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Abstract

An assumption-free, disease-agnostic pathology detector and segmentor could often be seen
as one of the holy grails of medical image analysis. Building on this promise, un-/weakly
supervised anomaly localization approaches, which aim to model normal/healthy samples
using data and then detect anything deviant from this (i.e., anything abnormal), have
gained popularity. However, being an upcoming area in between image segmentation and
out-of-distribution detection, most approaches have adapted their evaluation setup and
metrics from either field and thus might have missed peculiarities inherent to the anomaly
localization task. Here, we revisit the anomaly localization setup, discuss and analyse
the properties of the often used metrics, show alternative metrics inspired from instance
segmentation and compare the metrics across multiple setting and algorithms. Overall, we
argue that the choice of the metric is use-case dependent, however, the Soft Instance IoU
shows significant promise going forward.
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1. Introduction

Accurately detecting and localizing pathologies within medical images is a cornerstone for
effective diagnosis and treatment. Unsupervised and weakly-supervised anomaly localiza-
tion techniques hold potential in this arena, offering the ability to pinpoint abnormalities
without extensive disease-specific labeling (Zimmerer et al., 2022b). These methods model
the characteristics of normal, healthy tissue, facilitating the identification of deviations. His-
torically, most anomaly localization methods produce heatmaps to visualize the likelihood
of anomalies within an image, necessitating specialized evaluation metrics (Schlegl et al.,
2017; Baur et al., 2018; Zimmerer et al., 2018; Chen et al., 2018). However, as a rapidly de-
veloping field, anomaly localization approaches have often borrowed evaluation metrics from
related domains like image segmentation and out-of-distribution (OoD) detection (Ahmed
and Courville, 2019; Zimmerer et al., 2019; Marimont and Tarroni, 2020; Pinaya et al.,
2021; Meissen et al., 2022; Zimmerer et al., 2022a; Lagogiannis et al., 2023). This practice
might overlook the unique nuances of the anomaly localization task, potentially hindering
the optimal selection of metrics.

2. Anomaly Localization Metrics

To effectively evaluate the performance of anomaly localization models, a range of metrics
are employed, spanning various domains:
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Segmentation Metrics Often employed metrics here are DCE (Dice Similarity Coef-
ficient) and IoU (Intersection over Union). While commonly used in segmentation tasks
(Isensee et al., 2018), DCE and IoU rely on binarized predictions. This necessitates thresh-
olding heatmaps, a process that introduces potential bias via threshold selection and can
lead to undefined scores when ground-truth segmentations are sparse – a frequent occurrence
in anomaly localization

OoD Metrics Classical OoD Metrics are AP (Average Precision) and AUROC (Area
Under the Receiver Operating Characteristic). Unlike segmentation metrics, ranking-based
metrics like AUROC and AP directly handle heatmaps without requiring thresholding or
relying on exact prediction values. However, they still yield undefined scores for data
samples without ground-truth labels. While often addressed by combining labeled and
unlabeled data (e.g., evaluating metrics across the entire dataset (“Dataset level”), or using
batch-wise calculations as in Zimmerer et al. (2022a)), this approach can overemphasize
larger, potentially easier-to-detect anomalies (Reinke et al. (2021); Maier-Hein et al. (2023)).

Instance Segmentation Metrics transition from basic overlap measurements to object-
centric anomaly localization. This requires defining distinct objects in ground-truth labels
(often via connected-component analysis). Key metrics include Instance IoU and Center
Distance, which can be aggregated using mean, median, or by applying a threshold (e.g.,
IoU ¿ 0.5) to classify TPs, FPs, and FNs at the object level, enabling the calculation of
derived metrics like F1-score. H owever, binarization of predictions remains necessary for
object identification (e.g., using connected-component analysis). For this work, we adapt
the Center Distance metric: a object’s heatmap center point lying within the convex hull
of a labeled object constitutes a TP.

Anomaly Localization Metrics To harness the strengths of instance segmentation
metrics while avoiding the drawbacks of binarization thresholds, we introduce Soft In-
stance IoU (inspired by Soft DCE [1]). This modified Instance IoU integrates contin-
uous anomaly scores for a more nuanced assessment of predicted anomaly confidence:

SoftIoU =
∑

i∈Object∪Background αŷiyi∑
i∈Object∪Background(0.5ŷi+(1−α)yi)

, where Background refers to all pixels not la-

beled as objects, i indexes the objects in the sample and α is a weighting factor to balance
under- and over-segmentation.

3. Experiments & Results

Metric Analysis To gain insights into metric behavior, we designed a controlled ex-
perimental setting with 50 samples using perfectly segmented, circular objects. We sys-
tematically introduced perturbations to these segmentations, including: (a) Adding small
true detected objects while reducing segmentation size (roughly preserves overall segmented
pixel count). (b) Varying segmentation size. (c) Adding false detections (FPs). (d) Adding
missed instances (FNs). (e) Adding “empty” samples without label or prediction. A few
properties of the different metrics emerge (Fig. 3, top): (a): AP and AUROC metrics
unexpectedly decreased despite improved object detection. Soft IoU metrics increased as
intended, while object-based metrics exhibited some noise but remained relatively consis-
tent. (b): Most metrics exhibited the expected peak-shaped response to segmentation size
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Figure 1: Top: Metrics analysis experiments. Bottom left: CamCAM, right: MOOD.

changes. However, F1 (center-based) and F1 (0.5-IoU) curves were less pronounced, while
Dataset AP and F1 (0.01-IoU) were nearly constant on one side. (c): Sensitivity to false
positives varied across metrics. AP, AUROC, and F1 (center) showed strong reactions,
while Soft IoU was less affected. (d): F1 metrics, Soft IoU, and Dataset Level AP and DCE
appeared most sensitive to missed instances. Sample-level and slice-level metrics failed to
reflect the performance change. (e): Only F1 metrics and Soft IoU registered an improve-
ment when completely normal samples were added. Dataset AP surprisingly decreased,
while other metrics were insensitive by design.

Metric Behavior in Anomaly Benchmark Settings In a second setting (Fig. 3, bot-
tom), we conducted experiments to compare the performance of different anomaly detection
algorithms across the diverse metrics and evaluate how well they align with human assess-
ment in a closer to real-world setting. First, seven algorithms were tested on the CamCAM
dataset (Taylor et al., 2017). We introduced artificial anomalies in the form of colored
spheres (one large, four small) into 50% of the test images. The framework, hyperparame-
ters and training schedules were kept consistent with Lagogiannis et al. (2023). Second, we
evaluated the respective winning algorithms from the MOOD challenge (Zimmerer et al.,
2022a) on the MOOD brain dataset, similarly introducing colored sphere anomalies in 50%
of test images. Here, respectively Soft Instance IoU and F1-based metrics closely mirrored
human judgment on the anomaly detection task. However, it’s crucial to note that the
human evaluation was restricted to segmented slices, potentially downplaying the impact
of false positives unrelated to existing anomalies.

4. Disscussion & Conclusion

Our experiments highlight how different metrics capture distinct aspects of anomaly detec-
tion performance. While the ideal choice is task-dependent, Soft Instance IoU and F1-based
metrics demonstrate favorable properties for many anomaly detection scenarios. This un-
derscores the importance of careful metric selection to align with the goals of the specific
application.
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