC constraints ∥Ax+
b∥2 ≤ c⊤x + d with A ∈ Rk×n of a large k ≫ n, the GNN need k minor conic constraint
nodes to represent it. However, as shown in Appendix B.1, we can reduce the complexity to O(n)
by reformulating it into another equivalent SOC constraint with corresponding A′ ∈ Rk′×n of
k′ ≤ n + 1. This reformulation makes SOCP-GNN more scalable for the large and structured
problems in real-world applications.

C PROOF OF MAIN THEOREM

C.1 SOCP WL-TEST

The separation power of traditional GNNs is closely related to the Weisfeiler-Lehman (WL) test, a
classical algorithm to identify whether two given graphs are isomorphic. To apply the WL test on
SOCP-graphs, we design a modified WL test in Algorithm 1.

We denote Algorithm 1 by WLSOCP(·) and we assume that there is no collision of Hash functions and
their linear combination in the following proof (Chen et al., 2024b; Wu et al., 2024). We say that two
SOCP-graphs G, Ĝ can be distinguished by Algorithm 1 if and only if there exist a positive integer L
and injective hash functions mentioned above such that the output multisets of G, Ĝ are different.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.2 THE CONNECTION BETWEEN THE WL-INDISTINGUISHABLITY AND TARGET PROPERTY

Here, we analyze the WL test’s convergence and corresponding stable properties to lead to the core
lemma

Lemma 1. Assume all hash functions satisfy conditions in Appendix C.1, and we terminate the SOCP
WL-test when the number of distinct colors no longer changes in an iteration. Then the SOCP WL-test
terminates in finite iterations.

Proof. Here, notice that the SOCP WL-test satisfies the following two properties:

• If two nodes v, w have different colors in one (sub)iteration, then they will always have
different colors in the following (sub)iterations.

• If after one full iteration, the nodes’ color doesn’t change under some one-to-one color
mapping, then for all iterations after this iteration, the algorithm will always return the same
result.

These two facts have shown that, after one iteration, the color collections either get strictly finer or
remain unchanged for all following iterations. Since the number of nodes is finite, the algorithm
terminates in finite iterations.

And now, we study the convergence properties of the SOCP-WL test

Lemma 2. Given the SOCP graph G, assume the SOCP WL-test stabilizes after T ≥ 0 iterations.
The sum of weights from a certain node of one color to all nodes of another color only depends on the
color of the given node. Specifically, the sum (taking W1 for variable nodes and W2 for polyhederon
constraint nodes as an example) is:

S(W2,W1;G) :=
∑

CT,v=W1

ws,v

and is well-defined for all s, such that CT,s = W2

Similarly, for any color of variables W1, color of polyhedron constraints W2, color of minor conic
constraints W3 and color of major conic constraints W4, the following sums are well-defined:

S(W3,W1;G) :=
∑

CT,v=W1

wo,v, CT,o = W3

S(W4,W3;G) :=
∑

CT,o=W3

wq,o, CT,q = W4

S(W1,W2;G) :=
∑

CT,s=W2

wv,s, CT,v = W1

S(W1,W3;G) :=
∑

CT,o=W3

wv,o, CT,v = W1

S(W1,W4;G) :=
∑

CT,q=W4

wv,q, CT,v = W1

S(W4,W1;G) :=
∑

CT,v=W1

wq,v, CT,q = W4

Proof. Let v1, v2 be two nodes with color W1 = CT,v1 = CT,v2 . Since the SOCP WL-test has
stabilized, the node pairs won’t be finer, i.e.∑

s

wv1,sHASH(CT,s) =
∑
s

wv2,sHASH(CT,s).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Rearranging according to W2 = CT,s, we get:∑
W2

∑
CT,s=W2

wv1,sHASH(W2) =
∑
W2

∑
CT,s=W2

wv2,sHASH(W2).

Assuming that the hash function is collision-free and maps different colors into different linearly
independent vectors, we conclude that:∑

CT,s=W2

wv1,s =
∑

CT,s=W2

wv2,s,

i.e., S(W1,W2;G) :=
∑

CT,s=W2
wv,s, CT,v = W1 is well-defined.

Other proofs are similar.

An immediate conclusion is listed following.

Corollary 1. If all the SOCP WL-test cannot separate the two instances: I, Î (with given sizes
n,m, , k1, ..., km, b, encoded by G, Ĝ ∈ Gn,m,k1,...,km,b

SOCP), then: All the sum in lemma 3 is well defined
for G and Ĝ and equal each other respectively.

Meanwhile, we define: Wij to be the collection of nodes with node type i and color j. By summing
the cross terms and rearranging the sum, we have:

S(W1j ,W2k;G)|W1j | = S(W2k,W1j ;G)|W2k|

S(W1j ,W3l;G)|W1j | = S(W3l,W1j ;G)|W3l|
S(W1j ,W4m;G)|W1j | = S(W4m,W1j ;G)|W4m|

.

Now, we begin to prove the following lemma.

Lemma 3. Let I, Î (with given sizes n,m, k1, ..., km, b, encoded by G, Ĝ ∈ Gn,m,k1,...,km,b
SOCP) be two

SOCP instances. If the following holds:

• The SOCP WL-test cannot separate the two instances;

• x is a feasible solution of I.

Then there exists a feasible solution x̂ for Î whose objective and ℓ2-norm are controlled by x, such
that:

ê · x̂ ≤ e · x
||x̂||2 ≤ ||x||2

Proof. The key to this proof is to take the average among the nodes in the same node pair. Formally,
we define x̂v = 1

|W1j | (
∑

CT,v′=W1j
xv′) for all v, such that: CT,v = W1j

By the Cauchy-Schwarz inequality, we have:

∑
CT,v′=W1j

x2
v′ ≥ |W1j |[

1

|W1j |
(

∑
CT,v′=W1j

xv′)]2

Summing over all possible W1j , we get: ||x̂||2 ≤ ||x||2

Meanwhile, notice that: for all v′, such that: CT,v′
= W1j , their corresponding ev′ , lv′ , rv′ and

êv′ , l̂v′ , r̂v′ are the same, respectively.

Hence, we have:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

∑
CT,v′=W1j

ev′xv′ =
∑

CT,v′=W1j

êv′ x̂v′

x̂v ∈ [l̂v, r̂v]

for all possible variable node v and color W1j .

Summing over W1j yields: ∑
v′

ev′xv′ =
∑
v′

êv′ x̂v′

Further, consider the edge properties brought by the above lemma, we get:

For the l-th and t-th polyhedron constraint both with color W2k, l, t ∈ {1, 2, · · · , b} (Here, we assume
in both G and Ĝ,the l-th and t-th polyhedron constraint are both with color W2k respectively) the
following inequality holds:

n∑
j=1

Fl,jxj ≤ gt, ⇒ 1

|W2k|
∑

l∈W2k

∑
W1j

∑
v∈W1j

Fl,vxv ≤ gt,

Exchange the order of the sum, we get:

1

|W2k|
∑
W1j

∑
v∈W1j

∑
l∈W2k

Fl,vxv ≤ gt,

Notice that:
1

|W2k|
∑
W1j

∑
v∈W1j

∑
l∈W2k

Fl,vxv =
1

|W2k|
∑
W1j

∑
v∈W1j

∑
l∈W2k

Fl,vx̂v

=
1

|W2k|
∑
W1j

∑
v∈W1j

∑
l∈W2k

F̂l,vx̂v

=
∑
W1j

∑
v∈W1j

F̂l,vx̂v

Thus,
∑

W1j

∑
v∈W1j

F̂l,vx̂v ≤ gt = ĝt = ĝl, which shows that the polyhedron constraint is satisfied.

Similarly, for the u-th and r-th (major) conic constraints both with color W4m, we have:

• After proper rearranging of nodes ousu and orsr , where su = 1, 2, ..., ku; sr = 1, 2, ..., kr,
the color of ousu and orsr , where su = 1, 2, ..., ku; sr = 1, 2, ..., kr, are the same regarding
the order, i.e. CT,oui = CT,ori ,∀i = 1, 2, ..., ku (Notice that :ku = kr).

• du=dr.

• For any node ohi and ojk ∈ V3 with the same stable color, either h = j or the color of node
qh and qj are the same.

Now let’s prove the conic part. For the u-th and r-th major conic constraint node both with color
W4m in both G and Ĝ and the minor conic node j1 corresponds to r-th major conic constraint node
in both G and Ĝ, we have:

Right constraint:
1

|W4m|
∑

CT,u=W4m

cTux+ du

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

= (
1

|W4m|
∑

CT,u=W4m

∑
W1j

∑
v∈W1j

cuvxv) + d̂r

= (
1

|W4m|
∑
W1j

∑
v∈W1j

∑
CT,u=W4m

cuvxv) + d̂r

= (
1

|W4m|
∑
W1j

∑
v∈W1j

S(W1j ,W4m;G)xv) + d̂r

= (
1

|W4m|
∑
W1j

∑
v∈W1j

S(W1j ,W4m;G)x̂v) + d̂r

= (
1

|W4m|
∑
W1j

|W1j |S(W1j ,W4m;G)x̂v) + d̂r

= (
1

|W4m|
∑
W1j

|W4m|S(W4m,W1j ;G)x̂v) + d̂r

= (
∑
W1j

S(W4m,W1j ;G)x̂v) + d̂r = (
∑
W1j

∑
v∈W1j

ĉrvx̂v) + d̂r = ĉTr x̂+ d̂r

Left Constraint: Recall: two nodes in V3 has the same stable color W3l if their corresponding major
conic constraint node’s stable color is the same. So for each stable color W3l in V3, the corresponding
major conic node’s stable colors are all the same, denoted by W4m. And each major conic node
have |W3l|

|W4m| minor nodes with stable color W3l. And we use j ∈ u denotes a minor conic node j

corresponds to node u

1

|W4m|
∑

CT,u=W4m

∑
j∈W3l,j∈u

|W4m|
|W3l|

(Aux+ bu)j

= (b̂r)j1 +
1

|W3l|
∑

CT,u=W4m

∑
j∈W3l,j∈u

(Aux)j

= (b̂r)j1 +
1

|W3l|
∑

CT,u=W4m

∑
j∈W3l,j∈u

∑
W1h

∑
v∈W1h

(Au)jvxv

= (b̂r)j1 +
1

|W3l|
∑
W1h

∑
v∈W1h

∑
CT,u=W4m

∑
j∈W3l,j∈u

(Au)jvxv

= (b̂r)j1 +
1

|W3l|
∑
W1h

∑
v∈W1h

S(W1h,W3l;G)xv

= (b̂r)j1 +
1

|W3l|
∑
W1h

∑
v∈W1h

S(W1h,W3l;G)x̂v

= (b̂r)j1 +
1

|W3l|
∑
W1h

|W1h|S(W1h,W3l;G)x̂v

= (b̂r)j1 +
1

|W3l|
∑
W1h

|W3l|S(W3l,W1h;G)x̂v

= (b̂r)j1 +
∑
W1h

S(W3l,W1h;G)x̂v

= (b̂r)j1 +
∑
W1h

∑
v∈W1h

(̂Ar)j1vx̂v

= (b̂r)j1 + (Ârx̂)j1 = (b̂r + Ârx̂)j1

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Conic feasibility for Î

For the u-th conic constraint with stable color W4mand its corresponds minor conic node j with color
W3l, without loss of generality, we assume (Aux+ bu) ’s first N = |W3l|

|W4m| rows’ corresponding to
all the minor conic nodes with color W3l for such u and j, Thus, we have:∑

j1∈r,j1∈W3l

||(b̂r + Ârx̂)j1 ||22 =
|W3l|
|W4m|

|| 1

|W4m|
∑

CT,u=W4m

N∑
j=1

|W4m|
|W3l|

(Aux+ bu)j ||22

≤
N∑
j=1

|| 1

|W4m|
∑

CT,u=W4m

(Aux+ bu)j ||22

Hence, summing over all possible W3l for fixed W4m, we have:

||b̂r + Ârx̂||22 =
∑
W3l

∑
j1∈r,j1∈W3l

||(b̂r + Ârx̂)j1 ||22 ≤ ||
1

|W4m|
∑

CT,u=W4m

(Aux+ bu)||22

This yields that:

||b̂r + Ârx̂||2 ≤ ||
1

|W4m|
∑

CT,u=W4m

(Aux+ bu)||2 ≤
1

|W4m|
∑

CT,u=W4m

||(Aux+ bu)||2

≤ 1

|W4m|
∑

CT,u=W4m

cTux+ du = ĉTr x̂+ d̂r

Since r is arbitrarily chosen from W4m, the conic feasibility holds obviously.

