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ABSTRACT

While score-based generative models (SGMs) have achieved remarkable suc-
cesses in enormous image generation tasks, their mathematical foundations are
still limited. In this paper, we analyze the approximation and generalization of
SGMs in learning a family of sub-Gaussian probability distributions. We intro-
duce a notion of complexity for probability distributions in terms of their rel-
ative density with respect to the standard Gaussian measure. We prove that if
the log-relative density can be locally approximated by a neural network whose
parameters can be suitably bounded, then the distribution generated by empiri-
cal score matching approximates the target distribution in total variation with a
dimension-independent rate. We illustrate our theory through examples, which
include certain mixtures of Gaussians. An essential ingredient of our proof is to
derive a dimension-free deep neural network approximation rate for the true score
function associated to the forward process, which is interesting in its own right.

1 INTRODUCTION

Generative modeling is a central task in modern machine learning, where the goal is to learn a
high dimensional probability distribution given a finite number of samples. Score-based generative
models (SGMs) Sohl-Dickstein et al. (2015); Song et al. (2021)) recently arise as a novel family of
generative models achieving remarkable empirical success in the generation of audio and images
Yang et al. (2022); Croitoru et al. (2023), even outperforming state-of-the-art generative models
such as generative adversarial networks Dhariwal and Nichol (2021). More recently, SGMs have
proven effective in a variety of applications such as natural language processing Austin et al. (2021);
Savinov et al. (2021), computational physics Lee et al. (2023a); Jing et al. (2022), computer vision
Amit et al. (2021); Baranchuk et al. (2021); Brempong et al. (2022), and medical imaging Chung
and Ye (2022). In addition to their own expressive power, SGMs can also help to understand and
improve other existing generative models, such as variational autoencoders Huang et al. (2021); Luo
(2022) and normalizing flows Gong and Li (2021)).

SGMs are often implemented by a pair of diffusion processes, known as forward and backward pro-
cesses. The forward process transforms given data into pure Gaussian noise, while the backward
process turns the noises into approximate samples from the target distribution, thereby accomplish-
ing generative modeling. The analytical form of the reverse process is unknown, since its parameters
depend on the target distribution, which is only accessible through data; hence, the reverse process
must be learned. This is made possible by the remarkable fact that the time reversal of an diffusion
process is again a diffusion process whose coefficients depend only on the target distribution via the
score function, a time-dependent vector field given by the gradient of the log-density of the forward
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process. There exist well-studied techniques to cast the estimation of the score function from data
as a supervised learning problem Hyvärinen and Dayan (2005); Vincent (2011), which is crucial to
the practical implementation of SGMs.

While SGMs have received significant attention from theoretical viewpoints, there are still several
barriers to a complete theoretical understanding. Recent results Chen et al. (2023a;b); Benton et al.
(2023) have shown that the distribution recovery error of SGMs is essentially controlled by the
estimation error of the score function, which is typically parameterized by a neural network. While
neural networks are known to be universal approximators for many classes of functions Cybenko
(1989); Yarotsky (2017), the number of parameters of the neural network needed to approximate a
function to error ϵ often scales like ϵ−d, where d is the dimension of the data. Such rates are of
little practical significance for high dimensional problems, and thus the ability of neural networks to
express the score function of a general probability distribution remains a mystery.

Nonetheless, SGMs have still exhibited great success in generating high-quality samples from com-
plex, high-dimensional data distributions. One salient reason for this is that, while the data itself
may be very high-dimensional, the score function of the noising process often possesses some in-
trinsic structure that can be exploited by neural networks. The purpose of this article is to justify this
intuition rigorously for a broad class of probability distributions. Specifically, we study the genera-
tive power of SGMs for probability distributions which are absolutely continuous with respect to the
standard Gaussian distribution. Such distributions admit a probability density function of the form

p(x) =
1

Z
exp

(
−∥x∥2

2
+ f(x)

)
, (1)

where exp(f) : Rd → R+ is the Radon-Nikodym derivative of p with respect to the Gaussian
distribution and Z is the normalization constant. This representation of the density has proven par-
ticularly elucidating in the context of statistical learning and Bayesian inference, where the Gaussian
component can model our subjective beliefs on the data. In this paper, we show that the expression
for the density in Equation 1 is also relevant to SGMs, because the score function is related to the
function f by a tractable composition of functions. A central theme of this work is that if f belongs
to a low-complexity function class, then the score function inherits a similar low-complexity struc-
ture. This enables deep neural networks to learn the score function of diffusion processes without
the curse of dimensionality in some concrete cases.

