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Abstract

Skin carcinoma is the most common cancer worldwide and costs over $8 billion1

annually. Early diagnosis is vital for improving melanoma survival rates from2

23% to 99%. Deep neural networks show promising results in classifying skin3

lesions as benign or malignant, but black-box methods are typically not trusted by4

doctors. In this paper we use the CLIP (Contrastive Language-Image Pretraining)5

model, trained on various skin lesion datasets, to capture meaningful relationships6

between visual features and related diagnostic terms in an effort to increase explain-7

ability. We also use a gradient-based visual explanation method for CLIP, known8

as Grad-ECLIP, which highlights the critical regions in images linked to specific9

diagnostic descriptions. This pipeline not only classifies skin lesions and generates10

corresponding descriptions but also adds a layer of visual explanations.11

1 Introduction12

Cancer is characterized by the uncontrolled growth of body cells and is a major global health concern.13

Among its various forms, skin cancer is the most common, primarily affecting areas of the body14

frequently exposed to the sun, such as the face, lips, back, head, and legs. The primary cause of15

skin cancer is excessive exposure to ultraviolet (UV) radiation, which can lead to life-threatening16

conditions in as little as six weeks. Early identification of skin diseases is critical as it can significantly17

improve outcomes and reduce healthcare costs.18

Various methods have been developed to detect and differentiate skin lesion types [8] [1] [10] [2]19

[27]. Melanomas, the most serious form of skin cancer, exhibit a range of characteristics, such as20

the presence or absence of pigmentation and diagnostic features like the whitish veil. Clinicians21

have established different guidelines such as the ABCDE rule—Asymmetry, Border irregularity,22

Color variation, Diameter, and Evolution—to track changes in lesions [22]. However, variations23

in image resolution can complicate the extraction of lesion diameters, and these features alone are24

often insufficient for accurately diagnosing different types of melanomas. Consequently, the Menzies25

method was developed as a simplified dermoscopy technique for diagnosing melanomas, focusing on26

the presence or absence of "negative" and "positive" features [31]. Despite its improved accuracy over27

the ABCDE rule, the Menzies method has high sensitivity [19] [4], which can lead to false-positives,28

especially when used by less experienced clinicians. To overcome the limitations of the Menzies29

method, the 7-point checklist was introduced [33]. However, this method also presents challenges for30

non-experts, as accurate diagnosis without specialized tools is difficult.31

The complexity of diagnosing skin lesions highlights the need for manual evaluation by clinicians.32

Nonetheless, automated techniques using deep neural networks offer promising solutions by improv-33

ing the precision and reliability of skin lesion detection and classification [17] [36]. Despite their34

potential, these methods are often perceived as "black boxes", making it challenging for clinicians35

to trust their outputs. While some studies have focused on enhancing the explainability of medical36
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data to build transparency and trust [9] [23], they have not addressed the importance of highlighting37

specific regions in relation to their corresponding textual descriptions, which would further enhance38

explainability and interpretability. Furthermore, no existing classification method fully integrates all39

diagnostic techniques.40

To address this research gap we developed a pipeline that fine-tunes the Contrastive Language-Image41

Pretraining (CLIP) model [25] on skin lesion datasets including images along with their descriptions42

using features from all diagnostic techniques. By employing the gradient-based method Grad E-CLIP43

[38] we enhance explainability by visually and textually highlighting the features in an image that44

are most relevant to the diagnosis. This method also illustrates how specific textual descriptions45

correspond to these highlighted regions, thereby bridging the gap between visual data and diagnostic46

terms. This enhanced transparency promotes trust among clinicians, enabling them to understand and47

verify the AI’s decision-making process.48

2 Related Work49

CLIP has generated significant interest in a number of medical domains. Med-CLIP [34] uses a50

semantic matching loss based on medical knowledge to improve zero-shot prediction, supervised51

classification, and image-text retrieval. eCLIP [14] incorporates radiologist eye-gaze heatmaps to52

address data scarcity. Mammo-CLIP [6] processes multi-view mammograms and corresponding text53

using early feature fusion, and ConVIRT [37] is an unsupervised strategy for pretraining medical54

image encoders using paired descriptive text through a bidirectional contrastive objective. MITER55

(Medical Image–TExt joint adaptive pRetraining) [30] proposes a joint adaptive pretraining framework56

that combines multi-level contrastive learning with dynamic hard negative sample selection to57

enhance medical image and text models. pathCLIP [11] uses image-text contrastive learning to58

create embeddings of image snippets and text descriptions for better identification of genes and gene59

relations. CLIPath [15] uses Residual Feature Connections to fine-tune CLIP with few trainable60

parameters by fusing task-specific and pre-trained knowledge, enhancing performance on pathology61

classification tasks with limited annotated samples. PubMedCLIP [7], a fine-tuned version of CLIP62

for the medical domain using PubMed articles, outperforms state-of-the-art MAML networks on63

MedVQA benchmarks by up to 3% in overall accuracy. Despite these advancements, several research64

gaps remain in using CLIP models for medical tasks, particularly concerning generalizability across65

diverse medical domains and explainability.66

Numerous studies have focused on enhancing the explainability of models applied to medical data67

[21]. In the realm of image-based explanations, the primary objective is to identify the specific68

parts of an image (such as pixels or segments) that most significantly influence a model’s prediction.69

Prominent techniques for this purpose include gradient-based methods for convolutional neural70

networks (CNNs), such as Guided Backpropagation, CAM, Grad-CAM [28], GradCAM++ [5],71

Guided GradCAM [29], SmoothGrad [32] and DeepLIFT [16]. These were developed to further72

enhance the interpretability of model predictions by offering more refined visual explanations that73

highlight the regions of the input most responsible for the model’s decisions in medical data.74

