
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

CLIFFORD NEURAL OPERATORS ON ATMOSPHERIC DATA
INFLUENCED PARTIAL DIFFERENTIAL EQUATIONS

Sujit Roy*
Earth System Science Center
The University of Alabama in Huntsville
Huntsville, AL, USA
{sujit.roy}@nasa.gov

Wei Ji Leong
Development Seed
Washington, DC, USA
{weiji}@developmentseed.org

Rajat Shinde, Christopher E. Phillips, Ankur Kumar
Earth System Science Center
The University of Alabama in Huntsville
Huntsville, USA

Manil Maskey, Rahul Ramachandran
NASA Marshall Space Flight Center
Huntsville, AL, USA

ABSTRACT

Mathematical representations of the atmosphere are key to forecasting and research tasks
across Earth science. Numerically solving the underlying partial differential equations
(PDEs) of the atmosphere, however, can be difficult and computationally expensive with
numerous trade-offs between computing efficiency and accuracy. Utilizing neural net-
works to learn approximations of the PDE solutions from the data can help us model
complex phenomena more efficiently than traditional numerical schemes. Here, we have
applied Clifford algebra-based neural operators for predicting atmospheric variables. Clif-
ford Fourier neural operators are used with two different backbone architectures, ResNet
and UNet, on custom data of U10, V10, and surface pressure as well as U500, V500, and
Z500. Clifford Fourier neural operators, coupled with ResNet and UNet architectures, are
applied to a key reanalysis dataset. Model performance is initially strong, but we observe
increasing errors, resulting in the model becoming highly unstable.

1 INTRODUCTION

Mathematical representations and specifically partial differential equations (PDEs) are central to modeling
scientific and engineering phenomena, often requiring computationally intensive numerical methods like
finite differences for solutions Quarteroni & Valli (2008). However, the high computational demand, es-
pecially in understanding and modelling atmosphere dynamics, has led to a growing interest in data-driven
machine learning approachesKarniadakis et al. (2021). These methods offer promising solutions for ef-
ficiently approximating complex PDE systems in various applications, where traditional numerical solvers
are often slow and inefficient Li et al. (2020a; 2021); Brandstetter et al. (2022); Kochkov et al. (2021); Raonić
et al. (2023); Pathak et al. (2022); Evans (2022); Lu et al. (2021). Traditional solvers like finite element and
finite difference methods balance resolution against speed. Higher resolution increases accuracy but slows
computation, especially for complex PDEs requiring fine discretization. In contrast, data-driven methods
learn from data, potentially speeding up the process significantly Raissi et al. (2019); Kochkov et al. (2021);
Li et al. (2020a). However, standard neural networks, limited to finite-dimensional spaces, are bound to spe-
cific discretizations, a drawback for practical use. Thus, the development of mesh-invariant neural networks
is essential, as seen in approaches like finite-dimensional operators. To overcome the inherent limitations
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of traditional neural networks, there has been the development of an innovative deep-learning framework
called neural operators. This is fundamentally designed to create direct mappings between function spaces
in bounded domains Li et al. (2020a); Raonić et al. (2023); Sergeant-Perthuis et al. (2022); Li et al. (2020b).
In this manuscript, we detail the development of a Clifford algebra-based neural operator for the solving of
the PDEs that underlie atmospheric dynamics.

2 DATASETS

The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) was used for
training the new operator(Gelaro et al., 2017). Six variables were selected: U10 (zonal 10 m wind), V10
(meridional 10 m wind), SLP (surface pressure adjusted to sea-level), U500 (500 hPa zonal wind), V500
(500 hPa meridional wind), and Z500 (geopotential height of the 500 hPa level). We selected the data with
3 hours of temporal resolution. For training, we used data from 2021 and for testing, we used 2022. The
adjusted pressure was selected to mitigate the influence of terrain on the pressure field. Higher elevation
areas naturally have lower pressure that mask the effects of low-pressure weather systems on the wind field.
Additionally, at their respective levels (near-surface and 500 hPa), horizontal wind and pressure/geopotential
height are strongly coupled by a system of PDEs (Lambaerts et al., 2011). Surface pressure and Z500 both
describe the pressure tendencies of the atmosphere, which are crucial to the development and evolution of
weather systems, while those systems in turn modify the pressure field (Rostami et al., 2024; Barnes et al.,
2022; Jiménez-Esteve & Domeisen, 2022; Spiridonov et al., 2021; Chen et al., 2021; Ning et al., 2021).