1.1 OUR CONTRIBUTIONS

We summarize our contributions as follows.

1. We prove that if the log-relative density of the data distribution with respect to the standard
Gaussian can be locally approximated without the curse of dimensionality, then the score
function at any fixed time t can be approximated in the L2(pt) norm, where pt denotes the
marginal density of the forward process at time t, without the curse of dimensionality.

2. We show that the empirical score matching estimator within a prescribed class neural net-
works can estimate the score at any fixed time without the curse of dimensionality. The
error is decomposed into the approximation error of the score and the Rademacher com-
plexity of the neural network class.

3. We combine our results with existing discretization error bounds (e.g., in Chen et al.
(2023b)) to obtain explicit error estimates for SGMs in terms of the number of training
samples. As an application, we prove that SGMs can sample from certain Gaussian mix-
ture distributions with dimension-independent sample complexity.

1.2 RELATED WORK

A majority of the recent theoretical analysis of SGMs De Bortoli et al. (2021); Lee et al. (2022;
2023b); Chen et al. (2023a;c); Benton et al. (2023) focuses on obtaining convergence guarantees
for SGMs under minimal assumptions on the target distribution but, crucially, under the assumption
that the score estimator is accurate in the sense of L2 or L∞. The common message shared among
these works is that learning the distribution is as easy (or hard) as learning the score function. More
precisely, the estimation error of the target density is mainly controlled by the estimation error of
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the score function and the discretization error of the diffusion processes (as another error source)
scales at most polynomially in the data dimension. However, there has been relatively little work to
address the problem of score estimation error.

More recently, it was proven in Oko et al. (2023) that SGMs can estimate Besov densities with a
minimax optimal rate under the total variation distance. However, the obtained sample complexity of
density estimation over a Besov space suffers from the curse of dimensionality. The paper Oko et al.
(2023) further proved that the estimation rate can be substantially improved under the additional
assumption that the data distribution is supported on a low-dimensional linear subspace, in which
case the resulting rate only depends on the intrinsic dimension. Distributions with the same low-
dimensional structure was also studied by Chen et al. (2023d) in the Lipschitz continuous setting.
The paper De Bortoli (2022) obtained convergence bounds in the Wasserstein distance for SGMs
under a more general manifold hypothesis on the target distributions (including empirical measures).

Our work differs from the work above in that we do not make low-dimensional assumption on the
data distribution. Instead, we assume that the target is absolutely continuous with respect to a Gaus-
sian and that the log-relative-density belongs to the Barron space Barron (1993). Barron functions
have recently received much attention due to the fact that shallow networks can approximation them
without curse of dimensionality; see, e.g., Klusowski and Barron (2018); Siegel and Xu (2022);
Ma et al. (2022). In the context of generative modeling, the recent work Domingo-Enrich et al.
(2021a;b) investigated the statistical guarantees of energy-based models under the assumption that
the underlying energy function lie in Barron space (or the F1 space therein). The work Lee et al.
(2017) obtained expressive bounds for normalizing flows in representing distributions that are push-
forwards of a base distribution through compositions of Barron functions. This work shares the
same spirit as Domingo-Enrich et al. (2021a;b); Lee et al. (2017) and demonstrates the statistical
benefits of SGMs when target distribution exhibits low-complexity structures.

We note that in an earlier version of this work, the log-relative density f was assumed to be bounded.
After discussions with an anonymous reviewer, we were inspired to strengthen the results to allow
f to grow at infinity. In more detail, the reviewer pointed out that when f is bounded, the data
distribution satisfies a log-Sobolev inequality (LSI) with constant e∥f∥∞ , which implies that the
distribution can be sampled via Langevin dynamics with an estimator for the vanilla score. Our
current results extend beyond the LSI case.