In addition to gradient-based methods, other approaches like SHAP (SHapley Additive exPlanations)75

[18], LIME (Local Interpretable Model-agnostic Explanations) [26] and Layer-wise Relevance76

Propagation (LRP) [3] have been developed to provide more generalizable explanations across77

different types of data. These techniques offer insights into the contribution of individual features to78

the model’s predictions, thereby enhancing the interpretability of AI systems in healthcare.79

For a broader understanding of how a model operates across different data points, global explanation80

methods like SP-LIME offer a comprehensive view of a model’s behavior by selecting diverse,81

representative explanations. These techniques help clinicians understand model predictions more82

thoroughly, building trust and ensuring safe AI deployment in healthcare. However, some medical83

data often rely on multiple data sources such as images, EHR and clinical notes. Grad E-Clip’s ability84

to generate comprehensive explanations across different modalities is a largely unexplored area.85

2



3 Method Overview86

3.1 Dataset87

Because our work requires annotated images with specific dermoscopic structure criteria, we used the88

PH² and Derm7pt datasets. The PH² [20] image database contains a total of around 200 dermoscopic89

images of melanocytic lesions, including common nevi, atypical nevi, and melanomas. The PH²90

database includes clinical and histological diagnoses and the identification of several dermoscopic91

structure criteria (colors, pigment network, dots/globules, streaks, regression areas, blue-whitish veil).92

Similarly, Derm7pt [13] is a dermoscopic image dataset that contains over 2000 clinical and der-93

moscopy images along with corresponding structured metadata tailored for training and evaluating94

computer aided diagnosis (CAD) systems. This dataset includes the 7-point checklist for assessing95

the malignancy of skin lesions, making it a valuable resource for our study.96

3.2 Data Prepration97

Once the data are collected, each image is paired with its corresponding text description. The dataset98

is organized so that each row represents a single image-text pair, with duplicates removed to avoid99

overfitting and redundancy.100

For text preprocessing, special characters and unnecessary punctuation are removed. At the same101

time, images are resized to 224x224 pixels to meet the input requirements of the image encoder. To102

increase the number of image-text pairs, augmentations are applied: images are augmented through103

flipping and rotating, while text descriptions are reordered to create variations for the same image.104

These augmented text descriptions are then tokenized to create a format compatible with the CLIP105

model’s text encoder, splitting the text into tokens (words or subwords) that can be converted into106

embeddings. The images are then fed into the image encoder, and the text is fed into the text encoder.107

These augmented image-text pairs are then subsequently split into training and testing datasets.108

This careful pairing and preprocessing of images and text is crucial, as CLIP relies on learning the109

relationships between image-text pairs to function effectively.110

3.3 Contrastive Learning Image Pretained - CLIP111

Contrastive Language-Image Pre-training (CLIP) has shown its capability to learn distinctive visual112

representations and generalize across a wide range of downstream vision tasks. Trained on a dataset113

of 400 million image-text pairs sourced from the web, CLIP effectively aligns image and text features,114

allowing for rich incorporation of diverse visual concepts. This extensive pre-training enhances the115

transferability of the learned features to various applications.116

As shown in Figure 1, CLIP consists of two key components: an image encoder and a text encoder,117

both of which are jointly trained to extract feature embeddings from images and text into a shared118

representation space. In this study, a pre-trained model with a vision transformer (ViT) is used as an119

image encoder, while a transformer-based encoder is used for text. Given an image-text pair (I, T ),120

the matching score between their extracted image features fI ∈ RD and text features fT ∈ RD is:121

S(fI , fT ) = cos(fI , fT ) =
fIf

T
T

∥fI∥∥fT ∥
(1)

CLIP maximizes the cosine similarity between embeddings of positive pairs, while minimizing it for122

negative pairs using a contrastive loss.123

3.3.1 Fine-Tuning CLIP124

We conducted our experiments on Google Colab with a TESLA T4 GPU. Fine-tuning the CLIP125

model, the most computationally intensive task, took less than an hour for each 30-epoch run. CLIP126

was fine-tuned on colored dermoscopic images collected from the PH² and Derm7pt datasets. These127

images were paired with dermoscopic structure criteria, which served as descriptive annotations.128

Since CLIP is trained to align images with their corresponding text features, we utilized these129

descriptive annotations during training, resulting in updated weights that were subsequently saved.130

These fine-tuned weights were then employed for the classification of new image-text pairs.131
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Figure 1: CLIP Overview for Custom Dataset: Given skin lesion images, we encode them
alongside their descriptive criteria to generate image and text embeddings. These embeddings are
then combined in a cross-modal interaction module, where cosine similarities between the image-
text pairs are calculated to assess the alignment between lesions and their diagnoses. The final
classification output is determined by the degree of alignment, ensuring accurate diagnosis.

Formally, as illustrated in Figure 1, let fx represent the image features extracted by CLIP’s image132

encoder for lesion image x. The text features, which include descriptive criteria such as "melanoma",133

"symmetry", and "presence of blue-whitish veil", are extracted using CLIP’s text encoder, resulting134

in a set of wi features W = {wi}Ki=1, where K represents the number of classes, such as Melanoma,135

Atypical Nevus, Common Nevus, Seborrheic Keratosis, etc., along with their descriptions. The136

probability of predicting class i (e.g., melanoma) given input image x is computed as:137

p(y = i|x) = exp(cos(wi, fx)/τ)∑K
j=1 exp(cos(wj , fx)/τ)

, (2)

where cos(·, ·) denotes the cosine similarity between two vectors, and τ is a scaling factor learned by138

