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Abstract

Existing zero-shot cross-lingual NER ap-001
proaches require substantial prior knowledge002
of the target language, which is impractical for003
low-resource languages. In this paper, we pro-004
pose a novel approach to NER using phonemic005
representation based on the International Pho-006
netic Alphabet (IPA) to bridge the gap between007
representations of different languages. Our ex-008
periments show that our method significantly009
outperforms baseline models in extremely low-010
resource languages, with the highest average011
F-1 score (46.38%) and lowest standard de-012
viation (12.67), particularly demonstrating its013
robustness with non-Latin scripts.014

1 Introduction015

Named entity recognition (NER) plays a crucial016

role in many Natural Language Processing (NLP)017

tasks. Achieving high performance in NER gener-018

ally requires extensive resources for both sequence019

labeling and gazetteer training (Das et al., 2017).020

However, access to training resources for many021

low-resource languages (LRLs) is very limited, mo-022

tivating zero-shot approaches to the task. While023

various strategies have been explored to enhance024

zero-shot NER performance across languages, they025

required either parallel data or unlabeled corpora026

in the target language, which is difficult and some-027

times impossible to obtain.028

Our work tackles zero-shot NER under a strict029

condition that disallows any target language train-030

ing data. We decided to approach this condition by031

projecting data into an International Phonetic Al-032

phabet (IPA) space. Since different languages often033

share similar pronunciations for the same entities,034

such as geopolitical entities and personal names035

(e.g., the word for China is /
>
tSajn@/ in English and036

/tSina/ in Sinhala), the model trained on one lan-037

guage can be transferred to others without target-038

language training in NER. As shown in Figure 1,039

we first convert orthographic scripts into IPA, and040

Figure 1: Zero-shot Cross-Lingual NER with IPA
phonemes.