1.3 NOTATION

Throughout this article, we study functions and probability distributions on a Euclidean space Rd

of a fixed dimension d. We let ∥ · ∥ denote the Euclidean norm on Rd. For a vector or function,
∥ · ∥∞ denotes the supremum norm, and ∥ · ∥Lip denotes the Lipschitz seminorm of a metric space-
valued function. We let γd(dx) denote the standard Gaussian measure on Rd, i.e.,

∫
f(x)γd(dx) =

(2π)−d/2
∫
Rd f(x)e

−∥x∥2/2dx. The indicator of a set S is denoted IS . We denote by (·)+ the ReLU
activation function, defined by (c)+ = max(0, c) for c ∈ R. For a vector x, (x)+ is interpreted
componentwise. For X0 ∈ Rd and t > 0, we define Ψt(·|X0) as the Gaussian density function
with mean e−tX0 and variance 1− e−2t. For non-negative functions g(x), h(x) defined on Rd, we
write g(x) ≲ h(x) (resp. ≳) or g(x) = O(h(x)) (resp. Ω(h(x)) if there exists a constant Cd > 0
which depends at most polynomially on the dimension d such that g(x) ≤ Cdh(x) (resp. ≥). We
write g(x) = Θ(h(x)) if g(x) ≲ h(x) ≲ g(x). For β ∈ (0, 1/2) and g ∈ L2(γd) we define

Mβ(g) :=
∫
Rd

∣∣∣g ( x
1−2β

)∣∣∣2 γd(du).
2 BACKGROUND

In this section, we give a brief overview of the mathematical preliminaries required to understand
our main result.

2.1 A PRIMER ON SGMS

In a score-based generative model (SGM), data is first transformed to noise via a forward process;
we work with an Ornstein-Uhlenbeck process (Xt)0≤t≤T , which solves the stochastic differential
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equation
dXt = −Xtdt+

√
2dWt, X0 ∼ p0. (2)

Here, p0 is some initial data distribution on Rd, and Wt denotes d-dimensional Brownian motion.
In the limit T → ∞, the law pt of the process XT quickly approaches that of the standard Gaussian
measure γd; in particular, we have pt → γd exponentially fast in t in the KL divergence, total
variation metric and 2-Wasserstein metric Bakry et al. (2014); Villani (2021). The SDE can be
solved explicitly and, at each fixed time t, the solution coincides in law with the random variable

Xt = e−tX0 +
√

1− e−2tξ, X0 ∼ p0, ξ ∼ N(0, Id).

In particular, Xt conditioned on X0 is a Gaussian random variable with mean e−tX0 and variance
1− e−2t. By averaging over X0, we obtain a simple expression for the density pt in terms of p0:

pt(x) = Z−1
t

∫
exp

(
− (x− e−ty)2

2(1− e−2t)

)
dp0(y) (3)

where Zt = (2π(1− e−2t))d/2 is the time-dependent normalization constant.

The reverse process, X̄t = XT−t, is also a diffusion process Anderson (1982); Haussmann and
Pardoux (1986), solving the SDE (for 0 ≤ t ≤ T )

X̄t = (X̄t + 2∇ log pT−t(X̄t))dt+
√
2dW̄t, X̄0 ∼ pt, (4)

where W̄t denotes time-reversed Brownian motion on Rd. In order to implement SGMs in practice,
one must discretize the OU process, and a canonical algorithm is the exponential integrator scheme
(EIS). In order to implement the EIS, one samples X̄0

dis ∼ pT , picks time steps 0 = t0 < t1 <
· · · < tN ≤ T and simulates the SDE

dX̄dis
t =

(
X̄dis

t + 2∇ log pT−tk(X̄tk)
)
dt+ dB̄t

for each interval [tk, tk+1]. S Also, the reverse process is typically initialized at X̄0 ∼ γd in practice,
because pT is unknown. However, the error accrued by this choice is small, evidenced by the
exponential convergence of pT to γd as T → ∞. The process one samples is then obtained by
replacing the score function at time T − tk with a score estimate sk:{

dYt = (Yt + 2sk(Ytk)) dt+ dBt, t ∈ [tk, tk+1]

Y0 ∼ N(0, Id).
(5)

Loss function: To learn the score function at time t, a natural objective to minimize is the following
least-squares risk, namely,

st(t,X) 7→ EXt∼pt

[
∥s(t,Xt)−∇x log pt(Xt)∥2

]
,

for a given estimator st : Rd → Rd. However, this risk functional is intractable since, in the genera-
tive modeling setting, one does not have access to pointwise data of the score function. However, it
can be shown Vincent (2011) that for any st,