Corollary 2. If two SOCP instances I, Î with their graph representations are indistinguishable by
the SOCP-WL test, then the two problems share the same feasibility.

Proof. Let x be a feasible solution for I, then by lemma 3, there exists a feasible solution x̂ for
Î.

Corollary 3. If two SOCP instances I, Î with their graph representations are indistinguishable by
the SOCP-WL test, then the two problems share the same boundness.

Proof. • If one instance is infeasible, by corollary 2, the other instance is infeasible as well,
i.e., they are not bounded.

• If one instance is not bounded from below, denoted by I . Since we can always find a feasible
solution of Î which has a smaller objective value than any fixed feasible solution of I by
Lemma 3, the conclusion is obvious.

Corollary 4. If two SOCP instances I, Î with their graph representations are indistinguishable by
the SOCP-WL test, then the two problems share the same optimal objective value.

Proof. By corollary 3, we only need to consider the case when both instances are feasible and
bounded.

Notice that the feasibility with boundness may not lead to the existence of an optimal solution for
SOCP problems, for example:

min
x1,x2

x1 s.t. ||(2, x1 − x2)||2 ≤ x1 + x2 , x1 ≥ 0, x2 ≥ 0

So, we prove by ”infimum” argument, let p and p̂ be the optimal value of I and Î respectively. Then
for any ϵ > 0, there exists feasible solution x, s.t. eTx ≤ p+ ϵ. By lemma 4, there exists a feasible
solution x̂ of Î, such that p̂ ≤ êT x̂ ≤ eTx ≤ p + ϵ. Let ϵ → 0 yields p̂ ≤ p. Similarly, we have:
p̂ ≥ p, which finishes the proof.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Corollary 5. If two SOCP instances I, Î with their graph representations are indistinguishable by
the SOCP-WL test and one of these instances admits an optimal solution, then the other instance has
an optimal solution as well.

Proof. See the proof of corollary 6.

Corollary 6. If two SOCP instances I, Î with their graph representations are indistinguishable by
the SOCP-WL test, then the two problems share the same optimal solution with the smallest Euclidean
norm if one instance admits an optimal solution up to permutation.

Proof. Without loss of generality, we assume that for each variable j, its corresponding stable color in
I, Î after the SOCP-WL test is the same, and I has an optimal solution x with the smallest Euclidean
norm. By using lemma 3 twice, we can construct a feasible solution x̂ for Î and construct a feasible
solution ˆ̂x for I again with

eTx ≥ êT x̂ ≥ eT ˆ̂x and ||x||2 ≥ ||x̂||2 ≥ ||ˆ̂x||2

Hence, x = ˆ̂x. Recall the proof of the lemma 3, the variables in x̂ with the same stable color after
SOCP-WL test already have the same value, so averaging them again won’t change it anymore, i.e.
x̂ = ˆ̂x. Hence, x = x̂ = ˆ̂x. By corollary 4, x̂ is an optimal solution of Î

Now, if there exists an optimal solution y of Î with ||y||2 < ||x̂||2 = ||x||2, by similar proof above,
we can get: y is also an optimal solution of I, which contradicts the fact that: x is the optimal
solution of I with the smallest Euclidean norm. Hence, x̂ is an optimal solution of Î with the smallest
Euclidean norm

C.3 THE MEASURABLE PROPERTY OF TARGET MAPPING

Definition C.1. For an SOCP instance G:

minimize eTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . ,m

Fx ≤ g

li ≤ xi ≤ ri, i = 1, ..., n

Its parameter is defined as (e, {Ai}mi=1, {bi}mi=1, {ci}mi=1, {di}mi=1, F, g, l, r), and all the parameter
form the parameter space P

Notice that: For an SOCP instance, there exists a bijective mapping I : Gn,m,k1,...,km,b
SOCP → P with

I(G) = (e, {Ai}mi=1, {bi}mi=1, {ci}mi=1, {di}mi=1, F, g, l, r) for any SOCP instance G parametrized by
(e, {Ai}mi=1, {bi}mi=1, {ci}mi=1, {di}mi=1, F, g, l, r). And we equip both Gn,m,k1,...,km,b

SOCP and P with the
standard Euclidean topology and product topology in its feature space. Then I is a homeomorphism.

Remark: If we can prove that Φtarget : P → R is measurable, then Φtarget◦I : Gn,m,k1,...,km,b
SOCP → R

is measurable as well.

Theorem 4. For any Borel regular measure µ defined on P , Φfeas : P → {0, 1} is µ−measurable.

Proof. Below, we use measurable to denote µ−measurable for simplicity.

To prove that Φfeas is measurable, it suffices to show that the preimage of {1}, denoted Pfeas = {P ∈
P | Φfeas(P) = 1}, is a measurable set.

First, we define a feasibility violation function Vfeas : P × Rn → R≥0. Let (y)+ = max(0, y).

Vfeas(P, x) =

m∑
i=1

(
∥Aix+ bi∥2 − (cTi x+ di)

)
+
+

p∑
j=1

((Fx)j − gj)+ +

n∑
k=1

((lk − xk)+ + (xk − rk)+)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

This function Vfeas(P, x) is continuous with respect to both P and x, as it is a sum and composition
of continuous functions (norms, linear maps, max function). Furthermore, Vfeas(P, x) = 0 if and only
if x is a feasible point for the problem instance P .

A problem P is feasible if and only if there exists an x ∈ Rn such that Vfeas(P, x) = 0. This is
equivalent to the condition ∃R ∈ N+, s.t. infx∈Rn∩BR

Vfeas(P, x) = 0.

We can now express the set of feasible problems Pfeas by restricting the infimum to a countable dense
set. Let BR be the closed ball of radius R centered at the origin. By continuity of Vfeas in x, we have:

Pfeas =
⋃

R∈N+

{
P ∈ P | inf

x∈Rn∩BR

Vfeas(P, x) = 0

}
=

⋃
R∈N+

⋂
k∈N+

{
P ∈ P | ∃x ∈ Rn ∩BR, s.t.Vfeas(P, x) <

1

k

}

So, Pfeas can be written as:

Pfeas =
⋃

R∈N+

⋂
k∈N+

⋃
x∈BR∩Qn

{
P ∈ P | Vfeas(P, x) <

1

k

}
For any fixed x ∈ Qn, the function P 7→ Vfeas(P, x) is continuous. Thus, for each tuple (R, k, x), the
set {P | Vfeas(P, x) < 1/k} is a Borel set. Since Pfeas is formed by countable unions and intersections
of measurable sets, it is itself a measurable (Borel) set. Therefore, Φfeas is a measurable function.

Theorem 5. For any Borel regular measure µ defined on P , Φbound : P → {0, 1} is µ−measurable.

Proof. Below, we use measurable to denote µ−measurable for simplicity.

Let Pfeas = Φ−1
feas(1), which is a measurable set. We only need to show that the set Pbdd = {P ∈

Pfeas | Φbound(P) = 1} is measurable.

A problem P ∈ Pfeas is bounded if and only if there exists M ∈ Z such that for all feasible solutions
x of P , eTx ≥M . This can be stated as:

Pbdd =
⋃

M∈Z

{
P ∈ Pfeas | ∀x ∈ Rn, s.t.Vfeas(P, x) = 0⇒ eTx ≥M

}
=

⋃
M∈Z

{
P ∈ Pfeas | inf

x∈Rn,s.t.Vfeas(P,x)=0
eTx ≥M

}
Let’s define the boundness violation function:

Vbdd(P, x) = inf
x∈Rn,s.t.Vfeas(P,x)=0

eTx

Now,we have:
Pbdd =

⋃
M∈Z

{P ∈ Pfeas | Vbdd(P, x) ≥M}

So it suffices to prove Vbdd(P, x) is measurable and we only need to show that: for any M ∈ R, the
sublevel set {P ∈ Pfeas | Vbdd(P) < M} is a measurable set.

The condition Vbdd(P) < M is equivalent to the existence of a feasible point z such that e⊤z < M .
This can be expressed as:

{P ∈ Pfeas | Vbdd(P) < M} =
⋃

k∈N+

{
P ∈ Pfeas | ∃z ∈ Rn s.t. e⊤z ≤M − 1

k
and z is feasible

}
.

Let us define an auxiliary violation function Vbdd viol : P × Rn × R→ R≥0:

Vbdd viol(P, z,M) = max
(
(e⊤z −M)+, Vfeas(P, z)

)
.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

This function is continuous in (P, z,M). The condition Vbdd viol(P, z,M
′) = 0 holds if and only if z

is a feasible point and its objective value satisfies e⊤z ≤M ′.

Thus, similar to the proof of feasibility, the condition Vbdd(P) < M is equivalent to:⋃
k∈N+

⋃
R∈N+

{
P ∈ Pfeas | inf

z∈Rn∩BR

Vbdd viol

(
P, z,M − 1

k

)
= 0

}
.

By continuity of Vbdd viol in z, we can restrict the infimum to the countable dense set Qn:⋃
k∈N+

⋃
R∈N+

{
P ∈ Pfeas | inf

z∈Qn∩BR

Vbdd viol

(
P, z,M − 1

k

)
= 0

}
.

For any fixed z ∈ Qn , R ∈ N+ and M ′ ∈ R, the function P 7→ Vbdd viol(P, z,M
′) is continuous,

hence measurable. The infimum of a countable collection of such measurable functions is also
measurable. Therefore, the set {P | infz∈Qn Vbdd viol(P, z,M

′) = 0} is measurable for any fixed
M ′.

Since the sublevel set {P ∈ Pfeas | Vbdd(P) < M} is a countable union of such measurable sets, it is
measurable. This holds for all M ∈ R, so Vbdd is a measurable function.

Theorem 6. For any Borel regular measure µ defined on P , Φobj : P → R is µ−measurable.

Proof. Below, we use measurable to denote µ−measurable for simplicity.

To prove that Φobj is measurable, we only need to show that for any ϕ ∈ R, the sublevel set
{P ∈ P | Φobj(P) < ϕ} is measurable.

Let us define an objective violation function Vobj : P × Rn × R→ R≥0:

Vobj(P, x, ϕ) = max
(
(eTx− ϕ)+, Vfeas(P, x)

)
This function is continuous in (P, x, ϕ). Vobj(P, x, ϕ) = 0 if and only if x is a feasible point and its
objective value satisfies eTx ≤ ϕ.

The condition Φobj(P) < ϕ is equivalent to the existence of a feasible point x such that eTx < ϕ.
This can be expressed as:

{P ∈ P | Φobj(P) < ϕ} =
⋃

k∈N+

{P ∈ P | ∃x ∈ Rn s.t. eTx ≤ ϕ− 1

k
and x is feasible}

Similar to the previous proof, this is equivalent to:⋃
k∈N+

⋃
R∈N+

{
P ∈ P | inf

x∈Rn∩BR

Vobj

(
P, x, ϕ− 1

k

)
= 0

}
=

⋃
k∈N+

⋃
R∈N+

{
P ∈ P | inf

x∈Qn∩BR

Vobj

(
P, x, ϕ− 1

k

)
= 0

}

For any fixed x ∈ Qn, the function P 7→ Vobj(P, x, ϕ
′) is continuous, hence measurable.

The infimum of a countable collection of measurable functions is measurable. Hence, the set
{P | infx∈Qn Vobj(P, x, ϕ

′) = 0} is measurable for any fixed ϕ′. Since the sublevel set {P |
Φobj(P) < ϕ} is a countable union of such measurable sets, it is measurable. This holds for
all ϕ ∈ R, so Φobj is a measurable function.

Theorem 7. For any Borel regular measure µ defined on P , Φattain : P → {0, 1} is µ−measurable.

Proof. Below, we use measurable to denote µ−measurable for simplicity.

Let Pfin = Φ−1
obj (R), which is a measurable set. We only need to show that the set Psol = {P ∈ Pfin |

Φattain(P) = 1} is measurable.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

A problem P ∈ Pfin attains its optimal solution if and only if there exists a point x ∈ Rn such that x
is feasible and its objective value is equal to the optimal value, Φobj(P). This can be stated as:

Psol =
{
P ∈ Pfin | ∃x ∈ Rn s.t. Vfeas(P, x) = 0 and eTx = Φobj(P)

}
Let’s define the optimality violation function:

Vsolu(P, x) = max
(
(eTx− Φobj(P))+, Vfeas(P, x)

)
Notice that:

• For a fixed x, the function P 7→ Vsolu(P, x) is measurable because it is a ”composition” of
continuous functions and the measurable function Φobj.

• For a fixed P , the function x 7→ Vsolu(P, x) is continuous.

