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Abstract
This work considers the fundamental problem of
learning an unknown object from training data
using a given model class. We introduce a frame-
work that allows for objects in arbitrary Hilbert
spaces, general types of (random) linear measure-
ments as training data and general types of nonlin-
ear model classes. We establish a series of learn-
ing guarantees for this framework, which provide
explicit relations between the amount of training
data and the model class to ensure near-best gen-
eralization bounds. In doing so, we introduce the
key notion of the variation of a model class with
respect to a distribution of sampling operators.
We show that this framework can accommodate
many different types of well-known problems of
interest, such as matrix sketching by random sam-
pling, compressed sensing with isotropic vectors,
active learning in regression and compressed sens-
ing with generative models. In all cases, known
results become straightforward corollaries of our
general theory. Hence, this work provides a pow-
erful framework for studying and analyzing many
different types of learning problems.

1. Introduction
Learning an unknown object from a finite set of training
data is a fundamental problem in computer science. Typi-
cally, in modern settings, one seeks to learn an approximate
representation in a nonlinear model class (also known as an
approximation space or hypothesis set). It is also common
to generate the training data randomly according to some
distribution. Of critical importance in this endeavour is the
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question of learning guarantees. In other words: how much
training data suffices to ensure good generalization, and
how is this influenced by the choice of model class and the
random process generating the training data?

This question has often been addressed for specific types
of training data. For instance, in the case of regression,
the training data consists of pointwise evaluations of some
target function, or in the case of computational imaging, the
training data may consist of samples of the Fourier or Radon
transform of some target image. It is also commonly studied
for specific model classes, e.g., polynomial spaces (Adcock
et al., 2022c) or spaces of sparse vectors (Foucart & Rauhut,
2013), spaces of low-rank matrices or tensors (Davenport
& Romberg, 2016), spaces defined by generative models
(Bora et al., 2017), single- (Gajjar et al., 2023) or multi-
layer neural networks (Adcock & Dexter, 2021; Adcock
et al., 2021; 2022b), Fourier sparse functions (Erdelyi et al.,
2020), (sparse) random feature models (Avron et al., 2017;
Hashemi et al., 2023) and many more.

In this paper, we introduce a unified framework for learning
with nonlinear model classes from arbitrary linear samples.
The main features of this framework are:

(i) the object is an element of a separable Hilbert space;
(ii) each measurement is taken randomly and indepen-

dently according to a random linear operator;
(iii) the measurements may be scalar- or vector-valued, or,

in general, may take values in a Hilbert space;
(iv) the measurements can be multimodal, i.e., generated

by different distributions of random linear operators,
as long as a certain nondegeneracy condition holds;

(v) the model class can be linear or nonlinear, but should
be contained in (or covered by) a union of finite-
dimensional subspaces;

(vi) the resulting learning guarantees are given in terms of
the variation of the model class with respect to the
sampling distributions.

We present a series of examples to highlight the generality
of this framework. In various cases, our learning guarantees
either include or improve known results.
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1.1. The framework

The setup we consider in this paper is the following.

• X is a separable Hilbert space with inner product ⟨·, ·⟩X
and norm ∥·∥X.

• X0 ⊆ X is a semi-normed vector space, termed the
object space, with semi-norm ∥·∥X0

.
• x ∈ X0 is the unknown target object.
• For each i = 1, . . . ,m, Yi is a Hilbert space with

inner product ⟨·, ·⟩Yi
and norm ∥·∥Yi

termed the ith
measurement space.

• For each i = 1, . . . ,m, Ai is a distribution of bounded
linear operators (X0, ∥·∥X0

) → (Yi, ∥·∥Yi
). We term

Ai ∼ Ai the ith sampling operator. We also write
B(X0,Yi) for the space of bounded linear operators,
so that Ai ∈ B(X0,Yi).

• We assume that the family {Ai}mi=1 of distributions is
nondegenerate. Namely, there exist 0 < α ≤ β <∞
such that, for all x ∈ X0,

α∥x∥2X ≤ 1

m

m∑
i=1

EAi∼Ai∥Ai(x)∥2Yi
≤ β∥x∥2X. (1.1)

• U ⊆ X0 is a set, termed the model class. Our aim is to
learn an approximation x ≈ x̂ ∈ U.

Now let Ai ∈ B(X0,Yi), i = 1, . . . ,m, be independent re-
alizations from the distributions A1, . . . ,Am. We consider
(noisy) training data of the form

{(Ai, bi := Ai(x) + ei)}mi=1, (1.2)

where (Ai, bi) ∈ B(X0,Yi) × Yi. Our aim is to learn x
from this data, and we do this via empirical least squares,
i.e.,

x̂ ∈ argmin
u∈U

1

m

m∑
i=1

∥bi −Ai(u)∥2Yi
. (1.3)

Later, we also allow for x̂ to be an approximate minimizer, to
model the more practical scenario where the minimization
problem is solved inexactly. Note that in this work we
consider the agnostic learning setting, where x /∈ U and the
noise ei can be adversarial (but small in norm).

Before describing our main theoretical contributions, it is
worth showing how our framework includes the standard
function regression problem as a special case.
Example 1.1 (Function regression from i.i.d. samples). Let
D ⊆ Rd be a domain with a measure ρ and consider the
problem of learning an unknown function f ∈ L2

ρ(D) from
data {(zi, f(zi))}mi=1, where zi ∼i.i.d. µ for some probabil-
ity measure µ on D. To cast this problem in this framework,
we make the (mild) assumption that µ is absolutely contin-
uous with respect to ρ and ν := dµ/dρ > 0 a.e.. Now let
X = L2

ρ(D), X0 = C(D) (here D denotes the closure of
D), Yi = Y = R, ∀i, with the Euclidean inner product and

Ai = A, ∀i, be defined by A ∼ A if A(f) = f(z)/
√
ν(z)

for z ∼ µ. A short calculation shows that nondegeneracy
(1.1) holds with α = β = 1 in this case. Now, given an
approximation space U ⊆ C(D), the least-squares problem
(1.3) becomes the (nonlinear) weighted-least squares fit

f̂ ∈ argmin
u∈U

1

m

m∑
i=1

1

ν(zi)
|f(zi) +

√
ν(zi)ei − u(zi)|2.

(1.4)
Note that it is common to set µ = ρ in such problems, in
which case ν = 1 and (1.4) is an unweighted least-squares
fit. However, this more general setup allows one to consider
the active learning setting, where the sampling measure µ
is chosen judiciously in term of U to improve the learning
performance of f̂ . We discuss this in §4.

As we explain in §2, this framework also contains many
other problems of interest as special cases. In many of
these cases, as well as in Example 1.1 above, the training
data is sampled from the same distribution, i.e., Ai = A, ∀i.
However, having different distributions allows us to consider
multimodal sampling problems, where data is obtained from
different random processes. In §2 we also discuss situations
where this arises.

1.2. Contributions

Besides the general framework described above, our main
contributions are a series of learning guarantees that relate
the amount of training data m to properties of the sampling
distributions {Ai}mi=1. We now present a simplified version
of our main result covering the case where Ai = A, ∀i. The
full case is presented in §3.

A key quantity in this analysis is the so-called variation of a
(nonlinear) set V ⊆ X0 with respect to a distribution A of
bounded linear operators in B(X0,Y). We define this as the
smallest constant Φ = Φ(V;A) such that

∥A(v)∥2Y ≤ Φ, ∀v ∈ V, a.s. A ∼ A. (1.5)

See also Definition 3.1. As we discuss in Example 3.2, the
variation is effectively a generalization of the notion of co-
herence in classical compressed sensing (see, e.g., (Candès
& Plan, 2011) or (Adcock & Hansen, 2021, Chpt. 5)). It
also generalizes various generalized notions of coherence,
such as the ‘local coherence’ of (Krahmer & Ward, 2013),
the ‘local coherence in levels’ of (Adcock & Hansen, 2021)
and the ‘block coherence’ of (Bigot et al., 2016). Moreover,
as we discuss in Appendix A, it is directly related to the
leverage score function in the case of matrix sketching. In
the following, we also define S(V) = {v ∈ V : ∥v∥X = 1}
as the unit sphere of V in X.
Simplified Result. Consider the setup of §1.1 with Ai = A,
∀i, let U ⊆ X0 and suppose that U′ := U− U is such that
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(i) U′ is a cone (i.e., tu′ ∈ U′ for t ≥ 0 and u′ ∈ U′), and
(ii) U′ ⊆ V1 ∪ · · · ∪ Vd =: V, where each Vi ⊆ X0 is a

subspace of dimension at most n.

Suppose that, for some 0 < ϵ < 1, either

(a) m ≳ α−1 · Φ(S(U′ − U′);A) · [log(2d/ϵ) + n], or
(b) m ≳ α−1 · Φ(S(V);A) · log(2nd/ϵ).

Let x ∈ X0, θ ≥ ∥x∥X and x̌ = min{1, θ/∥x̂∥X}x̂ for
any minimizer x̂ of (1.3) with noisy measurements (1.2). If
N = 1

m

∑m
i=1 ∥ei∥

2
Yi

, then

E∥x− x̌∥2X ≲
β

α
inf
u∈U

∥x− u∥2X + θ2ϵ+
N

α
. (1.6)

A few remarks are in order. First, we note that (i) is a
standard assumption, and holds in many cases of interest.
Assumption (ii) holds for many sparse or ‘structured’ sparse
model classes (e.g., joint or block sparse vectors, sparse
in levels vectors, tree sparse vectors, cosparse vectors and
so forth). As we discuss in §5, it also holds for model
classes defined by generative models. Conditions (a) and
(b) are slightly different, in that they involve the variation
over different sets. In particular, condition (b) evaluates
the variation over S(V), and, by doing so, obtains a better
scaling with respect to n than (a)-(b). Finally, we note that
this result is a simplified version of the results presented in
§3. In the full results, we also consider inexact minimiz-
ers of (1.3). Moreover, we provide several refinements of
conditions (a) and (b), as well as a variation involving an
additional assumption on U′ which leads to a sharper bound.
This bound is particularly relevant to sparse and structured
sparse model classes.

Having presented these in §3, we next describe how this
framework unifies, generalizes and, in some cases, improves
known results. In particular, we recover known bounds for
compressed sensing with isotropic vectors and for matrix
sketching by random sampling (see Appendices A and B,
respectively). We then discuss the application of this frame-
work to two different problems.

(a) Active learning in regression (§4). Here, we extend
and improve the recent work (Adcock et al., 2023) by
applying our main results to derive a random (impor-
tance) sampling strategy based on a certain Christoffel
function (also known as the leverage score function).
We show that this strategy, termed Christoffel sampling,
leads to near-optimal sample complexity bounds in a
number of important settings.

(b) Compressed sensing with generative models (§5). Here
we extend and improve results from the recent work
(Berk et al., 2023a) by obtaining learning guarantees
for general types of measurements in the case where
U is the range of a ReLU generative model. Subse-
quently, we applied these results to subsampled unitary

matrices, as in (Adcock et al., 2023; Berk et al., 2023b),
and use them to derive an optimal sampling strategy.

1.3. Related work

Our sampling framework is inspired by previous work
in compressed sensing, notably compressed sensing with
isotropic vectors (Candès & Plan, 2011) (see also (Adcock
& Hansen, 2021, Chpt. 12) and Example 2.3). This work
considers the case where X0 = CN , Y1 = · · · = Ym = C
and U is the set of s-sparse vectors, i.e., the target object is
an (approximately) sparse vector and the sampling operators
are linear functionals. Note that isotropy would correspond
to the case α = β = 1 in (1.1). We relax this to allow α ̸= β.
Within the compressed sensing literature, there are a num-
ber of works that allow for non-scalar valued measurements.
See (Bigot et al., 2016; Boyer et al., 2019) for an instance of
vector-valued measurements (‘block sampling’) and (Traon-
milin et al., 2017) as well as (Adcock et al., 2022a; Dexter
et al., 2019) for Hilbert-valued measurements. The latter
arise in an array of important applications in computational
science, such as parametric Differential Equations (DEs) in
computational Uncertainty Quantification (UQ), see (Ad-
cock et al., 2022c, Section 1.2.2).

Recovery guarantees in compressed sensing are generally
derived for specific model classes, such as sparse vectors
or various generalizations (e.g., the aforementioned joint or
block sparse vectors, sparse in levels vectors, tree sparse
vectors, cosparse vectors and so forth (Adcock et al., 2017;
Baraniuk et al., 2010; Bourrier et al., 2014; Davenport
et al., 2012; Duarte & Eldar, 2011; Traonmilin & Gribonval,
2018)). Guarantees for general model classes are usually
only presented in the case of (sub)Gaussian random mea-
surements (see e.g., (Baraniuk et al., 2010; Dirksen, 2016)).
These, while mathematically elegant, are typically not use-
ful in practice. Our framework provides a unified set of
recovery guarantees for very general types of measurements.
It contains subsampled unitary matrices (a well-known mea-
surement modality in compressed sensing, with practical
relevance – see Example 2.4) as a special case, but also
many others, including vector-valued measurements.

Active learning is a large topic. For function regression in
linear spaces, a now well-known solution involves sampling
according to the Christoffel function (Cohen & Migliorati,
2017) or leverage score function (Avron et al., 2017; Chen
et al., 2016; Chen & Price, 2019; Derezinski et al., 2018;
Erdelyi et al., 2020; Gajjar et al., 2023; Ma et al., 2015)
of the subspace. A number of these works have extended
this to certain nonlinear spaces, such as Fourier sparse func-
tions (Erdelyi et al., 2020) and single-neuron models (Gajjar
et al., 2023). In the work (Adcock et al., 2023), this was
extended to more general nonlinear spaces and other types
of measurements. As noted above, this work improves the
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theoretical guarantees in (Adcock et al., 2023). In particular,
we show the usefulness of Christoffel sampling for more
general types of nonlinear model classes.

Compressed sensing with generative models was introduced
in (Bora et al., 2017), and has proved useful in image
reconstruction tasks such as Magnetic Resonance Imag-
ing (MRI) (see (Jalal et al., 2021) and references therein).
Initial learning guarantees for generative models involved
(sub)Gaussian random measurements (Bora et al., 2017).
Guarantees for randomly subsampled unitary matrices were
established in (Berk et al., 2023a) for ReLU generative net-
works, and later extended in (Berk et al., 2023b) for the
nonuniformly subsampled case. As noted above, our work
refines and further generalizes this analysis to more general
types of measurements.

2. Further examples
Having considered function regression Example 1.1, we
now present a series of further examples that can be cast
into our framework. We will return to these examples later
after first stating our main learning guarantees in §3.
Example 2.1 (Matrix sketching for large least-squares prob-
lems). Let X ∈ CN×n, N ≥ n, be a given matrix and
y ∈ CN a target vector. In many applications, it may be in-
feasible (due to computational constraints) to find a solution
to the ‘full’ least-squares problem w ∈ argmin

z∈Cn

∥Xz − x∥ℓ2 .

