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ABSTRACT

How can we learn a representation with good predictive power while preserving
user privacy? We present an adversarial representation learning method to sanitize
sensitive content from the representation in an adversarial fashion. Specifically,
we propose focal entropy - a variant of entropy embedded in an adversarial repre-
sentation learning setting to leverage privacy sanitization. Focal entropy enforces
maximum uncertainty in terms of confusion on the subset of privacy-related similar
classes, separated from the dissimilar ones. As such, our proposed sanitization
method yields deep sanitization of private features yet is conceptually simple and
empirically powerful. We showcase feasibility in terms of classification of facial
attributes and identity on the CelebA dataset as well as CIFAR-100. The results
suggest that private components can be removed reliably.

1 INTRODUCTION

Lately, the topics of privacy and security are enjoying increased interest in the machine learning
community. This can largely be attributed to the success of big data in conjunction with deep learning
and the urge to create and process ever-larger data sets for mining. However, with the emergence of
more and more machine learning services becoming part of our daily lives and making use of our data,
special measures must be taken to protect privacy and decrease the risk of privacy creep Narayanan &
Shmatikov (2006); Backstrom et al. (2007). Simultaneously, growing privacy concerns entail the risk
of becoming a major deterrent in the widespread adoption of machine learning and the attainment of
their concomitant benefits. Therefore, reliable and accurate privacy-preserving methodologies are
needed, which is why the topic lately has enjoyed increased attention in the research community.

Several efforts have been made in machine learning to develop algorithms that preserve user privacy
while achieving reasonable predictive power. Solutions proposed for privacy in the research com-
munity are versatile. A standard approach to address privacy issues in the client-server setup is to
anonymize the data of clients. This is often achieved by directly obfuscating the private part(s) of the
data and/or adding random noise to raw data. Consequently, the noise level controls the trade-off
between predictive quality and user privacy (e.g., data-level Differential Privacy Dwork (2006)).
These approaches associate a privacy budget with all operations on the dataset. However, complex
training procedures run the risk of exhausting the budget before convergence. A recent solution to
such a problem has been federated learning McMahan et al. (2016); Geyer et al. (2017), which allows
us to collaboratively train a centralized model while keeping the training data decentralized. The
idea behind this strategy is that clients transfer the parameters of the training model in the form
of gradient updates to a server instead of the data itself. While such an approach is appealing to
train a network with data hosted on different clients, transferring the models between clients and
server, and averaging the gradients across the clients generates significant data transmission and
extra computations, which considerably prolongs training. Another widely adopted solution is to
rely on encoded data representation. Following this notion, instead of transferring the client’s data, a
feature representation is learned on the clients’ side and transferred to the server. Unfortunately, the
learned features may still contain rich information, which can breach user privacy Osia et al. (2017;
2018). Also, the extracted features can be exploited by an attacker to infer private attributes Salem
et al. (2019). Yet, another approach is homomorphic encryption Armknecht et al. (2015). Despite
providing strong cryptographic guarantees, in theory, it incurs considerable computational overhead,
which still prevents its applicability for SOTA deep learning architectures Srivastava et al. (2019).
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The recent success of adversarial learning in making the representations fair Louizos et al. (2015),
unbiased Madras et al. (2018), and controllably invariant to sensitive attributes Xie et al. (2017), has
led to the increased adoption of Adversarial Representation Learning (ARL) to control the private
information encapsulated within the representation Roy & Boddeti (2019); Sadeghi et al. (2019).
In the common ARL formalization of the privacy-preserving representation learning, a “predictor”
seeks to extract the desired target attributes while an “adversary” seeks to reveal the private attributes.
However, the solutions mentioned earlier can only meet its practical promises when the private
attributes do not strongly correlate with the target attributes Roy & Boddeti (2019). In this paper,
we deal with adversarial privacy-preserving representation learning. In this setting, the sensitive
and target attributes are related to each other (e.g., ’Queen Elizabeth II.’ and ’wearing hat’, or
’Mahatma Gandhi’ and ’wearing eyeglasses’) to a large extent. The objective of this task is to learn a
representation that contains all the information about non-sensitive attributes. At the same time, it
omits to encode the sensitive attributes of them. Such representation can be transmitted to the server
without concerns regarding the privacy revelation of classifiers having equal and higher capacity
than the adversarial proxy used during training. For that, we adopt an ARL procedure and propose
to learn a representation which maximizes the likelihood of the target information (i.e., attribute
predictor) while increasing the uncertainty about the class that each sample belongs to (i.e., class
adversary). With that, we intuitively tie the privacy notion to the class-level information and sanitize
the class-revealing information from the representation in a semantic-aware fashion.

Specifically, we propose to learn the representation using the popular Variational Autoencoders
(VAE) Kingma & Welling (2013), where the latent representation is additionally decomposed into
two latent factors: target and residual. Whereas the target part encodes the information for the
target task, the residual part identifies and collects the data’s private part. In order to sanitize the
target representation, we leverage an ARL procedure. There are two general strategies for ARL: the
common solution for adversarial optimization is to maximize the loss of the adversary by minimizing
the negative log-likelihood of sensitive variables. However, this is practically sub-optimal from the
perspective of preventing information leakage. If the optimization does not reach the equilibrium,
the resulting distribution associated with the minimum likelihood solution is subject to leaking
the most amount of information. Another solution for adversarial optimization is to maximize the
adversary’s entropy by enforcing a uniform distribution over the sensitive labels Roy & Boddeti
(2019); Sarhan et al. (2020). Such a solution provides no information to the adversary. However, it has
the risk of weakening the encoder as it partially eliminates the adversary’s role in the representation
learning phase and is provably bound to the adversary’s optimality. However, fulfilling the necessary
optimality conditions impractical. Hence we seek to relax optimality by leveraging a quasi-optimal
objective. To this end, we propose to maximize a variant of entropy - focal entropy - for dealing with
inter-class uncertainty maximization. Focal entropy enforces the uncertainty to focus on a sparse
set of similar classes and prevents the vast number of dissimilar classes from overwhelming the
uncertainty. Maximization of focal entropy increases the uncertainty in a more organic, namely in a
systematic and semantic-aware fashion. Hence, it is leading to a deeper privacy sanitization during
the representation learning phase.