A SOCP instance P attains its solution if and only if there exists R ∈ N+, s.t. the infimum of
Vsolu(P, x) over x ∈ BR is zero, i.e. :

Psol =
⋃

R∈N+

{
P ∈ Pfin | inf

x∈Rn∩BR

Vsolu(P, x) = 0

}
Following the same logic used for Φfeas, we can write:

Psol =
⋃

R∈N+

{
P ∈ Pfin | inf

x∈Rn∩BR

Vsolu(P, x) = 0

}
=

⋃
R∈N+

⋂
k∈N+

{
P ∈ Pfin | inf

x∈BR∩Qn
Vsolu(P, x) <

1

k

}
For any fixed x, P 7→ Vsolu(P, x) is measurable. The infimum over a countable set of measurable
functions is measurable. Therefore, the set{

P ∈ Pfin | inf
x∈BR∩Qn

Vsolu(P, x) <
1

k

}
is a measurable subset of Pfin. Since Psol is formed by countable unions and intersections of
measurable sets, it is measurable. Thus, Φattain is a measurable function.

Theorem 8. For any Borel regular measure µ defined on P , Φsolu : P → Rn is µ−measurable.

Proof. Below, we use measurable to denote µ−measurable for simplicity.

For any P ∈ Psol = Φ−1
attain(1), Φsolu is well-defined. And if suffices to prove that:(Φsolu)i is

measurable for any i ∈ [n], i.e. for any ϕ ∈ R, the set: {P ∈ Psol | (Φsolu)i < ϕ} is measurable.

Notice that: the followings are equivalent for P ∈ Psol:

• P ∈ {P ∈ Psol | (Φsolu)i < ϕ}.

• There exists x ∈ Rn with xi < ϕ, such that Vsolu(P, x) = 0 and Vsolu(P, x
′) > 0, ∀x′ ∈

B∥x∥, x′
i ≥ ϕ.

• There exists R ∈ Q+, r ∈ N+, and x ∈ BR with xi ≤ ϕ− 1/r, such that Vsolu(P, x) = 0
and Vsolu(P, x

′) > 0, ∀x′ ∈ BR, x′
i ≥ ϕ.

• There exists R ∈ Q+ and r ∈ N+, such that for all r′ ∈ N+, ∃x ∈ BR ∩Qn, xi ≤ ϕ− 1/r,
s.t. Vsolu(P, x) < 1/r′ and that ∃r′′ ∈ N+, s.t., Vsolu(P, x

′) ≥ 1/r′′, ∀x′ ∈ BR ∩ Qn,
x′
i ≥ ϕ.

Hence, we can rewrite {P ∈ Psol | (Φsolu)i < ϕ} as:⋃
R∈Q+

⋃
r∈N+

 (⋂
r′∈N+

⋃
x∈BR∩Qn, xi≤ϕ− 1

r

{
P ∈ Psol | Vsolu(P, x) <

1
r′

})
∩
(⋃

r′′∈N+

⋂
x′∈BR∩Qn, x′

i≥ϕ

{
P ∈ Psol | Vsolu(P, x

′) ≥ 1
r′′

})


, which is measurable.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

C.4 RELATION BETWEEN SOCP-GNN’S SEPARATION POWER AND SOCP-WL TEST’S
SEPARATION POWER

Remark 5. Thanks to the universality of MLPs, it’s noteworthy that we can assume all learnable
functions in SOCP-GNN are continuous in the following proof without loss of generality, since they
are always parametrized by MLPs.

Theorem 9. SOCP-GNN has the same separation power as the SOCP-WL test.

Proof. We only need to show: For any SOCP instance I and Î , encoded by G, Ĝ, respectively, the
following holds:

• For graph-level output, two instances can’t be separated by Fn,m,k1,...,km,b
SOCP (R), i.e.,

F (G) = F (Ĝ), ∀F ∈ Fn,m,k1,...,km,b
SOCP (R)

if and only if the two instances can’t be separated by the SOCP-WL test either.

• For node-level output, the two instances can’t be separated by Fn,m,k1,...,km,b
SOCP (Rn), i.e.,

F (G) = F (Ĝ), ∀F ∈ Fn,m,k1,...,km,b
SOCP (Rn)

if and only if the two instances can’t be separated by the SOCP-WL test either, with
CT,vj = CT,v̂j hold for all j ∈ [n], i.e. the variables are reindexed according to the
SOCP-WL test for both instances.

We first prove that SOCP-GNN can simulate the SOCP WL-test for any fixed SOCP instance. This
can be proved by showing that: For any special SOCP-WL test and given graph G, there exists an
SOCP-GNN that can simulate arbitrary iterations of this test given the same input for G under the
one-hot encoding.

Let F denote the set of all the initial features for all nodes in G. Then we select ĝ0i , i = 1, 2, 3, 4 to
map these features in F to their one-hot encoding respectively by theorem 3.2 of (Yun et al., 2019).
So for any initial round in the SOCP-WL test, there exists an SOCP-GNN that can simulate it.

Assume now, we already have: we get an SOCP-GNN which can simulate the first t rounds of a
special SOCP-WL test, so that: ht,n is just the one-hot encoding of Ct,n for all nodes n. For the
first refinement round for the polyhedron constraint node s, we choose f t

1 as an identity mapping,
so that: if

(
Ct,s,

∑
v∈V1

ws,vHASH(Ct,v)
)

and
(
Ct,s′ ,

∑
v∈V1

ws′,vHASH(Ct,v)
)

are different,

then
(
ht,s,

∑
v∈V1

ws,vf
t
1(h

t,v)
)

and
(
ht,s′ ,

∑
v∈V1

ws′,vf
t
1(h

t,v)
)

are different. Then, by The-

orem 3.2 of (Yun et al., 2019), there exists 4-layered MLP gt1(·) with ReLU activation can map
these inputs:

(
ht,s,

∑
v∈V1

ws,vf
t
1(h

t,v)
)

to their corresponding output in SOCP-WL test’s one-hot
encoding.

Similarly, we can prove that: there exists {gti(·)} and {f t
j (·)}, such that the corresponding SOCP-

GNN can simulate the t+1 round of the SOCP-WL test for G. By mathematical induction, for any
possible output of G for SOCP-WL test, there exists SOCP-GNNs can output the corresponding
one-hot encoding of the stable color, respectively. Consider the two possible outputs:

• Graph-level scalar output. In this case, we set

y = fout (I1, I2, I3, I4)

• Node-level vector output. In this case, we only consider the output associated with the
variable nodes in V1, given by

yi = fout
(
hT,vi , I1, I2, I3, I4

)
, i ∈ [n]

where, I1 =
∑

v∈V1
hT,v , I2 =

∑
s∈V2

hT,s, I3 =
∑

o∈V3
hT,o, and I4 =

∑
q∈V4

hT,q .

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

If two instances I and Î can’t be separated by any SOCP-GNNs but can be separated by some
SOCP-WL test W . By applying the results discussed above to the disjoint union of these two
instances’ corresponding graphs, we get: hT,· is just one-hot encoding of CT,·, respectively. Then we
can conclude that their output multisets underW are the same, which causes a contradiction. Hence,
if two instances I and Î can’t be separated by any SOCP-GNNs, then they can’t be separated by any
SOCP-WL testW as well. Similarly, we have:

For any node n′, n′′ in SOCP instance I, Î respectively, if ht,n′
= ĥt,n′′

,∀F ∈ Fn,m,,k1,...,km,b
SOCP (R)

holds for any t ∈ N, then n′, n′′ have the same stable color for any possible SOCP-WL test.

Now, assume two instances I and Î can’t be separated by any SOCP-WL test. Now, we show that:

Ct,s = Ĉt,s′ =⇒ ht,s = ĥt,s′ , ∀ polyhedron constraint s, s′ and F ∈ Fn,m,,k1,...,km,b
SOCP (R),

while a similar result can be derived for other sublayer-iterations using the same method.

When t = 0, the conclusion holds obviously.

When t ≥ 1, assume the conclusion for all nodes holds for t − 1, then we have:(
Ct−1,s,

∑
v∈V1

ws,vHASH(Ct−1,v)
)
=

(
Ĉt−1,s′ ,

∑
v∈V1

ŵs′,vHASH(Ĉt−1,v)
)

Hence, we have:

• Ct−1,s = Ĉt−1,s′ ⇒ ht−1,s = ĥt−1,s′

• For any color W1j in the collection of colors at the t-1 th iteration for varaible nodes,∑
v∈W1j

ws,v =
∑

v∈W1j
ŵs′,v. This can be shown by assuming Hash function maps

different colors to linearly independent vectors.

• For any color W1j ,
∑

v∈W1j
ws,vf

t−1
1 (ht−1,v) =

∑
v∈W1j

ŵs′,vf
t−1
1 (ĥt−1,v) (By induc-

tive assumption for node v at iteration t− 1)

•
∑

W1j

∑
v∈W1j

ws,vf
t−1
1 (ht−1,v) =

∑
W1j

∑
v∈W1j

ŵs′,vf
t−1
1 (ĥt−1,v).

Therefore, ht,s = ĥt,s′ , which finishes the proof.

An immediate corollary is:

Corollary 7. For any node n, n′ in SOCP instance I, Î respectively, Ct,n = Ĉt,n′
holds for all

possible SOCP-WL test and any t ∈ N if and only if ht,n = ĥt,n′
,∀F ∈ Fn,m,,k1,...,km,b

SOCP (R) holds
for any t ∈ N.

By the proof of lemma 3, you can see that:

Corollary 8. For any node n, n′ in SOCP instance I, Î respectively, Ct,n = Ĉt,n′
holds for all

possible SOCP-WL test and any t ∈ N if and only if ht,n = ĥt,n′
,∀F ∈ Fn,m,,k1,...,km,b

SOCP (R) holds
for any t ∈ N. Under such assumption, (Φsolution(I))n = (Φsolution(Î))n′ if n, n′ are variable
nodes.

C.5 MAIN THEOREM’S PROOF

Consider the following theorems, which play an important role in real analysis:

Lusin theorem: Let µ be a Borel regular measure on Rn and let f : Rn → Rm be µ-measurable.
Then for any µ-measurable X ⊂ Rn with µ(X) < ∞ and any ϵ > 0, there exists a compact set
E ⊂ X with µ(X \ E) < ϵ, such that f |E is continuous.

By this fundamental but important theorem, we get ∀ϵ > 0, ∃ compact X ⊂ Gn,m,k1,...,km,b
SOCP with

µ(Gn,m,k1,...,km,b
SOCP \X) < ϵ, such that Φtarget|X is continuous holds for any Φtarget mentioned in

Definition B.1.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Moreover, using similar tricks in (Chen et al., 2022b), we can assume that: X remains the same under
the action of the permutation group Sn without loss of generality.

Generalized Stone-Weierstrass theorem:[Theorem 22 of (Azizian & Lelarge, 2020)] Let X be a
compact topology space and let G be a finite group that acts continuously on X and Rn. Define the
collection of all equivariant continuous functions from X to Rn as follows:

CE(X,Rn) = {F ∈ C(X,Rn) : F (g ∗ x) = g ∗ F (x), ∀x ∈ X, g ∈ G}.

Consider any F ⊂ CE(X,Rn) and any Φ ∈ CE(X,Rn). Suppose the following conditions hold:

(i) F is a subalgebra of C(X,Rn) and 1 ∈ F .

(ii) For any x, x′ ∈ X , if f(x) = f(x′) holds for any f ∈ C(X,R) with f1 ∈ F , then for any
F ∈ F , there exists g ∈ G such that F (x) = g ∗ F (x′).

(iii) For any x, x′ ∈ X , if F (x) = F (x′) holds for any F ∈ F , then Φ(x) = Φ(x′).

(iv) For any x ∈ X , it holds that Φ(x)j = Φ(x)j′ , ∀(j, j′) ∈ J(x), where

J(x) = {{1, 2, . . . , n}n : F (x)j = F (x)j′ , ∀F ∈ F}.

Then for any ϵ > 0, there exists F ∈ F such that

sup
x∈X
∥Φ(x)− F (x)∥ < ϵ.

Now we leverage the theorems listed above to give a proof of the main theorem. And we let the
group G to be permutation group Sn. Since our SOCP-GNNs are permutation-equivariant, they are
obviously G− equivariant continuous functions. (The following a refers to 1 or n)

Property (i): Fn,m,k1,...,km,b
SOCP (Ra) is a subalgebra of CE(X,Ra) and 1 ∈ Fn,m,k1,...,km,b

SOCP (Ra)

Proof. If suffices to prove this by using similar channel expansion techniques mentioned in (Chen
et al., 2022b).