Therefore, one aims to instead find a sketching matrix
S ∈ Cm×N (a matrix with one nonzero per row) such
that any minimizer of the sketched problem

ŵ ∈ argmin
z∈Cn

∥SXz − Sx∥ℓ2 (2.1)

satisfies
∥Xŵ − y∥2ℓ2 ≲ ∥Xw − x∥2ℓ2 . (2.2)

A particularly effective way to do this involves constructing
a random sketch. Formally, let π = {π1, . . . , πN} be a
discrete probability distribution on {1, . . . , N} with πi >
0 for all i. Then we draw j1, . . . , jm ∼i.i.d. π and set
Siji = 1/

√
πji and Sij = 0 otherwise. Therefore, SX ∈

Cm×n consists of m rows of X scaled by the probabilities
1/
√
πi. See (Malik et al., 2022; Woodruff, 2014) for further

discussions on matrix sketching.

To cast this into the above framework, let X = X0 = CN

and Y = C, both equipped with the Euclidean norm. Note
that bounded linear operators X0 → Y are equivalent to
column vectors a ∈ CN (via the relation x 7→ a∗x). Hence
we define Ai = A, ∀i, such that a ∼ A if

P(a = ei/
√
πi) = πi, i = 1, . . . , N.

Observe that (1.1) holds with α = β = 1. If

U = {Xz : z ∈ Cn} (2.3)

then we readily see that (1.3) (with bi = (Sx)i) is equivalent
to (2.1) in the sense that x̂ = Xŵ is a solution of (1.3) if and
only if ŵ is a solution of (2.1). In particular, ∥Xŵ − x∥2ℓ2 =

∥x̂− x∥2ℓ2 is precisely the X-norm error of the estimator x̂.

Leverage score sampling is a near-optimal solution to the
matrix sketching problem (Woodruff, 2014). Here, one sets

πi = τ(X)(i)/n, i = 1, . . . , N, (2.4)

where

τ(X)(i) = max
z∈Cn

Xz ̸=0

|(Xz)i|2

∥Xz∥22
, i = 1, . . . , N, (2.5)

are the so-called leverage scores of the matrix X . In this
case, (2.2) holds with high probability, provided

m ≳ n · log(2n/ϵ). (2.6)

In Appendix A, we show this bound is straightforward conse-
quence of our general theory. Thus leverage score sampling
is a specific case of our unified framework.
Example 2.2 (Function regression with vector-valued mea-
surements). Regression problems in various applications
call for learning vector- as opposed to scalar-valued func-
tions. These are readily incorporated into this framework by
modifying Example 1.1.

Hilbert-valued functions. Let V be a Hilbert space and con-
sider the Hilbert-valued function f : D → V. As mentioned
in §1.3, the problem of learning Hilbert-valued functions
arises in various applications, including parametric DEs
in computational UQ. Here, f represents the parameters-
to-solution map of a DE involving parameters x ∈ D,
which, for each x ∈ D, yields the Hilbert-valued output
f(x) ∈ D being the solution of the DE at those param-
eter values (see (Adcock et al., 2022c; Cohen & DeVore,
2015; Dexter et al., 2019) and references therein for dis-
cussion). To cast this problem into the general framework,
we modify Example 1.1 by letting X = L2

ρ(D;V) be the
Bochner space of strongly ρ-measurable functions D → V,
X0 = C(D;V) be the space of continuous, V-valued func-
tions, Y1 = · · · = Ym = V and A be the distribution
of bounded linear operators X0 → V with A ∼ A if
A(f) = f(z)/

√
ν(z) ∈ V for f ∈ X0 and z ∼ µ.

Continuous-in-time sampling. Consider f : D× [0, T ] → R
depending on a spatial variable x ∈ D and a time variable
t ∈ [0, T ]. In some examples, for instance, seismology,
one assumes continuous (or dense) sampling in time with
discrete (i.e., sparse) sampling in space. Thus, each mea-
surement takes the form {f(z, t) : 0 ≤ t ≤ T} for fixed
z ∈ D. We can cast this problem into a Hilbert-valued func-
tion approximation problem by letting V = L2

σ(0, T ) so that
X = L2

ρ(D;V) ∼= L2
ρ×σ(D × [0, T ]). Hence, continuous-

in-time sampling is also covered by the general framework.
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Gradient-augmented data. In this problem, each sample
takes the form (z, f(z),∇zf(z)), i.e., we obtain both the
function and its gradient with respect at each sample point z.
This problem arises in a number of applications, including
parametric DEs and UQ (Alekseev et al., 2011; Peng et al.,
2016; O’Leary-Roseberry et al., 2022; 2024), seismology
and Physics-Informed Neural Networks (PINNs) for PDEs
(Feng & Zeng, 2022; Yu et al., 2022) and deep learning
(Czarnecki et al., 2017). Assuming the setup of Example 1.1,
we cast this problem into the framework by letting X be the
Sobolev space H1

ρ(D), X0 = C1(D), Yi = Y = Vd+1, ∀i,
and defining A ∼ A if A(f) = (f(z),∇zf(z))/

√
ν(z) ∈

Rd+1 for f ∈ X0 and z ∼ µ.

In the next several examples, we show how this framework
includes as special cases various general sampling models
from the compressed sensing literature.
Example 2.3 (Compressed sensing with isotropic vectors).
Classical compressed sensing concerns learning a sparse
approximation to an unknown vector f ∈ CN from m lin-
ear measurements. A well-known model involves sampling
with isotropic vectors (Candès & Plan, 2011) (see also (Ad-
cock & Hansen, 2021, Chpt. 11)). We can cast this in the
above framework as follows. Let X = X0 = CN equipped
with Euclidean inner product and Yi = Y = C, ∀i. As in
Example 2.1, we consider Ai = A to be a distribution of
vectors in CN that are isotropic, i.e.,

Ea∼Aaa
∗ = I. (2.7)

Note that (1.1) holds with α = β = 1 in this case. Moreover,
the measurements (1.2) have the form

bi = a∗i x+ ei ∈ C, i = 1, . . . ,m,

where a1, . . . , am ∼i.i.d. A. In matrix-vector notation, we
can rewrite this as

b = Ax+ e, where b = m−1/2(bi)
m
i=1 ∈ Cm, (2.8)

e = m−1/2(ei)
m
i=1 ∈ Cm and A ∈ Cm×N has ith row a∗i .

As discussed in (Candès & Plan, 2011), this model includes
not only the well-known case of subgaussian random matri-
ces, in which case A is a distribution of subgaussian random
vectors, but also many other common sampling models used
in signal and image processing applications. Moreover, if
we slightly relax (2.7) to αI ⪯ Ea∼Aaa

∗ ⪯ βI , so that
(1.1) holds with the same values of α and β, then it also
generalizes the bounded Riesz system model studied in
(Brugiapaglia et al., 2021).
Example 2.4 (Compressed sensing with subsampled uni-
tary matrices). A particular case of interest within the pre-
vious example is the class of subsampled unitary matri-
ces. Let U ∈ CN×N be unitary, i.e., U∗U = I . Let
ui = U∗ei, where ei is the ith canonical basis vector, and

π = (π1, . . . , πN ) be a discrete probability distribution on
{1, . . . , N} with πi > 0, ∀i. Then we define the (discrete)
distribution of vectors A by a ∼ A if

P(a = ui/
√
πi) = πi, i = 1, . . . , N.

It is readily checked that (2.7) holds in this case, making
this family isotropic. The corresponding matrix A consists
of (scaled) rows of U sampled with probability π.

Subsampled unitary matrices occur in various applications.
For example, U may be the matrix of the Discrete Fourier
Transform (DFT) in a Fourier sensing problem. This arises
in applications such as MRI, NMR, Helium Atom Scatter-
ing and radio interferometry (see, e.g., (Adcock & Hansen,
2021) and references therein).

The reader will notice that in the previous examples, the
distributions Ai were all equal. We now conclude with an
example that motivates different distributions.
Example 2.5 (Multimodal data). Consider the general setup
of §1.1. Rather than a single distribution A generating all
the data, we now assume that there areC > 1 different types
of data, with the cth type generated via a distribution A(c),
c = 1, . . . , C, of bounded linear operators in B(X0,Y(c)).
Let m = m1 + · · ·+mC and define {Ai}mi=1 by

Ai = A(c) if m1 + · · ·+mc−1 < i ≤ m1 + · · ·+mc.

Thus, the first m1 samples are generated by A(1), the next
m2 samples by A(2), and so forth. Notice that nondegener-
acy (1.1) is now equivalent to the condition

α∥x∥2X ≤
C∑

c=1

mc

m
EA∼A(c)∥A(x)∥2Y(c) ≤ β∥x∥2X.

Multimodal data is important in many applications. It was
previously considered in (Adcock et al., 2023), which, as
noted in §1 is a special case of this work. As observed in
(Adcock et al., 2023), multimodal data arises in various
applications, such as multi-sensor imaging systems (Chun
& Adcock, 2017) and PINNs for PDEs (Han et al., 2018;
Raissi et al., 2019). This includes the important case of par-
allel MRI (McRobbie et al., 2006), which is used widely in
medical practice. Another application involves an extension
of the gradient-augmented learning problem in Example 2.2
where, due to cost or other constraints, one can only afford
to measure gradients at some fraction of the total samples.
See (Adcock et al., 2023, §B.7) for further details.

3. Learning guarantees
In this section, we present our main theoretical results. In
these results, we consider approximate minimizers of (1.3).
We say that x̂ ∈ U is a ζ-minimizer of (1.3) if

1

m

m∑
i=1

∥bi −Ai(x̂)∥2Yi
≤ min

u∈U

1

m

m∑
i=1

∥bi −Ai(u)∥2Yi
+ ζ.
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Also, given a set V ⊆ X, we define

S(V) = {v/∥v∥X : v ∈ V\{0}}. (3.1)

We also say that V is a cone if tv ∈ V for any t ≥ 0, v ∈ V.
Notice that S(V) = {v ∈ V : ∥v∥X = 1} in this case.

3.1. Variation

We now formally introduce the concept of variation, which
is crucial to our analysis.
Definition 3.1 (Variation with respect to a distribution). Let
V ⊆ X0 and Y be a Hilbert space. Consider a distribution A
of bounded linear operators in B(X0,Y). The variation of
V with respect to A is the smallest constant Φ = Φ(V;A) ∈
[0,∞] such that

∥A(v)∥2Y ≤ Φ, ∀v ∈ V, a.s. A ∼ A. (3.2)

Note that we specify Φ as the smallest constant to ensure
that it is well defined. However, in all our results Φ can
be any constant such that (3.2) holds. This is relevant in
our examples, since it means we only need to derive upper
bounds for the variation.

In the following example, we show how the variation ex-
tends to the classical notion of coherence in compressed
sensing. Later, in the context of active learning in §4, we
show that it also relates to the Christoffel function (also the
leverage score function).
Example 3.2 (Classical compressed sensing and coherence).
Coherence is a well-known concept in compressed sensing
(see, e.g., (Candès & Plan, 2011)). Consider the setting of
Example 2.3 and let 1 ≤ s ≤ N . Classical compressed
sensing considers the model class of s-sparse vectors

U = Σs = {x ∈ CN : x is s-sparse}. (3.3)

In this case, Φ(S(U);A) is the smallest constant such that

|a∗v|2 ≤ Φ∥v∥2ℓ2 , ∀v s-sparse, a.s. a ∼ A.

Define the coherence µ = µ(A) of the distribution A (see
(Candès & Plan, 2011) or (Adcock & Hansen, 2021, Defn.
11.16)) as the smallest constant such that

∥a∥2ℓ∞ ≤ µ(A), a.s. a ∼ A.

Then a short derivation gives that

Φ(S(Σs);A) ≤ µ(A)s. (3.4)

Thus, the variation is bounded by the coherence µ(A) mul-
tiplied by the sparsity s.

Coherence directly determines the learning guarantee for
sparse vector recovery. A well-known measurement condi-
tion (see, e.g., (Adcock & Hansen, 2021, Cor. 13.15)) takes
the form

m ≳ µ(A) · s ·
(
log2(s) log(N) + log(ϵ−1)

)
. (3.5)

In other words, the number of measurements that suffices for
good generalization scales linearly in s, up to the coherence
µ(A) and a polylogarithmic factor. In Appendix B we show
that this bound is a straightforward corollary of our main
theorems and (3.4) when applied to this problem. Hence our
framework generalizes classical compressed sensing with
isotropic vectors.

As described in §1.1, in this work we consider a collection of
distributions, which we henceforth denote as Ā = {Ai}mi=1.
We define the variation of this collection as

Φ(V; Ā) = max
i=1,...,m

Φ(V;Ai). (3.6)

3.2. Main results

Theorem 3.3. Consider the setup of §1.1, let U ⊆ X0 and
suppose that the difference set U′ = U− U is such that

(i) U′ is a cone, and
(ii) U′ ⊆ V1 ∪ · · · ∪ Vd =: V, where each Vi ⊆ X0 is a

subspace of dimension at most n.

Suppose that, for some 0 < ϵ < 1, either

(a) m ≳ α−1 · Φ(S(U′); Ā) ·
[
n log(2γ(U′; Ā))+

log(2d/ϵ)], where

γ(U′; Ā) =
min{Φ(S(V); Ā),Φ(S(U′ − U′); Ā)}

Φ(S(U′); Ā)
,

(3.7)
(b) m ≳ α−1 · Φ(S(U′ − U′); Ā) · [log(2d/ϵ) + n],
(c) or m ≳ α−1 · Φ(S(V); Ā) · log(2nd/ϵ).

Let x ∈ X0, θ ≥ ∥x∥X and ζ ≥ 0. If N = 1
m

∑m
i=1 ∥ei∥

2
Yi

,
then

E∥x− x̌∥2X ≲
β

α
· inf
u∈U

∥x− u∥2X + θ2ϵ+
ζ2

α
+
N

α
,

where x̌ = min{1, θ/∥x̂∥X}x̂ for any ζ-minimizer x̂ of
(1.3) with noisy measurements (1.2).

As observed in §1.2, assumptions (i) and (ii) hold in many
cases of interest. We note that condition (a) is weaker than
(b) (see the proof of Theorem E.2). It depends linearly on
the variation over the smaller set S(U′), and only logarith-
mically on the variation over S(U′ − U′). For the sparse
model (Example 3.2), where U = Σs, we have U′ = Σ2s

and U′ −U′ = Σ4s (see Appendix B). In general, condition
(c) has a better dependence on n than both conditions (a)
and (b), at the expense of evaluating the variation over the
generically larger set V defined in assumption (ii).