The near-surface level was selected due to its immediate relevance to human activities and the 500 hPa
layer for its role in large-scale dynamics. The middle atmosphere is less impacted by surface and boundary
layer processes such as friction and contains crucial information about vertical transport and steering of
synoptic-scale weather systems (Beare, 2007; Jonassen et al., 2020). Forecasters often analyze patterns at
500 hPa to identify the presence of troughs, ridges, and other features that can influence surface weather
conditions, illustrating its importance for weather prediction. While the formulation herein is not a complete
description of the atmosphere due to a lack of thermodynamic components such as heat and moisture, the
selected variables do provide an otherwise complete depiction of key atmospheric processes. Thus, they
serve as a useful test bed for developing weather prediction models, with similar being used to test new
NWP formulations (Galewsky et al., 2016; Côté & Staniforth, 1990).

3 METHODS

When constructing the neural operator framework, we utilized the concept of Clifford algebra over R, the
space of all real numbers. The dataset used thus has two vector components, i.e. U10&U500 and V10&V500

and one scalar component i.e. surface pressure (SP) and Z500. Two designs are tested, one using U10, V10,
and SLP and the other U500, V500, and Z500, In the first case, we considered two basis vectors e1 and e2 and
considered sp as scalar. In the second case, we provided zero as a scalar because the model did not train
properly when Z500 was used. Further, we performed Clifford Fourier convolution to the dual pair of the
function given by f0 = f0(x) + f12(x)i2 and f1 = f1(x) + f2(x)i. The Clifford Fourier transform (Cl0,2)
for multivector valued functions R2 → G2 and vectors x, ξ ∈ R2 is given by eq 1 Brandstetter et al. (2022).

f̂(ξ) = F{f}(ξ) = 1

2π

∫
R2

f(x)e−2πi2⟨x,ξ⟩dx,∀ξ ∈ R2 (1)

where f(x) and f̂(ξ) represents multivector fields in the spatial and the frequency domain and i2 = e1e2.
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Figure 1: Illustration of the Clifford-based neural operator with U-Net as backbone.

We are going to use the concepts of 4D Clifford algebra (Cl0,2) with vector space G2 spanned by
1, e1, e2, e1e2. Utilizing the same definition we can rewrite eq 1 as 2.

F{f}(ξ) = 1

2π

∫
R2

[1(f0(x) + f12(x)i2︸ ︷︷ ︸
spinor part

) + e1(f1(x) + f2(x)i2︸ ︷︷ ︸
vector part

)]e−2πi2⟨x,ξ⟩dx

= 1 [F (f0(x) + f12(x)i2) (ξ)] + e1 [F (f1(x) + f2(x)i2) (ξ)]

(2)

We selected two model architectures ResNet-50 He et al. (2016) and U-NetRonneberger et al. (2015) to be
used as the backbone for experimentation. Both of the architectures have been used widely in deep learning
domains involving images. The convolution layers were replaced with Clifford convolutions Brandstetter
et al. (2022); Ruhe et al. (2023), where we used quaternion kernel (g = [-1, -1]). Table 1, shows the archi-
tecture of the Clifford convolution with U-Net as backbone. The model was trained by providing a 1-time
step input and 1-time step output. We modified the loss L to be mean squared error along with 10 times the
change in mean surface pressure (SPi), as shown in eq 3.

L =
1

n

n∑
i=1

(
Yi − Ŷi

)2

+ 10 ∗ ( 1
N

N∑
i=1

SPi) (3)

We used auto-regressive forecasting to create the final evaluation when we provided the model with an initial
condition of t = 0 and then the output generated by the model as input again.