then fine-tune a pre-trained model on the phonemes 041

of the source language, i.e., English. By using a 042

shared notation system—IPA—we can apply the 043

model to target languages directly. Our findings 044

show that fine-tuning phoneme-based models out- 045

performs traditional grapheme-based models(e.g., 046

mBERT (Devlin et al., 2019)) by a large margin for 047

LRLs not seen during pre-training. Furthermore, 048

our approach demonstrates robustness with non- 049

Latin scripts, exhibiting stable performance across 050

languages with different writing systems. 051

2 Related Work 052

2.1 Zero-shot Cross-lingual NER 053

Recent approaches for zero-shot cross-lingual NER 054

can be categorized into three groups based on how 055

they use resources from target languages. One 056

line of work involves using translation between 057

source and target languages to transfer NER ca- 058

pability (Yang et al., 2022; Liu et al., 2021; Mo 059

1



et al., 2024). These methods require parallel data060

from both languages, which is not always avail-061

able. Alternatively, some methods use unlabeled062

target language data and adopt knowledge distil-063

lation without needing parallel data (Deb et al.,064

2023; Li et al., 2022). However, these approaches065

are still not widely applicable to languages with066

extremely low-resources, as such languages often067

lack sufficient resources for training. On the other068

hand, (Rathore et al., 2023) assumes that no data in069

target language is available during training. While070

it provides a practical setting for extremely low-071

resource languages, it requires language adapters072

pre-trained on similar languages to the target lan-073

guage, as well as typological information (i.e., lan-074

guage family) of various languages.075

We assume a very strict problem setting where076

the target language for zero-shot inference, as well077

as its typological information, is completely un-078

available during training. Unlike previous methods079

that rely on some of the target language data during080

training, we use IPA phonemes for NER, making081

our method entirely data-independent for the tar-082

get language. It only relies on the availability of083

an easily constructed grapheme-to-phoneme (G2P)084

module.085

2.2 Phonemic Representation086

Phonological traits of languages are useful in un-087

derstanding different languages, as they often share088

similar pronunciations for similar entities. It is par-089

ticularly beneficial for NER, where many items,090

such as geopolitical entities and personal names,091

are pronounced similarly across various languages.092

While phonological information has been shown093

to be helpful in language understanding for cross-094

lingual transfer (Chaudhary et al., 2018; Sun et al.,095

2021; Bharadwaj et al., 2016), it has not been ex-096

plored as a standalone representation for NER, es-097

pecially on low-resource languages. Given that098

creating rule-based transcription module for most099

low-resource languages takes only a few hours and100

limited training, we use IPA to enable zero-shot101

cross-lingual NER on languages with very scarce102

resources, without requiring any additional corpus103

for those languages.104

3 Our Approach105

3.1 NER with Phonemes106

In this paper, we conduct NER using phonetic107

transcriptions (IPA) instead of conventional ortho-108

graphic text. Leveraging the standard practice of 109

using multilingual pre-trained models for cross- 110

lingual transfer, we employ XPhoneBERT (Nguyen 111

et al., 2023), a model pre-trained on phonemes 112

from 94 different languages. By utilizing pre- 113

trained phonemic representations, the model can 114

fully utilize the phonological knowledge across di- 115

verse languages. 116

To create a phoneme-based version of the 117

dataset originally containing graphemes, we con- 118

vert the dataset into IPA representations. For 119

G2P conversion of various languages, we use 120

Epitran (Mortensen et al., 2018) along with the 121

CharsiuG2P toolkit (Zhu et al., 2022) which 122

XPhoneBERT originally employed. Epitran sup- 123

ports the transliteration of approximately 100 124

languages, including numerous low-resource lan- 125

guages. We apply transliteration at the word level, 126

maintaining the pre-tokenized units consistent with 127

the original version. 128

We adopt the BIO tagging scheme for entity tag- 129

ging. As the phoneme is the input unit for the 130

model, we assign each phoneme a named entity tag. 131

Only the first phoneme segment of the first word 132

of a named entity is assigned with a ‘B’ tag, indi- 133

cating the beginning of the entity. For example, the 134

phoneme sequence “bEn
>
dZ@m@n (Benjamin)” com- 135

prises nine segments1, and is labeled as [“B-PER", 136

“I-PER", ...,“I-PER"]. 137

3.2 Cross-lingual Transfer to Unseen 138

Languages 139

We perform zero-shot named entity recognition on 140

low-resource languages, where the model is only 141

trained on a single high-resource language, in this 142

case, English. Although the model is fine-tuned on 143

a single language, its pre-training on approximately 144

100 languages allows it to retain some knowledge 145

of other languages. We hypothesize that (i) each 146

model will leverage its pre-trained knowledge on 147

the target languages in performing NER, and (ii) 148

phoneme-based models will generally achieve su- 149

perior performance with unseen languages, bene- 150

fiting from phonological traits shared across lan- 151

guages. 152

To investigate the generalizability of phone- 153

mic representations in extremely low-resource lan- 154

guages, we do not allow any access to the target lan- 155

guage during training and exclude their typological 156

information to keep our method language-agnostic. 157

1Phoneme segmentation is performed using the Python
library ‘segments,’ as utilized in XPhoneBERT.
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Case
Models

Languages Num
M C X

1 - - - sin, som, mri, quy, uig, aii, kin, ilo 8

2 - - ✓ epo, khm, tuk, amh, mlt, ori, san, ina, grn, bel, kur, snd 12

3 ✓ ✓ - tgk, yor, mar, jav, urd, msa, ceb, hrv, mal, tel, uzb, pan, kir 13

Table 1: Languages for each case. M, C, X indicates
mBERT, CANINE, and XPhoneBERT, respectively, and
✓represents the languages pre-trained on the model.