CLIP [35]. During fine-tuning, the model learns to maximize the cosine similarity between the image139

features fx and the correct text features wi for the true class. Simultaneously, it minimizes the cosine140

similarity between fx and text features wj for all incorrect classes j ̸= i. This fine-tuning aligns the141

image and text embeddings in the feature space, enhancing the model’s ability to accurately match142

images with their corresponding diagnoses.143

3.4 Explainable AI (XAI)144

With the increasing use of deep learning for detection, classification, and segmentation of medical145

images, it has become challenging for clinicians to trust these models due to their black box nature.146

Therefore, building trust and transparency in their output is crucial for user acceptance.147

Various XAI methods have been developed for different tasks [21]. SHAP (SHapley Additive Expla-148

nations) represents a game theoretic approach by computing the importance of input features (image149

pixels) with respect to model output [18]. LIME (Local Interpretable Model-agnostic Explanations)150

[26] is a model-agnostic algorithm that generates interpretable, locally faithful explanations for the151

predictions of any classifier. Layer-wise relevance propagation (LRP) is another XAI explanation152

technique applicable to models structured as neural networks. It assigns relevance scores to each153

neuron in the model and shows the importance of different neurons by propagating the prediction154

backwards in the neural network by means of purposely designed local propagation rules for the155

decision of the model [3].156

Saliency maps are a popular technique used to highlight the key regions in input data that significantly157

contribute to a given prediction. In the domain of dermatology, a series of Class Activation Mapping158

(CAM) techniques (CAM [12], Grad-CAM [28], and Grad-CAM++ [5]) have been employed to159
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explain CNN models for image analysis. Each method has its limitations, prompting further de-160

velopment. CAM, for example, is limited to CNNs with a Global Average Pooling (GAP) layer161

before the fully connected layer and requires retraining multiple linear classifiers after training the162

base model. Grad-CAM addresses this by introducing a backpropagation concept that considers163

partial derivatives to solve for the weight independent from the position of a particular activation map.164

However, Grad-CAM’s heatmaps may fail to localize the entire region of the object, which led to the165

development of Grad-CAM++. It uses a weighted combination of the positive partial derivatives of166

the last convolutional layer feature maps to produce more detailed heatmaps, even though related167

features might be confined to a limited pixel area.168

These explainability methods were designed to focus on image-only or text-only data, and are not169

suited for models that handle both image and text inputs simultaneously, explaining how text relates170

to the image. To bridge this gap, we applied Grad E-CLIP [38], a technique specifically developed171

for the CLIP model, which effectively addresses the challenges of image-text explainability. This172

method provides valuable insights into how the CLIP model makes its predictions by highlighting the173

connections between visual features and their corresponding textual descriptions. By doing so, Grad174

E-CLIP enhances our understanding of the model’s decision-making process.175

3.4.1 Gradient-based Explanation for CLIP (Grad E-CLIP)176

Grad-ECLIP is a method designed to provide visual explanations for the CLIP model by analyzing the177

output of attention layers, particularly focusing on the final layer. The method works by examining178

the interaction between the class token and spatial feature maps within the model, and by calculating179

the importance of each channel and spatial location using a modified attention mechanism.180

The math behind Grad-ECLIP is in section A.2. For the purposes of this paper, Grad-ECLIP improves181

interpretability of the CLIP model by aggregating explanations across all layers, capturing the182

contributions of features throughout the model. By applying this method to both the image and183

text encoders, Grad-ECLIP effectively addresses the black-box nature of CLIP. In this study, we184

demonstrate the utility of Grad-ECLIP in explaining different description criteria associated with185

each type of skin lesion.186

4 Our Approach187

In this study, we developed a fully connected pipeline for the classification and differentiation of188

various skin lesions. As illustrated in Figure 2, data were collected from two different databases,189

including images and their corresponding text descriptions. The collected images and text were then190

pre-processed, involving resizing, organization, and data augmentation. The dataset was split into191

75% training data and 25% testing data. The training data were used to fine-tune the CLIP model,192

which was trained for 30 epochs with a batch size of 64, using the Adam optimizer with a learning193

rate of 1e-5. The loss use was the mean of image and text cross-entropy (see section A.1 for details).194

Figure 2: Proposed pipeline

After training, the new weights were used to evaluate the model on the test data. To enhance the195

interpretability of the newly trained CLIP model, explainability was applied using Grad E-CLIP,196

which provides visual and textual insights into the model’s decision-making process.197
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We used the state-of-the-art CLIP model that has not been extensively explored for skin lesion198

classification. Our approach extends beyond just applying existing explainability techniques like199

Grad E-CLIP to a pre-trained CLIP model by developing a comprehensive classification framework200

that effectively integrates image and text pairs. This dual-modality strategy not only enhances the201

model’s ability to differentiate between various skin lesions but also deepens our understanding of202

the relationship between visual and textual data.203

A critical aspect of our methodology is the analysis of visual and textual features highlighted by204

Grad E-CLIP, which helps us identify and address potential biases in the model’s predictions during205

training. By fine-tuning the CLIP model with our dataset, we aim to improve both its accuracy206

and relevance for the skin lesion classification task. This approach not only enhances classification207

accuracy but also emphasizes the importance of interpretability and transparency, making a significant208

contribution to AI-driven medical diagnostics.209

5 Experiments210

We conducted experiments using the ViT-B/16 architecture, which is based on a transformer model211

with a 16x16 patch size. The experiments were conducted in two main parts.212

1) Performance Evaluation of Fine-tuning the CLIP Model on a Custom Dataset:213

In this part we evaluate the performance of the pre-trained CLIP model on a custom skin lesion214

dataset, followed by the performance of the model after fine-tuning it on the same dataset. The dataset215

was split into 75% for training and 25% for testing. The testing dataset was used to evaluate both the216

pre-trained and the fine-tuned CLIP models, allowing for a direct comparison of their performance.217