Property (ii): For any x, x′ ∈ X , if f(x) = f(x′) holds for any f ∈ C(X,R) with f1 ∈
Fn,m,k1,...,km,b

SOCP (Ra), then for any F ∈ Fn,m,k1,...,km,b
SOCP (Ra), there exists g ∈ G such that F (x) =

g ∗ F (x′).

Proof. First notice that: Fn,m,,k1,...,km,b
SOCP (R) ∈ C(X,R) with f1 ∈ Fn,m,k1,...,km,b

SOCP (Ra),∀f ∈
Fn,m,,k1,...,km,b

SOCP (R). Then applying theorem 9 and corollary 7 is enough.

Property (iii) and (iv):

• For any x, x′ ∈ X , if F (x) = F (x′) holds for any F ∈ Fn,m,k1,...,km,b
SOCP (Ra), then Φ(x) =

Φ(x′).

• For any x ∈ X , it holds that Φ(x)j = Φ(x)j′ , ∀(j, j′) ∈ J(x), where

J(x) = {{1, 2, . . . , a}2 : F (x)j = F (x)j′ , ∀F ∈ Fn,m,k1,...,km,b
SOCP (Ra)}

.

Proof. Applying theorems in Appendix C.2, theorem 9, and corollary 8 is enough.

Applying the generalized Stone-Weierstrass theorem gives us Theorem 2 immediately.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

C.6 EXTENSION TO p-ORDER CONE PROGRAMMING

A general p-order cone programming can be stated as:

minimize e⊤x

subject to Fx ≤ g, l ≤ x ≤ r,

∥Aix+ bi∥p ≤ cTi x+ di, i ∈ [m]

(10)

where decision variables are x ∈ Rn and the problem parameters are e ∈ Rn, Ai ∈ Rki×n, bi ∈ Rki ,
ci ∈ Rn, di ∈ R, F ∈ Rb×n, g ∈ Rb, lj ∈ ({−∞} ∪ R)n, and r ∈ ({+∞} ∪ R)n. Here, we only
consider the case: p ∈ [1,+∞].

Here, we formally define some concepts that are helpful to the extension of p-order cone programming.
Definition C.2. A function f : Rn → R is said to be separable if f(x) can be expressed as a sum
f(x) =

∑n
j=1 fj(xj), where each function fj only depends on the scalar xj . (This definition is

stricter than traditional “block separable”.)
Definition C.3. A function f : Rn → R is said to be equivalent (w.r.t. permutation group Sn) if
for any rearranging {σ(1), σ(2), · · · , σ(n)} of {1, 2, · · · , n} and any x ∈ Rn, f(x1, x2, · · · , xn) =
f(xσ(1), xσ(2), · · · , xσ(n))

For p ∈ [1,+∞), we have: ∥x∥pp =
∑n

i=1 |xi|p, which is separable and equivalent according to
Definition C.2 and C.3.

Situation 1:Use p as a fixed parameter: We don’t need to make any modifications to our archi-
tectures. As for the proof of the universality, we just need to change ||.||2 to ||.||p for p ≥ 1 in
our proof of lemma 3 and other theorems in Appendix C, since our proof only uses the convexity,
permutation-invariant property, continuous property, and separability of the l2 norm, which holds
for the lp norm as well when p ∈ [1,+∞). As for p = +∞, lemma 3 can be directly validated by
noticing that:

|(b̂r + Ârx̂)j1 | = |
1

|W4m|
∑

CT,u=W4m

∑
j∈W3l,j∈u

|W4m|
|W3l|

(Aux+ bu)j |

≤ 1

|W4m|
∑

CT,u=W4m

∑
j∈W3l,j∈u

|W4m|
|W3l|

|(Aux+ bu)j |

≤ 1

|W4m|
∑

CT,u=W4m

∑
j∈W3l,j∈u

|W4m|
|W3l|

(cux+ du) =
1

|W4m|
∑

CT,u=W4m

(cux+ du)

≤ ĉTr x̂+ d̂r

, where the notions follow the settings in lemma 3. Since the above equation holds for all j1, we can
see that: lemma 3 still holds. Since ∥ · ∥∞ is continuous, the measurability holds as well.

Situation 2:Use p as a continuous parameter: Here, we need a little modification on our ar-
chitectures and proofs, while we only consider p ∈ [1,+∞) since ∥x∥p is continuous in p when
p ∈ [1,+∞).

For the graph representation, we only need to augment our variable features from (ei, li, ri) to
(ei, li, ri, p). And the GNN and related WL test don’t need any modification. As for the proof, it
suffices to notice that:

• To prove lemma 3, we just need to observe that: If two instances I and Î can’t be distin-
guished by the WL test, then their corresponding p must be the same. Then what remains is
just the situation one’s proof mentioned above. Other related results hold as well, like the
equivalence of the WL test and GNN in separation power.

• As for the measurability, we just need to repeat what we do in Appendix C.3 while taking p
as a parameter in the new parameter space.

Situation 3:Mix order conic programming: Here, similar to situation 2, we need to augment
features for minor constraint nodes. For the constraint ∥Aix + bi∥p ≤ cTi x + di, we reset the

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

minor conic node j’s feature to be ((bi)j , p)
8. Then we can prove Lemma 3 by noticing that: two

major conic constraints have the same color if and only if their corresponding p are the same. The
measurability holds as well, similar to situation 1.

D PROOF OF THEOREM 3

D.1 VC-DIMENSION BASED APPROACHES FOR BINARY CLASSIFICATION

Definition D.1 (Growth function). For binary classification, the growth function of a hypothesis class
A over the domain X is defined as:

τA(n) = sup
x∈Xn

|A ◦ x|

, where A ◦ x = {(a(x1), a(x2), · · · , a(xn)) ∈ {0, 1}n | a ∈ A}
Definition D.2 (VC-dimension). The Vapnik-Chervonenkis dimension, or VC-dimension, of A is
the largest integer n such that:τA(n) = 2n. If τA(n) = 2n for all possible n, then A’s VC dimension
is +∞.

Below, we use VC(A) to denote the VC dimension of the hypothesis class A for simplicity.

Definition D.3 (WL equivalence relation). We define the equivalence relation in Gn,m,k1,...,km,b
SOCP

as: two graphs G1 and G2 are equivalent if and only if they can’t be distinguished by all possible
SOCP-WL tests. Given a space of graphs G ⊂ Gn,m,k1,...,km,b

SOCP , let G/WL denotes collections of the
equivalence class of G under such equivalence relation.

Theorem 10 (VC dimension ofFn,m,k1,...,km,b
SOCP (R) over G). For hypothesis classFn,m,k1,...,km,b

SOCP (R),
VC(Fn,m,k1,...,km,b

SOCP (R)) = |G/WL|. Here, Fn,m,k1,...,km,b
SOCP (R) do binary classification in the follow-

ing way: any function f ∈ Fn,m,k1,...,km,b
SOCP (R) maps x to 1 if f(x) ≥ 0.5. Otherwise, it maps x to

0.

Proof. First, we show that: VC(Fn,m,k1,...,km,b
SOCP (R)) ≤ |G/WL|. We prove by contradiction, if

VC(Fn,m,k1,...,km,b
SOCP (R)) > |G/WL|, then there exists two graphs G1, G2 ∈ G which can’t be

distinguished by SOCP-WL test but have different output under some f ∈ Fn,m,k1,...,km,b
SOCP (R). This

contradicts with theorem 9.

Now, we show that: VC(Fn,m,k1,...,km,b
SOCP (R)) ≥ |G/WL|. Let u = |G/WL|. Take representative

elements G1, G2, · · · , Gu of G/WL respectively. Consider u < +∞ first, from theorem 9, we
know that there exists a SOCP-GNN that can simulate the SOCP-WL test for ∪ui=1Gi. Hence, Gi’s
output (I1, I2, I3, I4) must be different respectively under this GNN after enough iterations. By
theorem 3.1 of (Yun et al., 2019), we can output all possible results for Gi respectively by using
a 3-layer ReLU-like FNN as the output layer. Hence, VC(Fn,m,k1,...,km,b

SOCP (R)) ≥ |G/WL| when
u < +∞, which indicates VC(Fn,m,k1,...,km,b

SOCP (R)) = |G/WL| . In case where u = +∞, we have:
VC(Fn,m,k1,...,km,b

SOCP (R)) = +∞ as well. Similar to the proof when u < +∞, we can see that:
∀n ∈ N, τFn,m,k1,...,km,b

SOCP (R)(n) = 2n, which finishes the proof.

D.2 PSEUDO-DIMENSION BASED APPROACHES FOR REAL-VALUED SCALAR PREDICTION

Definition D.4. Let G be a family of real-valued functions g : X → R. We say that a set of points
S = {x1, x2, . . . , xN} ⊂ X is pseudo-shattered by G if there exists a vector of thresholds (or targets)
z = (z1, z2, . . . , zN) ∈ RN such that for any binary vector b = (b1, b2, . . . , bN) ∈ {+1,−1}N ,
there is a function g ∈ G satisfying:

∀i ∈ {1, . . . , N}, sign(g(xi)− zi) = bi

8Here, we use p = −1 to encode +∞ into feature.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

The pseudo-dimension of G, denoted as Pdim(G), is the size of the largest set that can be pseudo-
shattered by G. If arbitrarily large sets can be pseudo-shattered, the pseudo-dimension is infinite.

A common result in learning theory shows that: For any family of functions H mapping from
a domain Y to a bounded interval [0, H], the following generalization guarantee holds: For any
δ ∈ (0, 1), with probability at least 1− δ over the draw of a set S ∼ DN of N samples drawn i.i.d.
from an arbitrary distribution D over Y , the following bound holds uniformly for all h ∈ H:∣∣∣∣∣∣ 1N

∑
y∈S

h(y)− E
y∼D

[h(y)]

∣∣∣∣∣∣ ≤ O

H

√
Pdim(H) + ln

(
1
δ

)
N


Now, we begin to give the pseudo-dimension of SOCP-GNNs for real-valued scalar prediction (e.g.
predicting the objective value).

Theorem 11 (pseudo-dimension of Fn,m,k1,...,km,b
SOCP (R) over G). For hypothesis class

Fn,m,k1,...,km,b
SOCP (R), Pdim(Fn,m,k1,...,km,b

SOCP (R)) = |G/WL|.

Proof. Similar to the proof above, we prove this theorem from two sides.

First, we show that: Pdim(Fn,m,k1,...,km,b
SOCP (R)) ≤ |G/WL|. Otherwise, if

Pdim(Fn,m,k1,...,km,b
SOCP (R)) > |G/WL|, then there exists two graphs G1, G2 ∈ G which can’t

be distinguished by SOCP-WL test but have different output under some f ∈ Fn,m,k1,...,km,b
SOCP (R).

This contradicts with theorem 9. (Assume there exist z1, z2 such that: for any binary vector
b = (b1, b2) ∈ {+1,−1}2, there is a function g ∈ Fn,m,k1,...,km,b

SOCP (R) satisfying:

∀i ∈ {1, 2}, sign(g(Gi)− zi) = bi

Without loss of generality, we assume z1 ≥ z2. Then there is a function g ∈ Fn,m,k1,...,km,b
SOCP (R) such

that g(G1) > z1 ≥ z2 > g(G2).)

Now, we show that: Pdim(Fn,m,k1,...,km,b
SOCP (R)) ≥ |G/WL|. Let u = |G/WL|. Take representative

elements G1, G2, · · · , Gu of G/WL respectively. Consider u < +∞ first, from theorem 9, we
know that there exists a SOCP-GNN that can simulate the SOCP-WL test for ∪ui=1Gi. Hence, Gi’s
output (I1, I2, I3, I4) must be different respectively under this GNN after enough iterations. By
theorem 3.1 of (Yun et al., 2019), we can output all possible results for Gi respectively by using
a 3-layer ReLU-like FNN as the output layer. Hence, Pdim(Fn,m,k1,...,km,b

SOCP (R)) ≥ |G/WL| when
u < +∞, which indicates Pdim(Fn,m,k1,...,km,b

SOCP (R)) = |G/WL| . In case where u = +∞, we
have: Pdim(Fn,m,k1,...,km,b

SOCP (R)) = +∞ as well, since any finite set composed of the representative
elements of G/WL can be pseudo-shattered.

D.3 RADEMACHER COMPLEXITY BASED APPROACHES

Before we start, let’s recall some basic concepts first.