4 RESULTS AND DISCUSSION

Figure 5 shows the prediction, ground truth and difference between prediction and ground truth using U-Net
(a) and ResNet (b) architectures respectively for U10, V10 and SLP dataset. We observed in the case of
ResNet backbone the model error became excessive after around 30 timesteps. In U-NET, we observed the
error to grow large around 60 timesteps ahead. This is not surprising that the U-NET-based backbone was
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Clifford Unet weather predictions U10M
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Clifford Resnet weather predictions U10M
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Figure 2: U10 prediction from the initial condition at t = 0to60 timesteps based on Clifford Fourier convo-
lutions: (a) using U-Net as backbone, (b) using ResNet as the backbone.

more suitable for image mapping. However, other architectures like RNN with SFNO Bonev et al. (2023)
have shown longer forecasting with stability.

In figure 5a, there appeared to be two main regions where errors were generated. First, are the mid-to-high
latitudes. At timestep 30, regions near the equator had wind speed errors within approximately 3-5 m/s.
The exception was near certain regions of activity such as a tropical disturbance in the central Atlantic.
At higher latitudes, however, errors approached or surpassed 10 m/s. In these regions, Rosby waves and
midlatitude cyclones appeared and were artificially intensified in the model. A potential source of this error
was a discrepancy in the height/pressure distribution, the lack of friction near the surface, or the model
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not properly learning the relationship between pressure distribution and the wind field. In later timesteps,
however, the flow in sub-tropical and tropical regions demonstrated the presence of wavelike features that
led to large errors as well. In particular, west of the Americas waves appeared to diffract and experience
super-positioning. We think it likely that errors in the pressure field in the tropics produced these fictitious
waves. This is because the tropics are barotropic with weak thermodynamic gradients, and thus, disturbances
quickly produce gravity waves that transmit their energy to their surroundings. If the AI forecasts a fictitious
region of high or low pressure, that feature would produce these waves, which in turn would add energy
to the model atmosphere. Consequently, this results in an exponential increase in errors in the tropics. In
future, we would like to add more variables for the complexity. Additionally, we would use more training
samples and do a longer autoregressive loss.
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A APPENDIX

Table 1: Architecture of Clifford based neural operator with U-Net as backbone
Layer (type:depth-idx) Input Shape Output Shape Param #
CliffordLightningModel [8, 122, 64, 128, 3] [8, 122, 64, 128, 3] –
CliffordG3UNet2d: 1-1

CliffordG3Conv2d: 2-1 [8, 122, 64, 128, 3] [8, 32, 64, 128, 3] 210,816
ModuleList: 2-2 – – –

CliffordG3DownBlock: 3-1 [8, 32, 64, 128, 3] [8, 32, 64, 128, 3] 111,040
CliffordG3DownBlock: 3-2 [8, 32, 64, 128, 3] [8, 32, 64, 128, 3] 111,040
CliffordG3Downsample: 3-3 [8, 32, 64, 128, 3] [8, 32, 32, 64, 3] 55,296
CliffordG3DownBlock: 3-4 [8, 32, 32, 64, 3] [8, 64, 32, 64, 3] 344,832
CliffordG3DownBlock: 3-5 [8, 64, 32, 64, 3] [8, 64, 32, 64, 3] 443,264
CliffordG3Downsample: 3-6 [8, 64, 32, 64, 3] [8, 64, 16, 32, 3] 221,184
CliffordG3DownBlock: 3-7 [8, 64, 16, 32, 3] [8, 128, 16, 32, 3] 1,377,792
CliffordG3DownBlock: 3-8 [8, 128, 16, 32, 3] [8, 128, 16, 32, 3] 1,771,264
CliffordG3Downsample: 3-9 [8, 128, 16, 32, 3] [8, 128, 8, 16, 3] 884,736
CliffordG3DownBlock: 3-10 [8, 128, 8, 16, 3] [8, 256, 8, 16, 3] 5,508,096
CliffordG3DownBlock: 3-11 [8, 256, 8, 16, 3] [8, 256, 8, 16, 3] 7,081,472