We use mBERT and CANINE as baselines, as these158

models are compatible with our problem setting,159

requiring no additional training data for the target160

languages.161

As shown in Table 1, we define three sets of lan-162

guages based on whether the language has been163

seen during pre-training of each model. Let L be164

the set of all languages in our benchmark dataset165

that are able to be transliterated, B the set of lan-166

guages pre-trained on the baseline models, and X167

the set of languages pre-trained on XPhoneBERT.168

Case 1: (L \ (B ∪X)) includes languages not in169

the pre-training data for any models.170

Case 2: ((L ∩X) \ B) includes languages in the171

pre-training data of XPhoneBERT only.172

Case 3: ((L ∩ B) \X) includes languages in the173

pre-training data of mBERT and CANINE only.174

4 Experiments175

4.1 Benchmark Dataset176

We train and evaluate our method on the WikiANN177

NER datasets (Pan et al., 2017) which has three178

different named entity types: person (PER), orga-179

nization (ORG), and location (LOC). The models180

are trained only on English data and evaluated on181

various low-resource languages. We select lan-182

guages that are (i) supported by either Epitran or183

CharsiuG2P toolkit for transliteration, and (ii) not184

included in the pre-training of at least one of the185

baseline models. This yields 33 languages in total,186

as listed in Table 1.187

4.2 Baseline Models188

We use mBERT (Devlin et al., 2019) and CA-189

NINE (Clark et al., 2022), both grapheme-based190

language models, as baselines to compare to191

XPhoneBERT (Nguyen et al., 2023), a phoneme-192

based language model. All three models are BERT-193

like transformer architectures pre-trained on a194

Wikipedia corpora of multiple languages: mBERT195

and CANINE are trained on the same 104 lan-196

guages, while XPhoneBERT is trained on 94 lan-197
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Figure 2: Distribution of F1 scores for each language
set. X-axis shows each model using their first three let-
ters, with ‘(gr)’ and ‘(ph)’ indicating their input forms
(graphemes and phonemes, respectively). Colored hor-
izontal lines and the numbers above show the average
F1 scores for each model.

guages and locales. Initializing with pre-trained 198

weights from Huggingface2, we train the encoders 199

with a fully connected layer added at the end of 200

each encoder for NER prediction. 201

5 Results 202

5.1 Zero-Shot NER on Seen Languages 203

Figure 2 illustrates zero-shot performance of each 204

model for each language set (Case 1, Case 2, and 205

Case 3). Results on Case 2 and Case 3 align with 206

our expectation, with languages seen during pre- 207

training achieving better scores with the model. 208

For the 12 languages in Case 2, XPhoneBERT, 209

which was pre-trained on these languages, shows 210

an average F1 score of 55.20%, outperforming 211

mBERT and CANINE by 6.62% and 6.07%, re- 212

spectively. Languages of Case 3 also performs bet- 213

ter with models that were pre-trained on these lan- 214

guages. Specifically, mBERT achieves high scores 215

for pre-trained languages, with average F1 score of 216

69.18%, indicating its strong ability to generalize 217

across seen languages. F1 scores for all models 218

and languages are shown in Table 3 of Appendix. 219

5.2 Zero-Shot NER on Unseen Languages 220

Given the performance bias towards seen lan- 221

guages, we investigate the effect of using phonemes 222

with languages that were not seen by any model— 223

languages from Case 1. This ensures a fair 224

comparison for low-resource languages, since ex- 225

tremely low-resource languages are often not in- 226

cluded in the pre-training stage of language models. 227

As shown in Table 2, the phoneme-based model 228

2https://huggingface.co/
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Input Model
Languages

AVG STD
sin som mri quy uig aii kin ilo

grapheme mBERT 10.71 44.76 38.48 55.07 18.70 12.58 62.37 79.51 40.27 25.00
grapheme CANINE 26.31 43.35 51.30 59.48 27.19 22.38 54.74 80.70 45.68 19.99

phoneme (ours) XPhoneBERT 43.61 38.91 38.07 51.90 44.82 31.03 49.67 73.05 46.38 12.67

Table 2: Zero-shot performance in F1 scores (%) on unseen languages (Case 1) using different models and input
types.
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…

… found in China , …
… Tsardom of Russia …

… in Russia , …
…

Training Data (English) Target Data (Sinhala)

❌
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(a)
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Figure 3: NER results on the target language (Sinhala)
produced by each model trained on English data: (a)
CANINE (b) XPhoneBERT.