EXt∼pt
[∥st(Xt)−∇x log pt(Xt)∥2] = EX0∼p0

[
EXt∼pt|X0

[∥st(t,Xt)−Ψt(Xt|X0)∥2]
]
+ E,

where E is a constant independent of st. Here, Ψt(Xt|X0) = −Xt−e−tX0

1−e−2t denotes the score func-
tion of the forward process conditioned on the initial distribution. Note that the integral on the
right-hand side can be approximated on the basis of samples of p0, since the trajectories (Xt|X0)
are easy to generate. This motivates our definition of the population risk at time t:

Rt
t(st) = EX0∼p0

[
EXt∼pt|X0

[∥s(t,Xt)−Ψt(Xt|X0)∥2]
]
. (6)

If we define the individual loss function at time t by

ℓtt(st, x) = EXt|X0=x

[
∥st(Xt)−Ψt(Xt|X0)∥2

]
, (7)

then the population risk can be written as

Rt
t(st) = Ex∼p0

[ℓtt(st, x)].
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We also define the empirical risk associated to the i.i.d. samples {Xi}Ni=1 by

R̂t
N

t (st) =
1

N

N∑
i=1

ℓtt(st, Xi). (8)

We then to solve the optimization problem

min
st∈F

R̂t
N

t (st)

where F is an appropriately defined class of vector fields on Rd (e.g., a class of neural networks).
The use of the risk functional in 6 to learn the score has been termed denoising score matching,
because the function Ψt(Xt|X0) is the noise added to the sample X0 along the forward process.

2.2 NEURAL NETWORKS

A fully connected feedforward ReLU neural network is a function of the form

x 7→WL

(
WL−1

(
· · ·W2 (W1x+ b1)

+
+ b2 . . .

)+
+ bL−1

)+

+ bL,

where WL : RdL−1 × RdL are matrices, bL ∈ RdL are vectors, and, when x is a vector, (x)+
is interpreted as a componentwise mapping. The parameters (Wi)

L
i=1 and (bi)

L
i=1 are called the

weights and biases of the neural network respectively. The number of columns of Wi is called the
width of the ith layer. When L = 2, a neural network is called shallow, and, when they take values
in R, such networks admit a representation

x 7→
m∑
i=1

ai(⟨wi, x⟩+ bi)
+,

where x,wi ∈ Rd and ai, bi ∈ R. Neural networks have achieved remarkable success in learn-
ing complex, high-dimensional functions. In this work, we study their ability to express the score
function of the diffusion process defined in Equation 2. In order to control the generalization error
incurred by empirical risk minimization, one must introduce a notion of ’complexity’ for neural net-
works, and a natural notion is the path norm, defined for real-valued shallow ReLU neural networks
by

∥ϕ∥path :=

m∑
i=1

|ai| (∥wi∥1 + |bi|) , ϕ(x) =

m∑
i=1

ai(w
T
i x+ bi)

(+)

and extended in a natural way to vector valued/deep ReLU neural networks. It has been shown that
the collection of L-fold compositions of shallow networks of uniformly bounded path seminorm
enjoys good generalization properties in terms of Rademacher complexity.

3 PROBLEM AND MAIN RESULTS

We outline our main assumptions on the data distribution.
Assumption 1. The data distribution p0 is absolutely continuous with respect to the standard Gaus-
sian distribution. Throughout the paper, we let p0 denote both the probability distribution and the
PDF of the data, and we write f(x) := ∥x∥2/2 + log p0(x) for the log-relative density of p0 with
respect to the standard Gaussian distribution, so that

p0(x) =
1

Z
exp

(
− ∥x∥2

2
+ f(x)

)
.

We further assume that

1. There exist positive constants rf , α, β with β ≪ 1 such that −α∥x∥2 ≤ f(x) ≤ β∥x∥2

whenever ∥x∥ ≥ rf , and α, β satisfy c(α, β) := 4(α+β)
(1−β) < 1;

2. f is continuously differentiable;
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3. sup∥x∥≤R ∥∇f(x)∥ grows at most polynomially as a function of R;

4. the normalization constant Z satisfies (2π)d/2

Z ≤ C, where C is a constant depending at
most polynomially on dimension.