In summary, the main contributions of this paper are three-fold. First, we propose to learn the
privacy-preserving representations. Second, we introduce an ARL setting for this task by adding a
novel entropy term to the VAE. Third, we demonstrate experimentally that our proposed method
learns a semantically meaningful privacy-preserving sanitized representation.

2 RELATED WORKS

Much research has been conducted in protecting differential privacy Dwork et al. (2017); Dwork
(2006); Ryoo et al. (2017); Abadi et al. (2016) on data and parameter level by anonymizing raw
data directly, or incorporating a randomized mechanism into the learning process, respectively.
Although successful, our method is fundamentally different from them, as we aim to learn a private
representation instead of preserving privacy in data or parameter level. While we do not consider
their framework here, our method could employ differential privacy during the post-classifier training.

The advantages of learning and transmitting representations instead of data have been investigated
recently in many works, see Osia et al. (2017; 2018), and references therein. Nevertheless, such
a representation is proven to contain some privacy revealing information of clients. The recent
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Figure 1: Schematic illustration of the proposed approach. Left: The graphical model associated
with the minimax game. Right: Our proposed architecture with the two stream network is based on
VAE, and augmented with additional predictor loss and (focal) entropy.

success of adversarial learning has led to the increased adoption of this technique for learning
representations that preserve sensitive information in different types of data. For instance, Srivastava
et al. (2019) proposed to learn privacy-preserving representations for automatic speech recognition
(ASR). In Yang et al. (2018), a representation is learned on the raw student clickstream event data,
captured as they watch lecture videos in massive open online courses. In Li et al. (2019), the authors
proposed an obfuscator designed to hide privacy-related sensitive information from the features
using adversarial training. Similarly, Kim et al. (2019) is based on adversarial learning, which
encodes images to obfuscate the patient identity while preserving enough information for a medical
segmentation task. Pittaluga et al. (2019) considered a formulation based on adversarial optimization
between the encoding function and estimators for private tasks. Although our method is also based
on adversarial learning, we differently facilitate adversarial sanitization using entropy. This leads to a
more privacy-preserving representation while maintaining the method complexity.

The most related work to ours is by Roy & Boddeti (2019); Sadeghi et al. (2019), which aims at
obtaining a sanitized representation using entropy and adversarial representation learning, respectively.
Another related work to our paper proposed by Feutry et al. (2018) aims at learning representations
that preserve the relevant part of the information while dismissing information about the private
labels corresponding to the clients’ identity. A key difference compared to this method is that they
require labels for the downstream task during representation learning. Recently, Chen et al. (2018)
proposed a complex method for privacy-preserving representation learning. Gabbay & Hoshen
(2020) propose an approach for disentanglement using shared latent optimization and an asymmetric
regularization. Edwards & Storkey (2016) propose sanitize representations utilizing an adversary. Liao
et al. (2019a;b) employ an adversary to obtain a sanitized representation, however, also incorporating
fairness constraints. Liu et al. (2018) proposed to use conventional entropy as an adversary in the
context of a vanilla auto-encoder for privacy sanitization. To the best of our knowledge, our paper
is the first work that proposes taking the class similarity into account for the adversary’s entropy.
Furthermore, fairness as proposed in Creager et al. (2019); Locatello et al. (2019); Quadrianto et al.
(2019); Sarhan et al. (2020) is yet another intimately connected notion to privacy. While we do not
consider fairness here, our method could also be extended to that problem, leading to exciting future
research. Finally, we note that our model is different from the federated learning methodology in
McMahan et al. (2016); Geyer et al. (2017), which focuses on learning a decentralized private model
by sharing gradient updates instead of learning representations.

3 METHOD

We consider the scenario where we want to learn a dual-objective feature representation. The first
objective entails providing high accuracy in terms of target attribute classification. The second
objective entails minimizing information leakage w.r.t. sensitive attributes, ideally making classifi-
cation impossible. To this end, we learn an encoder that is tasked to disentangle the attributes by
decomposing the representation into two parts: target and residual partition. The target partition
allows classification for the target attributes and is sanitized w.r.t. the sensitive attributes. In contrast,
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the residual partition captures the information w.r.t. the sensitive attribute, subsuming the excess infor-
mation. To drive the representation learning, we employ a Variational Auto-Encoder (VAE) Kingma
& Welling (2013). Isolating information about sensitive and non-sensitive attributes to separate
subspaces then corresponds to integrating the VAE into a minimax game between the target classifiers
and the adversary. Leveraging VAE, in this regard, is beneficial in multiple respects. On the one hand,
the VAE backbone allows us to learn better representations in particular when disentangling factors
than employing solely a classical supervised approach Le et al. (2018); Gyawali et al. (2019). The
representation learning objective takes advantage of the modeling flexibility and the large solution
space of the VAE. With the objectives primarily orthogonal to each other, they act together rather
than conflict. On the other hand, VAE allows for the integration of a notion of interpretability Charte
et al. (2020); Ding et al. (2020). Integrating input reconstruction as a light-weight task in a minimax
game facilitates understanding the sanitization process in a human-understandable visual way. This is
a crucial point yet often overlooked in privacy.

Background: The representation learning problem is formulated as a game among six players: an
encoder E, a decoder D, a target predictor T, a sensitive attribute predictor S, two adversarial classifiers
T̃ and S̃. Whereas the non-adversarial predictors enforce the utility and the presence of the associated
information in the representation, the adversarial predictors inhibit the undesirable information
leakage and are directly responsible for disentanglement and sanitization of the representation. What
is more, as the adversarial classifiers are learned during training, they act as surrogate adversaries for
unknown oracle post-classifiers. The setup involves observational input x ∈ X , M target attributes
t ∈ AT = A1 × A2...AM , each having mt classes At = {a1, ..., amt

}, and a sensitive attribute
s ∈ AS = {1, ..., N} of N classes.