demonstrates the best overall performance, achiev-229

ing the highest scores on 3 out of 8 languages by230

a significant margin. Furthermore, the phoneme-231

based model exhibits the most stable performance232

across unseen languages, with the lowest standard233

deviation in scores.234

Figure 3 shows a qualitative result of zero-shot235

inference on Sinhala, a language that is not in the236

pre-training data any model. While the character-237

based model (a) fails to generalize to the language238

with different writing system, the phoneme-based239

model (b) successfully predicts the named entity240

tags due to the similar pronunciation of “China”241

and “Russia” across the languages. These results242

indicate the robustness provided by phonemic rep-243

resentations, validating our hypothesis about the244

advantages they convey in NER tasks.245

5.3 Robustness Across Writing Systems246

One of the important advantages of using phonemic247

representations for named entity recognition is that248

it allows use of IPA. Using IPA for multilingual249

tasks provides a unified notation system. Observ-250

ing the significant performance drop of mBERT on251

unseen low-resource languages (Figure 2), we con-252

sider this gap is largely attributed to the different253

writing systems of languages. Figure 4 shows the254

distribution of F1 scores of each model on Latin255

and non-Latin languages from Case 1. mBERT,256

which performs the strongest on seen languages,257

mBERT CANINE XPhoneBERT
20
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Figure 4: Performance distribution of each model on
Latin and non-Latin languages from unseen languages.

exhibits the largest performance discrepancy be- 258

tween Latin and non-Latin based languages when 259

evaluated on unseen languages. This highlights 260

the limitation of the grapheme-based model, as it 261

depends on the specific scripts. 262

On the other hand, the phoneme-based model— 263

XPhoneBERT—demonstrates the most consistent 264

performance over different unseen languages with 265

little performance gap between Latin-based and 266

non-Latin-based languages. This suggests that tak- 267

ing advantage of phonemes with its unified nota- 268

tion system allows for better generalization on ex- 269

tremely low-resource languages. 270

6 Conclusion 271

This paper presents the novel method of employing 272

phonemes for identifying named entities for low- 273

resource languages in zero-shot environments. 274

Our experiments compared the results of 275

phoneme-based models with grapheme-based mod- 276

els in a strict zero-shot setting, and have shown 277

that phonemes exhibit the best performance over 278

low-resource languages unseen by all models. The 279

results particularly demonstrate robustness towards 280

non-Latin scripts, which is crucial in context of 281

multilingual NER since languages are written in 282

diverse writing systems. 283
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7 Limitations284

One limitation is that we examined only the lan-285

guages included in WikiANN dataset and G2P286

modules we employed, resulting in a comparison287

of a small number of completely unseen languages.288

Additionally, we used a limited number of baselines289

with models of restricted scales, making it difficult290

to ensure that the results would remain consistent291

if the models were more extensively tailored to the292

task.293

Perhaps more concerning, the performance294

achieved by these approaches is not sufficient for295

production use. While this is probably to be ex-296

pected of zero-shot approaches, it demonstrates297

how much work is left before these approaches298

have practical utility.299

8 Ethics Statement300

In this work, we use WikiANN (Pan et al., 2017)301

which is publicly available dataset to train various302

models with different languages. The WikiANN303

authors already grappled with many of the ethical304

issues involved in the curation and annotation of305

this resource. We did not find any outstanding ethi-306

cal concerns, including violent or offensive content,307

though there are likely strong biases in the named308

entities represented in the data. We used the dataset309

as consistent with the intended use. Nevertheless,310

we need to emphasize that, considering the char-311

acteristic of NER task, the dataset may contain312

personal information such as a specific person’s313

real name or actual company name. We do not314

believe that this affects our result and the code and315

data distributed with our paper do not include any316

sensitive data of this kind.317
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A Appendix419

A.1 Implementation Details420

We ran training on English subset of WikiANN421

dataset for 10 epochs, with learning rate of 1e-5,422

weight decay 0.01, batch size 128, and warmup423

ratio 0.025 on 1 NVIDIA RTX A5000 GPU. We set424

the maximum sequence length of the input 128 for425

all the models. We experimented with models of426

BERT-base scale: mBERT with 177M parameters,427

CANINE-C with 132M, and XPhoneBERT with428

87M.429

A.2 Quantitative Results of Case 2 and Case 3430

We present the quantitative result of all three cases431

in Table 3. The method using phoneme represen-432

tation outperforms in Case 1 and Case 2 in terms433

of average F1 score and demonstrates more stable434

results with a lower standard deviation.435

A.3 Comparison of Latin and Non-Latin436

Languages437

In Figure 5, we visualize the results of the experi-438

ment separately for Latin and non-Latin languages439

in all cases. Compared to mBERT and CANINE440

that exhibit significant performance gaps between441

Latin and non-Latin languages, XPhoneBERT442

shows little difference in performance distribution.443

mBERT CANINE XPhoneBERT
20
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100
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Figure 5: Latin and non-latin comparison