We found that the performance of the CLIP model improved significantly after fine-tuning on the218

custom dataset. The evaluation metrics for the training data are presented in Table 1, while Table 2219

shows the performance on the test data before and after fine-tuning. The loss reported in the tables is220

cross-entropy.221

Evaluation Metrics Value
Accuracy 81.80%

Loss 0.4771
Precision 0.8195

Recall 0.818
F1-score 0.8179

Sensitivity 0.818
Specificity 0.9971

Table 1: Model metrics
on training data after fine-
tuning

Before fine-tuning After fine-tuning
Number of test samples 1215 1215

Batch size 64 64
Accuracy 2.06% 80.08%
F1-Score 0.0153 0.8011

Average Loss 4.1579 0.4954
Average CLIP Score 0.3081 0.9655

Table 2: Model metrics on test data before and
after fine-tuning

Accuracy, being the most commonly used metric, evaluates the overall performance of deep learning222

models by measuring the proportion of correct predictions out of all predictions made. In addition223

to accuracy, other evaluation metrics such as Sensitivity, Specificity, Precision, and F1-score are224

also assessed for the CLIP model. These provide a more comprehensive evaluation of the model’s225

performance by offering insights into its ability to correctly identify true positives, avoid false226

negatives, and maintain a balance between precision and recall. Furthermore, the CLIP Score (SCLIP)227

is calculated as the cosine similarity between the image and text embeddings.228

SCLIP =
fimg(I) · ftext(T )

∥fimg(I)∥∥ftext(T )∥
(3)

These metrics indicate the effectiveness of the learning algorithm, as the training curves reach a point229

of stability. In contrast, Figure 3 shows the learning curves for test accuracy and loss before and after230

fine-tuning on the custom dataset, respectively. It is clear that the performance of the CLIP model231

improves significantly after fine-tuning on the custom dataset, leading to enhanced classification232

performance. Similar plots for training accuracy and training loss can be found in section A.3.233

2) Performance Evaluation of CLIP’s Explainability on a Custom Dataset:234
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(a) Test accuracy and loss on pre-
trained model

(b) Test accuracy and loss on fine-
tuned model

Figure 3: Comparison of test accuracy and loss for pre-trained and fine-tuned models

The second part of the experiments focused on evaluating the explainability of the CLIP models both235

before and after fine-tuning. Gradient-based explainability methods, such as Grad-CAM and Grad236

E-CLIP, were employed to analyze the image-text pair understanding of model’s decision-making237

process on the skin lesion dataset. The results indicate that fine-tuning not only improved the model’s238

accuracy on the skin lesion dataset but also influenced the explainability of the model’s outputs.239

Figures 4, 6 and 8 present the explainability results from the pre-trained CLIP model, comparing240

Grad E-CLIP and Grad-CAM. For the CLIP model, Grad-CAM was evaluated based on the cosine241

similarity of the image-text pair, using the gradients calculated with respect to the patch tokens242

from the ViT layers. In contrast, Figures 5, 7 and 9 show the explainability results after fine-tuning.243

Each column in these figures represents a different skin lesion condition, with characteristics such as244

"common nevus", "typical pigmented", or "absent streaks". The top row in these figures shows the245

Grad E-CLIP visualizations, highlighting areas of the image that contribute to the model’s predictions.246

The bottom row shows the Grad-CAM visualizations, with heatmaps indicating regions of importance247

in the image for the model’s output. These figures suggest that Grad E-CLIP provides superior248

explainability in relation to each input text compared to Grad-CAM. While in few cases Grad E-249

CLIP’s performance on the fine-tuned model is not as strong as its original performance on the250

pre-trained CLIP model, it produces clearer and more focused visualizations that avoid highlighting251

irrelevant areas, resulting in better alignment with the corresponding texts.252

As discussed in [38], the CLIP model excels at identifying common perceptual attributes such as color,253

but it struggles with physical attributes like shape and material, and is less effective at grounding254

objects with comparative attributes, like size and positional relationships. The explainability visual-255

izations, as shown in Figure 9, clearly highlight these strengths and weaknesses of the CLIP model.256

For instance, in the explanations of Common Nevus, it is evident that CLIP performs better when257

color is provided as a text input, compared to other attributes like absent streaks or full asymmetry.258

3) Performance Evaluation of Insertion and Deletion for Grad E-CLIP Explainability:259

To evaluate the effectiveness of explanations provided by machine learning models, several metrics260

have been developed, including the area focus score, border focus score, and insertion and deletion261

metrics. The insertion and deletion metrics, introduced by [24], are widely used to assess the262

faithfulness of explanations.263

The insertion metric measures the improvement in the model’s performance as pixels, ranked by264

their importance, are gradually added to an empty image. A higher insertion score suggests that the265

heatmap has correctly identified the most important pixels, resulting in a rapid increase in model266

performance as these pixels are reintroduced. Conversely, the deletion metric evaluates how much267

the model’s prediction degrades as important pixels are sequentially removed from the image, based268

on their importance as indicated by the heatmap. A lower deletion score indicates that the heatmap269

has effectively identified the crucial pixels, leading to a swift decline in model performance when270

these pixels are removed.271

Melanoma Atypical pigmented Present streaks Regression areas Atypical dots/globules
Insertion ↑ 0.2928 0.2913 0.2757 0.2808 0.2881
Deletion ↓ 0.2801 0.2809 0.2955 0.2852 0.2743

Blue-whitish veil Fully asymmetric White/dark-brown/blue-gray/black Missing vascular structures Missing pigmentation
Insertion ↑ 0.2968 0.2868 0.2718 0.2980 0.2976
Deletion ↓ 0.2846 0.2864 0.2964 0.2781 0.2785

Table 3: Comparison of Insertion and Deletion Metrics from Pre-trained Grad E-CLIP on Various
Diagnostic Features. (Visualization shown in Figure 6)
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Figure 4: Comparison of Grad E-CLIP and Grad-CAM Visualizations on Melanoma using a Pre-trained CLIP
Model.