The goal is to yield data representations from an encoder subject to privacy constraints. To learn the
representation, a VAE is learned jointly along with several predictors. VAEs naturally decompose
into two components – an encoder and a decoder.

The encoder z ∼ q(z|x; θE) : X → Z , parameterized by θE produces an embedding z in the la-
tent space Z . For the sake of privacy, we employ a modfied VAE encoder. Specifically, we
propose an encoder that splits the generated representation into two parts: ztar ∈ Z1 repre-
sents the target part and residual part z ∈ Z2. Concatenating the target and the residual parts
z = [ztar|zres] ∈ Z1 ×Z2 yields again the complete representation. For the following, we assume
w.l.o.g. the target and the residual part of being of equal dimensionality. Encoding of the represen-
tation entails a stack of shared initial layers that diverge into parallel stacks from the penultimate
layer onward into two separate network streams for disentangling the information. To this end, we
let ztar ∼ qtar(ztar|x; θtarE ) : X → Z1 denote the encoder of the target representation stream and
the encoder of the zres ∼ qres(zres|x; θresE ) : X → Z2 the residual stream, respectively. Given the
two encoding streams (with partially shared parameters), θtarE ⊂ θE and θresE ⊂ θE denoting the
parameters of the networks stream. Given the common parameters in the shared stack, θtarE ∩θresE 6= ∅.
The second component in the VAE, the decoder is given by x ∼ p(x|z; θD) : Z → X , which seeks
to reconstruct the observational input, and is parameterized by θD.

Next, we define the predictors for the target and sensitive attributes. First, the target predictor
is given as pT (t|ztar; θtar) : Z1 → AT . Second, the sensitive attribute predictors is given as
pS(s|zres; θres) : Z2 → AS , parameterized by θtar and θres. Last, we have the associated ad-
versarial predictors denoted as p̃T (t|zres; θ̃res) : Z2 → AT and p̃S(s|ztar; θ̃tar) : Z1 → AS , pa-
rameterized by θ̃tar and θ̃res. Note, that the difference between predictors and their adversary is their
swapped input source.

Optimization: Learning the representation formalizes as the optimization of multi-player nonzero-
sum game given as:

min
θE,T,D,S

max
θT̃ ,S̃

λ · φED(θE , θD) + αT · φT (θE , θtar)+

αS · φS(θE , θres) + βT̃ · φT̃ (θE , θ̃res) + βs̃ · φS̃(θE , θ̃tar),
(1)

with φ∗(.|.) denoting the players, and λ, α∗, β∗ ∈ R weighting scalars. The hyperparameters allow
for a trade-off between the utility of target classification and the latent code’s privacy preservation.
The associated process schematic is shown in Fig. 1. As the predictors and the adversarial predictors
have a competitive relationship, they are optimized differently. Whereas predictors are trained using
cross-entropy minimization, the adversarial predictors seek to maximize entropy, which will be
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Figure 2: Illustration of focal entropy and the effect of grouping assuming equal partitioning of
probability mass. Center: Visualization of a sample configuration; schematic focus regions depicted
as circles ranging from narrow (1) to wide (3). Left: Visualization of off-center entropies (similar,
dissimilar) for different focus regions scenarios. The more narrow the focus, the more weight “similar”
samples have. Conversely, the wider focus range, the more equiprobability is approached. Right:
Entropy visualization for focus scenarios.

explained in the forthcoming sections. The latent space should be disentangled at the equilibrium of
this minimax game, yielding the representation with the desired privacy sanitization properties.

3.1 ADVERSARIAL REPRESENTATION LEARNING

In the following, we will define the optimization criterion for each player. First, we explain the
predictors, followed by the reconstruction, and conclude with the adversarial classifiers’ optimization,
notably sanitization and herein focal entropy.

Reconstruction: Leveraging VAE as backbone, optimization of φED entails minimization of Evi-
dence Lower Bound (ELBO). The ELBO is defined as:

φED(θE , θD) = Eq(z|x;θE) [log p (x|z; θD)]−DKL(q (z|x; θE) ‖p (z)), (2)

which decomposes into two parts. The first term corresponds to the reconstruction likelihood
measuring the error in input reconstruction. The second term corresponds to the prior constraint, where
we assume isotropic Gaussian as latent prior p (z) = N (0, I), with I denoting the identity matrix.
Furthermore, we assume the posterior approximates to correspond multivariate Gaussians. Given two
separate encoding streams, one for the target and the residual part, we yield: qtar (ztar|x; θtarE ) =
N (µtar,diag(σtar)) and qres (zres|x; θresE ) = N (µres,diag(σres)), withµ ∈ Rh and diag(σ) ∈
Rh×h the diagonal matrix constructed from vector σ ∈ Rh.

Predictors: The predictors are all modeled as conditional distributions. They are trained by:

φT (θE , θtar) = DKL(p(t|x)‖pT (t|ztar); θtar) (3)
φS(θE , θres) = DKL(p(s|x)‖pS(s|zres); θres) (4)

where p(t|x) and p(s|x) denote the ground-truth labels for training input x for the target attribute
and the sensitive attribute, respectively. DKL(.‖.) denotes the Kullback-Leibler divergence.