CliffordG3MiddleBlock: 2-3 [8, 256, 8, 16, 3] [8, 256, 8, 16, 3] –
CliffordG3BasicBlock2d: 3-12 [8, 256, 8, 16, 3] [8, 256, 8, 16, 3] 7,081,472
CliffordG3BasicBlock2d: 3-13 [8, 256, 8, 16, 3] [8, 256, 8, 16, 3] 7,081,472

ModuleList: 2-4 – – –
CliffordG3UpBlock: 3-14 [8, 512, 8, 16, 3] [8, 256, 8, 16, 3] 11,407,872
CliffordG3UpBlock: 3-15 [8, 512, 8, 16, 3] [8, 256, 8, 16, 3] 11,407,872
CliffordG3UpBlock: 3-16 [8, 384, 8, 16, 3] [8, 128, 8, 16, 3] 3,836,672
CliffordUpsample: 3-17 [8, 128, 8, 16, 3] [8, 128, 16, 32, 3] 1,572,864
CliffordG3UpBlock: 3-18 [8, 256, 16, 32, 3] [8, 128, 16, 32, 3] 2,853,120
CliffordG3UpBlock: 3-19 [8, 256, 16, 32, 3] [8, 128, 16, 32, 3] 2,853,120
CliffordG3UpBlock: 3-20 [8, 192, 16, 32, 3] [8, 64, 16, 32, 3] 959,872
CliffordUpsample: 3-21 [8, 64, 16, 32, 3] [8, 64, 32, 64, 3] 393,216
CliffordG3UpBlock: 3-22 [8, 128, 32, 64, 3] [8, 64, 32, 64, 3] 713,856
CliffordG3UpBlock: 3-23 [8, 128, 32, 64, 3] [8, 64, 32, 64, 3] 713,856
CliffordG3UpBlock: 3-24 [8, 96, 32, 64, 3] [8, 32, 32, 64, 3] 240,320
CliffordUpsample: 3-25 [8, 32, 32, 64, 3] [8, 32, 64, 128, 3] 98,304
CliffordG3UpBlock: 3-26 [8, 64, 64, 128, 3] [8, 32, 64, 128, 3] 178,752
CliffordG3UpBlock: 3-27 [8, 64, 64, 128, 3] [8, 32, 64, 128, 3] 178,752
CliffordG3UpBlock: 3-28 [8, 64, 64, 128, 3] [8, 32, 64, 128, 3] 178,752

Identity: 2-5 [8, 32, 64, 128, 3] [8, 32, 64, 128, 3] –
CliffordG3LinearVSiLU: 2-6 [8, 32, 64, 128, 3] [8, 32, 64, 128, 3] –

Conv3d: 3-29 [8, 32, 64, 128, 3] [8, 32, 64, 128, 1] 128
CliffordG3Conv2d: 2-7 [8, 32, 64, 128, 3] [8, 122, 64, 128, 3] 210,816

8



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Figure 3: RMSE of U10M, V10M and SLP prediction from the initial condition at t=0 to 2.5 days based on
Clifford Fourier convolutions with U-Net as backbone

Figure 4: RMSE of U10M, V10M and SLP prediction from the initial condition at t=0 to 2.5 days based on
Clifford Fourier convolutions with ResNet as backbone
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Clifford Unet weather predictions U500
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Clifford Resnet weather predictions U500
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Figure 5: U500 prediction from the initial condition at t=0 to 60 timesteps based on Clifford Fourier convo-
lutions: (a) using U-Net as backbone, (b) using ResNet as the backbone.
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Figure 6: RMSE of Z500, U500 and V500 prediction from the initial condition at t=0 to 2.5 days based on
Clifford Fourier convolutions with U-Net as backbone

Figure 7: RMSE of Z500, U500 and V500 prediction from the initial condition at t=0 to 2.5 days based on
Clifford Fourier convolutions with ResNet as backbone
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