Theorem 3.3 is very general. However, as we discuss in
Appendix B, it yields suboptimal bounds in cases such as
Example 3.2. Fortunately, by making an additional assump-
tion, we can resolve this shortcoming.
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Theorem 3.4. Consider the setup of §1.1 and let U ⊆ X0

be such that assumptions (i) and (ii) of Theorem 3.3 hold
and also that

(iii) {u ∈ U′ : ∥u∥X ≤ 1} ⊆ conv(W), where W is a finite
set of size |W| =M .

Suppose that, for some 0 < ϵ < 1, either

(a) m ≳ α−1 · Φ(S(U′) ∪W; Ā) · L, where

L = log
(
2Φ(S(U′) ∪W; Ā)/α

)
·
[
log
(
2γ(U′; Ā)

)
+ log(2M) · log2(log(2d) + n)

]
+ log(ϵ−1)

and γ(U′; Ā) is as in (3.7);
(b) m ≳ α−1 · Φ(S(U′ − U′) ∪W; Ā) · L, where

L = log
(
2Φ(S(U′) ∪W; Ā)/α

)
· log(2M) · log2(log(2d) + n) + log(ϵ−1);

or
(c) m ≳ α−1 · Φ(S(V) ∪W; Ā) · L, where

L = log
(
2Φ(S(V) ∪W; Ā)/α

)
· log(2M) · log2(log(2d) + n) + log(ϵ−1).

Let x ∈ X0, θ ≥ ∥x∥X and ζ ≥ 0. If N = 1
m

∑m
i=1 ∥ei∥

2
Yi

,
then

E∥x− x̌∥2X ≲
β

α
· inf
u∈U

∥x− u∥2X + θ2ϵ+
ζ2

α
+
N

α
,

where x̌ = min{1, θ/∥x̂∥X}x̂ for any ζ-minimizer x̂ of
(1.3) with noisy measurements (1.2).

We next consider several applications of these results. Be-
fore doing so, some additional comments are in order.

First, notice that (1.6) involves a truncation x̌ of a ζ-
minimizer x̂ of (1.3). This is a technical condition that
is used to establish the expectation bound. See §E.3.5 and
Remark E.14.

Second, the main difference between Theorem 3.3 and The-
orem 3.4 is the additional assumption (iii), which states that
the unit ball of U′ should be contained in the convex hull
of a set W that is not too large (since M enters logarithmi-
cally in the measurement condition) and has small variation
(since the variation is taken over a set that includes W).
In practice, this assumption allows the dependence of the
measurement condition on d and n to be reduced from es-
sentially log(2d) + n in Theorem 3.3 to log2(log(2d) + n).
We remark in passing that assumption (iii) always holds
for some set W whenever assumptions (i) and (ii) of Theo-
rem 3.3 hold. However, the resulting W may not lead to a
good bound in the measurement condition. See Remark B.1.

Nonetheless, in certain problems such as Example 3.2, we
can indeed derive a suitable W that leads to a significantly
better measurement condition than those implied by Theo-
rem 3.3. See §B.1. Further, in §B.2 we discuss how (iii) can
also be used for various structured sparse models.

Finally, as we show in the proof, assumption (i) in Theorem
3.3 can also be removed. The only difference comes in
the definition of γ(U′; Ā), which now involves a ratio of
variations over slightly different sets. See Remark E.13.

4. Application to active learning in regression
In active learning, one has the flexibility to choose where to
sample the ground truth so as to enhance the generalization
performance of the learning algorithm. In the standard
regression problem, where the ground truth is a function
f : D → R, this means the training data takes the form

{(zi, f(zi) + ei)}mi=1,

where one is free to choose the sample points zi. Building
on Example 1.1, we now show how our theoretical results
lead naturally to an active learning strategy. This extends
well-known leverage score sampling (Avron et al., 2017;
Chen et al., 2016; Chen & Price, 2019; Derezinski et al.,
2018; Erdelyi et al., 2020; Gajjar et al., 2023; Ma et al.,
2015) to general nonlinear model classes.

Consider Example 1.1 and let V ⊆ X0 be an arbitrary model
class. In this case, we have

Φ(S(V);A) = ess sup
z∼ρ

sup
v∈V,v ̸=0

|v(z)|2/(ν(z)∥v∥2L2
ρ(D)).

(4.1)
For convenience, we now let

K(V)(z) = sup
v∈V,v ̸=0

|v(z)|2/∥v∥2L2
ρ(D). (4.2)

This is sometimes termed the Christoffel function of the set
V. Up to a scaling factor, it is the same as the leverage score
function of V (see (Adcock et al., 2023, §A.2)). Notice that

Φ(S(V);A) = ess sup
z∼ρ

{K(V)(z)/ν(z)} . (4.3)

Recall that the measurement conditions in Theorem 3.3
scales linearly with Φ(S(U′);A), where U′ = U−U. Hence
we now look to choose the sampling distribution µ to mini-
mize this quantity. The following result is immediate.
Proposition 4.1 (Christoffel sampling). Suppose that
K(W) is integrable and positive almost everywhere. Then
(4.1) is minimized by the choice

dµ⋆(W)(z) =
K(W)(z)∫

D
K(W)(z) dρ(z)

dρ(z). (4.4)

In this case, one has the optimal value

Φ(S(W);A) =

∫
D

K(W)(z) dρ(z). (4.5)
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This result states that to obtain the best measurement con-
dition over all possible sampling measures µ one should
choose a measure that is proportional to the Christoffel func-
tion – an approach termed Christoffel sampling in (Adcock
et al., 2023). Combining this with Theorem 3.3, we deduce
the following learning guarantees for Christoffel sampling.

Corollary 4.2 (Learning guarantees for Christoffel sam-
pling). Consider Example 1.1 and let U ⊆ X0 and U′ =
U−U be such that (i) and (ii) of Theorem 3.3 hold. Suppose
that, for some 0 < ϵ < 1, either

(a) µ = µ⋆(U′) in (4.4) and

m ≳
∫
D

K(U′)(z) dρ(z)·[log(2d/ϵ) + n log(2γ(U′))] ,

where γ(U′) = min{γ1, γ2} and
γ1 = ess supz∼ρ{K(V)(z)/ν(z)},
γ2 = ess supz∼ρ{K(U′ − U′)(z)/ν(z)},

(b) µ = µ⋆(U′ − U′) and

m ≳
∫
D

K(U′ − U′)(z) dρ(z) · [log(2d/ϵ) + n] ,

(c) or µ = µ⋆(V) and

m ≳
∫
D

K(V)(z) dρ(z) · log(2dn/ϵ).

Let f ∈ C(D), θ ≥ ∥f∥L2
ρ(D) and ζ ≥ 0. Then

E∥f − f̌∥2L2
ρ(D) ≲ inf

u∈U
∥f − u∥2L2

ρ(D)+θ
2ϵ+ζ2+

1

m
∥e∥22,

for any ζ-minimizer f̂ of (1.4), where e = (ei)
m
i=1 and

f̌ = min{1, θ/∥f∥L2
ρ(D)}f̂ .

This corollary describes three different variants of Christof-
fel sampling, depending on whether one chooses U′, U′−U′

or V as the set over which to define the Christoffel function.
Each choice leads to a slightly different measurement condi-
tion, but the key point is they all scale linearly in the integral
of the corresponding Christoffel function. We note in pass-
ing that is also possible to develop a version of Corollary
4.2 under the additional assumption (iii) of Theorem 3.4. In
this case, the relevant relevant set should also include W.

A key question in active learning is how much one im-
proves over the inactive case, i.e., µ = ρ. In §C.1 we
explain how this improvement can be significant whenever
the Christoffel function is ‘spiky’. In §C we also discuss sev-
eral scenarios where this active learning strategy is provably
near-optimal. In particular, in §C.4 we consider the case
of sparse regression, where U is the set of s-sparse expan-
sions in an orthonormal system. Fig. 1 shows a numerical
experiment of active learning for sparse regression using
multivariate polynomials. Here, the Christoffel function is
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Figure 1: Active learning for sparse polynomial regression. This
figure considers a sparse regression problem using orthonormal
Hermite polynomials over X = L2

ρ(R2), where ρ is the standard
Gaussian measure. In this case, U is the set of all s-sparse polyno-
mials of total degree at most 20. Top left: the density of Gaussian
measure ρ. Top right: the density of the Christoffel sampling
measure µ. Bottom row: Phase transition portraits showing the
probability of successful recovery of an s-sparse polynomial for
different values of s and m using either inactive learning, i.e., i.i.d.
sampling from ρ (left) or µ (right).

highly spiky, and in correspondence with the discussion,
Christoffel sampling leads a significant improvement over
i.i.d. random sampling from ρ.

5. Application to compressed sensing with
generative models

Compressed sensing with generative models involves re-
placing the classical model class U = Σs in (3.3) with the
range of a generative neural network that has been trained
on some training data relevant to the learning problem at
hand (e.g., brain images in the case of a MRI reconstruction
problem). In this section, we demonstrate how our main
results can be applied to this problem in the case of ReLU
generative neural networks.

We consider the discrete setting, where X0 = X = RN .
Following (Berk et al., 2023a), we fix an ℓ-layer ReLU
neural network G : Rn → RN given by

G(z) = σ(Aℓσ(Aℓ−1σ(· · ·A2σ(A1z) · · · ))), (5.1)

where σ is the ReLU activation function, Ai ∈ Rpi×pi−1

and p0 = n, pℓ = N . Notice that this network has no
bias terms, which is a standard assumption (Berk et al.,
2023a). For sampling, we consider the general setup of
§1.1, i.e., where the measurements are the result of arbitrary
(scalar- or vector-valued) linear operators applied to the
object x ∈ RN .
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We next state a general learning guarantee for generative
models. For this, we require the following from (Berk et al.,
2023a). First, if U = Ran(G), then the difference set
U− U = Ran(G)− Ran(G) = ∪d

1=1Ci, where each Ci is
a polyhedral cone of dimension at most 2n and log(d) ≤
2n
∑ℓ−1

i=1 log(2epi/n). See (Berk et al., 2023a, Lem. S2.2
& Rem. S2.3). Next, as in (Berk et al., 2023a, Defn. 5), we
define the piecewise linear expansion of U− U as

∆(U− U) = span(C1) ∪ · · · ∪ span(Cd). (5.2)

Corollary 5.1. Consider the setup of §1.1, where X0 =
X = RN with the Euclidean inner product and norm. Let
U = Ran(G), where G is a ReLU generative neural net-
work as in (5.1) with L layers and widths n = p0 ≤
p1, . . . , pℓ−1, pℓ = N . Suppose that, for some 0 < ϵ < 1,

m ≳ α−1 · Φ(S(U− U); Ā) · n · L, (5.3)

where

L =

ℓ−1∑
i=1

log(2epi/n)+log(2/ϵ)+log

(
2
Φ(∆(U− U); Ā)

Φ(U− U; Ā)

)
.

Let x ∈ RN , ∥x∥X ≤ 1 and ζ ≥ 0. If N = 1
m

∑m
i=1 ∥ei∥

2
Yi

,
then

E∥x− x̌∥2ℓ2 ≲
β

α
· inf
u∈U

∥x− u∥2ℓ2 + ϵ+
ζ2

α
+
N

α
,

where x̌ = min{1, 1/∥x̂∥ℓ2}x̂, for any ζ-minimizer x̂ of
(1.3) with noisy measurements (1.2).

This result shows that the sample complexity depends lin-
early on the dimension n of the latent space of the genera-
tive model, up to log terms, multiplied by the variations
Φ(S(U − U); Ā) and Φ(S(∆(U − U)); Ā). In particu-
lar, if these variations are small and the network widths
p1, . . . , pℓ−1 ≲ N we obtain a measurement condition
m ≳ n(ℓ log(N/n) + log(2/ϵ)) that scales linearly in n.

This result provides a guarantee for compressed sensing
with generative models and very general types of data. As
noted, existing guarantees consider either sampling with
(sub)Gaussian random matrices (Bora et al., 2017) or sub-
sampled unitary matrices (i.e., Example 2.4) (Berk et al.,
2023b). In Appendix D we show how Corollary 5.1 implies
the results of (Berk et al., 2023b) (in fact, improves them). In
particular, it allows one to derive an optimal sampling strat-
egy for sampling with subsampled unitary matrices (i.e., an
optimal choice of the probability distribution π in Example
2.4). Such a sampling strategy was also derived in (Adcock
et al., 2023), albeit without theoretical guarantees. To illus-
trate its effectiveness, in Fig. 2 we compare this sampling
strategy against random sampling. This figure considers a
synthetic MRI experiment, where the unknown objects are

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
10

15

20

25

30

35

40

45

Figure 2: Improved sampling strategies for compressed sensing
with generative models. This figure considers image recovery
from discrete Fourier measurements, where G is a generative
model trained on 3D brain images. The Variable Density Sampling
(VDS) strategy implied by Corollary D.2 leads to a significant
improvement over Uniform Density Sampling (UDS), i.e., random
sampling with π = (1/N, . . . , 1/N). This figure is based on
(Adcock et al., 2023, §C.6). See (Adcock et al., 2023, §C) for the
full experimental details.

3D brain images and U = F is a 3D discrete Fourier trans-
form. As is evident, the sampling strategy obtained from
the theory (namely, Corollary D.2, which is a consequence
of Corollary 5.1) leads to a significant improvement.

6. Conclusions and limitations
We introduced a unified framework for learning unknown
objects with nonlinear model classes from (multimodal) lin-
ear samples. We showed its versatility, obtaining results
for matrix sketching and compressed sensing as corollaries
of our results. We then used it to extend and improve re-
cent results for active learning in regression and generative
compressed sensing. Extensions to other structured sparsity
models, e.g., joint and group sparsity, can also be made by
adjusting the model class.

We also acknowledge several limitations. First, we over-
look nonlinear measurements arising in nonlinear (classical
or generative) compressed sensing. Recently (Chen et al.,
2023) proposed a framework for such measurements with
uniform recovery guarantees. Second, we focus on Hilbert
measurement spaces. Many important applications operate
in Banach spaces (Adcock et al., 2022b). Third, we do not
address finding (local) minimizers of nonconvex problems.
Fourth, our guarantees are uniform over objects and model
classes, which is potentially pessimistic. Nonuniform analy-
sis may be sharper (Trunschke, 2023). Finally, coherence
is a necessary condition in standard compressed sensing
(Candès & Plan, 2011). Determining whether variation is
similarly fundamental in this framework is an open problem.
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A. Matrix sketching for large least-squares problems: additional discussion
Consider Example 2.1, where for convenience we also assume that X has full column rank. We now show that sample
complexity bound (2.6) follow directly from our general learning guarantees.