Sanitization: In order to minimize the information leakage across representation partitions, we
leverage the maximization of entropy. This enforces the representation to be maximally ignorant w.r.t.
attributes in the domain confusion sense. Specifically, for the adversarial target attribute, we let

φT̃ (θE , θ̃res) = DKL(p̃T (t|zres)‖U ; θ̃res), (5)

where U denotes the uniform distribution. Although maximization of entropy is sufficient for
non-private attributes to minimize information leakage across representation partitions, we postulate
that proper sanitization must be conducted w.r.t. to focus classes in a similarity-aware fashion.
As such, we aim to sanitize the information of each observation within a focus area, i.e., nearest
neighbors (NN). For each observation, the NNs share the most commonalities in features. As such,
discrimination w.r.t. NNs is less likely to be trivially achievable. To this end, training of φS̃(θE , θ̃tar)
leverages a modification of entropy for deep sanitization.
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3.2 FOCAL ENTROPY

Focal entropy aims at deep sanitization of sensitive information by leveraging a notion of similarity
in terms of the sensitive attribute. To this end, it requires partitioning the sensitive attribute into
two sets w.r.t. mutual discriminativeness: “similar” classes (A) “dissimilar” classes (B). This
partitioning is input specific and is conducted either according to a) label information, or b) using
some scoring function obtained using a pre-trained model or “on-the-fly” during training. Thus, let
r(x) be the scores given the observational input x, which we will simply denote as r for the sake
of economy of notation. Then the class predictions given are by the index with maximal score, i.e.,
p (y|x;θ) = p(r) ∈ argmax r. Then “similar” consists of the set of labels corresponding to the
k-largest scores, and “dissimilar” the complement:

ASimilar =
{
si ∈ A(k)

S : ∀i ∈ {1, ..., k}, rsi ≥ r[k]
}
, ADissimilar = AS \ ASimilar (6)

Here r[k] denotes the k-th largest element of r, and A(k)
S denotes the set of k distinct elements in AS .

Furthermore, we let NA, NB denote to the number of classes in A and B, where typically NA � NB
holds and N = NA +NB .

Given the just defined notion of similarity, focal entropy aims at establishing uniformity in terms
of likelihood (w.r.t. the sensitive attribute) within each group – with the probability mass divided
equally between the two groups (A) and (B). Given NA 6= NB , this implies reciprocal re-weighting
of the classes in A and B, respectively.

Assuming NA � NB , this aims at giving proportionally more weight to confusion w.r.t. members
of similar classes. Analogously, members of dissimilar classes are down-weighted accordingly.
Consequently, the classifier is forced to be maximally ignorant w.r.t. class properties of the similar
class members that share high correlation. The feature representation produced from the encoder
should not have any sensitive information in the target part. As this approach implicitly is driving
sanitization by focusing on specific targets, we refer to this as “focal entropy”. Implementation of the
focal entropy criterion is essentially equivalent to maximization w.r.t. an off-centered entropy Lallich
et al. (2007) in the special case of normalized uniform probability within each group. That is, in
contrast to conventional entropy that takes its maximal value when the distribution of the class
variable is uniform ( 1

N , ...,
1
N ) = U , focal-entropy takes its maximum non-centered. See Fig. 2 for

the schematic illustration of the proposed concept.

Specifically, focal entropy seeks to have the entropy peak at τ ∈ RN , with τ 6= U . Assuming equally
divided probability mass, we yield τ defined as:

τ1,...,NA
=

NB
N2
A +NB ·NA

, τNA+1,...,N =
NA

N2
B +NA ·NB

, s.t.
N∑
i

τi = 1. (7)

Further, let h(.) denote the entropy w.r.t. a vector p = (p1, ..., pN ) ∈ RN of probabilities with∑N
i pi = 1 defined as h(p) =

∑N
j=1 pj log pj . In order to achieve entropy achieving its maximum

at τ , the class probabilities p have to be transformed. To that end, each pi ∈ [0, 1] is mapped to a
corresponding πj , according to:

πj =
pj
Nτj

if 0 ≤ pj ≤ τj , πj =
N(pj − τj) + 1− pj

N(1− τj)
if τj ≤ pj ≤ 1. (8)

In order to fulfill the properties of an entropy, the πj have to be normalized subsequently. This
is achieved according to πj · (

∑N
i πi)

−1 = π∗j . Thus we yield the off-centered entropy η(.) of
probabilities p defined as η(p) = h(π∗) = −

∑N
j=1 πj log πj . Consequently, adversarial sanitization

seeks to maximize the off-centered entropy w.r.t. private attribute on ztar according to:

φS̃(θE , θ̃tar) = η(σS̃ztar
), (9)

with σS̃ztar
∈ RN denoting the softmax vector of the adversarial predictor p̃S(y|ztar; θ̃tar).

Maximizing the off-centered entropy is analogous to minimizing the Kullback-Leibler divergence
w.r.t. τ , such that we yield:

φS̃(θE , θ̃tar) = DKL(p̃T (s|ztar)‖τ ; θ̃tar). (10)
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CIFAR-100 Krizhevsky (2009)
Method Tar. Adv.
Random Chance 1.0 0.01
Roy & Boddeti (2019) 0.71 0.16
Sadeghi et al. (2019) 0.80 0.16
Ours 0.82 0.16

CelebA Guo et al. (2016)
Method Tar. Adv.
Random Chance 1.0 < 0.001
Szabo et al. (2018) - 0.09
Harsh Jha et al. (2018) - 0.14
Denton & Birodkar (2017) - 0.03
Gabbay & Hoshen (2020) - < 0.01
Bouchacourt et al. (2018) 0.88 0.178
Liu et al. (2015) 0.873 -
Zhang et al. (2014) 0.854 -
Liu et al. (2018) 0.878 -
Ours 0.90 < 0.01

Table 1: Results on CelebA and CIFAR-100.

CIFAR-100 Krizhevsky (2009)
Method Tar. Adv.
Random Chance 1.0 0.01
Ours (entropy) 0.70 0.16
Ours (F. entropy) 0.82 0.16

CelebA Guo et al. (2016)
Method Tar. Adv.
Random Chance 1.0 < 0.001
Ours (entropy) 0.90 0.061
Ours (F. entropy) 0.90 < 0.01

Table 2: Ablation study (Focal entropy) on
CIFAR-100 and CelebA.

CelebA Guo et al. (2016)
Method Tar. Adv.
Random Chance 1.0 < 0.001
Ours (normal cls.) 0.90 0.007
Ours (strong cls.) 0.90 0.009

Table 3: Probing analysis on CelebA.