Definition D.5. For a SOCP problem X ∈ Gn,m,k1,...,km,b
SOCP , we define its size

N to be its parameter (e, {Ai}mi=1, {bi}mi=1, {ci}mi=1, {di}mi=1, F, g, l, r)’s dimension
when equipped with product topology over these Euclidean spaces for predicting
boundedness, solution attainability, optimal value, optimal solution. And we define its problem size
N to be the dimension of its constraints’ parameter ({Ai}mi=1, {bi}mi=1, {ci}mi=1, {di}mi=1, F, g, l, r)’s
dimension when equipped with product topology over these Euclidean space for predicting feasibility.

We make the task-specialized definitions above since predicting feasibility has nothing to do with the
objective function, while other tasks are all closely related to the objective function. Here, we focus
on the following set of problems and hypotheses:

Problem class: The problem class X we are solving satisfies the following properties:

• The problem size is N .

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

• Its valid parameters lie in the bounded ball Bri = {x | ∥x∥2 ≤ ri}.

Note that we can always transform a problem class whose valid parameters are bounded into a new
problem class whose valid parameters lie in the bounded ball by scaling. Moreover, real-world
large-scale problems always have sparsity. So it’s reasonable to assume that the ℓ2 norm of the valid
parameters of the problems is bounded.

Hypothesis class: Here, we consider a subclass of SOCP-GNNs AL,N such that each a ∈ AL,N

satisfying the following property:

• Graph-level Output Lipschitz property: a is L-Lipshitz w.r.t. the input problem parame-
ters in Bri

• Node-level Output Lipschitz property: For each variable i ∈ [n], we have: a’s i-th output
is L-Lipshitz w.r.t. the input problem parameters in Bri as well.

We remark that this kind of assumption is widely accepted by researchers in the sample complex-
ity/generalization ability of graph neural networks (Pellizzoni et al., 2024; Garg et al., 2020; Tang &
Liu, 2023). Now, we introduce some concepts which is helpful to our theory.

Definition D.6 (Rademacher Complexity of a set). Given a set A ⊆ Rm, the Rademacher complexity
of A is defined as follows:

Rad(A) :=
1

m
Eσ

[
sup
a∈A

m∑
i=1

σiai

]
where σ1, σ2, . . . , σm are independent random variables drawn from the Rademacher distribution,
i.e.,

Pr(σi = +1) = Pr(σi = −1) = 1/2 for i = 1, 2, . . . ,m,

and a = (a1, . . . , am) ∈ A. The expectation Eσ is taken over the random variables σ =
(σ1, . . . , σm).

Definition D.7 (pseudo metric space). A pseudometric space is an ordered pair (X, d) where X is a
set and d is a function d : X ×X → R, called a pseudometric, satisfying the following conditions
for all x, y, z ∈ X:

1. d(x, y) ≥ 0 (Non-negativity)

2. d(x, x) = 0 (Identity of self)

3. d(x, y) = d(y, x) (Symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (Triangle inequality)

Unlike a metric space, a pseudometric space allows d(x, y) = 0 for distinct points x ̸= y.

Definition D.8 (Covering number). Let (X, d) be a pseudometric space and let S be a subset of X .
For a given ϵ > 0, an ϵ-covering for S is a set of points {x1, . . . , xN} ⊆ X such that for every point
s ∈ S, there exists some xi in the set for which d(s, xi) ≤ ϵ. The ϵ-covering number of S, denoted
by Cov(S, d, ϵ), is the minimum size N of ϵ-coverings for S. Formally:

Cov(S, d, ϵ) = min {|P | : P ⊆ X is an ϵ-covering}

Definition D.9 (Packing number). Let (X, d) be a pseudometric space. For a given ϵ > 0, an
ϵ-packing of X is a subset P ⊆ X in which the distance between any two distinct points is strictly
greater than ϵ, i.e., d(x, y) > ϵ for all x, y ∈ P with x ̸= y. The ϵ-packing number of X , denoted
by Pack(X, d, ϵ), is the maximum possible cardinality of such a set. Formally, it is defined as the
supremum over the sizes of all possible ϵ-packings:

Pack(X, d, ϵ) = max {|P | : P ⊆ X is an ϵ-packing} .

Now, let’s define the pseudo metric over AL,N for both graph-level output and node-level output.
Pseudo metric for graph-level scalar output: Given a training set x = {x1, · · · , xm}, we define
∥a∥p,x = |

∑m
i=1 |a(xi)|p

m |
1
p for a ∈ AL,N with output dimension 1 as a pseudo norm. And define

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

∥a − b∥p,x = |
∑m

i=1 |a(xi)−b(xi)|p
m |

1
p as the pseudo metric on AL,N with scalar output, denoted by

∥.∥p,x.

Pseudo metric for node-level vector output: Given a training set x = {x1, · · · , xm}, we define

∥a∥p,x = |
∑m

i=1

∑n
j=1 |(a(xi))j |p

mn |
1
p for a ∈ AL,N with output dimension n as a pseudo norm. And

define ∥a − b∥p,x = |
∑m

i=1

∑n
j=1 |(a(xi))j−(b(xi))j |p

mn |
1
p as the pseudo metric on AL,N with vector

output, denoted by ∥.∥p,x.

Without loss of generality, we assume our loss function is Lipshitz continuous with coefficient q.

Lemma 4 (Contraction lemma, (Shalev-Shwartz & Ben-David, 2014)’s Lemma 26.9). For each
i ∈ [m], let ϕi : R→ R be a ρ-Lipschitz function, namely for all α, β ∈ R we have |ϕi(α)−ϕi(β)| ≤
ρ|α− β|. For a ∈ Rm let ϕ(a) denote the vector (ϕ1(a1), . . . , ϕm(am)). Let ϕ ◦A = {ϕ(a) : a ∈
A}. Then,

Rad(ϕ ◦A) ≤ ρRad(A).

For the node-level scalar output, we have:

Lemma 5 (Contraction lemma for node-level output, (Maurer, 2016)). Let X be any set,
(x1, . . . , xn) ∈ Xn, let F be a class of functions f : X → ℓ2 and let hi : ℓ2 → R have Lips-
chitz norm L. Then

E sup
f∈F

∑
i

σihi(f(xi)) ≤
√
2LE sup

f∈F

∑
i,k

σikfk(xi),

where σik is an independent doubly indexed Rademacher sequence and fk(xi) is the k-th component
of f(xi). And We use ℓ2 to denote the Hilbert space of square summable sequences of real numbers.

By setting the after M-th coordinate of x ∈ RM to 0, we can see that any finite dimensional Euclidean
space is a special class of ℓ2 space.

Now, Let zi denote (xi, yi), where xi is the i-th socp instance and yi ∈ R is the label of xi. We
denote the loss function as ϕ(z) = ϕ(a(x), y), which is q-Lipshitz w.r.t a(x) for all possible y. Let
ϕ(z) denote the vector (ϕ(z1), . . . , ϕ(zm)). Let ϕ ◦A = {ϕ(z) : z ∈ A}. Then, we have:

Rad(ϕ ◦{(z1, ..., zm) : zi = (a(xi), yi),∀i ∈ [m] for a ∈ AL,N}) ≤ q Rad(AL,N◦{(x1, ..., xm)})

Meanwhile, Let zi denote (xi, yi), where xi is the i-th socp instance and yi ∈ Rn is the label of xi

and we denote the loss function as ϕ(z) = ϕ(a(x), y), which is q-Lipshitz w.r.t a(x) ∈ Rn for all
possible y. by lemma 5, we get:

Rad(ϕ ◦{(z1, ..., zm) : zi = (a(xi), yi),∀i ∈ [m] for a ∈ AL,N}) ≤
√
2qnRad(AL,N◦{(x1, ..., xm)})

where Rad(AL,N ◦{(x1, ..., xm)} = 1
mEσ

[
supa∈AL,N

∑m
i=1 σia(xi)

]
for graph-level scalar output

and Rad(AL,N ◦ {(x1, ..., xm)} = 1
mnEσ

[
supa∈AL,N

∑m
i=1

∑n
j=1 σij(a(xi))j

]
for node-level

vector output.

So, we only need to focus on Rad(AL,N ◦ {(x1, ..., xm)}) for fixed training sample (x1, · · · , xm).
That’s just R̂S(AL,N) we defined following.

Lemma 6 (Dudley Entropy Integral for scalar output, chapter 5.3.3 of (Wainwright, 2019)). LetAL,N

be the hypothesis class of SOCP-GNNs with scalar output as defined above. Let S = {x1, . . . , xm}
be a fixed set of m SOCP problem instances. The empirical Rademacher complexity of AL,N on S is
defined as

R̂S(AL,N) =
1

m
Eσ

[
sup

a∈AL,N

m∑
i=1

σia(xi)

]
where σi are independent Rademacher random variables. Let || · ||2,S be the empirical L2 pseudo

metric onAL,N , given by ||a||2,S =
√

1
m

∑m
i=1 a(xi)2 for a ∈ AL,N . Assume that for some CS > 0,

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

we have supa∈AL,N
||a||2,S ≤ CS . Then,

R̂S(AL,N) ≤ inf
ϵ∈[0,CS/2]

{
4ϵ+

12√
m

∫ CS/2

ϵ

√
logCov(AL,N , || · ||2,S , v) dv

}
where Cov(AL,N , d, ϵ) is the ϵ-covering number of the set AL,N with respect to the pseudometric d.

Proof. We start by constructing a sequence of coverings for the hypothesis class AL,N at progres-
sively finer scales. Define ϵj = CS/2

j for j = 1, 2, . . . ,K . For each j, letAj be a minimal ϵj-cover
of AL,N with respect to the || · ||2,S pseudometric, so that its size is |Aj | = Cov(AL,N , || · ||2,S , ϵj).
For any function a ∈ AL,N , we can define a sequence of approximations πj(a) ∈ Aj such that
|| a − πj(a) ||2,S ≤ ϵj and set π0(a) = 0. For any integer K ≥ 0, any function a ∈ AL,N can be
decomposed into:

a = (a− πK(a)) +

K∑
j=1

(πj(a)− πj−1(a)).

By the sub-additivity of the supremum, the empirical Rademacher complexity R̂S(AL,N) =
1
mEσ

[
supa∈AL,N

∑m
i=1 σia(xi)

]
can be bounded by:

R̂S(AL,N) ≤ 1

m
Eσ

[
sup

a∈AL,N

m∑
i=1

σi(a(xi)− πK(a)(xi))

]
+

K∑
j=1

1

m
Eσ

[
sup

a∈AL,N

m∑
i=1

σi(πj(a)(xi)− πj−1(a)(xi))

]
.

The first term, representing the residual error, can be bounded using the Cauchy-Schwarz inequality.
For any a ∈ AL,N , we have

∑m
i=1 σi(a(xi) − πK(a)(xi)) ≤ m||a − πK(a)||1,S ≤ m||a −

πK(a)||2,S ≤ mϵK . Thus, the residual term is bounded by ϵK .

For the second terms, we consider each term for j = 0, . . . ,K. Let dj(a) = πj(a)− πj−1(a). This
difference function belongs to the set Dj = {c − c′ | c ∈ Aj , c

′ ∈ Aj−1}, whose size is at most
|Aj ||Aj−1|. By the triangle inequality, the norm of any such difference is bounded by:

||dj(a)||2,S = ||πj(a)− πj−1(a)||2,S ≤ ||πj(a)− a||2,S + ||a− πj−1(a)||2,S ≤ ϵj + ϵj−1 = 3ϵj .

We apply Massart’s Lemma to the Rademacher complexity of the finite set Dj :

Eσ

[
sup

a∈AL,N

m∑
i=1

σidj(a)(xi)

]
≤ sup

d∈Dj

√√√√ m∑
i=1

d(xi)2 ·
√

2 log |Dj |

≤ sup
a∈AL,N

(√
m||dj(a)||2,S

)√
2 log(|Aj ||Aj−1|).

Since the covering number is non-increasing with scale, |Aj−1| ≤ |Aj |, which gives log |Dj | ≤
2 log |Aj |. Therefore, the bound on the j-th term of the Rademacher complexity is:

1

m
Eσ

[
sup

a∈AL,N

m∑
i=1

σidj(a)(xi)

]
≤ 1√

m
(3ϵj)

√
4 log |Aj | =

6ϵj√
m

√
logCov(AL,N , || · ||2,S , ϵj).

Summing these bounds from j = 1 to K, and noting that ϵj = 2(ϵj − ϵj+1), we obtain a sum that
approximates an integral:

K∑
j=1

6ϵj√
m

√
logCov(AL,N , || · ||2,S , ϵj) =

12√
m

K∑
j=1

(ϵj − ϵj+1)
√
logCov(AL,N , || · ||2,S , ϵj)

≤ 12√
m

∫ ϵ1

ϵK+1

√
logCov(AL,N , || · ||2,S , v) dv.