Recall that U is the linear subspace (2.3) in this example with dim(U) = n. Hence we strive to apply condition (c) of
Theorem 3.3 with d = 1. We first calculate its variation. Recalling the definition of A = A1 = · · · = Am and Y in this case
and letting u = Xz be an arbitrary element of U, we notice that

∥A(u)∥2Y ≤ max
i=1,...,N

1

πi
|e∗iXz|2

Therefore,

Φ(S(U); Ā) = Φ(S(U);A) = max
i=1,...,N

{
τ(X)(i)

πi

}
,

where τ(X)(i) are the leverage scores of X , as in (2.5) (note that it is a short argument to show that τ(X)(i) =
x∗i (X

∗X)−1xi, where xi is the ith row of X).

Having obtained an explicit expression for the variation, we can now choose a discrete probability distribution π =
{π1, . . . , πN} to minimize it. It is a short exercise to show that

N∑
i=1

τ(X)(i) = n.

Therefore, we set

πi =
τ(X)(i)

n
, i = 1, . . . , N,

as in (2.4). We now apply condition (c) of Theorem 3.3 to obtain the near-optimal sample complexity bound

m ≳ n · log(2n/ϵ).

B. Compressed sensing with isotropic vectors: additional discussion
In this section, we provide additional discussion on the problem of compressed sensing with isotropic vectors as studied in
Example 2.3.

B.1. Classical compressed sensing

Consider the classical compressed sensing problem as in Example 2.3, with U = Σs as in Example 3.2. Our aim is to derive
the measurement condition (3.5) as a corollary of our general theory.

In this case, the collection Ā = {Ai}mi=1, where A1 = · · · = Am = A with A as in Example 3.2. Recall that α = β = 1 as
A is isotropic (2.7). Observe that U′ = U− U = Σ2s in this case and moreover that assumption (i) of Theorem 3.3 holds,
since tx is s-sparse for any t ≥ 0 (in fact, t ∈ R) whenever x is s-sparse. Also, assumption (ii) holds, since

Σ2s =
⋃

S⊆[N ]
|S|=2s

{x ∈ CN : supp(x) ⊆ S}.

Here supp(x) = {i : xi ̸= 0} is the support of x = (xi)
N
i=1 and [N ] = {1, . . . , N}. Notice that this is a union of

d =

(
N

2s

)
≤
(
eN

2s

)2s

(B.1)

subspaces of dimension 2s. Example 3.2 derives an expression (3.4) for the variation in terms of s and µ(A). Using this, we
deduce that γ(U′; Ā) = 2 and the measurement condition in Theorem 3.3(a) reduces to

m ≳ µ(A) · s ·
(
s log(eN/s) + log(ϵ−1)

)
13
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(one can readily verify that the conditions (b) and (c) give the same result, up to constants). This bound is suboptimal, since
it scales quadratically in s. Fortunately, this can be overcome by using Theorem 3.4. It is well known that (see, e.g., (Adcock
& Hansen, 2021, proof of Lem. 13.29) or (Foucart & Rauhut, 2013, proof of Lem. 12.37))

{x ∈ Σs : ∥x∥2 ≤ 1} ⊆ conv
({

±
√
2sei,±

√
2siei : i = 1, . . . , N

})
=: conv(W). (B.2)

This set has size M = |W| = 4N . In order to apply Theorem 3.4 we estimate the variation

Φ(S(U′) ∪W; Ā) = max
{
Φ(S(U′); Ā),Φ(W; Ā)

}
.

The first term is bounded by 2sµ(A) (recall (3.4)). For the latter, we observe that, for any x ∈ W, we have, for some
1 ≤ i ≤ N ,

|a∗x|2 = 2s|ai|2 ≤ 2sµ(A), a.s. a ∼ A.
Hence Φ(W; Ā) ≤ 2sµ(A) and therefore

Φ(S(U′) ∪W; Ā) ≤ 2sµ(A).

Using this and the previous bounds for d and γ(U′; Ā) we see that condition (a) of Theorem 3.4 (the same applies for
conditions (b) and (c)) reduces to

m ≳ µ(A) · s ·
(
log(2sµ(A)) · log2(s log(N/s)) log(N) + log(ϵ−1)

)
.

Subject to the mild assumption that s ≳ log(N/s), we now obtain the well-known bound (3.5).

B.2. Extension to structured sparse models

We now discuss that assumptions (i), (ii) and, importantly, (iii) of Theorem 3.3-Theorem 3.4 hold for various structured
sparse models that refine the standard sparse model considered in Example 3.2.

For the well-known weighted sparsity model, see (Rauhut & Ward, 2016) and (Adcock et al., 2022c, Chpt. 6). This model
satisfies assumptions (i)–(iii). In particular, (Rauhut & Ward, 2016, Proof of Lem. 5.3) shows that assumption (iii) holds
with |W| ≤ 4N . For the well-known sparsity in levels model, we refer to (Adcock & Hansen, 2021, Chpts. 11 & 13). In
particular, assumption (iii) also holds with |W| ≤ 4N , as was was shown in (Adcock & Hansen, 2021, proof of Lem. 13.29).

Another common structured sparsity model is the cosparse model. This arises in analysis compressed sensing problems
(Genzel et al., 2021; Nam et al., 2013; Kabanava & Rauhut, 2015), where the analysis operator is not an orthonormal basis.
This model satisfies assumptions (i) and (ii). Moreover, if the analysis operator is a Parseval frame it also satisfies (iii) with
|W| ≤ 4N . See (Krahmer et al., 2015, proof of Cor. 4.2).

Finally, we consider the case of group sparsity (Davenport et al., 2012; Duarte & Eldar, 2011) (which also includes the case
of joint sparsity). In this model, we consider a fixed partition G = {Gi}Pi=1 of [N ] into nonoverlapping groups. Let x ∈ CN

and xGi be the restriction of x to the indices in the ith group Gi. We say that x is s-group sparse for some 1 ≤ s ≤ P if
|{i : xGi ̸= 0}| ≤ s. Now define the set

U = UG,s = {x ∈ CN : x is s-group sparse}.

As before, U′ = U− U = UG,2s. Assumption (i) straightforwardly holds. Assumption (ii) also holds, as we may write

U′ =
⋃

S⊆[P ]
|S|=2s

{x ∈ CN : suppG(x) ⊆ S},

where suppG(x) = {i ∈ [P ] : xGi ̸= 0}. Let |Gi| = gi and suppose without loss of generality that g1 ≥ g2 ≥ · · · . Then
this is a union of

(
P
2s

)
subspaces of dimension at most 2smax{gi} = 2sg1. Hence assumption (ii) holds. We now verify

assumption (iii). By a short argument, we have, for any x ∈ U′,

∥x∥∗1 :=

N∑
i=1

(|Re (xi)|+ |Im (xi)|) ≤
√
2
∑
i∈S

∥xGi
∥1 ≤

√
2
∑
i∈S

√
gi∥xGi

∥2 ≤
√
2

√∑
i∈S

gi∥x∥2

≤
√

2(g1 + · · ·+ g2s)∥x∥2,

14



Unified Framework for Learning with Nonlinear Models from Arbitrary Linear Samples

(here S = suppG(x)). Hence, assumption (iii) holds with |W| = 4N , since

{x ∈ U′ : ∥x∥2 ≤ 1} ⊆ conv
({

±
√
2(g1 + · · ·+ g2s)ei,±

√
2(g1 + · · ·+ g2s)iei : i = 1, . . . , N

})
=: conv(W).

Remark B.1 (Assumption (iii) always holds). Consider the general setup of §1.1 where U ⊆ X0 satisfies (i) and (ii) of
Theorem 3.3. Then

{u ∈ U′ : ∥u∥X ≤ 1} ⊆
d⋃

i=1

{v ∈ Vi : ∥v∥X ≤ 1}.

Let {v(i)j }ni
j=1 be an orthonormal basis of Vi, where ni = dim(Vi) ≤ n by assumption, and define ∥c∥∗1 =

∑ni

j=1(|Re (ci)|+
|Im (ci)|) for c ∈ Cni . Let v =

∑ni

j=1 cjv
(i)
j ∈ Vi be arbitrary. Then

∥c∥∗1 ≤
√
2∥c∥1 ≤

√
2ni∥c∥2 =

√
2ni∥v∥X.

We deduce that
{v ∈ Vi : ∥v∥X ≤ 1} ⊆ conv(Wi),

where Wi =
{
±
√
2niv

(i)
j ,±i

√
2niv

(i)
j : j = 1, . . . , ni

}
satisfies |Wi| = 4ni ≤ 4n. Therefore,

{u ∈ U′ : ∥u∥X ≤ 1} ⊆
d⋃

i=1

conv(Wi) ⊆ conv(W), where W =

d⋃
i=1

Wi.

This shows that assumption (iii) of Theorem 3.4 always holds whenever assumptions (i) and (ii) of Theorem 3.3 hold.
Unfortunately, this argument may be too crude in practice to be useful. Note that the set W constructed by this argument
satisfies |W| ≤ 4nd, which leads to a term of the form log(8nd) in the various bounds in Theorem 3.4. However, in the
classical compressed sensing case §B.1, for instance, we have log(8nd) ≲ s log(eN/s) due to (B.1). Thus, using this
estimate would lead to a quadratic scaling in s in the overall measurement bound. Fortunately, in this specific case, we can
derive a smaller set W (see (B.2)) which leads to a linear scaling in s.

C. Application to active learning: additional discussion and examples
In this section, we provide some additional discussion on the active learning for regression application considered in §4.

C.1. Improvement over inactive learning

Consider Example 1.1 and suppose that the underlying measure ρ is a probability measure. Inactive learning corresponds to
the scenario where µ = ρ, i.e., the sampling distribution is taken equal to the underlying measure. This is sometimes termed
Monte Carlo sampling. In this case, we have ν = dµ/dρ = 1, and therefore for any set W ⊆ X0,

Φ(S(W);A) = ess sup
z∼ρ

K(W)(z). (C.1)

Hence, a version of Corollary 4.2 hold for inactive learning, where each integral over the Christoffel function is replaced by
an essential supremum. In other words, the improvement of Christoffel sampling over inactive learning is equivalent to the
difference between the mean value of K(W), i.e., (4.5), and its maximal value, i.e., (C.1), where W equal to either U′ (part
(a) of Corollary 4.2), U′ − U′ or V. Since

ess sup
z∼ρ

K(W)(z) ≥
∫
D

K(W)(z) dρ(z),

Christoffel sampling always reduces the sample complexity bound. Practically, the extent of the improvement corresponds
to how ‘spiky’ K(W)(z) is over z ∈ D. If K(W)(z) is fairly flat, then one expects very little benefit. On the other hand, if
K(W)(z) has sharp peaks, then one expects a significant improvement. As discussed in (Cohen & Migliorati, 2017; Avron
et al., 2019; Adcock et al., 2022d; 2023; Erdelyi et al., 2020; Gajjar et al., 2023), there are many case where significant
improvements are possible because of this phenomenon. However, this is not always the case (Adcock & Brugiapaglia,
2022).

To gain further insight, we now consider several examples.
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C.2. Near-optimal sampling for linear subspaces

Let U be a subspace of dimension n with an orthonormal basis {ui}ni=1 in the L2
ρ-norm. Notice that U′ = U− U = U in

this case. Moreover, it is a short exercise (see, e.g., (Adcock et al., 2023, Lem. E.1)) to show that

K(U)(z) =
n∑

i=1

|ui(z)|2.

In particular,
∫
D
K(U)(z) dρ(z) = n due to orthonormality. Hence, the Christoffel sampling measure (4.4) becomes

dµ⋆(z) =

∑n
i=1 |ui(z)|2

n
dρ(z),

and, using condition (c) of Corollary 4.2 with d = 1, we deduce the near-optimal measurement condition

m ≳ n · log(2n/ϵ).

This result is well known (see, e.g., (Cohen & Migliorati, 2017)). Note that Example 2.1 (matrix sketching) can also be
interpreted as a special case of this result, after interpreting vectors as functions defined on the discrete domain {1, . . . , N}.
We omit the details.

The example considered in this subsection is highly informative, as it gives a class of problems where the active learning
strategy of Christoffel sampling is provably optimal up to a log factor. However, many practical problems of interest involve
nonlinear model classes. We now consider the nonlinear case in more detail.

C.3. Near-optimal sampling for a ‘small’ union of subspaces

We commence with the case of unions of subspaces. Suppose that U′ = U− U = V1 ∪ · · · ∪ Vd is a union of d subspaces
of dimension at most n. By definition,

K(U′)(z) = max
i=1,...,d

K(Vd)(z).

Therefore, by a crude bound and the fact that
∫
D
K(Vi) dρ(z) = n (recall the previous example), we obtain

∫
K(U′)(z) dρ(z) ≤

d∑
i=1

∫
D

K(Vi) dρ(z) = nd.

Hence, applying condition (c) of Corollary 4.2, we obtain the measurement condition

m ≳ n · d · log(2nd/ϵ). (C.2)

The main purpose of this example is to illustrate a class of problems involving nonlinear model classes for which Christoffel
sampling is probably optimal, up to the log term. Indeed, if d is small, then the sample complexity bound scales like
n log(n/ϵ).

Unfortunately, as we see in the next example (and also in the next section when considering generative models), in problems
of interest the number d is often not small.

C.4. The case of sparse regression

Let s,N ∈ N and Ψ = {ψi}Ni=1 ⊆ L2
ρ(D) be an orthonormal system (one can also consider Riesz systems with few

additional difficulties – see (Adcock et al., 2023, § A.4)). Define the model class

U = Us =

{∑
i∈S

ciψi : ci ∈ C, ∀i, S ⊆ {1, . . . , N}, |S| = s

}
. (C.3)

We refer to the corresponding regression problem as a sparse regression problem. Notice here that, as in Appendix B,
U′ = Us − Us = U2s is a union of d =

(
N
2s

)
subspaces. Hence, in this case, the bound (C.2) becomes meaningless.
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Fortunately, following ideas presented previously in (Adcock et al., 2022d), this issue is resolved by using Theorem 3.4. As
in Appendix B, notice that U′ = U2s is contained in conv(W), where W is the set

W =
{
±
√
2sψi,±

√
2siψi, i = 1, . . . , N

}
. (C.4)

We now define the function
K̃(Ψ)(z) = max

i=1,...,N
|ψi(z)|2. (C.5)

Corollary C.1 (Active learning for sparse regression). Consider the setup of Example 1.1, where U = Us is as in (C.3) and
W is as in (C.4). Then K(U′ ∪W) = 2sK̃(Ψ), where K̃(Ψ) is as in (C.5). Now let µ be given by

dµ(z) =
K̃(Ψ)(z)

θ(Ψ)
dρ(z), where θ(Ψ) =

∫
D

K̃(Ψ)(z) dρ(z) (C.6)

and suppose that
m ≳ θ(Ψ) · s ·

[
log(2sθ(Ψ)) · log2(s log(N/s)) log(N) + log(ϵ−1)

]
.