It should be noted that focal entropy contrasts with conventional entropy in terms of promoting hub
formation. Here a hub relates to the adversarial mapping of multiple sensitive “similar” entities, i.e.,
IDs for CelebA, to the same “target”. Essentially, entropy drives for equiprobability of classes and
suppresses the formation of hubs, whereas focal entropy enforces the collapse of “similar” sensitive
entities on the same hub. Hence, entropy induces a bijective mapping due to its invariance to random
relabeling, whereas focal entropy induces a surjective mapping w.r.t. hubs. It should be noted that
surjective mappings give rise to a loss of information as the input is not guaranteed to be recovered
through inversion Nielsen et al. (2020).

4 EXPERIMENTS

Setup: We experimentally validate the proposed method using two datasets, which exhibit different
characteristics. First, the algorithm is tested on CIFAR-100 Krizhevsky (2009) dataset. It consists of
100 classes, grouped into 20 superclasses. The classes are (theoretically) entirely mutually exclusive,
such that each item is associated with precisely one fine-grained category belonging to one coarse
superclass. In the privacy setting, the encoder is forced to learn a representation that is superclass
aware while not revealing any information about the fine-grained classes. Second, the CelebA dataset
of celebrity face images Guo et al. (2016). This dataset contains a large number of identities (people)
with multiple observations of each. The “in-the-wild” nature of face images offers a richer testbed for
our method as both identities, and contingent factors are significant sources of variation. Furthermore,
the class structure does not permit a well-defined separation between public and private spaces.

Implementation Details: We employ Stochastic Gradient Descent (SGD) with momentum 0.9 and
weight-decay of 1e−4 and a batch size of 200, with a learning rate of 0.01. Furthermore, we employ
learning rate decay at every 30th epoch by a factor of 0.1. On CelebA, to learn target and adversary
classifiers smoothly, we perform pre-training without adversary objective for 100 epochs. This allows
us to learn a stable representation crucial for gentle modification, i.e., disentangling the information
of the sensitive and the target variable. Subsequently, the model is trained for another 1200 epochs,
allowing for a slow “burn-in” of adversary objectives such it cannot be undone. On CIFAR-100, the
model is trained for 3000 epochs. As for the trade-off parameters of Eq. 1, we employ the following
scheme. CIFAR: equal weights for target loss and adversary: αS = αT = 1, βT = βS = 1, NN size
of 5. CelebA: weighting according to number of objectives αT = 1

40 , αS = 1.0, βT = 1
40 , βS = 1.0.

For reconstructing weighting, we always assume λ = 1.0. For grouping in focal entropy, we assume
the k−NN size of k = 16.
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Figure 3: Left: t-SNE embedding of latent representation for a subset of 200 IDs. Left t-SNE:
embedding of the target part ztar. Righ t-SNE: embedding of residual part zres. t-SNE is unable to
reveal any sort of regular structure in ztar w.r.t. private attribute. Right: Trade-Off curve between
target accuracy and adversarial accuracy on CIFAR-100.

4.1 PRIVACY SANITIZATION ANALYSIS

We evaluated the privacy sanitization in terms of target and adversarial accuracy on two benchmarks:

CIFAR-100: As the first testbed, we adopt the “simulated” privacy problem proposed by Roy &
Boddeti (2019) designed on the CIFAR-100 dataset. We treat the coarse (superclass) and fine (class)
labels as the target and sensitive attribute, respectively. The task is to learn the superclasses’ features
while not revealing the information about the underlying classes. Here we note that “ideally” we
desire a predictor accuracy of 100%, an adversary accuracy of 1% (random chance for 100 classes).
In Tab. 1, we report the accuracy achieved by the attribute predictor and adversary. From these results,
we observe that with our proposed method, the representation achieves the best target accuracy
while being comparable on adversary accuracy compared to the SOTA sanitization methods Roy
& Boddeti (2019); Sadeghi et al. (2019). Using conventional entropy for adversary instead of our
proposed focal entropy results in a significant performance drop (from 82% to 70% in terms of target
accuracy at comparable adv. accuracy). In Fig. 3b, we report the characteristics of the proposed
approach in terms of trade-off curves that portray the correlation between privacy and target utility.
We compared with the most relevant works to us: MaxEnt-ARL and ML-ARL from Roy & Boddeti
(2019), Kernel-SARL Sadeghi et al. (2019), Orthogonal Disentangled Representations (ODR) from
Sarhan et al. (2020), and vanilla baseline (No Privacy) without sanitization. As can be seen, the
higher the correlation to privacy, the higher appears the loss of accuracy at a high level of sensitive
accuracy. Furthermore, the proposed approach features a significantly better utility trade-off in the
high target-accuracy domain. Additionally, to assess the effect of our proposed focal entropy in terms
of the adversarial component, comparing it with conventional entropy. We report the results in Tab. 2.

CelebA: As the second testbed, we adopt the CelebA dataset, which has a richer structure to be
utilized for privacy while being less structured in terms of similarity. Specifically, we treat the
attribute labels as target and celebrity identity (i.e., ID) as the source of sensitive information. The
task is to learn to classify the attributes while not revealing the information about the identities. We
note that ideally, we desire a lower adversary accuracy (< 0.001) compared to the previous case, as
the number of ID classes is an order of magnitude higher. In Tab. 1 we report the target/adversary
accuracy. We observe that the representation we learn achieves a higher target accuracy and lower
adversary accuracy than the strong baseline ML-VAE Bouchacourt et al. (2018). Using standard
entropy instead of our proposed focal entropy in CelebA shows a considerable higher privacy leakage
(namely, 0.061 and < 0.01) - see Tab. 2. Moreover, to analyze the sanitization of privacy in the
latent representation, we visualize the t-SNE of the target and residual parts of the representation in
Fig. 3a. For visualization, a subset of 200 IDs was chosen randomly from the test set. As can be
seen, the private class associations appear random and cannot be recovered from the target part. This
contrasts sharply with the residual part, where common IDs form clusters, giving rise to a proper
margin, confirming our quantitative results in terms of target/adversary accuracy. Additionally, we
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Figure 4: Visualization of adversary ID re-mapping graph on CelebA for entropy to focal entropy
with different k-NNs on ztar. Nodes correspond to IDs, edges to adversarial re-mapping of an
ID to facilitate adversary confusion. Node size/brightness scales with number of associations (the
bigger/brighter, the more IDs are mapped to a specific node). From left to right increasing k for focal
entropy: k =1 (≈ standard entropy), 2, 16 and 64.

performed a probing experiment to assess the classifier capacity’s dependency regarding the learned
representation’s privacy leakage potential. Specifically, we determined the adversarial accuracy on
the learned representation w.r.t. to the classifier’s strength. The strong probing classifier has
approximately double the proxy classifier’s capacity that was used for training - see Tab. 3.