Combining all parts, we have for any chosen refinement level K:

R̂S(AL,N) ≤ 2ϵK+1 +
12√
m

∫ CS/2

ϵK+1

√
logCov(AL,N , || · ||2,S , v) dv.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Since this holds for any K, we can replace the cutoff scale ϵK+1 with an arbitrary ϵ ∈ [ϵK+1

2 , ϵK+1].
Taking the infimum over all such ϵ yields the tightest bound:

R̂S(AL,N) ≤ inf
ϵ∈[0,CS/2]

{
4ϵ+

12√
m

∫ CS/2

ϵ

√
logCov(AL,N , || · ||2,S , v) dv

}
.

Lemma 7 (Dudley Entropy Integral for vector output). Let AL,N be the hypothesis class of SOCP-
GNNs as defined above. Let S = {x1, . . . , xm} be a fixed set of m SOCP problem instances. The
empirical Rademacher complexity of AL,N with output dimension n on S is defined as

R̂S(AL,N) =
1

mn
Eσ

 sup
a∈AL,N

m∑
i=1

n∑
j=1

σij(a(xi))j


where σij are independent Rademacher random variables. Let || · ||2,S be the empirical L2 pseu-

dometric on AL,N , given by ||a||2,S =
√

1
mn

∑m
i=1

∑n
j=1(a(xi))2j for a ∈ AL,N . Assume that for

some CS > 0, we have supa∈AL,N
||a||2,S ≤ CS . Then,

R̂S(AL,N) ≤ inf
ϵ∈[0,CS/2]

{
4ϵ+

12√
mn

∫ CS/2

ϵ

√
logCov(AL,N , || · ||2,S , v) dv

}
where Cov(AL,N , d, ϵ) is the ϵ-covering number of the set AL,N with respect to the pseudometric d.

Proof. Similarly, we define ϵk = CS/2
k for k = 1, 2, . . . ,K . For each k, let Ak be a minimal

ϵk-cover of AL,N with respect to the || · ||2,S pseudometric, so that its size is |Ak| = Cov(AL,N , || ·
||2,S , ϵk).
For any function a ∈ AL,N , we can define a sequence of approximations πk(a) ∈ Ak such that
|| a − πk(a) ||2,S ≤ ϵk and set π0(a) = 0. For any integer K ≥ 0, any function a ∈ AL,N can be
decomposed into:

a = (a− πK(a)) +

K∑
k=1

(πk(a)− πk−1(a)).

By the sub-additivity of the supremum, the empirical Rademacher complexity R̂S(AL,N) =
1

mnEσ

[
supa∈AL,N

∑m
i=1

∑n
j=1 σij(a(xi))j

]
can be bounded by:

R̂S(AL,N) ≤ 1

mn
Eσ

 sup
a∈AL,N

m∑
i=1

n∑
j=1

σij(a(xi)− πK(a)(xi))j


+

K∑
k=1

1

mn
Eσ

 sup
a∈AL,N

m∑
i=1

n∑
j=1

σij(πk(a)(xi)− πk−1(a)(xi))j

 .

For any a ∈ AL,N , we have
∑m

i=1

∑n
j=1 σij(a(xi) − πK(a)(xi))j ≤ mn||a − πK(a)||1,S ≤

mn||a− πK(a)||2,S ≤ mnϵK . Thus, the residual term is bounded by ϵK .

For the second terms, we consider each term for k = 0, . . . ,K. Let dk(a) = πk(a)− πk−1(a). This
difference function belongs to the set Dk = {c − c′ | c ∈ Ak, c

′ ∈ Ak−1}, whose size is at most
|Ak||Ak−1|. By the triangle inequality, the norm of any such difference is bounded by:

||dk(a)||2,S = ||πk(a)− πk−1(a)||2,S ≤ ||πk(a)− a||2,S + ||a− πk−1(a)||2,S ≤ ϵk + ϵk−1 = 3ϵk.

We apply Massart’s Lemma to the Rademacher complexity of the finite set Dj :

Eσ

 sup
a∈AL,N

m∑
i=1

n∑
j=1

σij(dk(a)(xi))j

 ≤ sup
d∈Dk

√√√√ m∑
i=1

n∑
j=1

(d(xi))2j ·
√

2 log |Dk|

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

≤ sup
a∈AL,N

(√
mn||dk(a)||2,S

)√
2 log(|Ak||Ak−1|).

Since the covering number is non-increasing with scale, |Ak−1| ≤ |Ak|, which gives log |Dk| ≤
2 log |Ak|. Therefore, the bound on the k-th term of the Rademacher complexity is:

1

mn
Eσ

 sup
a∈AL,N

m∑
i=1

n∑
j=1

σij(dk(a)(xi))j

 ≤ 1√
mn

(3ϵk)
√
4 log |Ak| =

6ϵk√
mn

√
logCov(AL,N , || · ||2,S , ϵk).

Summing these bounds from k = 1 to K, and noting that ϵk = 2(ϵk − ϵk+1), we obtain a sum that
approximates an integral:

K∑
k=1

6ϵk√
mn

√
logCov(AL,N , || · ||2,S , ϵk) =

12√
mn

K∑
k=1

(ϵk − ϵk+1)
√
logCov(AL,N , || · ||2,S , ϵk)

≤ 12√
mn

∫ ϵ1

ϵK+1

√
logCov(AL,N , || · ||2,S , v) dv.

Combining all parts, we have for any chosen refinement level K:

R̂S(AL,N) ≤ 2ϵK+1 +
12√
m

∫ CS/2

ϵK+1

√
logCov(AL,N , || · ||2,S , v) dv.

Since this holds for any K, we can replace the cutoff scale ϵK+1 with an arbitrary ϵ ∈ [ϵK+1

2 , ϵK+1].
Taking the infimum over all such ϵ yields the tightest bound:

R̂S(AL,N) ≤ inf
ϵ∈[0,CS/2]

{
4ϵ+

12√
m

∫ CS/2

ϵ

√
logCov(AL,N , || · ||2,S , v) dv

}
.

By the above lemma, it suffices to study the bound of Cov(AL,N , || · ||2,S , v) now. And we will
consider two different situations here, i.e., the output dimension is 1 and n, respectively.
Lemma 8 (Estimation for covering number bounds in SOCP-parameter space, (Pellizzoni et al.,
2024) Lemma 2). Let AL,N ⊂ {f : S → R} be the hypothesis class of SOCP-GNNs whose output
dimension is 1, where S = {x1, . . . , xm} be a fixed set of m problem instances. We assume the
function outputs lie in the interval [−r, r]. For any ϵ > 0, the logarithm of the ϵ-covering number of
this class with respect to the empirical L2 pseudometric, || · ||2,S , is bounded by:

logCov(AL,N , || · ||2,S , ϵ) ≤ Cov(S, ∥ · ∥2,
ϵ

2L
) log

(
2r

ϵ
+ 2

)
.

Proof. Take Ss to be the minimal ϵ
2L -covering of S. Consider function class O = {f : Ss →

{ ϵ2 + kϵ : k = −([rϵ] + 1), ..., 0, [rϵ]}}. For each x ∈ S, let π(x) ∈ Ss be one of the closet point of
x in Ss satisfying: ∥π(x)− x∥2 ≤ ϵ

2L . Ler O = {f : S → R : f(x) = f̂(π(x)) for some f̂ ∈ O}.
Then |O| = |O| = (2[rϵ] + 2)Cov(S,∥·∥2,

ϵ
2L). So, it suffices to prove that: O is a ϵ-covering of AL,N

under || · ||2,S .

For any f ∈ AL,N , take g ∈ O such that |g(x)− f(x)| ≤ ϵ
2 for all x ∈ Ss. Then we have:

∥f − g∥22,S =
1

m
(
∑
x∈S

|f(x)− g(x)|2)

≤ 1

m
(
∑
x∈S

[|f(x)− f(π(x))|+ |f(π(x))− g(π(x))|+ |g(π(x))− g(x)|]2)

≤ 1

m
(
∑
x∈S

[
ϵ

2L
· L+

ϵ

2
+ 0]2) = ϵ2

Taking square root of both sides, we get the proof.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Lemma 9. Let AL,N ⊂ {f : S → Rn} be the hypothesis class of SOCP-GNNs whose output
dimension is n, where S = {x1, . . . , xm} be a fixed set of m problem instances. We assume that
each component of the function output lies in the interval [−r, r]. For any ϵ > 0, the logarithm of the
ϵ-covering number of this class with respect to the empirical L2 pseudometric, || · ||2,S , is bounded
by:

logCov(AL,N , || · ||2,S , ϵ) ≤ nCov(S, ∥ · ∥2,
ϵ

2L
) log

(
2r

ϵ
+ 2

)
.

Proof. Take Ss to be the minimal ϵ
2L -covering of S. Consider function class O = {f : Ss →

{ ϵ2 + kϵ : k = −([rϵ] + 1), ..., 0, [rϵ]}
n}. For each x ∈ S, let π(x) ∈ Ss be one of the closest point of

x in Ss satisfying: ∥π(x)− x∥2 ≤ ϵ
2L . Let O = {f : S → Rn : f(x) = f̂(π(x)) for some f̂ ∈ O}.

Then |O| = |O| = (2[rϵ] + 2)nCov(S,∥·∥2,
ϵ

2L). So, it suffices to prove that: O is a ϵ-covering of AL,N

under || · ||2,S .

For any f ∈ AL,N , take g ∈ O such that |g(x)i − f(x)i| ≤ ϵ
2 for all x ∈ Ss and i ∈ [n]. Then we

have:

∥f − g∥22,S =
1

mn
(
∑
x∈S

n∑
i=1

|f(x)i − g(x)i|2)

≤ 1

mn
(
∑
x∈S

n∑
i=1

[|f(x)i − f(π(x))i|+ |f(π(x))i − g(π(x))i|+ |g(π(x))i − g(x)i|]2)

≤ 1

mn
(
∑
x∈S

n∑
i=1

[
ϵ

2L
· L+

ϵ

2
+ 0]2) = ϵ2

Taking square root of both sides, we get the proof.

So, what remains is to discuss the covering number bounds of S in its valid parameter space Bri
Lemma 10 (Estimation for covering number bounds in socp-parameter space). For any ϵ > 0 and
the uniform distribution P over the valid parameter space Bri , we have:

ES∼Pm(Cov(S, ∥ · ∥2, ϵ)) ≤ (
2ri + ϵ

ϵ
)N (1− (1−min((

ϵ

ri
)N , 1))m)

,

Proof. Notice that:

Cov(S, ∥ · ∥2, ϵ) ≤ Pack(S, ∥ · ∥2, ϵ) ≤ Pack(Bri , ∥ · ∥2, ϵ)

Here, the first inequality holds since any maximum ϵ-packing is a ϵ-covering as well. Let P be
the maximum ϵ-packing of Bri and let P = {x1, · · · , x|P |}. Then, we have: ∪|P |

i=1B(xi,
ϵ
2) ⊂

B(0, ri + ϵ
2), where B(xi,

ϵ
2) = {x ∈ RN : ∥xi − x∥2 ≤ ϵ

2} are mutually disjoint. Hence, if let αN

denote the volume of the bounded ball in RN , we get:|P | ≤ αN

αN
(2ri+ϵ

ϵ)N .

Consider the collection of balls B = {B(xi, ϵ) : i ∈ [|P |]}. For any ball b ∈ B and m socp instances
s1, · · · , sm which are sampled i.i.d. from the uniform distribution on Bri , we have:

P(si /∈ b,∀i ∈ [m]) ≥ (1−min((
ϵ

ri
)N , 1))m

. For any possible realization of S = {s1, · · · , sm}, we take all balls b ∈ B, which contain some
points in S to form a new set of balls, denoted by C. Then C’s center forms a ϵ-covering of S.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

(Here, notice that: Bri ⊂ ∪b∈Bb). Let I1, ..., I|P | denote the indicator variables for the event:
∃ y ∈ S, s.t. y ∈ B(xi, ϵ) respectively. Then, we have:

ES∼Pm(Cov(S, ∥ · ∥2, ϵ)) ≤ ES∼Pm(

|P |∑
i=1

Ii) ≤ |P |(1− (1−min((
ϵ

ri
)N , 1))m)

≤ (
2ri + ϵ

ϵ
)N (1− (1−min((

ϵ

ri
)N , 1))m)

Before we get our result finally, an important lemma is needed.

Theorem 12 (Theorem 26.5 of (Shalev-Shwartz & Ben-David, 2014); Algorithmic Foundations of
Learning). Assume that for all z and h ∈ H we have that |ℓ(h, z)| ≤ c. Then,

1. With probability of at least 1− δ, for all h ∈ H,

LD(h)− LS(h) ≤ 2 E
S′∼Dm

Rad(ℓ ◦ H ◦ S′) + c

√
2 ln(2/δ)

m
.