Assumption 1 roughly states that the tail of the data distribution should decay almost as quickly
as a standard Gaussian. As an illustrating example, consider the Gaussian mixture model q(x) ∝

e
− ∥x−x1∥2

2σ2
min + ∥x−x2∥2

2σ2
max

. If we write f(x) = ∥x∥2/2+log q(x), then for any ϵ > 0, there exists rϵ > 0

such that

−
(
1− σ2

min + ϵ

2σ2
min

)
∥x∥2 ≤ f(x) ≤

(
σ2
max − 1 + ϵ

2σ2
max

)
∥x∥2,

whenever ∥x∥ ≥ rϵ. This shows that Assumption 1 applies to Gaussian mixtures, as long as the
bandwidths are suitably constrained.

The benefit of expressing the data distribution in terms of the log-relative density is that it leads to a
nice explicit calculation of the score function. In particular, Lemma 1 states that the jth component
of the score function of the diffusion process is given by

(∇x log pt(x))j =
1

1− e−2t

(
−xj + e−tF

j
t (x)

Gt(x)

)
, (9)

where F j
t (x) =

∫
Rd(e

−txj +
√
1− e−2tuj)e

f(e−tx+
√
1−e−2tu)γd(du) and Gt(x) =∫

ef(e
−tx+

√
1−e−2tu)γd(du). The linear growth assumption ensures that the tail p0 has similar de-

cay properties to that of a Gaussian, of which we make frequent use. The other assumptions on ∇f
and the normalization constant are stated for convenience.

In order to obtain tractable bounds on the estimation error of SGMs for learning such distributions,
it is necessary to impose additional regularity assumptions on the function f .

Assumption 2. [Learnability of the log-relative density] For every ϵ > 0 and R > 0, there exists
an L-layer ReLU neural network ϕR,ϵ

f which satisfies

sup
∥x∥≤R

|f(x)− ϕR,ϵ
f (x)| ≤ Rϵ.

We denote by η(ϵ, R) = ∥ϕR,ϵ
f ∥path the path norm of the approximating network as a function of ϵ

and R.

We will generally abbreviate ϕR,ϵ
f to ϕf in mild abuse of notation. Assumption 2 is weak because any

continuous function can be approximated by neural networks to arbitrary precision on a compact set
(Cybenko (1989)). However, we are mainly interested in cases where ϕf generalizes well to unseen
data; this corresponds to η(ϵ, R) growing mildly as ϵ→ 0.

3.1 GENERAL RESULTS

Our first result shows that, under Assumptions 1 and 2, the score function can be approximated effi-
ciently by a neural network, even in high dimensions. Our result helps to understand the massive suc-
cess of deep learning-based implementations of SGMs used in large-scale applications. We denote
by NNL,K the set of neural networks from Rd to Rd with depth L and path norm at mostK. Recall
that for a class of vector fields F , we denote by F score,t = {x 7→ 1

1−e−2t (−x+ e−tf(x)) : f ∈ F}.

Proposition 1 (Approximation error for score function). Suppose assumptions 1 ad 2 hold. Then
there exists a class of neural networks NN with low complexity such that

inf
ϕ∈NN score,t

∫
Rd

∥ϕ(x)−∇x log pt(x)∥2pt(x)dx

= O

(
max

(
1

(1− e−2t)2
(1 + 2α)2dϵ2(1−c(α,β)),

1

(1− e−2t)3
ϵ1/2

))
,
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The class of neural networks is defined precisely in the appendix. A high-level idea of the proof is
to show that the map from f to the score function ∇x log pt has low-complexity in a suitable sense.
The next result concerns the generalization error of learning the score function via empirical risk
minimization.

Proposition 2. [Generalization error for score function] Set Rϵ =

√
d+ 1

1−c(α,β) log
(

(1+2α)d

ϵt2

)
and R̃ϵ =

√
d− log(t6ϵ4). The empirical risk minimizer ŝ in NN score,t of the empirical risk R̂t

satisfies the population risk bound
Rt(̂s) = O(ϵ2),

provided the number of training samples is N ≥ Nϵ,t, where Nϵ,t satisfies

Nϵ,t = Ω

(
max

(
22Lf+10d2t−6

0 (1 + 2α)12dϵ−4η4
(
Rϵ, (1 + 2α)2dϵ2(1−2c(α,β))

)
,

22Lf+10(1 + 2α)12dt−6−72c(α,β)ϵ−4−48c(α,β)η4(R̃ϵ, t
6ϵ4)

)
.