4.2 HUB ANALYSIS

This section provides an analysis of how the application of focal entropy, with its integration of
the notion of k−NN, promotes the formation of “hubs”. By varying the neighborhood size k,
focal entropy manifests itself between two extremes: i) Choosing a small k, focal entropy in the
limit (k = 1) approaches conventional entropy - no hubs are formed - remapping is a “one-to-
one” correspondence. This can be attributed to conventional entropy being invariant to random
relabeling, inducing a bijective mapping, giving rise to information preservation. This is prone to
sub-optimal solutions since the forced equalization of classes by disregarding semantic similarity
of classes makes the model susceptible to find shortcuts such as label swapping. In this regard,
target accuracy oscillations co-occurring with degenerate ID-remappings such uniformity across all
labels or temporary collapse to very few hubs were observed. ii) Choosing a large k, focal entropy
promotes the formation of a single dominant hub, which is also referred to as the classical hubness
problem. This phenomenon is related to the convergence of pairwise similarities between elements to
a constant as the space’s dimensionality increases Radovanović et al. (2010) (collapsing on a single
hub/trivial solution). The single hub then manifests itself as the favored result of queries Dinu et al.
(2014) - giving rise to trivial solutions rather than deep sanitization. Choosing a non-extreme k leads
to the formation of numerous equisized hubs, inducing a surjective mapping. As the formation of
multi-hubs coincides with a collapse, less information is required to establish a mapping. Hence,
this characteristic gives rise to information removal and is thus imperative for proper sanitization.
Figure 4 depicts the graphs induced by remapping for four different neighborhood configurations.
Analyzing the nodes’ average degree in the corresponding graphs, we observe a continuous decrease
with growing neighborhood size k. Specifically, starting with entropy and increasing the increasing k
for focal entropy, we yield the average degrees of: 13.91, 7.51, 7.2, and 3.0.

5 CONCLUSION

In this paper, an adversarial representation learning method is proposed to deal with a setting where
the target and sensitive attributes are related to each other to a large extent. Training the representation
entails decomposition into a target and a residual part. Here, the target part is shareable without privacy
infringement and facilitates applicability for a target task. In contrast, the residual part subsumes
all the private non-shareable information. Our proposed adversarial learning method employs focal
entropy for deep sanitization of privacy from the representation. Subsequently, our experiments
confirm that our proposed method learns sanitized data representations using a manageable level of
supervision. Future work will entail adaptive and “on-the-fly” similarity grouping during training.
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In the following sections, we add additional details omitted in the main paper due to space
restrictions. In Sec. 1, we present an ablation study on different components of the loss
function, underlining the importance of each term. In Sec. 2, we analyze the impact of
varying the neighborhood size of k−NN in focal entropy on the adversarial accuracy with
experiments conducted on the CelebA dataset. In Sec. 3, the sanitization convergence
behavior of different classifiers involved in the adversarial minimax game is analyzed. In
Sec. 4, we analyze the effect of the classifier-strength on the privacy leakage and dependence
on training time. In Sec. 5, we present more visualizations around the concept of hub
formation and the connection to focal entropy. It contains a visualization of hub forming
identities and zoom-in visualization of the adversarial remapping of the identities in CelebA.
Next, we generated reconstructions on CelebA dataset samples generated in Sec. 6. In Sec. 7,
we present detailed results of the accuracy and privacy trade-off on all the attributes in
CelebA dataset. Finally, architectural details are presented in Sec. 8.

1 Ablation Analysis on Loss Components

To assess the contribution of each component of our objective function, we evaluated
each module’s performance separately, gradually adding components: reconstruction loss,
target classification loss, adversary loss. For that, we report the ablation study of the loss
components on CelebA in Tab. 1. Furthermore, Fig. 1a shows the dependency between
adversarial accuracy and the number of training epochs. As can be seen, beyond 1000 epochs,
the adversarial accuracy drops below < 0.01, nearing chance level.
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Figure 1: Left: Relationship between adversarial accuracy and the number of training epochs
on CelebA. The translucent band corresponds to 50% confidence minimum and maximum
adversarial accuracy, respectively. Right: Relationship between adversarial accuracy for
strong (red) and normal classifier (blue) w.r.t. the number of training epochs on CelebA.
The translucent band corresponds to 50% confidence interval. Dashed lines correspond to
minimum and maximum adversarial accuracy, respectively.
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2 Neighborhood Size

Focal entropy entails a notion of similarity tied to the integration of k−NN. Here, we study
the effect of varying k on focal entropy and the associated the adversary accuracy. See Fig. 2
for a visualization of this relationship on the CelebA dataset. As can be seen, the adversary
accuracy has oscillatory behavior with various local minima, reaching optimum around
k = 16. This can be attributed to the superpositioning of different hubs, each exhibiting a
different similarity pattern. Analysis of hub formation is explained in Sec. 4.2 in the main
paper and Fig. 4 in the main paper.
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Figure 2: Relationship between adversary accuracy and k−NN size on CelebA dataset.
Translucent band corresponds to 50% confidence interval. Dashed lines correspond to
minimum, and maximum adversary accuracy, respectively.