Let f ∈ C(D), θ ≥ ∥f∥L2
ρ(D) and ζ ≥ 0. Then

E∥f − f̌∥2L2
ρ(D) ≲ inf

u∈U
∥f − u∥2L2

ρ(D) + θ2ϵ+ ζ2 +
1

m
∥e∥22, where f̌ = min{1, θ/∥f∥L2

ρ(D)}f̂

for any ζ-minimizer f̂ of (1.4), where e = (ei)
m
i=1.

Proof. For the first result, observe that

K(U′ ∪W)(z) = max{K(U′)(z),K(W)(z)}.

Consider the first term. Let u =
∑

i∈S ciψi ∈ U2s = U′, where |S| ≤ 2s. Then, by the Cauchy–Schwarz inequality and
Parseval’s identity,

|u(z)|2 ≤ 2s max
i=1,...,N

|ψi(z)|2∥u∥2L2
ρ(D).

Since u ∈ U′ was arbitrary, this implies that K(U′)(z) ≤ 2sK̃(Ψ)(z). Moreover, by definition of W, we clearly have

K(W)(z) = 2s max
i=1,...,N

|ψi(z)|2 = 2sK̃(Ψ)(z).

The first result now follows immediately.

For the second result, we shall apply Theorem 3.4. First, notice that

Φ(S(U′) ∪W; Ā) = max{Φ(S(U′); Ā),Φ(W; Ā)}.

Consider the second term. We have

Φ(W; Ā) = 2s ess sup
z∼ρ

max

{
|ψi(z)|2

ν(z)
: i = 1, . . . , N

}
= 2s ess sup

z∼ρ

{
K̃(Ψ)(z)/ν(z)

}
.

We also know from (4.3) and the first result that

Φ(S(U′); Ā) ≤ 2s ess sup
z∼ρ

{
K̃(Ψ)(z)/ν(z)

}
.

Therefore, using the fact that ν = dµ/dρ and the definition of µ, we get

Φ(S(U′) ∪W; Ā) = 2s ess sup
z∼ρ

{
K̃(Ψ)(z)/ν(z)

}
= 2sθ(Ψ).

To apply Theorem 3.4 we also need to estimate the term γ(U′; Ā). However, notice from the above derivation that

Φ(S(U′ − U′); Ā) = Φ(S(U4s); Ā) ≤ 4sθ(Ψ).

Therefore, recalling that our main results hold when the variation constant is replaced by an upper bound, we deduce that we
may take γ(U′; Ā) ≤ 2 in this instance. We now apply Theorem 3.4, recalling that n = s, d =

(
N
s

)
and M = 4N in this

case (see Appendix B).
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This result describes an active learning strategy for sparse regression (previously derived in (Adcock et al., 2022d)) that is
optimal up to the term θ(Ψ), since the measurement condition scales linearly in s up to log factors. As discussed in (Adcock
et al., 2022d), one can numerically estimate this factor. In cases such as sparse polynomial regression, it is typically small
(see the next subsection). However, whether it is possible to derive an active learning strategy that avoids this factor is an
open problem.

C.5. The numerical example in Fig. 1

In Fig. 1 we consider a sparse regression problem where D = Rk and ρ is the Gaussian measure, i.e., dρ(z) =

(2π)−k/2e−∥z∥2
2/2 dx. We now describe this experiment in detail.

First, we discuss the construction of the orthonormal system Ψ. Let {Hn}n∈N0
denote the standard Hermite polynomials,

defined by the recurrence relation H0(z) = 1, H1(z) = 2z and

Hn+1(z) = 2zHn(z)− 2nHn−1(z), n = 1, 2, . . . .

We define the orthonormal polynomials

ϕn(z) =
1√
2nn!

Hn(z/
√
2), n = 0, 1, . . . .

When k ≥ 2, we construct an orthonormal basis via tensorization. Let

φν(z) = ϕν1
(x1)× · · · × ϕνk

(xk), x = (xi)
k
i=1 ∈ Rk, ν = (νi)

k
i=1 ∈ Nk

0 .

The set {φν}ν∈Nk
0

forms an orthonormal basis of L2
ρ(Rk). We truncate this basis as follows. Given n ∈ N0, we consider the

total degree index set
Λ = {ν = (νi)

k
i=1 : ν1 + · · ·+ νk ≤ n}.

Let N = |Λ|, {ν1, . . . , νN} be an enumeration of the multi-indices in Λ and define the orthonormal system Ψ = {ψi}Ni=1

by ψi = φνi
, i = 1, . . . , N . In our experiments, we consider k = 2 and n = 20, which gives N = 231.

To facilitate computations, we use a finite grid, described as follows. For K ∈ N, we draw z1, . . . , zK ∼i.i.d. ρ. Note that
this grid is drawn once, prior to any other subsequent computations. In our experiments, we use K = 100, 000. Given these
points, we replace ρ by the discrete measure ρ̄ = 1

K

∑K
i=1 δzi . This means that the Christoffel sampling measure µ̄ defined

in (C.6) also becomes a discrete measure, given by µ̄ = 1
K

∑K
i=1 K̃(Ψ)(zi)δzi/θ(Ψ), where θ(Ψ) = 1

K

∑K
i=1 K̃(Ψ)(zi).

The middle and right panels of Fig. 1 show phase transition portraits for this problem. Phase transition portraits are standard
tools in compressed sensing to empirically investigate the performance of different sampling strategies (Monajemi et al.,
2013; Donoho & Tanner, 2009). We construct these portraits as follows. For each 1 ≤ m ≤ N , we first generate a set of m
sample points according to the inactive learning measure ρ̄ or the Christoffel sampling measure µ̄ defined above. Then, for
each 1 ≤ s ≤ m, we proceed as follows. For each trial t = 1, . . . , T , we generate a random s-sparse vector c = (ci)

N
i=1.

Here, the locations of s nonzero entries are chosen uniformly and randomly and the nonzero coefficients are drawn
independently from the standard normal distribution. We define the unknown function f =

∑N
i=1 ciψi and sample it at the

zi, giving values (f(zi))mi=1. We then compute its reconstruction f̂ and calculate the relative error ∥f − f̂∥L2
ρ̄(D)/∥f∥L2

ρ̄(D).
If this error is below a tolerance ϵtol we declare the recovery successful. Otherwise it is unsuccessful. We then repeat this
process for each of the T trials. Next, compute the proportion of successful trials, i.e., the empirical probability of successful
recovery for the given values of m and s. In our experiments, we use T = 50 trials and set ϵtol = 10−2. Moreover, since
solving (1.3) is NP-hard for sparse regression problems, we follow a standard approach in compressed sensing and solve a
convex ℓ1-minimization problem instead. Specifically, we solve the basis pursuit problem (Adcock & Hansen, 2021, §5.4.2)
using the software package SPGL1 (van den Berg & Friedlander, 2008). The code for this experiment and the experiment
for Fig. 2 can be found at https://github.com/JMcardenas/CS4ML.

Returning to the discussion in the previous subsection, we can compute the constant θ(Ψ) for this experiment. In this case,
it is θ(Ψ) ≈ 9.7323. In comparison, the corresponding constant for inactive learning, which is given by

ϑ(Ψ) = ess sup
z∼ρ̄

K̃(Ψ)(z)

is over a thousand times large, specifically, ϑ(Ψ) ≈ 11, 613. This large difference between θ(Ψ) and ϑ(Ψ) provides further
theoretical credence to the significant performance gain witnessed in Fig. 1.
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D. Application to compressed sensing with generative models: additional discussion and examples
In this section, we provide some additional discussion on the application to compressed sensing with generative models
considered in §5.

D.1. Proof of Corollary 5.1

Proof of Corollary 5.1. The set U′ = U − U = Ran(G) − Ran(G) is a cone by construction and satisfies U′ ⊆ ∆(U′),
where the latter is a union of d subspaces of dimension at most 2n. We now apply Theorem 3.3, and specifically condition
(a), with V = ∆(U′).

D.2. Recovery guarantees for subsampled unitary matrices

We now consider the application of Corollary 5.1 to the case of subsampled unitary matrices considered in Example 2.4,
the latter being a special case of our general framework. This case was previously considered in (Berk et al., 2023a;b) and
we adopt similar notation and terminology. We now show how Corollary 5.1 implies the results of (Berk et al., 2023a;b).
However, we also extend and improve this work in several ways:

• We improve over (Berk et al., 2023a, Thm. 1) and (Berk et al., 2023b, Thm. 2.1) by requiring the ‘local coherences’ to
be evaluated over a smaller set.

• We provide error bounds in expectation instead of probability.

Following (Berk et al., 2023b), we first introduce the concept of local coherences. As in (Berk et al., 2023b, Defn. 1.4), we
say that the local coherences of U with respect a set V ⊆ CN are the entries of the vector σ = (σi)

N
i=1, where

σi = sup
v∈V

∥v∥ℓ2=1

|u∗i v|, i = 1, . . . , N. (D.1)

(Note that (Berk et al., 2023a, Defn. 3) uses the notation α. We use σ as α is already used in the definition of nondegeneracy.)
We now show how the local coherence relates to a special case of the variation (Definition 3.1). Let Ā be the isotropic
family of the subsampled unitary matrix model of Example 2.4. Then Φ(S(V); Ā) is readily seen to be

Φ(S(V); Ā) = max
i=1,...,N

sup

{
|u∗i v|2

πi∥v∥2ℓ2
: v ∈ V, v ̸= 0

}
= max

i=1,...,N

(
σ2
i

πi

)
. (D.2)

Using this and Corollary 5.1, we deduce the following.

Corollary D.1 (Generative models with subsampled unitary matrices). Consider the setup of Corollary 5.1 with the randomly
subsampled unitary matrix model of Example 2.4. Let σ = (σi)

N
i=1 be the local coherences of U with respect to U− U and

σ̃ = (σ̃i)
N
i=1 be the local coherences of U with respect to ∆(U− U) (see (5.2)). Then the measurement condition (5.3) is

implied by

m ≳ C · n ·

(
ℓ−1∑
i=1

log(2epi/n) + log(2/ϵ) + log(C̃/C)

)
, (D.3)

where C = maxi=1,...,N

(
σ2
i

πi

)
and C̃ = maxi=1,...,N

(
σ̃2
i

πi

)
. It also implied by the condition

m ≳ C̃ · n ·

(
ℓ−1∑
i=1

log(2epi/n) + log(2/ϵ)

)
. (D.4)

Proof. From (D.2), we see that

Φ(S(U− U); Ā) = max
i=1,...,N

(
σ2
i

πi

)
= C, Φ(∆(U− U); Ā) = max

i=1,...,N

(
σ̃2
i

πi

)
= C̃.

That (D.3) implies (5.3) now follows immediately. Next, we use the fact that C̃ ≥ C (since U− U ⊆ ∆(U− U)) and the
inequality log(x) ≤ x to show that (D.4) implies (D.3), and therefore (5.3), as required.
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Using this result, we can now derive optimized variable-density sampling strategies based on the local coherences. We
do this by choosing the probabilities πi to minimize the factors appearing in the measurement conditions in the previous
corollary. This strategy was first proposed in (Adcock et al., 2023) without theoretical guarantees, then developed in (Berk
et al., 2023b) with theoretical guarantees.
Corollary D.2 (Optimal variable-density sampling for generative models). Consider the setup of the previous corollary. If

πi =
σ2
i

∥σ∥2ℓ2
, i = 1, . . . , N,

then the measurement condition (5.3) is implied by

m ≳ ∥σ∥2ℓ2 · n ·

(
ℓ−1∑
i=1

log(2epi/n) + log(2/ϵ) + max
i=1,...,N

log(σ̃i/σi)

)
(D.5)

and if

πi =
σ̃2
i

∥σ̃∥2ℓ2
, i = 1, . . . , N,

then the measurement condition (5.3) is implied by

m ≳ ∥σ̃∥2ℓ2 · n ·

(
ℓ−1∑
i=1

log(2epi/n) + log(2/ϵ)

)
. (D.6)

These two results are very similar to those in (Berk et al., 2023b). The second conditions (D.4) and (D.6) are identical to
(Berk et al., 2023b, Thms. A2.1 & 2.1), respectively. In the first conditions (D.3) and (D.5) we obtain a small improvement
over (Berk et al., 2023b, Thms. A2.1 & 2.1). Specifically, the measurement condition is primarily influenced by the local
coherences σi taken over U− U = Ran(G)− Ran(G), with the local coherences σ̃i, which are taken over the piecewise
linear expansion set ∆(U− U) only entering logarithmically into the condition. This has relevance to practice, since the σi
can be empirically estimated more efficiently than the σ̃i. This was done in (Adcock et al., 2023) for MRI reconstruction
using generative models and later in (Berk et al., 2023b). As shown in these works, this can lead to substantial benefits over
uniform random subsampling (this is analogous to the discussion of active versus inactive learning in the previous section).

E. Proofs of the main theorems
In this section we prove Theorems 3.3 and 3.4. The proofs adopt similar ideas to those used in classical compressed
sensing (see, e.g., (Foucart & Rauhut, 2013, Chpt. 12) or (Adcock & Hansen, 2021, Chpt. 13)). In particular, they rely on
Dudley’s inequality, Maurey’s lemma and a version of Talagrand’s theorem. Our main innovations involve the significant
generalization of these arguments to, firstly, much broader classes of sampling problems (i.e., not just linear functionals
of finite vectors), and secondly, to arbitrary model classes, rather than classes of (structured) sparse vectors. Our results
broaden and strengthen recent results in the active learning context found in (Adcock et al., 2023) and (Eigel et al., 2022). In
particular, (Adcock et al., 2023) assumes a union-of-subspaces model and then uses matrix Chernoff-type estimates. This is
similar (although less general in terms of the type of measurements allowed) to our condition (b) in Theorems 3.3. Besides
the generalization in terms of the measurements, our main effort is to derive the stronger condition (a) in this theorem.
The work (Eigel et al., 2022) makes very few assumptions on U, then uses Hoeffding’s inequality and covering number
arguments. As noted in (Adcock et al., 2023, §A.3) the trade-off for this high level of generality is weaker theoretical
guarantees.

E.1. Additional notation

We first require additional notation. Let (Y, ⟨·, ·⟩Y) be the Hilbert space defined as the direct sum of the Yi, i.e.,

Y = Y1 ⊕ · · · ⊕ Ym.