The next result describes how the learned score can be used to produce efficient samples from p0,
with explicit sample complexity rates.
Proposition 3. [Distribution estimation error of SGMs] Let ŝ denote the empirical risk mini-
mizer in NN score,t of the empirical risk R̂t, let p̂ denote the distribution obtained by simulat-
ing the reverse process defined in Equation 5 over the time interval [t0, T ] with ŝtk in place of
the true score for each discretization point, using the exponential integrator discretization scheme
outlined in Section 2.1 with maximum step size κ and number of steps M . Then, with T =
1
2 (log(1/d) + 2d log(1 + 2α) + 2(1− c(α, β)) log(1/ϵ)) , M ≥ dTϵ, κ ≲ 1

M , t0 ≤ Mβ(f)
−2ϵ2,

and N ≥ Nϵ,t0 (where Nϵ,t0 is as defined in Proposition 2), we have

TV (p0, p̂) = O (ϵ)

with probability > 1− poly(1/N).

The proof of the above result has three essential ingredients: Prop 2, which controls the score esti-
mation error for any fixed t, an application of Theorem 1 in Benton et al. (2023), which bounds the
KL divergence between pt0 and p̂ along the exponential integrator scheme in terms of κ, M , T and
the score estimation error, and Lemma 10, which proves that the KL divergence between p0 and pt0
can be bounded by Mβ(f).

3.2 EXAMPLES

We now discuss several concrete examples to which our general theory can be applied.

Infinite-width networks: Suppose that p0 ∝ e−
∥x∥2

2 +f(x), where f(x) is an infinite-width ReLU
network of bounded total variation, i.e., f(x) =

∫
Rd+2 a(w

Tx+ b)(+)dµ(a,w, b), where c > 0 and
µ is a probability measure on Rd+2. For such an f , the Barron norm is defined as

∥f∥B := inf
µ

∫
Rd+1

|a|(∥w∥1 + |b|)µ(da, dw, db),

where the infimum is over all µ such that the integral representation holds. The space of all such
functions is sometimes referred to as the Barron space or variation space associated to the ReLU acti-
vation function. The Barron space has been identified as the ’correct’ function space associated with
approximation theory for shallow ReLU neural networks, since direct and inverse approximation
theorems hold. Namely, for any f in the Barron space and any R > 0, there exists a shallow ReLU
neural network fNN such that sup∥x||≤R |f(x) − fNN (x)| ≤ Rϵ, where fNN has O(∥f∥2Bϵ−2)

parameters and ∥fNN∥path ≲ ∥f∥B. Conversely, any function which can be approximated to ac-
curacy ϵ by a network with path norm uniformly bounded in ϵ belongs to the Barron space. A
comprehensive study of Barron spaces can be found in Ma et al. (2022).

Under the Barron space assumption on f , we can leverage the linear growth and fast approximation
rate of Barron spaces to obtain dimension-independent sample complexity rates for SGMs.
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Proposition 4. [Distribution estimation under Barron space assumption] Suppose that p0(x) ∝
e−∥x∥2/2+f(x), where f belongs to the Barron space. Let ∥f∥B denote the Barron norm and let
cf = inf{c > 0 : |f(x)| ≤ c∥x∥} ≤ ∥f∥B. Given δ ∈ (0, 1), let ϵ(δ) be small enough that 8cf

R̃ϵ
≤ δ,

where R̃ϵ =
√
d− log(M1+δ/4(f)−10ϵ−10) Then for all ϵ ≤ ϵ0, the distribution p̂ learned by the

diffusion model satisfies
TV (p̂, p0) = O(ϵ),

provided the number of samples N satisfies.

N = Ω

(
22Lf+10

(
1 +

2cf

R̃ϵ

)12d

M12+144δ
1+δ/4 ϵ−16−192δ∥f∥4B

)
.

When ϵ is small, we essentially require ϵ−10 samples to learn p0 to accuracy ϵ (up to the prefactors) -
this is a significant improvement to classical sample complexity bounds in high dimensions, wherein
the rate typically tends to zero as d → ∞. We emphasize that the significance of our contribution
is that the rate of the sample complexity is independent of dimension, and we leave it as an open
direction whether all prefactors can be improved to depend only polynomially on d.