3 Sanitization Convergence Behaviour

This section explores the behavior of standard entropy and the proposed focal entropy for
sanitization. Fig. 3 depicts the classification performance during the training of different
classifiers involved in the minimax optimization scheme: target classifier accuracy, adversarial
sensitive attribute accuracy, and sensitive attribute accuracy. As can be seen, employing
standard entropy for sanitization results in re-occurring patterns of oscillations. This can be
attributed to degenerate/trivial solutions and “shortcuts”. In contrast to that, focal entropy
shows a relatively smooth convergence behavior. More details on the behavior can be found
in Sec. 4.2 in the main paper.
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Figure 3: Sanitization convergence behavior of standard entropy and focal entropy on CIFAR-
100 for different classifiers: Left: Target accuracy, Center: Adversarial accuracy, Right:
Sensitive attribute accuracy
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4 Probing Analysis with Strong Classifier

This section provides more detail on assessing the classifier strength in terms of privacy leakage
and the dependence on training time. We thereby largely follow the protocol of Harsh Jha
et al. (2018); Sadeghi et al. (2019). Specifically, we employed a stronger post-classifier (Tab.
3 in the main paper) compared to the one used for learning the representation. The stronger
post-classifier is endowed with additional layer stack (see Tab. 6c for architectural details),
trained for 100 epochs. The results in Tab. 3 of the main paper suggest no significant
changes in target and adversarial accuracy. Figure 1b extends these results, depicting the
relationship w.r.t. the number of epochs. As can be seen, the difference between the strong
and normal classifier is largely constant, independent of the epoch.

CelebA Guo et al. (2016)
Method Target Acc. Adversarial Acc.
Upper-bound / Random Chance 1.0 < 0.001
Our Method (only Rec. loss) 0.88 -
Our Method (Rec. + Tar. loss) 0.91 0.751
Our Method[full] (Rec. + Tar. + Adv. loss) 0.90 < 0.01

Table 1: Ablation analysis for loss components on CelebA dataset.

Figure 4: Visualization of CelebA identities of adversary classification network. The network
(green) corresponds the k−nearest neighborhood size k = 5.
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5 Extended Hub Analysis

This section provides a visually more detailed analysis of how the application of focal entropy
promotes the formation of “hubs” (explained in Sec. 4.2 in the main paper). To study that,
we analyzed the identity remapping of IDs on the CelebA dataset. Employing focal entropy
results in a surjective ID confusion pattern by taking similar IDs into account for privacy
sanitization.

5.1 Visualization of Hub Faces:

To study hubs’ semantics, we visualize the CelebA identities of the network corresponding to
focal entropy with k−nearest neighborhood size k = 5. See Fig. 4 for the visualization of the
hub faces. As can be seen, the hubs exhibit a rich diversity in facial properties.

5.2 Adversarial Identity Mapping:

Figure 5: Visualization of the remapping of IDs in CelebA due to adversarial representation
learning. Source IDs (left) are remapped to new target IDs (right). Pictures on the left
are samples that get mapped to a hub; separation with bar indicates different target hub.
Pictures on the right are the visualization of hub identities. Visualization contains a subset
of 150 IDs, with targets getting at least four associations. The first number at each node
indicates the ID, the second the number of images per ID. Node splicing indicates the
remapping of a single ID to multiple adversarial targets.

Figure 5 is a zoom-in version of a graph as shown in Fig. 4 in the main paper, with k−nearest
neighborhood size k = 5. This visualization provides a more in-depth view of how the
adversarial process leads to a remapping of identities. In order to avoid visual clutter, a
subset of identities and targets was chosen. As can be seen, instead of being a collapse of a
facial stereotype, each hub is associated with a diverse looking set of identities, giving rise to
the deep sanitization of the representation.

6 Qualitative Results

Figure 7 shows different reconstructions of additional CelebA identities (equal male and
female) at different privacy levels. Each column is two different samples from CelebA (one
male and one female), and from top to bottom, the privacy disclosure is decreasing for each.
It can be noticed that visualizations from residual latent part and target latent parts confirm
the sanitization visually.
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Figure 6: Attribute-level Privacy Analysis: The normalized ∆-Accuracy and privacy trade-off
on CelebA dataset. See Tab. 2 for detailed results.

7 Attribute-level Privacy Analysis

In Tab. 2 we report numerous statistics on CelebA attributes. Specifically, we analyze the
attribute classification accuracy behavior w.r.t. varying level of privacy of attributes. To our
knowledge, this is the first exploration of attribute-level privacy-preserving representation
learning algorithms on the Celeb-A dataset. The rich correlation structure amongst all
attributes makes this a challenging privacy dataset; i.e., it is difficult to achieve high accuracy
for non-private attributes and low accuracy for private ones. Therefore representative
subsets of the original attributes were chosen for a more in-depth analysis as indicated by
the first column in Tab. 2. The subsets were chosen on the grounds of different values
of correlation with IDs, reflecting different privacy levels of each and, as such, exhibiting
“relatively unbiasedness” in terms of frequency within the dataset. Each of the three
subsets (low, intermediate, and high privacy, resp.) consists of 5 attributes. Data statistics
reported comprise normalized accuracy (w.r.t. prior) of the classifiers trained on the target
representation ztar, the ∆-accuracy for each attribute corresponding to the difference of the
accuracy between two classifiers — the one trained on ztar, and the one trained on zres.
The last but one column corresponds to the correlation between the level of “privateness”
and each attribute. As it can be seen in the table, the more unrelated a variable is to the
identity, the higher gains in accuracy manifest. Finally, the last column corresponds to the
frequency (prior) of the attribute in the dataset. For a visualization of the privacy-attribute
correlation, see Fig. 6. As can be seen, the higher the correlation to privacy, the higher
appears the loss in accuracy. For example, privacy-revealing attributes such as gender and
facial attributes strongly correlate, therefore exhibiting a significant loss in accuracy. In
contrast, attributes related to temporal facial features such as gestures feature low privacy
correlation and therefore achieve strong accuracy. Conversely, the more unrelated a variable
is to the identity, the higher gains in accuracy manifest.