Next, let Ā be the distribution of bounded linear operators in B(X0,Y) induced by the family {Ai}mi=1. In other words,
Ā ∼ Ā if

Ā(x) =
1√
m
(A1(x), . . . , Am(x)),
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where the Ai are independent with Ai ∼ Ai for each i (we include the factor 1/
√
m for convenience). With this notation,

observe that nondegeneracy (1.1) is equivalent to

α∥x∥2X ≤ EĀ∼Ā∥Ā(x)∥
2
Y ≤ β∥x∥2X, ∀x ∈ X0 (E.1)

and the least-squares problem (1.3) is equivalent to

x̂ ∈ argmin
u∈U

∥b̄− Ā(u)∥2Y, (E.2)

where b̄ = 1√
m
(b1, . . . , bm) ∈ Y. For convenience, we also write ē = 1√

m
(e1, . . . , em) ∈ Y.

E.2. Empirical nondegeneracy

Consider a realization of the Ai. We say that empirical nondegeneracy holds over a set U ⊆ X0 with constants 0 < α′ ≤
β′ <∞ if

α′∥u∥2X ≤ 1

m

m∑
i=1

∥Ai(u)∥2Yi
≤ β′∥u∥2X, ∀u ∈ U. (E.3)

Using the notation introduced above this can be equivalently written as

α′∥v∥2X ≤ ∥Ā(v)∥2Y ≤ β′∥v∥2X, ∀v ∈ V.

Note that in the classical compressed sensing setup (see Example 2.3), this equivalent to the measurement matrixA satisfying
the Restricted Isometry Property (RIP) (Foucart & Rauhut, 2013, Chpt. 6). As the following lemma shows, empirical
nondegeneracy is crucial in establishing a recovery guarantee in the general case.

Lemma E.1. Let Ai ∈ B(X0,Yi), i = 1, . . . ,m, be such that (E.3) holds over the set U−U with constants 0 < α′ ≤ β′ <
∞. Let x ∈ X0, ζ ≥ 0 and x̂ ∈ U be a ζ-minimizer of (1.3) based on noisy measurements (1.2). Then

∥x− x̂∥X ≤ inf
u∈U

{
2√
α′

∥Ā(x− u)∥Y + ∥x− u∥X

}
+

2√
α′

∥ē∥Y +
ζ√
α′
.

Although the proof is straightforward, we include it for completeness.

Proof. Let u ∈ U. Then

∥x̂− x∥X ≤ ∥x̂− u∥X + ∥x− u∥X
≤ 1/

√
α′∥Ā(x̂− u)∥X + ∥x− u∥X

≤ 1/
√
α′∥Ā(x̂)− b̄∥Y + 1/

√
α′∥b̄− Ā(u)∥Y + ∥x− u∥X

≤ ζ/
√
α′ + 2/

√
α′∥Ā(u)− b̄∥Y + ∥x− u∥X

≤ ζ/
√
α′ + 2/

√
α′∥Ā(u− x)∥Y + 2/

√
α′∥ē∥Y + ∥x− u∥X,

as required.

Notice that this result in fact only requires the lower inequality in (E.3). The upper inequality will be used later in the
derivation of the error bound in expectation. Consequently, the remainder of the proofs are devoted to deriving measurement
conditions under which (E.3) holds, then using this and the above lemma to derive error bounds in expectation.

E.3. Measurement conditions for empirical nondegeneracy

Theorem E.2. Consider the setup of §1.1. Let 0 < δ, ϵ < 1 and U ⊆ X0 be such that

(i) U is a cone, and

(ii) U ⊆ V1 ∪ · · · ∪ Vd =: V, where each Vi ⊆ X0 is a subspace of dimension at most n.
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Suppose that either

(a) m ≳ δ−2 · α−1 · Φ(S(U); Ā) ·
[
log(2d/ϵ) + n log(2γ(U; Ā))

]
, where

γ(U; Ā) =
min{Φ(S(V); Ā),Φ(S(U− U); Ā)}

Φ(S(U); Ā)
, (E.4)

(b) m ≳ δ−2 · α−1 · Φ(S(U− U); Ā) · [log(2d/ϵ) + n],

(c) or m ≳ δ−2 · α−1 · Φ(S(V); Ā) · log(2nd/ϵ).

Then, with probability at least 1− ϵ, (E.3) holds for U with constants α′ = (1− δ)α and β′ = (1 + δ)β.

Note that these first two theorems will be used to establish Theorem 3.3. We split them into two statements as the proof
techniques are quite different. For Theorem 3.4, we will use the following result.
Theorem E.3. Consider the setup of §1.1. Let 0 < δ, ϵ < 1 and U ⊆ X0 be such that assumptions (i) and (ii) of Theorem E.2
hold, and also that

(iii) {u ∈ U : ∥u∥X ≤ 1} ⊆ conv(W), where W is a finite set of size |W| =M .

Suppose that either

(a) m ≳ δ−2 · α−1 · Φ(S(U) ∪W; Ā) · L, where

L = log
(
2Φ(S(U) ∪W; Ā)/α

)
·
[
log
(
2γ(U; Ā)

)
+ log(2M) · log2(log(2d) + n)

]
+ log(ϵ−1)

and γ(U; Ā) is as in (E.4);

(b) m ≳ δ−2 · α−1 · Φ(S(U− U) ∪W; Ā) · L, where

L = log
(
2Φ(S(U) ∪W; Ā)/α

)
· log(2M) · log2(log(2d) + n) + log(ϵ−1);

or

(c) m ≳ δ−2 · α−1 · Φ(S(V) ∪W; Ā) · L, where

L = log
(
2Φ(S(V) ∪W; Ā)/α

)
· log(2M) · log2(log(2d) + n) + log(ϵ−1).

Then, with probability at least 1− ϵ, (E.3) holds for U with constants α′ = (1− δ)α and β′ = (1 + δ)β.

We now prove these results.

E.3.1. SETUP

Let U ⊆ X be such that assumption (ii) of Theorem E.2 holds. As per the discussion §3.2, we will not assume that
assumption (i) holds for the moment.

Nondegeneracy (1.1) implies that the quantity

|||x|||X =

√√√√ 1

m

m∑
i=1

EAi∼Ai
∥Ai(x)∥2Yi

=

√
EĀ∼Ā∥Ā(x)∥

2
Y, x ∈ X0,

defines a norm on X0 that is equivalent to ∥·∥X. Let

S̃(U) = {u/|||u|||X : u ∈ U\{0}}.

Then, for empirical degeneracy (E.3) to hold with constants α′ = (1− δ)α and β′ = (1 + δ)β, it suffices to show that the
random variable

δU = sup
u∈S̃(U)

∣∣∣∣∣ 1m
m∑
i=1

∥Ai(u)∥2Yi
− 1

∣∣∣∣∣ (E.5)

satisfies δU ≤ δ with probability at least 1− ϵ. Following a standard route, we show this by first bounding the expectation of
δU and then by estimating the probability it exceeds δ.
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E.3.2. EXPECTATION BOUNDS: SETUP

Recall that a Rademacher random variable is a random variable that takes the values +1 and −1 with probability 1
2 .

Lemma E.4. Let {ϵi}mi=1 be independent Rademacher random variables that are also independent of the random variables
{Ai}mi=1. Then random variable (E.5) satisfies

EĀ(δU) ≤ 2m−1EĀEϵ sup
u∈S̃(U)

∣∣∣∣∣
m∑
i=1

ϵi∥Ai(u)∥2Yi

∣∣∣∣∣ .
Here EĀ denotes expectation with respect to the variables {Ai}mi=1 and Eϵ denotes expectation with respect to the {ϵi}mi=1.

Proof. Since

1 = |||u|||2X =
1

m

m∑
i=1

EAi∼Ai
∥Ai(u)∥2Yi

, ∀u ∈ S̃(U), (E.6)

we have

δU = sup
u∈S̃(U)

∣∣∣∣∣ 1m
m∑
i=1

(
∥Ai(u)∥2Yi

− EAi∼Ai
∥Ai(u)∥2Yi

)∣∣∣∣∣ a.s. (E.7)

Assumption (ii) implies that U ⊆ V, where V ⊆ X0 is the finite-dimensional vector space V1 + · · · + Vd. Since V is a
vector space, we also have S̃(U) ⊆ V. Consider V as a Hilbert space with the inner product from X. Then the map

Bi : (V, ∥·∥X) → (Yi, ∥·∥Yi
), v 7→ Ai(v),

is bounded. Indeed,
∥Bi(v)∥Yi

≤ ∥Ai∥X0→Yi
∥v∥X0

≤ c∥Ai∥X0→Yi
∥v∥X, ∀v ∈ V.

Here, in the first inequality we used the fact that the map Ai ∈ B(X0,Yi) is bounded by assumption and in the second step,
we used the fact that V is finite dimensional and all norms on finite-dimensional vector spaces are equivalent. Therefore, Bi

has a unique bounded adjoint
B∗

i : (Yi, ∥·∥Yi
) → (V, ∥·∥X).

In particular, we may write
∥Ai(v)∥2Yi

= ⟨B∗
iBi(v), v⟩X = ⟨Ui(v), v⟩X, ∀v ∈ V,

where Ui = B∗
iBi is a random variable taking values in B(V), the finite-dimensional vector space of bounded linear

operators on (V, ∥·∥X). Using this we can write

δU = m−1 sup
u∈S̃(U)

∣∣∣∣∣
m∑
i=1

⟨Ui(u)− E (Ui(u)) , u⟩X

∣∣∣∣∣ = m−1f

(
m∑
i=1

(Ui − E(Ui))

)
, (E.8)

where f is the convex function
f : B(V) → R, U 7→ sup

u∈S̃(U)
|⟨U(u), u⟩X|.

We now apply symmetrization (see, e.g., (Adcock & Hansen, 2021, Lem. 13.26)) to get

EĀ(δU) ≤ m−1EĀEϵf

(
2

m∑
i=1

ϵiUi

)
.

Now observe that

f

(
2

m∑
i=1

ϵiUi

)
= 2 sup

u∈S̃(U)

∣∣∣∣∣
〈

m∑
i=1

ϵiUi(u), u

〉
X

∣∣∣∣∣ = 2 sup
u∈S̃(U)

∣∣∣∣∣
m∑
i=1

ϵi∥Ai(u)∥2Yi

∣∣∣∣∣ .
This completes the proof.
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The next several result involves the covering number N (see, e.g., (Adcock & Hansen, 2021, Defn. 13.21)) and Dudley’s
inequality (see, e.g., (Adcock & Hansen, 2021, Thm. 13.25)).

Lemma E.5. Fix a realization of the Ai, i = 1, . . . ,m. Then

Eϵ sup
u∈S̃(U)

∣∣∣∣∣
m∑
i=1

ϵi∥Ai(u)∥2Yi

∣∣∣∣∣ ≲ Rp,Ā

∫ χq/2

0

√
log(2N (S̃(U), ∥·∥Ā, t) dt (E.9)

for all 1 ≤ p <∞, where

Rp,Ā = sup
u∈S̃(U)

(
m∑
i=1

∥Ai(u)∥2pYi

) 1
2p

, (E.10)

1 < q ≤ ∞ is such that 1/p+ 1/q = 1,

χq =

√
m

1
q Φ(S(U), Ā)

α
, (E.11)

and

∥x∥Ā =

(
m∑
i=1

∥Ai(x)∥2qYi

) 1
2q

, x ∈ X0. (E.12)

Proof. The left-hand side of (E.9) is the expected value of the supremum of the absolute value of the Rademacher process
{Xu : u ∈ S̃(U)}, where

Xu =

m∑
i=1

ϵi∥Ai(u)∥2Yi
.

The corresponding pseudometric is

d(u, v) =

√√√√ m∑
i=1

(
∥Ai(u)∥2Yi

− ∥Ai(v)∥2Yi

)2
, u, v ∈ S̃(U).

Dudley’s inequality implies that

Eϵ sup
u∈S̃(U)

∣∣∣∣∣
m∑
i=1

ϵi∥Ai(u)∥2Yi

∣∣∣∣∣ ≲
∫ ϖ/2

0

√
log(2N (S̃(U), d, z)) dz, (E.13)

where ϖ = supu∈S̃(U)
√
Eϵ|Xu|2. The remainder of the proof involves upper bounding the pseudometric d and the constant

ϖ.

First, for two sequences ai, bi, observe that∑
i

(|ai|2 − |bi|2)2 =
∑
i

(|ai|+ |bi|)2(|ai| − |bi|)2

≤

(∑
i

(|ai|+ |bi|)2p
) 1

p
(∑

i

(|ai − bi|)2q
) 1

q

where q is such that 1/p+ 1/q = 1. Therefore√∑
i

(|ai|2 − |bi|2)2 ≤ 2max{∥a∥2p, ∥b∥2p}∥a− b∥2q.

We deduce that
d(u, v) ≤ 2Rp,Ā∥u− v∥Ā, (E.14)

where Rp and ∥·∥Ā are as in (E.10) and (E.12), respectively.
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Second, consider the term ϖ. Then, defining additionally X0 = 0 (since 0 /∈ S̃(U)), we see that

ϖ = sup
u∈S̃(U)

d(u, 0) ≤ 2Rp,Ā sup
u∈S̃(U)

∥u∥Ā.

Now let u = v/|||v|||X ∈ S̃(U), where v ∈ U. Then

∥Ai(v)∥2Yi
≤ Φ(S(U),Ai)∥v∥2X

Also, recall that
√
α∥x∥X ≤ |||x|||X ≤

√
β∥x∥X, ∀x ∈ X0. We deduce that

∥Ai(u)∥2Yi
≤ Φ(S(U);Ai)/α, ∀u ∈ S̃(U). (E.15)

This gives

∥u∥Ā ≤ χq, ∀u ∈ S̃(U).

Hence ϖ ≤ 2Rp,Āχq .

We now combine this with (E.14) and standard properties of covering numbers to obtain

Eϵ sup
u∈S̃(U)

∣∣∣∣∣ 1m
m∑
i=1

ϵi∥Ai(u)∥2Yi

∣∣∣∣∣ ≲
∫ Rp,Āχq

0

√
log(2N (S̃(U), ∥·∥Ā, z/2Rp,Ā)) dz.

The result now follows from a change of variables.

The next steps involves estimating the covering number. We do this in two ways via the following two lemmas. Their proofs
rely on a number of standard properties of covering numbers. See, e.g., (Adcock & Hansen, 2021, §13.5.2).

Lemma E.6 (First covering number bound). Consider the setup of the previous lemma. Then√
log(2N (S̃(U), ∥·∥Ā, t)) ≤

√
log(2d) +

√
n
√
log
(
1 + 4χ′

q/t
)
, (E.16)

where

(a) χ′
q =

√
m

1
q min{Φ(S(V);Ā),Φ(S(S̃(U)−S̃(U));Ā)}

α if U satisfies assumption (ii) of Theorem E.2; or

(b) χ′
q =

√
m

1
q min{Φ(S(V);Ā),Φ(S(U−U);Ā)}

α if U satisfies assumptions (i) and (ii) of Theorem E.2.