Figure 5: Comparison of Grad E-CLIP and Grad-CAM Visualizations on Melanoma using a Fine-tuned CLIP
Model.

Figure 6: Comparison of Grad E-CLIP and Grad-CAM Visualizations on Melanoma Using a Pre-Trained CLIP
Model.

Figure 7: Comparison of Grad E-CLIP and Grad-CAM Visualizations on Melanoma using a Fine-tuned CLIP
Model.

Melanoma Atypical pigmented Present streaks Regression areas Atypical dots/globules
Insertion ↑ 0.2294 0.2085 0.2088 0.2164 0.2136
Deletion ↓ 0.2059 0.2149 0.2097 0.2160 0.2078

Blue-whitish veil Fully asymmetric White/dark-brown/blue-gray/black Missing vascular structures Missing pigmentation
Insertion ↑ 0.1980 0.1961 0.2243 0.1982 0.2049
Deletion ↓ 0.2108 0.2070 0.2106 0.2087 0.2143

Table 4: Comparison of Insertion and Deletion Metrics from Fine-Tuned Grad E-CLIP on Various
Diagnostic Features (Visualization shown in Figure 7)

In our study, we compared the evaluation metrics of Grad E-CLIP applied to both pre-trained and272

fine-tuned CLIP models as shown in Table 3 and Table 4, specifically for the Melanoma class (visually273

8



Figure 8: Comparison of Grad E-CLIP and Grad-CAM Visualizations on Common Nevus using a pre-trained
CLIP Model.

Figure 9: Comparison of Grad E-CLIP and Grad-CAM Visualizations on Common Nevus using a Fine-tuned
CLIP Model.

illustrated in Figures 6 and 7) across different dermoscopic criteria. The results reveal that the Grad274

E-CLIP pre-trained model achieves higher insertion scores than the fine-tuned model, while the275

fine-tuned Grad E-CLIP model exhibits lower deletion scores.276

The pre-trained Grad E-CLIP has higher insertion scores which suggest that these features might277

not be informative or relevant enough to significantly increase confidence when they are the only278

features present. However, this tends to focus on areas unrelated to melanoma, producing noisier279

heatmaps. This scatter of attention reduces its interpretability and precision, making it less reliable280

for identifying the critical regions relevant to melanoma diagnosis.281

Conversely, the fine-tuned Grad E-CLIP model, despite showing a slightly lower Area Under Curve282

(AUC) for insertion, exhibits a clear advantage with its lower deletion score. These lower AUC for283

deletion, highlights the model’s high sensitivity to the removal of key features, indicating that the284

model is identifying features that it heavily relies on crucial melanoma-related areas. This focused285

attention, with less noise, enhances the model’s reliability and accuracy in pinpointing the most286

relevant regions, making the fine-tuned model more robust and trustworthy for clinical applications.287

The fine-tuned model effectively excludes non-essential regions, leading to improved precision in288

its output. While it sacrifices some of its region-retention capability, this trade-off results in better289

specificity and precision, which is particularly beneficial in medical data analysis where accurately290

highlighting only the most relevant regions is critical (AUC plots can be found in A.4).291

6 Conclusion292

This paper showed that fine-tuning the CLIP model on a custom skin lesion dataset significantly293

enhances both classification accuracy and explainability. The fine-tuned model not only achieves294

improved accuracy but also generates more precise and relevant visualizations when using gradient-295

based explainability methods (Grad E-CLIP). To the best of our knowledge, this is the first work that296

comprehensively uses CLIP and evaluates image-text pair explanations for skin lesions. There are297

limitations to this work, particularly in the explainability of image-text pair relevance for certain cases,298

such as common nevus and atypical nevus, where the alignment is less clear. In future work, we plan299

to enhance the dataset with more detailed descriptions of each skin lesion and improve explainability,300

focusing on better aligning image-text pairs in the skin lesion dataset to ensure stronger correlations.301
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A Appendix420

A.1 Loss Functions Used to Fine-Tune CLIP421

During training, the loss was calculated as follows:422

Lossimg =
1

N

N∑
i=1

CrossEntropyLoss(L(i)
img,y

(i)) (4)

423

Losstxt =
1

N

N∑
i=1

CrossEntropyLoss(L(i)
txt,y

(i)) (5)

424

Total Loss =
Lossimg + Losstxt

2
(6)

N is the batch size, L(i)
img and L

(i)
txt are the logits for the i-th image and text, respectively, and y(i) is425

the ground truth label for the i-th sample.426

A.2 Grad-ECLIP427

The process starts by extracting the image embedding fI from the class token x
(0)
cls in the final layer of428

the network, where x(1) is the input to the last layer and x(0) is the output of the network. The class429

token from the penultimate layer, x(1)
cls , after applying attention A is A(x

(1)
cls ). The image embedding430

is then computed by applying a linear projection (LP) to the sum of A(x(1))[cls] and x(1)[cls], where431

[cls] denotes getting the feature vector from the class token.432

fI = LP(x(0)
cls ) = LP(A(x(1))[cls] + x(1)[cls]), (7)

