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Abstract

Generative learning, recognized for its effective modeling of data distributions,
offers inherent advantages in handling out-of-distribution instances, especially for
enhancing robustness to adversarial attacks. Among these, diffusion classifiers, uti-
lizing powerful diffusion models, have demonstrated superior empirical robustness.
However, a comprehensive theoretical understanding of their robustness is still
lacking, raising concerns about their vulnerability to stronger future attacks. In this
study, we prove that diffusion classifiers possess O(1) Lipschitzness, and establish
their certified robustness, demonstrating their inherent resilience. To achieve non-
constant Lipschitzness, thereby obtaining much tighter certified robustness, we
generalize diffusion classifiers to classify Gaussian-corrupted data. This involves
deriving the evidence lower bounds (ELBOs) for these distributions, approximating
the likelihood using the ELBO, and calculating classification probabilities via
Bayes’ theorem. Experimental results show the superior certified robustness of
these Noised Diffusion Classifiers (NDCs). Notably, we achieve over 80% and 70%
certified robustness on CIFAR-10 under adversarial perturbations with ℓ2 norms
less than 0.25 and 0.5, respectively, using a single off-the-shelf diffusion model
without any additional data.

1 Introduction

Despite the unprecedented success of discriminative learning [32, 22], they are vulnerable to adversar-
ial examples, which are generated by imposing human-imperceptible perturbations on natural exam-
ples but can mislead target models into making erroneous predictions [44, 8]. To improve the robust-
ness of discriminative learning, numerous defense techniques have been developed [29, 51, 35, 27, 34].
However, since discriminative models are directly trained for specific tasks, they often find shortcuts
in the objective function, exhibiting non-robust nature [7, 36]. For example, adversarial training
exhibits poor generalization against unseen threat models [45, 34], and purification-based methods
typically cannot completely remove adversarial perturbations, leaving subsequent discriminative
classifiers still affected by these perturbations [1, 25, 3, 15].

On the contrary, generative learning is tasked with modeling the entire data distribution, which
offers a degree of inherent robustness without any adversarial training [53, 9]. As the current state-
of-the-art generative approach, diffusion models provide a more accurate estimation of the score
function across the entire data space. Thus, they have been effectively utilized as generative classifiers
for robust classification, known as diffusion classifiers [26, 3, 5]. Specifically, they calculate the
classification probability p(y|x) ∝ p(x|y)p(y) through Bayes’ theorem and approximate the log
likelihood log p(x|y) via the evidence lower bound (ELBO). This method establishes a connection
between robust classification and the fast-growing field of pre-trained generative models. Although
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promising, there is still a lack of rigorous theoretical analysis, raising questions about whether their
robustness is overestimated and whether they will be vulnerable to (potentially) stronger future
adaptive attacks. In this work, we use theoretical tools to derive the certified robustness of diffusion
classifiers, fundamentally address these concerns, and gain a deeper understanding of their robustness.

We begin by analyzing the smoothness of diffusion classifiers through the derivation of their Lip-
schitzness. We prove that diffusion classifiers possess an O(1) Lipschitz constant, demonstrating
their inherent robustness. This allows us to certify the robust radius of diffusion classifiers by di-
viding the gap between predictions on the correct class and the incorrect class by their Lipschitz
constant. Although we obtain a non-trivial certified radius, it could be much tighter if we could derive
non-constant Lipschitzness (i.e., the Lipschitzness at each point). Randomized smoothing [6, 38],
a well-researched technique, allows us to obtain tighter Lipschitzness based on the output at each
point. However, randomized smoothing requires the base classifier (e.g., diffusion classifiers) to
process Gaussian-corrupted data xτ , where τ is the noise level. To address this, we generalize diffu-
sion classifiers to calculate p(y|xτ ) by estimating log p(xτ |y) using its ELBO and then calculating
p(y|xτ ) using Bayes’ theorem. We named these generalized diffusion classifiers as Noised Diffusion
Classifiers. Hence, the core problem becomes deriving the ELBO for noisy data.

Naturally, we conceive to generalize the ELBO in Sohl-Dickstein et al. [41] and Kingma et al. [17] to
τ ̸= 0, naming the corresponding diffusion classifier the Exact Posterior Noised Diffusion Classifier
(EPNDC). EPNDC achieves state-of-the-art certified robustness among methods that do not use extra
data. Surprisingly, we discover that one can calculate the expectation or ensemble of this ELBO
without any additional computational overhead. This finding allows us to design a new diffusion
classifier that functions as an ensemble of EPNDC but does not require extra computational cost. We
refer to this enhanced diffusion classifier as the Approximated Posterior Noised Diffusion Classifier
(APNDC). Towards the end of this paper, we reduce the time complexity of diffusion classifiers by
significantly decreasing variance through the use of the same noisy samples for all classes and by
proposing a search algorithm to narrow down the candidate classes for the diffusion classifier.