In particular, this holds for h = ERMH(S).

2. With probability of at least 1− δ, for all h ∈ H,

LD(h)− LS(h) ≤ 2Rad(ℓ ◦ H ◦ S) + 4c

√
2 ln(4/δ)

m
.

In particular, this holds for h = ERMH(S).

3. For any h∗, with probability of at least 1− δ,

LD(ERMH(S))− LD(h∗) ≤ 2Rad(ℓ ◦ H ◦ S) + 5c

√
2 ln(8/δ)

m
.

4. For any h∗, with probability of at least 1− δ,

LD(ERMH(S))− LD(h∗) ≤ 4ES′∼Dm [Rad(ℓ ◦ H ◦ S′)] + 2c

√
2 log(1/δ)

m
.

Here, z denotes the sample point, S and S′ denotes the training set of size m,H denotes the hypothesis
class, ℓ denotes the loss function, h∗ denote the hypothesis in H with the smallest generalization
error and ERMH(S) denotes the hypothesis inH with the smallest empirical error on S.

Before we go further, we need a further lemma to apply Tonelli’s theorem in the following proof.

Lemma 11. The function Φ(S, v) = Cov(S, ∥ · ∥, v) is measurable w.r.t. the standard lebesgue
measure, where S ∈ (Bri)m, v ∈ R+. Here, R+ denotes all non-negative real numbers.

Proof. Here, if suffices to prove that: for any n ∈ N, the set {(S, v) : Φ(S, v) ≤ n} is measurable.
Let S = (s1, · · · , sm), X = (x1, · · · , xn), we define h(S,X) = maxi∈[m] minj∈[n] ∥si − xj∥2,
which is continuous in S,X . By Berge’s theorem of maximum, g(S) = infx1,..,xn∈Bri

h(S,X) is
continuous in S. Hence g(S)− v is continuous. Notice that:

{(S, v) : Φ(S, v) ≤ n} = {(S, v) : g(S)− v ≤ 0}

Hence, this set is measurable, which indicates that Cov(S, ∥ · ∥, v) is measurable w.r.t. (S, v).

It’s time to get our integral sample complexity result.

43

https://www.stats.ox.ac.uk/~rebeschi/teaching/AFoL/22/material/lecture06.pdf
https://www.stats.ox.ac.uk/~rebeschi/teaching/AFoL/22/material/lecture06.pdf

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Theorem 13 (estimation risk for graph level output). For graph-level prediction tasks, let AL,N be
the hypothesis class of SOCP-GNNs defined above for a graph-level prediction task on the set X of
SOCP instances whose valid parameters lie in Bri , with outputs in [−r, r] and loss functions that
are q-Lipshitz and bounded by p. Then, for any training set S of m samples which are i.i.d. sampled
from the uniform distribution D over X , let h∗ denote the hypothesis in AL,N with the smallest
generalization error and ERMAL,N

(S) denotes the hypothesis in AL,N with the smallest empirical
error on S, we have: with probability of at least 1− δ,

LD(ERMAL,N (S))− LD(h∗) ≤ 4ES′∼Dm [Rad(ℓ ◦ AL,N ◦ S′)] + 2p

√
2 log(1/δ)

m

≤ 4q inf
ϵ∈[0,r/2]

[4ϵ+
12√
m

∫ r/2

ϵ

√
(
4Lri + v

v
)N (1− (1−min((

v

2Lri
)N , 1))m) log

(
2r

v
+ 2

)
dv]

+ 2p

√
2 log(1/δ)

m

Proof. By theorem 12 above, it suffices to notice that:

ES′∼Dm [Rad(ℓ ◦ AL,N ◦ S′)]

≤ qES′∼Dm [Rad(AL,N ◦ S′)](lemma 4)

≤ qES′∼Dm [inf
ϵ∈[0,r/2]

{
4ϵ+

12√
m

∫ r/2

ϵ

√
logCov(AL,N , || · ||2,S′ , v) dv

}
](lemma 6)

≤ q inf
ϵ∈[0,r/2]

ES′∼Dm [

{
4ϵ+

12√
m

∫ r/2

ϵ

√
logCov(AL,N , || · ||2,S′ , v) dv

}
]

≤ q inf
ϵ∈[0,r/2]

[4ϵ+
12√
m

ES′∼Dm

∫ r/2

ϵ

[
√

logCov(AL,N , || · ||2,S′ , v)] dv]

≤ q inf
ϵ∈[0,r/2]

[4ϵ+
12√
m

ES′∼Dm

∫ r/2

ϵ

[

√
Cov(S′, ∥ · ∥2,

v

2L
) log

(
2r

v
+ 2

)
] dv](lemma 8)

≤ q inf
ϵ∈[0,r/2]

[4ϵ+
12√
m

∫ r/2

ϵ

ES′∼Dm [

√
Cov(S′, ∥ · ∥2,

v

2L
) log

(
2r

v
+ 2

)
] dv](Tonelli’s Theorem)

≤ q inf
ϵ∈[0,r/2]

[4ϵ+
12√
m

∫ r/2

ϵ

√
ES′∼Dm [Cov(S′, ∥ · ∥2,

v

2L
)] log

(
2r

v
+ 2

)
dv](Jensen Inequality)

≤ q inf
ϵ∈[0,r/2]

[4ϵ+
12√
m

∫ r/2

ϵ

√
(
4Lri + v

v
)N (1− (1−min((

v

2Lri
)N , 1))m) log

(
2r

v
+ 2

)
dv](lemma 10)

Here,
√

Cov(S′, ∥ · ∥2, v
2L) log

(
2r
v + 2

)
is measurable since it’s the square root of the multiplication

of two finite-valued positive measurable functions. Since it’s positive, we can exchange the order of
integration by Tonelli’s theorem.

Theorem 14 (estimation risk for node level output). For node-level prediction tasks, let AL,N be
the hypothesis class of SOCP-GNNs defined above for a node-level prediction task on the set X of
SOCP instances whose valid parameters lie in Bri , with outputs in [−r, r]n and loss functions that
are q-Lipshitz and bounded by p. Then, for any training set S of m samples which are i.i.d. sampled
from the uniform distribution D over X , let h∗ denote the hypothesis in AL,N with the smallest
generalization error and ERMAL,N

(S) denotes the hypothesis in AL,N with the smallest empirical
error on S, we have: with probability of at least 1− δ,

LD(ERMAL,N (S))− LD(h∗) ≤ 4ES′∼Dm [Rad(ℓ ◦ AL,N ◦ S′)] + 2p

√
2 log(1/δ)

m

≤ 4
√
2nq inf

ϵ∈[0,r/2]
[4ϵ+

12√
m

∫ r/2

ϵ

√
(
4Lri + v

v
)N (1− (1−min((

v

2Lri
)N , 1))m) log

(
2r

v
+ 2

)
dv]

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

+ 2p

√
2 log(1/δ)

m

Proof. By theorem 12 above, it suffices to notice that:

ES′∼Dm [Rad(ℓ ◦ AL,N ◦ S′)]

≤
√
2nqES′∼Dm [Rad(AL,N ◦ S′)](lemma 5)

≤
√
2nqES′∼Dm [inf

ϵ∈[0,r/2]

{
4ϵ+

12√
mn

∫ r/2

ϵ

√
logCov(AL,N , || · ||2,S′ , v) dv

}
](lemma 7)

≤
√
2nq inf

ϵ∈[0,r/2]
ES′∼Dm [

{
4ϵ+

12√
mn

∫ r/2

ϵ

√
logCov(AL,N , || · ||2,S′ , v) dv

}
]

≤
√
2nq inf

ϵ∈[0,r/2]
[4ϵ+

12√
mn

ES′∼Dm

∫ r/2

ϵ

[
√

logCov(AL,N , || · ||2,S′ , v)] dv]

≤
√
2nq inf

ϵ∈[0,r/2]
[4ϵ+

12√
mn

ES′∼Dm

∫ r/2

ϵ

[

√
nCov(S′, ∥ · ∥2,

v

2L
) log

(
2r

v
+ 2

)
] dv](lemma 9)

≤
√
2nq inf

ϵ∈[0,r/2]
[4ϵ+

12√
mn

∫ r/2

ϵ

ES′∼Dm [

√
nCov(S′, ∥ · ∥2,

v

2L
) log

(
2r

v
+ 2

)
] dv](Tonelli’s Theorem)

≤
√
2nq inf

ϵ∈[0,r/2]
[4ϵ+

12√
mn

∫ r/2

ϵ

√
nES′∼Dm [Cov(S′, ∥ · ∥2,

v

2L
)] log

(
2r

v
+ 2

)
dv](Jensen Inequality)

≤
√
2nq inf

ϵ∈[0,r/2]
[4ϵ+

12√
m

∫ r/2

ϵ

√
(
4Lri + v

v
)N (1− (1−min((

v

2Lri
)N , 1))m) log

(
2r

v
+ 2

)
dv](lemma 10)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

E SOCP-BASED FORMULATION FOR OPF

• Decision Variables

wi ∈ R+ voltage magnitude squared at bus i (11)
cij , sij ∈ R cosine and sine terms for line (i, j) (12)

Pg,i, Qg,i ∈ R real and reactive power generation at bus i (13)
Pij , Qij ∈ R real and reactive power flows on line (i, j) (14)

where:

cij = wiwj cos(θi − θj) (15)
sij = wiwj sin(θi − θj) (16)

• Objective Function min
∑

i∈G ci · Pg,i

• Second-Order Cone Constraints For each line (i, j) ∈ E , the rotated second-order cone
constraint:

c2ij + s2ij ≤ wiwj (17)

can be directly reformulated as the following standard second-order cone constraint:

∥∥∥∥∥
[

2cij
2sij

wi − wj

]∥∥∥∥∥
2

≤ wi + wj (18)

• Power Flow Equations Real power flow from bus i to bus j:

Pij = gijwi − gijcij − bijsij (19)

Reactive power flow from bus i to bus j:

Qij = −bijwi + bijcij − gijsij (20)

where gij and bij are the conductance and susceptance of line (i, j).

• Nodal Power Balance For each bus i ∈ N :

Pg,i − Pd,i =
∑

j∈N (i)

Pij + giiwi (21)

Qg,i −Qd,i =
∑

j∈N (i)

Qij − biiwi (22)

where N (i) is the set of buses connected to bus i, and gii, bii are shunt elements.

• Voltage Magnitude Limits

(V min
i)2 ≤ wi ≤ (V max

i)2 ∀i ∈ N (23)

• Generation Limits

Pmin
g,i ≤ Pg,i ≤ Pmax

g,i ∀i ∈ G (24)

Qmin
g,i ≤ Qg,i ≤ Qmax

g,i ∀i ∈ G (25)

• Line Flow Limits
∥(Pij , Qij)∥2 ≤ Smax

ij ∀(i, j) ∈ E (26)

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

F EXPERIMENT SETTINGS AND SUPPLEMENTARY RESULTS

F.1 DATA GENERATION

F.1.1 GENERATION OF FEASIBLE SOCP INSTANCES

Following the SOCP generating scheme in CVXPY, we use the following steps to generate feasible
and random SOCP instances, which admit at least an optimal solution.

(I) : Generate a secret point xs ∈ Rn by sampling from a standard normal distribution, i.e.,
xs ∼ N (0, I). Then generate the objective coefficient e ∼ N (0, 0.25I).

(II) : Impose lower bounds and upper bounds on variables l ≤ xs ≤ r for the problem. Here
l = xs − |∆1| − 0.1, r = xs + |∆2|+ 0.1, where ∆i are sampled i.i.d. from N (0, 0.25I)
and | · | denotes component-wise absolute value.

(III) : Generate F ∈ Rb×n, whose nonzero entries are sampled i.i.d. from N (0, 0.01) and
components are nonzero with probability 0.5. The vector g is subsequently sampled by
g = Fxs + |∆3|+ 0.1, where ∆3 ∼ N (0, 0.25I).

(IV) : For each conic constraint, randomly sample the cone dimension (the number of rows
of Ai, bi) in [1, 7] with equal probability. Then, generate Ai, ci, bi, whose nonzero entries
are sampled i.i.d. from N (0, 0.0025). Each component of the coefficient matrix Ai, ci
is nonzero with probability 0.5. Then, generate di = ∥Aixs + bi∥2 − c⊤i xs + ϵ, where
ϵ ∼ U(0.5, 1).

Step (II) ensures that the generated SOCP instances always have an optimal solution. Furthermore,
the coefficients are intentionally sampled from distributions with different variances, introducing
varying numerical scales to create more challenging test instances.