The attention layer A calculates the contribution of each feature by aggregating the weighted outputs,433

determined by the softmax function applied to the scaled dot product of the query (qcls), key (ki), and434

value vi embeddings as shown int the equation below, where C is the channel dimension:435

x
(0)
cls = A(x(1))[cls] =

∑
i

softmax
(
qclsk

T
i√

C

)
vi, (8)

To generate a target-specific heatmap that highlights the significant regions influencing the model’s436

prediction, Grad-ECLIP computes heatmap Hi using the following equation:437

Hi = ReLU

(∑
c

wcwivi

)
. (9)

wc represents the channel importance, which is derived from the gradient of the similarity between438

the image-text pair with respect to the output class token:439

wc =
∂ST (fI)

∂ocls
, (10)

wi denotes the spatial importance, which is computed by normalizing the inner product of the query440

and key embeddings to the range [0, 1]:441

wi = Φ(qclsk
T
i ). (11)

Φ is a normalization function used to scale the importance values appropriately.442
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A.3 Training Accuracy and Loss for CLIP443

(a) Learning Curve for Training Accuracy (b) Learning Curve for Training Loss

Figure 10: Comparison of Training Accuracy and Training Loss

A.4 Area Under the Curve (AUC) for Insertion and Deletion444

(a) Melanoma (b) Atypical pigmented (c) Present streaks (d) Present regression areas (e) Atypical dots/globules

(f) Absent blue-whitish veil (g) Fully asymmetric (h) White/dark-brown/blue-
gray/black color

(i) Missing vascular struc-
tures

(j) Missing pigmentation

Figure 11: AUC for Deletion and Insertion curves of Fine-Tuned Grad E-CLIP Across Various
Diagnostic Features (Visualization shown in 6

(a) Melanoma (b) Atypical pigmented (c) Present streaks (d) Present regression areas (e) Atypical dots/globules

(f) Absent blue-whitish veil (g) Fully asymmetric (h) White/dark-brown/blue-
gray/black color

(i) Missing vascular struc-
tures

(j) Missing pigmentation

Figure 12: AUC for Deletion and Insertion curves for Pre-Trained Grad E-CLIP on Various Diagnostic
Features (Visualization shown in Figure 7).
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NeurIPS Paper Checklist445

1. Claims446

Question: Do the main claims made in the abstract and introduction accurately reflect the447

paper’s contributions and scope?448

Answer: [Yes]449

Justification: Our claims about improving accuracy and explainability for medical imagery450

are clearly stated in both the abstracyt and introduction.451

Guidelines:452

• The answer NA means that the abstract and introduction do not include the claims453

made in the paper.454

• The abstract and/or introduction should clearly state the claims made, including the455

contributions made in the paper and important assumptions and limitations. A No or456

NA answer to this question will not be perceived well by the reviewers.457

• The claims made should match theoretical and experimental results, and reflect how458

much the results can be expected to generalize to other settings.459

• It is fine to include aspirational goals as motivation as long as it is clear that these goals460

are not attained by the paper.461

2. Limitations462

Question: Does the paper discuss the limitations of the work performed by the authors?463

Answer: [Yes]464

Justification: There is a discussion of limitations at the end of the paper.465

Guidelines:466

• The answer NA means that the paper has no limitation while the answer No means that467

the paper has limitations, but those are not discussed in the paper.468

• The authors are encouraged to create a separate "Limitations" section in their paper.469

• The paper should point out any strong assumptions and how robust the results are to470

violations of these assumptions (e.g., independence assumptions, noiseless settings,471

model well-specification, asymptotic approximations only holding locally). The authors472

should reflect on how these assumptions might be violated in practice and what the473

implications would be.474

• The authors should reflect on the scope of the claims made, e.g., if the approach was475

only tested on a few datasets or with a few runs. In general, empirical results often476

depend on implicit assumptions, which should be articulated.477

• The authors should reflect on the factors that influence the performance of the approach.478

For example, a facial recognition algorithm may perform poorly when image resolution479

is low or images are taken in low lighting. Or a speech-to-text system might not be480

used reliably to provide closed captions for online lectures because it fails to handle481

technical jargon.482

• The authors should discuss the computational efficiency of the proposed algorithms483

and how they scale with dataset size.484

• If applicable, the authors should discuss possible limitations of their approach to485

address problems of privacy and fairness.486

• While the authors might fear that complete honesty about limitations might be used by487

reviewers as grounds for rejection, a worse outcome might be that reviewers discover488

limitations that aren’t acknowledged in the paper. The authors should use their best489

judgment and recognize that individual actions in favor of transparency play an impor-490

tant role in developing norms that preserve the integrity of the community. Reviewers491

will be specifically instructed to not penalize honesty concerning limitations.492

3. Theory Assumptions and Proofs493

Question: For each theoretical result, does the paper provide the full set of assumptions and494

a complete (and correct) proof?495
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Answer: [NA]496

Justification: There are no theoretical results in the paper.497

Guidelines:498

• The answer NA means that the paper does not include theoretical results.499

• All the theorems, formulas, and proofs in the paper should be numbered and cross-500

referenced.501

• All assumptions should be clearly stated or referenced in the statement of any theorems.502

• The proofs can either appear in the main paper or the supplemental material, but if503

they appear in the supplemental material, the authors are encouraged to provide a short504

proof sketch to provide intuition.505

• Inversely, any informal proof provided in the core of the paper should be complemented506

by formal proofs provided in appendix or supplemental material.507

• Theorems and Lemmas that the proof relies upon should be properly referenced.508