8 Architectural Details

We describe the architectures of each part of our model. Table 5 shows the architectures of
the VAE, i.e., the encoder and the decoder. It should be noted that the last two layers of
the encoder in Tab. 3 arise from layer splitting to accommodate for partitioning target and
residual representations. This is highlighted with dashed lines. Furthermore, we provide the
architectures of classifiers in Tab. 6. Architectures for target and adversarial classifiers are
identical.
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CIFAR-100 Krizhevsky (2009)
Group Attribute Target Accuracy ∆-Accuracy Correlation Prior
Low Mouth_Slightly_Open 0.92 0.187 0.222 0.483
Low Smiling 0.912 0.16 0.239 0.482
Low High_Cheekbones 0.861 0.119 0.267 0.455
Low Wavy_Hair 0.801 0.0248 0.326 0.32
Low Oval_Face 0.738 0.00962 0.332 0.284
- Attractive 0.789 -0.0144 0.335 0.513
- Pointy_Nose 0.752 -0.0248 0.351 0.277
- Straight_Hair 0.791 -0.0437 0.356 0.208
- Bags_Under_Eyes 0.835 0.0151 0.358 0.205
- Brown_Hair 0.849 0.00913 0.361 0.205
- Arched_Eyebrows 0.826 -0.006 0.369 0.267
- Wearing_Earrings 0.865 0.0569 0.371 0.189
- Big_Nose 0.814 -0.0635 0.396 0.235
- Narrow_Eyes 0.89 0.0404 0.402 0.115
- Bangs 0.949 0.0819 0.405 0.152
- Bushy_Eyebrows 0.893 -0.0505 0.419 0.142
- Blond_Hair 0.936 -0.0159 0.429 0.148
- Big_Lips 0.78 -0.0721 0.434 0.241

Intermediate Black_Hair 0.87 -0.00142 0.370 0.239
Intermediate Heavy_Makeup 0.89 0.0131 0.380 0.387
Intermediate Wearing_Necklace 0.882 0.00404 0.403 0.123
Intermediate Wearing_Lipstick 0.906 -0.00617 0.415 0.472
Intermediate No_Beard 0.935 -0.00149 0.435 0.835

- 5_o_Clock_Shadow 0.913 -0.0467 0.435 0.111
- Wearing_Necktie 0.941 0.0509 0.437 0.0727
- Receding_Hairline 0.931 -0.0212 0.439 0.0798
- Blurry 0.956 0.125 0.443 0.0509
- Rosy_Cheeks 0.95 0.0581 0.448 0.0657
- Eyeglasses 0.987 0.0752 0.457 0.0651
- Chubby 0.952 -0.0341 0.458 0.0576
- Wearing_Hat 0.982 0.0657 0.459 0.0485
- Double_Chin 0.958 -0.0421 0.46 0.0467
- Pale_Skin 0.967 0.108 0.461 0.0429
- Goatee 0.955 -0.0446 0.461 0.0628
- Young 0.866 -0.0211 0.462 0.774

High Sideburns 0.957 -0.0531 0.463 0.0565
High Gray_Hair 0.971 -0.0344 0.471 0.0419
High Mustache 0.965 -0.0413 0.474 0.0415
High Bald 0.984 -0.0332 0.486 0.0224
High Male 0.958 -0.0262 0.494 0.417

Table 2: CelebA attribute-level privacy analysis. The group label indicates whether, and for
which group attribute was selected for visualization of Fig. 3 in the main paper. Accuracy
on the target and residual representation part, respectively. Prior is the attribute frequency
bias in dataset split.
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Figure 7: Visualization of CelebA data and reconstructions at different privacy levels. (From
top to bottom, privacy revelation is decreasing).
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Layer Output Parameters
Input: 128 × 128 × 3

Conv-2d 64 × 64 64 × [3 × 3], st. 2
BatchNorm
LeakyReLU negative slope: 0.01
Conv-2d 32 × 32 128 × [3 × 3], st. 2
BatchNorm
LeakyReLU negative slope: 0.01
Conv-2d 16 × 16 256 × [3 × 3], st. 2
BatchNorm
LeakyReLU negative slope: 0.01
Conv-2d 8 × 8 512 × [3 × 3], st. 2
BatchNorm
LeakyReLU negative slope: 0.01
Linear 1 × 4096
Linear 1 × 512
Linear 1 × 4096
Linear 1 × 512

Table 3: Encoder

Layer Output Parameters
Input: 1024

Linear 32768
BatchNorm
LeakyReLU negative slope: 0.01
DeConv-2d 16 × 16 256 × [3 × 3], st. 2
BatchNorm
LeakyReLU negative slope: 0.01
Conv-2d 32 × 32 128 × [3 × 3], st. 2
BatchNorm
LeakyReLU negative slope: 0.01
Conv-2d 64 × 64 64 × [3 × 3], st. 2
BatchNorm
LeakyReLU negative slope: 0.01
Conv-2d 128 × 128 3 × [3 × 3], st. 2
Tanh

Table 4: Decoder

Table 5: Architectural details of VAE components. Parameters for convolutions correspond
to: number kernels ×[ kernel size ], and stride. Dashed lines in the encoder denote the two
separate streams.

Layer Output size / Params
Linear 256
BatchNorm
PReLU
Dropout drop-rate: 0.2
Linear 128
BatchNorm
PReLU
Linear #classes

(a) Classifier on CIFAR-100

Layer Output size / Params
Linear 256
BatchNorm
PReLU
Dropout drop-rate: 0.5
Linear 128
BatchNorm
PReLU
Linear #IDs or #attributes × [1]

(b) Normal classifier on CelebA

Layer Output size / Params
Linear 256
BatchNorm
PReLU
Dropout drop-rate: 0.5
Linear 128
BatchNorm
PReLU
Dropout drop-rate: 0.5
Linear 256
BatchNorm
PReLU
Linear #IDs

(c) Strong ID classifier on CelebA

Table 6: Architectural details of the used classifiers
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