A.4 Language codes 444

In Table 4, we organized both ISO 639-1 and ISO 445

639-3 languages codes of all the languages used in 446

the experiments. 447

A.5 Benchmark and License. 448

In Table 5, we provide the datasets, their statistics, 449

and license. We also used CharsiuG2P (Zhu et al., 450

2022) toolkit for transliteration, which is under 451

MIT license. 452
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Case Input Model Languages AVG STD

CASE 1

sin som mri quy uig aii kin ilo

grapheme mBERT 10.71 44.76 38.48 55.07 18.7 12.58 62.37 79.51 40.27 25
grapheme CANINE 26.31 43.35 51.3 59.48 27.19 22.38 54.74 80.7 45.68 19.99

phoneme (ours) XPhoneBERT 43.61 38.91 38.07 51.9 44.82 31.03 49.67 73.05 46.38 12.67

CASE 2

epo khm tuk amh mlt ori san ina grn bel kur snd

grapheme mBERT 71.31 16.12 64.52 11.9 63.83 9.96 48.73 73.89 50.44 83.12 54.16 35.02 48.58 25.13
grapheme CANINE 68.19 27.33 58.07 22.65 61.58 33.53 26.79 68.78 55.37 80.07 57.33 29.87 49.13 19.86

phoneme (ours) XPhoneBERT 75.26 31.86 61.17 44.85 52.58 40.73 59.42 68.68 49.95 77.61 52.95 47.28 55.20 13.83

CASE 3

tgk yor mar jav urd msa ceb hrv mal tel uzb pan kir

grapheme mBERT 74.1 56.6 74.3 73.59 57.09 74.98 64.44 84.93 69.94 67.24 80.04 53.98 68.14 69.18 9.28
grapheme CANINE 62.12 51.15 44.28 61.11 42.41 76.82 70.36 77.51 48.29 37.29 72.54 45.74 57.73 57.49 13.77

phoneme (ours) XPhoneBERT 48.93 50.87 35.12 45.98 33.37 61.76 58.72 58.76 32.52 28.93 60.92 43.85 35.95 45.82 11.85

Table 3: Zero-shot F1 score (%) result in Case 1, 2, and 3.

Lang
Code

ISO 639-1 ISO 639-3

Amharic am amh
Assyrian Neo-Aramaic aii aii
Ayacucho quechua qu quy
Cebuano ceb ceb
Croatian hr hrv
English en eng
Esperanto eo epo
Ilocano ilo ilo
Javanese jv jav
Khmer km khm
Kinyarwanda rw kin
Korean ko kor
Kyrgyz ky kir
Malay ms msa
Malayalam ml mal
Maltese mt mlt
Maori mi mri
Marathi mr mar
Punjabi pa pan
Sinhala si sin
Somali so som
Spanish es spa
Tajik tg tgk
Telugu te tel
Turkmen tk tuk
Urdu ur urd
Uyghur ug uig
Uzbek uz uzb
Yoruba yo yor

Table 4: Language codes for all the languages used in
the experiments.

Dataset Lang. Train Dev Test License

WikiANN

eng 20k 10k 10k

ODC-BY

sin 100 100 100
som 100 100 100
mri 100 100 100
quy 100 100 100
uig 100 100 100
aii 100 100 100
kin 100 100 100
ilo 100 100 100
epo 15k 10k 10k
khm 100 100 100
tuk 100 100 100
amh 100 100 100
mlt 100 100 100
ori 100 100 100
san 100 100 100
ina 100 100 100
grn 100 100 100
bel 15k 1k 1k
kur 100 100 100
snd 100 100 100
tgk 100 100 100
yor 100 100 100
mar 5k 1k 1k
jav 100 100 100
urd 20k 1k 1k
msa 20k 1k 1k
ceb 100 100 100
hrv 20k 10k 10k
mal 10k 1k 1k
tel 1k 1k 1k
uzb 1k 1k 1k
pan 100 100 100
kir 100 100 100

Table 5: Statistics and license types for the dataset. The
table lists the number of examples in the training, devel-
opment, and testing sets for languages in the WikiANN
dataset. The dataset is strictly used within the bounds
of these licenses.
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