4. Experimental Result Reproducibility509

Question: Does the paper fully disclose all the information needed to reproduce the main ex-510

perimental results of the paper to the extent that it affects the main claims and/or conclusions511

of the paper (regardless of whether the code and data are provided or not)?512

Answer: [Yes]513

Justification: Datasets, models, and hyperparameter settings for all experiments are clearly514

stated.515

Guidelines:516

• The answer NA means that the paper does not include experiments.517

• If the paper includes experiments, a No answer to this question will not be perceived518

well by the reviewers: Making the paper reproducible is important, regardless of519

whether the code and data are provided or not.520

• If the contribution is a dataset and/or model, the authors should describe the steps taken521

to make their results reproducible or verifiable.522

• Depending on the contribution, reproducibility can be accomplished in various ways.523

For example, if the contribution is a novel architecture, describing the architecture fully524

might suffice, or if the contribution is a specific model and empirical evaluation, it may525

be necessary to either make it possible for others to replicate the model with the same526

dataset, or provide access to the model. In general. releasing code and data is often527

one good way to accomplish this, but reproducibility can also be provided via detailed528

instructions for how to replicate the results, access to a hosted model (e.g., in the case529

of a large language model), releasing of a model checkpoint, or other means that are530

appropriate to the research performed.531

• While NeurIPS does not require releasing code, the conference does require all submis-532

sions to provide some reasonable avenue for reproducibility, which may depend on the533

nature of the contribution. For example534

(a) If the contribution is primarily a new algorithm, the paper should make it clear how535

to reproduce that algorithm.536

(b) If the contribution is primarily a new model architecture, the paper should describe537

the architecture clearly and fully.538

(c) If the contribution is a new model (e.g., a large language model), then there should539

either be a way to access this model for reproducing the results or a way to reproduce540

the model (e.g., with an open-source dataset or instructions for how to construct541

the dataset).542

(d) We recognize that reproducibility may be tricky in some cases, in which case543

authors are welcome to describe the particular way they provide for reproducibility.544

In the case of closed-source models, it may be that access to the model is limited in545

some way (e.g., to registered users), but it should be possible for other researchers546

to have some path to reproducing or verifying the results.547

5. Open access to data and code548
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Question: Does the paper provide open access to the data and code, with sufficient instruc-549

tions to faithfully reproduce the main experimental results, as described in supplemental550

material?551

Answer: [No]552

Justification: The datasets are all publicly available, as are the pre-trained models used. If553

the paper is accepted we will make the code publicly available.554

Guidelines:555

• The answer NA means that paper does not include experiments requiring code.556

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/557

public/guides/CodeSubmissionPolicy) for more details.558

• While we encourage the release of code and data, we understand that this might not be559

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not560

including code, unless this is central to the contribution (e.g., for a new open-source561

benchmark).562

• The instructions should contain the exact command and environment needed to run to563

reproduce the results. See the NeurIPS code and data submission guidelines (https:564

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.565

• The authors should provide instructions on data access and preparation, including how566

to access the raw data, preprocessed data, intermediate data, and generated data, etc.567

• The authors should provide scripts to reproduce all experimental results for the new568

proposed method and baselines. If only a subset of experiments are reproducible, they569

should state which ones are omitted from the script and why.570

• At submission time, to preserve anonymity, the authors should release anonymized571

versions (if applicable).572

• Providing as much information as possible in supplemental material (appended to the573

paper) is recommended, but including URLs to data and code is permitted.574

6. Experimental Setting/Details575

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-576

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the577

results?578

Answer: [Yes]579

Justification: The section on empirical results is very clear about all of these items.580

Guidelines:581

• The answer NA means that the paper does not include experiments.582

• The experimental setting should be presented in the core of the paper to a level of detail583

that is necessary to appreciate the results and make sense of them.584

• The full details can be provided either with the code, in appendix, or as supplemental585

material.586

7. Experiment Statistical Significance587

Question: Does the paper report error bars suitably and correctly defined or other appropriate588

information about the statistical significance of the experiments?589

Answer: [No]590

Justification: We use a single train/test split for all experiments so there is no way to compute591

statistical significance. Indeed, the differences between the pre-trained and fine-tuned models592

is so large that it seems unlikely that additional random splits would make any difference.593

Guidelines:594

• The answer NA means that the paper does not include experiments.595

• The authors should answer "Yes" if the results are accompanied by error bars, confi-596

dence intervals, or statistical significance tests, at least for the experiments that support597

the main claims of the paper.598
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• The factors of variability that the error bars are capturing should be clearly stated (for599

example, train/test split, initialization, random drawing of some parameter, or overall600

run with given experimental conditions).601

• The method for calculating the error bars should be explained (closed form formula,602

call to a library function, bootstrap, etc.)603

• The assumptions made should be given (e.g., Normally distributed errors).604

• It should be clear whether the error bar is the standard deviation or the standard error605

of the mean.606

• It is OK to report 1-sigma error bars, but one should state it. The authors should607

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis608

of Normality of errors is not verified.609

• For asymmetric distributions, the authors should be careful not to show in tables or610

figures symmetric error bars that would yield results that are out of range (e.g. negative611

error rates).612

• If error bars are reported in tables or plots, The authors should explain in the text how613

they were calculated and reference the corresponding figures or tables in the text.614

8. Experiments Compute Resources615

Question: For each experiment, does the paper provide sufficient information on the com-616

puter resources (type of compute workers, memory, time of execution) needed to reproduce617

the experiments?618

Answer: [Yes]619

Justification: Those details are given in the section on empirical results.620

Guidelines:621

• The answer NA means that the paper does not include experiments.622

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,623

or cloud provider, including relevant memory and storage.624

• The paper should provide the amount of compute required for each of the individual625

experimental runs as well as estimate the total compute.626

• The paper should disclose whether the full research project required more compute627

than the experiments reported in the paper (e.g., preliminary or failed experiments that628

didn’t make it into the paper).629

9. Code Of Ethics630

Question: Does the research conducted in the paper conform, in every respect, with the631