Proof. Write χ′
q = min{χ′

q,1, χ
′
q,2}, where

χ′
q,1 =


√

m
1
q Φ(S(S̃(U)−S̃(U));Ā)

α case (a)√
m

1
q Φ(S(U−U));Ā)

α case (b)

and χ′
q,2 =

√
m

1
q Φ(S(V)); Ā)

α
,

Then it suffices to prove the bound (E.16) first with χ′
q,1 in place of χ′

q and then with χ′
q,2 in place of χ′

q .

Step 1: showing (E.16) with χ′
q,1 in place of χ′

q . By definition,

∥Ai(u− v)∥2Yi
≤ Φ(S(S̃(U)− S̃(U));Ai)∥u− v∥2X, ∀u, v ∈ S̃(U).

Therefore, the norm (E.12) satisfies

∥u− v∥Ā ≤
√
m

1
q Φ(S(S̃(U)− S̃(U)); Ā)∥u− v∥X, ∀u, v ∈ S̃(U). (E.17)
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Notice that the right-hand side is equal to χ′
q,1∥u− v∥X in case (a). Now consider case (b). Note that S̃(U) = {u/|||u|||X :

u ∈ U\{0}} ⊆ U whenever U is a cone. Therefore,

S(S̃(U)− S̃(U)) ⊆ S(U− U)

from which it follows that
Φ(S̃(U)− S̃(U)); Ā) ≤ Φ(S(U− U); Ā).

Therefore, the right-hand side of (E.17) can be bounded by χ′
q,1∥u− v∥X in case (b) as well. Using the equivalence between

∥·∥X and |||·|||X once more, we deduce that

∥u− v∥Ā ≤ χ′
q,1|||u− v|||X, ∀u, v ∈ S̃(U), (E.18)

in either case (a) or (b). Now, using standard properties of covering numbers, we get

N (S̃(U), ∥·∥Ā, t) ≤ N (S̃(U), χ′
q,1|||·|||X, t) = N (S̃(U), |||·|||X, t/χ

′
q,1).

Now, assumption (ii) of Theorem E.2 gives that S̃(U) ⊆ B̃(V1) ∪ · · · ∪ B̃(Vd), where B̃(Vi) = {vi ∈ Vi : |||vi|||X ≤ 1} is
the unit ball of (Vi, |||·|||X). Using further properties of covering numbers and (E.18), we get

N (S̃(U), ∥·∥Ā, t) ≤ N (B̃(V1) ∪ · · · ∪ B̃(Vd), |||·|||X, t/(2χ
′
q,1))

≤
d∑

i=1

N (B̃(Vi), |||·|||X, t/(2χ
′
q,1))

≤ d
(
1 + 4χ′

q,1/t
)n
.

We now take the logarithm and square root, and using the inequality
√
a+ b ≤

√
a+

√
b, a, b ≥ 0. This gives (E.16) with

χ′
q,1 in place of χ′

q .

Step 2: showing (E.16) with χ′
q,2 in place of χ′

q . We now switch the order of the above arguments. First, we write

N (S̃(U), ∥·∥Ā, t) ≤
d∑

i=1

N (B̃(Vi), ∥·∥Ā, t/2).

Now, since Vj is a subspace, we have

∥Ai(u− v)∥2Yi
≤ Φ(S(Vj);Ai)∥u− v∥2X ≤ Φ(S(V);Ai)∥u− v∥2X, ∀u, v ∈ Vj ,

and therefore
∥u− v∥Ā ≤ χ′

q,2|||u− v|||X, ∀u, v ∈ Vi.

Since B̃(Vi) is the unit ball of Vi with respect to |||·|||X, we deduce that

N (S̃(U), ∥·∥Ā, t) ≤
d∑

i=1

N (B̃(Vi), |||·|||X, t/(2χ
′
q,2)) ≤ d(1 + 4χ′

q,2/t)
n.

We now take the logarithm and square root of both sides, as before.

To derive our second bound for the covering number makes we first need to establish a version of Khintchine’s inequality in
Hilbert spaces. For this, we need the following.

Lemma E.7 (Hoeffding’s inequality in a Hilbert space). Let X1, . . . , Xn be independent mean-zero random variables
taking values in a separable Hilbert space H such that ∥Xi∥H ≤ c/2 and let v = nc2/4. Then, for all t ≥

√
v,

P

(∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
H

> t

)
≤ e−(t−

√
v)2/(2v).
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Note that this lemma is can be proved directly from McDiarmid’s inequality. Using this, we now obtain the following.

Lemma E.8 (Khintchine’s inequality in a Hilbert space). Let x1, . . . , xn ∈ H, where H is a separable Hilbert space and
ϵ1, . . . , ϵn be independent Rademacher random variables. Then(

E

∥∥∥∥∥
n∑

i=1

ϵixi

∥∥∥∥∥
p

H

) 1
p

≲
√
p
√
n max

i=1,...,n
∥xi∥H, ∀p ≥ 1.

Proof. Let Z = ∥
∑n

i=1 ϵixi∥H and note that our aim is to bound (E(Zp))
1
p . Now let γ = 2maxi=1,...,n ∥xi∥H. Then, by

the previous lemma.

P (Z ≥ t) ≤ exp

(
− (t−

√
nγ/2)2

nγ2/2

)
whenever t ≥

√
nγ/2. In particular, if t ≥

√
nγ, then

P (Z ≥ t) ≤ exp

(
− t2

2nγ2

)
.

Now fix
√
nγ/2 ≤ τ <∞. Then (see, e.g., (Vershynin, 2018, Ex. 1.2.3))

E(Zp) =

∫ ∞

0

ptp−1P(Z ≥ t) dt

≤ pτp +

∫ ∞

τ

ptp−1 exp

(
− t2

2nγ2

)
dt

≤ pτp +

∫ ∞

0

ptp−1 exp

(
− t2

2nγ2

)
dt

= pτp + (
√
nγ)p

∫ ∞

0

ptp−1 exp

(
− t

2

2

)
dt

= pτp +
√
π/2(

√
nγ)pp

∫ ∞

−∞
|t|p−1 1√

2π
exp

(
− t

2

2

)
dt

= pτp +
√
π/2(

√
nγ)ppE|X|p−1,

where X ∼ N (0, 1). Now choose τ =
√
nγ and take the pth root to obtain

(E(Zp))
1
p ≲ p

1
p
√
nγ(1 + (E|X|p−1)1/p).

The moments (E|X|q)1/q ≲
√
q (see, e.g., (Vershynin, 2018, Ex. 2.5.1)). Using this and the fact that p

1
p ≲ 1 for p ≥ 1, we

deduce the result.

Lemma E.9 (Second covering number bound). Consider the setup of Lemma E.5 and suppose that assumption (iii) of
Theorem E.3 holds. Then √

log(N (S̃(U), ∥·∥Ā, t)) ≲

√
qm

1
q Φ(W; Ā) log(M)

α
· t−1.

Proof. Let v = u/|||u|||X ∈ S̃(U). Then, by norm equivalence, ∥v∥X ≤ 1/
√
α. Hence v ∈ B(U)/

√
α, where B(U) =

{u ∈ U : ∥u∥X ≤ 1}. We deduce that

S̃(U) ⊆ B(U)/
√
α ⊆ conv(W)/

√
α = conv(W/

√
α).

Therefore
N (S̃(U), ∥·∥Ā, t) ≤ N (conv(W/

√
α), ∥·∥Ā, t/2).

Maurey’s lemma (see, e.g., (Adcock & Hansen, 2021, Lem. 13.30)) implies that

log(N (S̃(U), ∥·∥Ā, t)) ≲ (C/t)2 log(M),
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where C is such that

Eϵ

∥∥∥∥∥
L∑

l=1

ϵl
wl√
α

∥∥∥∥∥
Ā

≤ C
√
L, ∀L ∈ N, w1, . . . , wL ∈ W.

We now estimate C. Let L ∈ N and w1, . . . , wL ∈ W. By Hölder’s inequality and linearity,

Eϵ

∥∥∥∥∥
L∑

l=1

ϵl
wl√
α

∥∥∥∥∥
Ā

≤

Eϵ

∥∥∥∥∥
L∑

l=1

ϵl
wl√
α

∥∥∥∥∥
2q

Ā

 1
2q

=
1√
α

 m∑
i=1

Eϵ

∥∥∥∥∥
L∑

l=1

ϵlAi(wl)

∥∥∥∥∥
2q

Yi

 1
2q

≤ m
1
2q

√
α

m
max
i=1

Eϵ

∥∥∥∥∥
L∑

l=1

ϵlAi(wl)

∥∥∥∥∥
2q

Yi

 1
2q

.

By Lemma E.8, Eϵ

∥∥∥∥∥
L∑

l=1

ϵlAi(wl)

∥∥∥∥∥
2q

Yi

 1
2q

≲
√
qL max

l=1,...,L
∥Ai(wl)∥Yi

≤
√
qLΦ(W; Ā).

We deduce that

Eϵ

∥∥∥∥∥
L∑

l=1

ϵl
wl√
α

∥∥∥∥∥
Ā

≲

√
qm

1
q Φ(W; Ā)

α

√
L.

The result now follows from Maurey’s lemma.

E.3.3. EXPECTATION BOUNDS

We are now in a position to establish our first expectation bound.

Theorem E.10 (First expectation bound). Consider the setup of Section 1.1. Let 0 < δ < 1 and U ⊆ X0 and suppose that

m ≳ δ−2 · α−1 · Φ(S(U); Ā) ·
[
log(2d) + n log

(
2
(
1 + γ(U; Ā)

))]
, (E.19)

where

(a) γ(U; Ā) = min{Φ(S(V);Ā),Φ(S(S̃(U)−S̃(U));Ā)}
Φ(S(U);Ā)

if U satisfies assumption (ii) of Theorem E.2; or

(b) γ(U; Ā) = min{Φ(S(V);Ā),Φ(S(U−U);Ā)}
Φ(S(U);Ā)

if U satisfies assumptions (i) and (ii) of Theorem E.2.

Then the random variable (E.5) satisfies E(δU) ≤ δ.

Proof. Lemmas E.4, E.5 and E.6 imply that

EĀ(δU) ≲ m−1EĀ(Rp,Ā)

(
χq

√
log(2d) +

√
n

∫ χq/2

0

√
log

(
1 +

4χ′
q

t

)
dt

)

= m−1EĀ(Rp,Ā)

(
χq

√
log(2d) +

√
nχ′

q

∫ χq/(8χ
′
q)

0

√
log (1 + 1/s) ds

)
,

where χq is as in (E.11) and χ′
q is as in Lemma E.6. We now use (Foucart & Rauhut, 2013, Lem. C.9), to obtain

EĀ(δU) ≲ m−1EĀ(Rp,Ā)χq

(√
log(2d) +

√
n
√

log(e(1 + 8χ′
q/χq))

)
.
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Using (E.15) and the definition of Rp,Ā, we see that

Rp,Ā ≤ m
1
2p

(
Φ(S(U); Ā)

α

) 1
2−

1
2p

sup
u∈S̃(U)

(
1

m

m∑
i=1

∥Ai(u)∥2Yi

) 1
2p

Now consider the sum. Let u ∈ S̃(U). Then

1

m

m∑
i=1

∥Ai(u)∥2Yi
=

1

m

m∑
i=1

(
∥Ai(u)∥2Yi

− EAi∼Ai
∥Ai(u)∥2Yi

)
+

1

m

m∑
i=1

EAi∼Ai
∥Ai(u)∥2Yi

≤ δU + 1,

where in the second step we used (E.7) and (E.6). Hence

Rp,Ā ≤ m
1
2p

(
Φ(S(U); Ā)

α

) 1
2−

1
2p

(δU + 1)
1
2p

Using the fact that p ≥ 1 and the Cauchy–Schwarz inequality, we deduce that

EĀ(Rp,Ā) ≤ m
1
2p

(
Φ(S(U); Ā)

α

) 1
2−

1
2p √

EĀ(δU) + 1. (E.20)

Combining this with the previous expression and using the definition of χq , we deduce that

EĀ(δU) ≲ m
1
2p−1m

1
2q

(
Φ(S(U); Ā)

α

)1− 1
2p (√

log(2d) +
√
n
√
log(e(1 + 8χ′

q/χq))
)√

EĀ(δU) + 1.

Now set p = 1 + 1/ log(λ), where λ = 1 + Φ(S(U); Ā)/α and notice that q = 1 + log(λ) in this case. Observe that(
Φ(S(U); Ā)

α

)1− 1
2p

≤
(
Φ(S(U); Ā)

α

) 1
2

λ
1
2−

1
2p ≤

(
Φ(S(U); Ā)

α

) 1
2 √

e.

Using this and the fact that m
1
2p−1m

1
2q = m−1/2(m/m)1/(2q) ≤ m−1/2 (since m ≤ m), we deduce that

EĀ(δU) ≲ m−1/2

(
Φ(S(U); Ā)

α

) 1
2 (√

log(2d) +
√
n
√
log(e(1 + 8χ′

q/χq))
)√

EĀ(δU) + 1.

Hence, we see that EĀ(δU) ≤ δ, provided

m−1/2

(
Φ(S(U); Ā)

α

) 1
2 (√

log(2d) +
√
n
√
log(2(1 + χ′

q/χq))
)
≤ cδ,

for suitably small constant c > 0. Rearranging and noticing that

χ′
q/χq =

√
γ(U; Ā)

now gives the result.

Theorem E.11 (Second expectation bound). Consider the setup of Section 1.1. Let 0 < δ < 1 and U ⊆ X0 satisfy
assumption (iii) of Theorem E.3 and suppose that

m ≳ δ−2 · α−1 · Φ(S(U) ∪W; Ā) · L0 · (L1 + L2)·,

where

L0 = log(2Φ(S(U) ∪W; Ā)/α),

L1 = 1 + log
(
1 + γ(U; Ā)(log(2d) + n)

)
,

L2 = log(M) log2(log(2d) + n),

and
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(a) γ(U; Ā) = min{Φ(S(V);Ā),Φ(S(S̃(U)−S̃(U));Ā)}
Φ(S(U);Ā)

if U satisfies assumption (ii) of Theorem E.2; or

(b) γ(U; Ā) = min{Φ(S(V);Ā),Φ(S(U−U);Ā)}
Φ(S(U);Ā)

if U satisfies assumptions (i) and (ii) of Theorem E.2.

Then the random variable (E.5) satisfies E(δU) ≤ δ.