F.1.2 GENERATION OF (POSSIBLE) INFEASIBLE SOCP INSTANCES

We use the following steps to generate a (possible) infeasible SOCP instance with pre-determined
probability h ∈ [0, 1].

(I) : Sample a feasible SOCP instance by methods in Appendix F.1.1.

(II) : Execute step III-IV with probability h and execute step V-VI with probability 1− h.

(III) : Sample a random integer p in [3, 20] and a scale coefficient a ∼ U(0, 1). Then repeat step
IV for p times

(IV) : Randomly choose a type of constraint to break with equal probability. If the polyhedral
constraint is chosen, we randomly choose one component of g with equal probability,
denoted by gi, and then replace gi by (Fxs)i − δ − 3. If the conic constraint is chosen,
we randomly choose one with equal probability and then replace its corresponding di by
∥Aixs + bi∥2 − c⊤i xs − δ − 3. Here δ ∼ U(0, a).

(V) : Sample a random integer p in [3, 20] and a scale coefficient a ∼ U(0, 1). Then repeat step
VI for p times

(VI) : Randomly choose a type of constraint to enhance with equal probability. If the polyhedral
constraint is chosen, we randomly choose one component of g with equal probability,
denoted by gi, and then replace gi by gi + δ. If the conic constraint is chosen, we randomly
choose one with equal probability and then replace its corresponding di by di + δ. Here
δ ∼ U(0, a).

F.1.3 GENERATION OF OPF-SOCP INSTANCES

We use the following steps to generate feasible SOCP instances that admit an optimal solution (Here,
initial problem settings are the same as Appendix E):

(I) : Read the reference problem in the IEEE test systems (Babaeinejadsarookolaee et al., 2019)
which has the pre-determined number of buses.

47

https://www.cvxpy.org/examples/basic/socp.html

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

(II) : Randomly remove one branch from the grid topology while making sure the resulting
graph is still connected.

(III) : Apply multiplicative perturbations to the base real and reactive power demands, Pd,i and
Qd,i, at each bus i, and to the linear generator cost coefficients, ci. Each perturbation factor
is drawn i.i.d. from a uniform distribution U [0.9, 1.1].

(IV) : Check if the problem has an optimal solution. If yes, then return the problem. Otherwise,
repeat steps I-IV again.

F.1.4 DATA GENERATION FOR PREDICTING OPTIMAL SOLUTIONS

We randomly generate 5000 feasible SOCP instances by methods in Appendix F.1.1 of size (50,10,10),
(100,50,50), and (500,100,100) respectively. Each instance is solved in CVXPY to obtain a ground
truth solution as the label. 9 Then, we divide these instances into training, validation, and test data
classes by the ratio 8 : 1 : 1.

To further validate our theorem on real-world situations, we use methods in section F.1.3 to randomly
generate 1000 samples based on IEEE test systems. Then, we divide these instances into training,
validation, and test data classes by the ratio 8 : 1 : 1.

F.1.5 DATA GENERATION FOR PREDICTING THE FEASIBILITY:

We randomly generate 5000 infeasible SOCP instances with probability h = 0.5 by methods in
Appendix F.1.2 of size (50,10,10), (100,50,50) and (500,100,100) respectively. We use CVXPY to
detect the feasibility of these instances as well. Then, we divide these instances into training class
and validation class by the same ratio.

F.2 IMPLEMENTATIONS AND TRAINING SETTINGS FOR PREDICTING THE OPTIMAL SOLUTION
AND FEASIBILITY

For predicting the optimal solution, our SOCP-GNN is implemented with four message-passing
layers. The learnable functions, denoted by g0l1 , gtl2 , f t

l3
, and fout (where l1 ∈ {1, . . . , 4}, l2 ∈

{1, . . . , 6}, and l3 ∈ {1, . . . , 8}), are all parameterized by neural networks. Specifically, g0l1 and
gtl2 are simple linear layers, while f t

l3
and fout are constructed with a single hidden layer containing

64 neurons. For comparison, our baseline FCNN is implemented with four hidden layers with
residual connections, each containing 64 neurons. The other GNNs are implemented based on
the basic message-passing method with the same embedding layer as SOCP-GNN, i.e. hn,t+1 =

Update(hn,t,Aggregate({{enn′ , hn′,t |n′ ∈ N (n)}})). Here hn,t is the feature of node n at the
t-th message passing process, enn′ is the edge weight connecting node n and its neighbor n′, and
N (n) denotes the neighborhood of node n. In the vanilla MPNN, we first concatenate enn′ and
hn′,t to form [enn′ , hn′,t]. This vector is processed by an MLP with two hidden layers (64 neurons
each) to generate a message vector matching the dimension of hn,t. We then compute the mean
of these messages over the neighborhood of n, denoted as ĥn,t. Finally, a distinct MLP with an
identical architecture maps the concatenation [hn,t, ĥn,t] to the updated feature hn,t+1. For the Graph
Isomorphism Network (GIN), we employ the same MLP architecture as in the vanilla MPNN to map
hn,t + |N (n)|ĥn,t to the updated feature hn,t+1. Vanilla MPNNs and GINs both have five message
passing layers. We use normalized MSE loss (Section 7) as the loss function.

For predicting the feasibility, our SOCP-GNN follows a similar structure to the one in solution
prediction. Since the binary classification is simpler than the solution regression, we set the hidden
layer with 16 neurons. For comparison, our baseline FCNN is implemented with three hidden layers,
each containing 16 neurons. We use binary cross-entropy loss as the loss function.

All MLPs mentioned above use ReLU as the activation function. We use AdamW to optimize our
learnable parameters for both FCNNs and GNNs with a maximum learning rate of 5× 10−4 and a
batch size of 40. All experiments were conducted on an NVIDIA H200 GPU, with the exception of
the inference time evaluation.

9We denote an SOCP instance by a tuple (n, b,m), where n represents the number of decision variables, b
denotes the number of polyhedral constraints, and m indicates the number of second-order cone constraints.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

F.3 RESULTS FOR PREDICTING OPTIMAL SOLUTIONS AND FEASIBILITY

(a) Small SOCP: (50, 10, 10) (b) Medium SOCP (100, 50, 50) (c) Large SOCP (500, 100, 100)

Figure 7: Comparison between the proposed GNN and FCNN for feasibility classification for random
SOCP instances. The GNN uses approximately 0.01M parameters across three scales, while the
FCNN uses approximately 0.07M, 0.7M, and 7M parameters for all three problem scales, respectively.

As shown in Figures 4 and 7, the proposed SOCP-GNN surpasses the baseline FCNNs in both optimal
solution prediction and feasibility classification tasks in both synthetic and real-world SOCP instances.
Across all problem scales—small, medium, and large—the GNN achieves substantially lower relative
MSE and binary cross-entropy loss compared to the FCNN baseline. This superior performance
is particularly evident in its parameter efficiency: on large-scale problems, the GNN, with only
approximately 0.35Mb parameters, outperforms the FCNN, which requires 110Mb parameters for
the solution prediction task, representing a nearly 300-fold reduction in model complexity. We also
observe similar trends in the feasibility classification tasks.

This dramatic improvement in both performance and efficiency validates the effectiveness of exploit-
ing the inherent sparse geometric structure of optimization problems through graph representations
and message passing. These results confirm the potential of our approach as a scalable, data-driven
framework for solving complex optimization problems.
Remark 6. Since we have already proved that all target mappings are measurable, it follows that:
FCNNs can provably approximate these target mappings within any given error tolerance. Hence, it’s
reasonable to use FCNNs as a baseline for comparison.

F.4 EMPIRICAL STUDY ON SAMPLE/MODEL COMPLEXITY AND SIZE GENERALIZATION

As shown in Fig 5(e), we randomly generate 625, 1250, 2500, and 5000 synthetic training samples of
size (50,10,10) and divide these instances into training, validation, and test data classes by the ratio
8 : 1 : 1 respectively. We use four SOCP-GNNs with the hidden layer sizes 32, 64, 128, and 256,
respectively. Then, we train these four models on the four different datasets, respectively, and then
measure their training and validation losses. When the hidden layer size or the number of training
samples increases, both the training loss and validation loss decrease. This demonstrates that: with a
sufficient number of training samples, the SOCP-GNN can achieve near-zero approximation error
and generalize effectively to unseen instances.

Moreover, we randomly generate 6000 synthetic training samples of size (10,5,5), (20,10,10),
(40,20,20), (80,40,40) and (160,80,80) respectively. Then we divide these samples into training and
test data classes by the ratio 5 : 1. Then, we train the SOCP-GNN model with hidden layer size 64 on
these datasets, respectively. Finally, each trained model was evaluated on all five test sets to measure
its cross-size generalization performance, reported as test loss. The results are summarized in Fig 5(f).
It’s observed that: models trained on larger problem instances demonstrate superior generalization
capabilities, particularly when tested on smaller, unseen problem sizes. Meanwhile, models trained
entirely on smaller datasets also have the surprising ability to generalize to unseen larger datasets.
This has validated the good size generalization probability of SOCP-GNNs, which motivates future
research on efficient training of SOCP-GNNs leveraging this size generalization ability.

F.5 EMPIRICAL STUDY ON THE LIPSCHITZ REGULARIZATION

To show how the Lipschitz assumption can be controlled in the experimental setting, we use projection-
based methods to train our SOCP-GNN (Gouk et al., 2020). The method operates as follows: for

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

predefined constants λ > 0 and p ≥ 1, we project each weight matrix W onto an ℓp-norm ball after
each standard optimizer update. Specifically, at the end of every epoch, the weights are updated via
the assignment:

W ← W

max
(
1,

∥W∥p

λ

)
To validate this approach, we conducted an experiment on the IEEE 118-bus dataset. The number
of samples and the dividing rules are the same as above, The results are summarized in Table 1. In
the table, p1 lambda0.5 refers to a configuration with p = 1 and λ = 0.5. The generalization
gap is measured by the difference between train loss and true loss, approximating the difference
between empirical risk and true risk. The Lipschitz coefficient L is measured by randomly picking
10000 pairs of instances x, y in dataset and then take the supremum of ∥f(x)−f(y)∥2

∥x−y∥2
. We repeat the

experiment for 3 times and take the average.

Table 1: Training and test results for different configurations.
Config Train Loss Test Loss Gen Gap Lip-L
baseline 0.004885 0.005076 0.000191 0.5186
p1 lambda0.5 0.008184 0.008208 0.000024 0.4011
p1 lambda0.7 0.006707 0.006905 0.000199 0.4782

The experimental results indicate that selecting a smaller radius for the norm ball leads to a lower
Lipschitz constant for the model. This suggests that the Lipschitz constant can be effectively
controlled by constraining the norm of the weight matrices.

50

	Introduction:
	Related Work
	Problem Definition and Open Issues
	Methodology
	Graph Representation of SOCPs
	Message Passing in SOCP-GNNs

	Universality of SOCP-GNN
	Basic Definitions
	Separation power of the SOCP Weisfeiler–Lehman test
	Universal Approximation of SOCP-GNNs

	Generalization ability of SOCP-GNNs
	Numerical Experiments
	Synthetic SOCP Instance
	SoC-based Optimal Power Flow
	Empirical Study on Sample/Model Complexity and Size Generalization

	Conclusions, Limitations, and Future Works
	Discussions on Related Works
	GNN for Constrained Optimization
	 WL-based Frameworks
	 AU-based Frameworks

	Generalization Analysis of GNNs and L2O paradigms

	Preliminary and Basic Concepts
	Basic concepts of SOCPs
	Equivalent Formulations of SOCP
	Target Mappings for SOCP
	An Example for SOCP graphs
	Complexity Comparison with SOTA Works:

	Proof of Main Theorem
	SOCP WL-test
	The connection between the WL-indistinguishablity and target property
	The measurable property of target mapping
	Relation between SOCP-GNN's separation power and SOCP-WL test's separation power
	Main theorem's proof
	Extension to p-order cone programming

	Proof of theorem 3
	VC-dimension based approaches for binary classification
	Pseudo-dimension based approaches for real-valued scalar prediction
	Rademacher complexity based approaches

	SOCP-based Formulation for OPF
	Experiment Settings and Supplementary Results
	Data generation
	Generation of feasible SOCP instances
	Generation of (possible) infeasible SOCP instances
	Generation of OPF-SOCP instances
	Data generation for predicting optimal solutions
	Data generation for predicting the feasibility:

	Implementations and training settings for predicting the optimal solution and feasibility
	Results for predicting optimal solutions and feasibility
	Empirical study on sample/model complexity and size generalization
	Empirical study on the Lipschitz regularization