Gaussian mixtures: Distributions that describe real-world data are often highly multimodal, and a
natural model for such distributions is the Gaussian mixture model; we assume the initial density to
be of the form

p0 =
1

2

(
1

Z1
exp

(
−∥x− x1∥2

2σ2
min

)
+

1

Z2
exp

(
−∥x− x2∥2

σ2
max

))
,

where 0 < σ2
min ≤ σ2

max are the bandwidths and x1, x2 ∈ Rd are the modes of the distribution.
The results that follow can easily be adapted to mixtures with more than two components and with
arbitrary weights, but we keep the setting as simple as possible to illustrate the results. Due to
the growth condition imposed in Assumption 1, our theory cannot be applied to Gaussian mixtures
with arbitrarily small bandwidths; this is discussed further in Appendix E. We prove the following
distribution estimation result for Gaussian mixtures.
Proposition 5. [Distribution estimation for Gaussian mixture] Given ϵ > 0, set

Rϵ =

√
d+ 1

1−c(α,β) log
(

(1+2α)d

ϵt2

)
and R̃ϵ =

√
d− log(t6ϵ4). Let p0(x) =

1
2

(
1
Z1
e
− ∥x−x1∥2

2σ2
min + 1

Z2
e
− ∥x−x2∥2

2σ2
max

)
be a mixture of two Gaussians, and fix δ ≪ 1. Assume that

the bandwidths σ2
min, σ

2
max satisfy c(α, β) = 4(α+β)

1−2β < 1, where α and β are as defined in Assump-
tion 1. Then there exists an ϵ0 (depending on δ) such that for any ϵ ≤ ϵ0, the distribution p̂ learned
by the SGM satisfies

TV (p̂, p0) = O
(
(1 + 2α)dϵ1−c(α,β)

)
,

provided the number of samples N satisfies N ≥ max(Nϵ,1, Nϵ,2), where

Nϵ,1 = Ω

(
22Lf+10d2t−6

0 (1 + 2α)12dϵ−4 · sup
∥x∥≤Rϵ

p−4
0 (x)

)
and

Nϵ,2 = Ω

(
22Lf+10(1 + 2α)12dt−6−72c(α,β)ϵ−4−48c(α,β) · sup

∥x∥≤R̃ϵ

p−4
0 (x)

)
.

As an example, if σ2
min = σ2

max = 1, then we have

TV (p̂, p0) = O(ϵ)

provided the number of samples satisfies

N = Ω
(
22Lf+10(1 + δ)12ded/2ϵ−24−768δ

)
.

8



The details of the proof are presented in Appendix E. One technical detail is that we need to be able
to approximate the log density by a ReLU neural network so that Assumption 2 is satisfied. Unlike
in the previous example, the log-likelihood is not a Barron function. However, it can be shown that
for any R, the restriction of the log-likelihood to BR can be represented by a composition of two
Barron functions, and from this it follows that the log-likelihood can be locally approximated by a
ReLU network with two hidden layers.

4 CONCLUSION

In this paper, we derived distribution estimation bounds for SGMs, applied to a family of sub-
Gaussian densities parameterized by Barron functions. The highlight of our main result is that the
sample complexity independent of the dimension. An important message of this work is that, for
a data distribution of the form in Assumption 1, a low-complexity structure of the log-likelihood f
induces a similar low-complexity structure of the score function. In particular, the score function
can be approximated in L2 by a neural network without the curse of dimensionality. Some recent
works (Oko et al., 2023; Chen et al., 2023d) have derived distribution estimation bounds under
assumptions of low-dimensionality on the data; we chose to investigate an approximation-theoretic
notion of ’low-complexity’, and thus our results are a complement to these existing works.

We conclude by mentioning some potential directions for future research. First, we wonder whether
similar results could be achieved if we relax some of our assumptions on the data distribution; for
instance, we would like to extend the results to the case where the log-likelihood is allowed to decay
arbitrarily quickly. Second, it is not clear whether our estimation rate for the class of densities con-
sidered is sharp, and thus obtaining lower bounds for sampling from such densities is an interesting
open problem. We conjecture that our generalization error bound can be improved using more re-
fined techniques such as local Rademacher complexities. Finally, obtaining training guarantees of
score-based generative models remains an important open problem, and another natural direction
for future work would be to study the gradient flow/gradient descent dynamics of score matching
under similar assumptions on the target distribution.
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