Proof. Lemmas E.4 and E.5 imply that

EĀ(δU) ≲ m−1EĀ(Rp,Ā)

∫ χq/2

0

√
log(2N (S̃(U), ∥·∥Ā, t)) dt.

Let 0 < τ < χq/2 and then use Lemmas E.6 and E.9 to obtain∫ χq/2

0

√
log(2N (S̃(U), ∥·∥Ā, t)) dt ≲

√
log(2d)τ +

√
n

∫ τ

0

√
log(1 + 2χ′

q/t) dt

+

√
qm

1
q Φ(W; Ā) log(M)

α

∫ χq/2

τ

1/t dt.

A short exercise gives that∫ χq/2

0

√
log(2N (S̃(U), ∥·∥Ā, t)) dt ≲

√
log(2d)τ +

√
nτ
√
log(e(1 + 2χ′

q/τ))

+

√
qm

1
q Φ(W; Ā) log(M)

α
log(χq/(2τ)).

Now set τ = χq/(
√
log(2d) +

√
n) to obtain∫ χq/2

0

√
log(2N (S̃(U), ∥·∥Ā, t)) dt ≲χq

√
log(e(1 + 2χ′

q/χq(
√

log(2d) +
√
n)))

+

√
qm

1
q Φ(W; Ā) log(M)

α
log((

√
log(2d) +

√
n)).

≲χq

√
L1 +

√
qm

1
q Φ(W; Ā)

α

√
L2.

Now (E.11) and the fact that
max{Φ(S(U); Ā),Φ(W; Ā)} = Φ(S(U) ∪W; Ā)

yield ∫ χq/2

0

√
log(2N (S̃(U), ∥·∥Ā, t)) dt ≲

√
qm

1
q Φ(S(U) ∪W; Ā)

α

√
L1 + L2

We now use (E.20) to obtain

EĀ(δU) ≲ m−1/2

(
Φ(S(U) ∪W; Ā)

α

)1− 1
2p √

q
√
L1 + L2

√
EĀ(δU) + 1.

We now choose p = 1 + 1/ log(λ), where λ = 1 + Φ(S(U) ∪W; Ā)/α and proceed as before. This gives

EĀ(δU) ≲ m−1/2

(
Φ(S(U) ∪W; Ā)

α

) 1
2 √

log(eΦ(S(U) ∪W; Ā)/α)
√
L1 + L2

√
EĀ(δU) + 1.

This completes the proof.
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E.3.4. PROBABILITY BOUND

We now bound δU in probability.
Theorem E.12. Let 0 < δ, ϵ < 1 and suppose that U satisfies assumption (ii) of Theorem E.2. Suppose also that
E(δU) ≤ δ/2. Then δU ≤ δ with probability at least 1− ϵ, provided

m ≳ δ−2 · α−1 · Φ(S(U); Ā) · log(2/ϵ).

Proof. Our analysis is based on a version of Talagrand’s theorem (see, e.g., (Adcock & Hansen, 2021, Thm. 13.33)). First,
let B∗ be a countable dense subset of S̃(U). This exists since X is separable. Then from (E.8) we have

Z = δU = m−1 sup
u∈B∗

∣∣∣∣∣
m∑
i=1

⟨Ui(u)− E (Ui(u)) , u⟩X

∣∣∣∣∣
= sup

u∈B∗
max

{
+

m∑
i=1

⟨Vi(u), u⟩X ,−
m∑
i=1

⟨Vi(u), u⟩X

}
,

where Vi is the B(V)-valued random variable Vi = m−1(Ui − E(Ui)). Now consider the measurable space

Ω = {V ∈ B(V) : V = V ∗, sup
u∈B∗

|⟨V (u), u⟩X| ≤ K}, K := 2Φ(S(U); Ā)/(αm)

and let f±u : Ω → R be defined by f±u (V ) = ±⟨V (u), u⟩X. Observe that we can write

δU = sup
u∈B∗

max

{
m∑
i=1

f+u (Vi),

m∑
i=1

f−u (Vi)

}
.

Notice also that E(f±(Vi)) = 0. Next, notice that, for all u ∈ B∗,

|⟨Ui(u), u⟩X| = ∥Ai(u)∥2Yi
≤ Φ(S(U); Ā)/α.

Therefore Vi ∈ Ω, i = 1, . . . ,m.

Now observe that

E

(
m∑
i=1

(f±u (Vi))
2

)
≤ m−2

m∑
i=1

E|⟨Ui(u), u⟩X|2

≤ 2Φ(S(U); Ā)

αm2

m∑
i=1

E∥Ai(u)∥2Yi

=
2Φ(S(U); Ā)

αm
|||u|||2X

=
2Φ(S(U); Ā)

αm
=: σ2.

Finally, observe that

Z = sup
u∈B∗

max

{∣∣∣∣∣
m∑
i=1

f+u (Vi)

∣∣∣∣∣ ,
∣∣∣∣∣

m∑
i=1

f−u (Vi)

∣∣∣∣∣
}

= Z,

in this case. In particular, E(Z) = E(Z) = E(δU).

Now suppose that E(δU) ≤ δ/2. Then, using Talagrand’s theorem,

P(δU ≥ δ) ≤ P (|δU − E(δU)| ≥ δ/2)

≤ 3 exp

(
− δαm

4cΦ(S(U); Ā)
log

(
1 +

δ

2 + δ

))
≤ 3 exp

(
− log(4/3)δ2αm

4cΦ(S(U); Ā)

)
.

Due to the condition on m, we deduce that P(δU ≥ δ) ≤ ϵ, as required.
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E.3.5. PROOFS OF THEOREMS E.2 AND E.3

For the proof of Theorem E.2, we divide into two parts. The first deals with conditions (a) and (b), and the second deals with
condition (c), which involves a different approach.

Proof of Theorem E.2; conditions (a) and (b). Consider condition (a). Recall that U ⊆ U − U whenever U is a cone.
Therefore, since U ⊆ V as well, we see that

Φ(S(U− U); Ā) ≥ Φ(S(U); Ā), Φ(S(V); Ā) ≥ Φ(S(U); Ā). (E.21)

Hence γ(U; Ā) ≥ 1 which implies that

log(2(1 + γ(U; Ā))) ≲ log(2γ(U; Ā)),

The result subject to condition (a) now follows immediately from Theorems E.10 and E.12.

Moreover, using (E.21) and the inequality log(x) ≤ x, we see that

Φ(S(U); Ā) log(γ(U; Ā)) ≤ Φ(S(U); Ā) log

[
Φ(S(U− U); Ā)

Φ(S(U); Ā)

]
≤ Φ(S(U− U); Ā). (E.22)

Hence condition (b) implies condition (a), which implies the result.

Remark E.13 (On assumption (ii) of Theorem E.2). Notice that Theorem E.12 does not require assumption (i) of Theorem
E.2. Moreover, in Theorem E.10 we gave a bound for the expectation when only assumption (ii) holds. Therefore, it is
straightforward to derive an extension of Theorem E.2 in which only assumption (ii) holds. The only difference is the
definition of γ(U; Ā) in (E.4), which would now be given by the expression in Theorem E.10, part (a). Note that the same
considerations also apply to Theorem 3.3 since, as we show in its proof below, it follows from a direct application of
Theorem E.2 to the difference set U′ = U− U.

Next, for condition (c), we follow a different and simpler approach based on the matrix Chernoff bound.

Proof of Theorem E.2; conditions (c). Since U ⊆ V = V1 ∪ · · · ∪ Vd is a union of d subspaces of dimension n it suffices,
by the union bound, to show that (E.3) holds for each subspace Vi with probability at least 1− ϵ/d.

Therefore, without loss of generality, we may now assume that V is a single subspace of dimension n and show (E.3) for this
subspace. To do this, we follow a standard approach based on the matrix Chernoff bound. Let {vi}ni=1 be an orthonormal
basis for V and write v =

∑n
i=1 civi ∈ V. Then

1

m

m∑
i=1

∥Ai(v)∥2Yi
=

m∑
i=1

c∗Xic,

where Xi is the self-adjoint random matrix

Xi =
1

m
(⟨Ai(vj), Ai(vk)⟩Yi

)
n
j,k=1 ∈ Cn×n.

Therefore, (E.3) is equivalent to

(1− δ)α ≤ λmin

(
m∑
i=1

Xi

)
≤ λmax

(
m∑
i=1

Xi

)
≤ (1 + δ)β.

Noticethat c∗Xic = m−1∥Ai(v)∥2Yi
and therefore Xi is nonnegative definite. Also, we have

m∑
i=1

c∗EAi∼Ai
Xic =

1

m

m∑
i=1

EAi∼Ai
∥Ai(v)∥2Yi

.
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Hence, by (1.1), we have

α ≤ λmin

(
m∑
i=1

EXi

)
≤ λmax

(
m∑
i=1

EXi

)
≤ β.

Therefore, it suffices to show that

(1− δ)λmin

(
m∑
i=1

EXi

)
≤ λmin

(
m∑
i=1

Xi

)
≤ λmax

(
m∑
i=1

Xi

)
≤ (1 + δ)λmin

(
m∑
i=1

EXi

)

with high probability. Observe that

c∗Xic =
1

m
∥Ai(v)∥2Yi

≤ 1

m
Φ(S(V); Ā)∥v∥2X =

1

m
Φ(S(V); Ā)∥c∥22,

almost surely, and therefore

λmax(Xi) ≤
1

m
Φ(S(V); Ā).

almost surely, for all i = 1, . . . ,m. Thus, by the matrix Chernoff bound and the union bound, we have

P ((E.3) holds with α′ = α(1− δ) and β′ = (1 + δ)β) ≥ 1− 2n exp

(
−αm((1 + δ) log(1 + δ)− δ)

Φ(S(V); Ā)

)
.

Notice that (1 + δ) log(1 + δ)− δ ≥ δ2/3. Hence the right-hand side is bounded below by

1− 2n exp

(
− αmδ2/3

Φ(S(V); Ā)

)
.

We deduce that if
m ≳ δ−2 · α−1 · Φ(S(V); Ā) · log(2n/ϵ),

then, with probability at least 1− ϵ, (E.3) holds with α′ = α(1− δ) and β′ = (1 + δ)β for the subspace V. Replacing ϵ by
ϵ/d now gives the result.

Proof of Theorem E.3. The result follows from Theorems E.11 and E.12. Recall that γ(U; Ā) ≥ 1 since assumption (i)
holds. Therefore, we may bound the logarithmic term in Theorem E.11 as

L0·(L1 + L2)

≲ log(2Φ(S(U) ∪W; Ā)/α) ·
[
log(2γ(U; Ā)(log(2d) + n)) + log2(M) log(log(2d) + n)

]
≲ log(2Φ(S(U) ∪W; Ā)/α) ·

[
log(2γ(U; Ā)) + log(2M) log2(log(2d) + n)

]
.

Hence, we immediately deduce the result under the condition (a). Now recall (E.21). Then, much as in (E.22), we deduce
that

Φ(S(U) ∪W; Ā) log(γ(U; Ā)) ≤ Φ(S(U− U) ∪W; Ā)

We conclude that condition (b) implies condition (a). This gives the result under condition (b). Finally, recalling (E.21) once
more, we also have

Φ(S(U) ∪W; Ā) log(γ(U; Ā)) ≤ Φ(S(V) ∪W; Ā).

Hence condition (c) also implies condition (a), and therefore we get the result under this condition as well.

E.4. Proof of Theorems 3.3 and 3.4

Proof of Theorems 3.3 and 3.4. We follow essentially the same ideas as in (Adcock et al., 2023, Thm. 4.8). Let δ = 1/2
(this value is arbitrary) and E be the event that (E.3) holds over U′ with α′ = (1 − δ)α and β′ = (1 + δ)β. Theorems
E.2–E.3 (with U′ in place of U) and the various conditions on m imply that P(Ec) ≤ ϵ. Now write

E∥x− x̌∥2X = E(∥x− x̌∥2X|E)P(E) + E(∥x− x̌∥2X|E
c)P(Ec). (E.23)
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Observe that the mapping C : X → X, x 7→ min{1, θ/∥x∥X}x is a contraction. We also have x̌ = C(x̂) and x = C(x),
where in the latter case, we used the fact that θ ≥ ∥x∥X by assumption.

Fix u ∈ U and consider the first term. If the event E occurs, then the properties of C and Lemma E.1 give that

∥x− x̌∥X = ∥C(x)− C(x̂)∥X ≤ ∥x− x̂∥X ≤

{
2
√
2√
α
∥Ā(x− u)∥Y + ∥x− u∥X

}
+

2
√
2√
α
∥ē∥Y +

√
2ζ√
α
.

By the Cauchy–Schwarz inequality, we deduce that

E(∥x− x̌∥2X|E) ≲
1

α
E∥Ā(x− u)∥2Y + ∥x− u∥2X +

1

α
∥ē∥2Y +

ζ2

α
.

We now use (E.1) to deduce that

E(∥x− x̌∥2X|E) ≲
β

α
∥x− u∥2X +

1

α
∥ē∥2Y +

ζ2

α
. (E.24)

We next consider the second term of (E.23). Using the properties of C, we see that

∥x− x̌∥X ≤ 2θ.

Substituting this and (E.24) into (E.23) and recalling that P(Ec) ≤ ϵ now gives the result.

Remark E.14 (On the error bounds in expectation). The above proof explains why the truncation term is needed: namely, it
bounds the error in the event where empirical nondegeneracy (E.3) fails. Modifying the estimator appears unavoidable if
one is to obtain an error bound in expectation. A downside of the estimator x̌ is that it requires an a priori bound on ∥x∥X.
In some limited scenarios, one can avoid this by using a different estimator (Dolbeault & Cohen, 2022). Indeed, let E be the
event in the above proof. Then define the conditional estimator

x̌ =

{
x̂ if E occurs
0 otherwise

.

One readily deduces that this estimator obeys the same error bound (1.6) with θ replaced by ∥x∥X. Unfortunately, computing
this estimator involves computing the empirical nondegeneracy constants. This is possible in some limited scenarios, such
as when U is a linear subspace, as the constants then correspond to the maximum and minimum singular values of a certain
matrix. However, this is generally impossible in the nonlinear case. For instance, in the classical compressed problem, we
previously noted that (E.3) is equivalent to the RIP. It is well known that computing RIP constants in NP-hard (Tillmann &
Pfetsch, 2014).
Remark E.15. The observant reader may have noticed a small technical issue with Theorem 3.3 and its proof: the estimator
x̂ (and therefore x̌) is nonunique, and therefore ∥x− x̌∥X is not a well-defined random variable. To resolve this issue, one
can replace ∥x− x̌∥X = ∥x− C(x̂)∥X by the maximum error between x and any ζ-minimizer x̂. The error bound remains
the same for this (well-defined) random variable.
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