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?632

Answer: [Yes]633

Justification: Based on our reading of the NeurIPS Code of Ethics the answer here is clearly634

yes.635

Guidelines:636

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.637

• If the authors answer No, they should explain the special circumstances that require a638

deviation from the Code of Ethics.639

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-640

eration due to laws or regulations in their jurisdiction).641

10. Broader Impacts642

Question: Does the paper discuss both potential positive societal impacts and negative643

societal impacts of the work performed?644

Answer: [Yes]645

Justification: There are clear potential positive impacts as discussed in the introduction and646

abstract. There are no obvious negative impacts.647

Guidelines:648

• The answer NA means that there is no societal impact of the work performed.649
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• If the authors answer NA or No, they should explain why their work has no societal650

impact or why the paper does not address societal impact.651

• Examples of negative societal impacts include potential malicious or unintended uses652

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations653

(e.g., deployment of technologies that could make decisions that unfairly impact specific654

groups), privacy considerations, and security considerations.655

• The conference expects that many papers will be foundational research and not tied656

to particular applications, let alone deployments. However, if there is a direct path to657

any negative applications, the authors should point it out. For example, it is legitimate658

to point out that an improvement in the quality of generative models could be used to659

generate deepfakes for disinformation. On the other hand, it is not needed to point out660

that a generic algorithm for optimizing neural networks could enable people to train661

models that generate Deepfakes faster.662

• The authors should consider possible harms that could arise when the technology is663

being used as intended and functioning correctly, harms that could arise when the664

technology is being used as intended but gives incorrect results, and harms following665

from (intentional or unintentional) misuse of the technology.666

• If there are negative societal impacts, the authors could also discuss possible mitigation667

strategies (e.g., gated release of models, providing defenses in addition to attacks,668

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from669

feedback over time, improving the efficiency and accessibility of ML).670

11. Safeguards671

Question: Does the paper describe safeguards that have been put in place for responsible672

release of data or models that have a high risk for misuse (e.g., pretrained language models,673

image generators, or scraped datasets)?674

Answer: [NA]675

Justification: We use public datasets and public models that are not generative.676

Guidelines:677

• The answer NA means that the paper poses no such risks.678

• Released models that have a high risk for misuse or dual-use should be released with679

necessary safeguards to allow for controlled use of the model, for example by requiring680

that users adhere to usage guidelines or restrictions to access the model or implementing681

safety filters.682

• Datasets that have been scraped from the Internet could pose safety risks. The authors683

should describe how they avoided releasing unsafe images.684

• We recognize that providing effective safeguards is challenging, and many papers do685

not require this, but we encourage authors to take this into account and make a best686

faith effort.687

12. Licenses for existing assets688

Question: Are the creators or original owners of assets (e.g., code, data, models), used in689

the paper, properly credited and are the license and terms of use explicitly mentioned and690

properly respected?691

Answer: [Yes]692

Justification: Appropriate citations are given for all publicly available resources that were693

used in this paper.694

Guidelines:695

• The answer NA means that the paper does not use existing assets.696

• The authors should cite the original paper that produced the code package or dataset.697

• The authors should state which version of the asset is used and, if possible, include a698

URL.699

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.700

• For scraped data from a particular source (e.g., website), the copyright and terms of701

service of that source should be provided.702
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• If assets are released, the license, copyright information, and terms of use in the703

package should be provided. For popular datasets, paperswithcode.com/datasets704

has curated licenses for some datasets. Their licensing guide can help determine the705

license of a dataset.706

• For existing datasets that are re-packaged, both the original license and the license of707

the derived asset (if it has changed) should be provided.708

• If this information is not available online, the authors are encouraged to reach out to709

the asset’s creators.710

13. New Assets711

Question: Are new assets introduced in the paper well documented and is the documentation712

provided alongside the assets?713

Answer: [NA]714

Justification: There are no new assets introuced in this paper.715

Guidelines:716

• The answer NA means that the paper does not release new assets.717

• Researchers should communicate the details of the dataset/code/model as part of their718

submissions via structured templates. This includes details about training, license,719

limitations, etc.720

• The paper should discuss whether and how consent was obtained from people whose721

asset is used.722

• At submission time, remember to anonymize your assets (if applicable). You can either723

create an anonymized URL or include an anonymized zip file.724

14. Crowdsourcing and Research with Human Subjects725

Question: For crowdsourcing experiments and research with human subjects, does the paper726

include the full text of instructions given to participants and screenshots, if applicable, as727

well as details about compensation (if any)?728

Answer: [NA]729

Justification: This paper used existing datasets and did no work with human subjects.730

Guidelines:731

• The answer NA means that the paper does not involve crowdsourcing nor research with732

human subjects.733

• Including this information in the supplemental material is fine, but if the main contribu-734

tion of the paper involves human subjects, then as much detail as possible should be735

included in the main paper.736

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,737

or other labor should be paid at least the minimum wage in the country of the data738

collector.739

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human740

Subjects741

Question: Does the paper describe potential risks incurred by study participants, whether742

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)743

approvals (or an equivalent approval/review based on the requirements of your country or744

institution) were obtained?745

Answer: [NA]746

Justification: See answer to previous question.747

Guidelines:748

• The answer NA means that the paper does not involve crowdsourcing nor research with749

human subjects.750

• Depending on the country in which research is conducted, IRB approval (or equivalent)751

may be required for any human subjects research. If you obtained IRB approval, you752

should clearly state this in the paper.753
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• We recognize that the procedures for this may vary significantly between institutions754

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the755

guidelines for their institution.756

• For initial submissions, do not include any information that would break anonymity (if757

applicable), such as the institution conducting the review.758
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