Experimental results substantiate the superior performance of our methods. Notably, we achieve
82.2%, 70.7%, and 54.5% at ℓ2 radii of 0.25, 0.5, and 0.75, respectively, on the CIFAR-10 dataset.
These results surpass the previous state-of-the-art [47] by absolute margins of 5.6%, 6.1%, and 4.1%
in the corresponding categories. Additionally, our approach registers a clean accuracy of 91.2%,
outperforming Xiao et al. [47] by 3.6%. Moreover, our time complexity reduction techniques decrease
the computational burden by a factor of 10 on CIFAR-10 and by a factor of 1000 on ImageNet, without
compromising certified robustness. Furthermore, our comparative analysis with heuristic methods
not only highlights the tangible benefits of our theoretical advancements but also provides valuable
insights into several evidence lower bounds and the inherent robustness of diffusion classifiers.

The contributions of this paper are summarized as follows:

• We derive the Lipschitz constant and certified lower bound for diffusion classifiers, demon-
strating their inherent provable robustness.

• We generalize diffusion classifiers to classify noisy data, enabling us to derive non-constant
Lipschitzness and state-of-the-art certified robustness.

• We propose a variance reduction technique that greatly reduces time complexity without
compromising certified robustness.

2 Background

2.1 Diffusion Models

For simplicity in derivation, we introduce a general formulation that covers various diffusion models.
In Appendix A.8, we show that common models, such as Ho et al. [11], Song et al. [42], Kingma
et al. [17] and Karras et al. [16], can be transformed to align with our definition.

Given x := x0 ∈ [0, 1]D with a data distribution q(x0), the forward diffusion process incrementally
introduces Gaussian noise to the data distribution, resulting in a continuous sequence of distributions
{q(xt) := qt(xt)}Tt=1 by:

q(xt) =

∫
q(x0)q(xt|x0)dx0, (1)
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Figure 1: Illustration of our theoretical contributions. We derive the Lipschitz constant and the
corresponding certified radius for diffusion classifiers [3]. Additionally, we introduce two novel
evidence lower bounds, which are used to approximate the log likelihood. These lower bounds are
then employed to construct classifiers based on Bayes’ theorem. By applying randomized smoothing
to these classifiers, we derive their certified robust radii.

where q(xt|x0) = N (xt;x0, σ
2
t I), i.e., xt = x0 + σtϵ, ϵ ∼ N (0, I). Typically, σt monotonically

increases with t, establishing one-to-one mappings t(σ) from σ to t and σ(t) from t to σ. Additionally,
σT is large enough that q(xT ) is approximately an isotropic Gaussian distribution. Given p := pθ
as the parameterized reverse distribution with prior p(xT ) = N (xT ;0, σ

2
T I), the diffusion process

used to synthesize real data is defined as a Markov chain with learned Gaussian distributions [11, 42]:

p(x0:T ) = p(xT )

T∏
t=1

p(xt−1|xt). (2)

In this work, we parameterize the reverse Gaussian distribution p(xt−1|xt) using a neural network
hθ(xt, t) as

p(xt−1|xt) = N (xt−1;µθ(xt, t),
σ2
t (σ

2
t+1 − σ2

t )

σ2
t+1

I),

µθ(xt, t) =
(σ2

t − σ2
t−1)hθ(xt, σt) + σ2

t−1xt

σ2
t

.

(3)

The parameter θ is usually trained by optimizing the evidence lower bound (ELBO) on the log
likelihood [41, 11, 17]:

log p(x0) ≥ −
T∑

t=1

Eϵ

[
wt∥hθ(xt, σt)− x0∥22

]
+ C1, (4)

where wt =
σt+1−σt

σ3
t+1

is the weight of the loss at time step t and C1 is a constant. Similarly, the

conditional diffusion model p(xt−1|xt, y) is parameterized by hθ(xt, σt, y). A similar lower bound
on conditional log likelihood is

log p(x0|y) ≥ −
T∑

t=1

Eϵ

[
wt∥hθ(xt, σt, y)− x0∥22

]
+ C, (5)

where C is another constant.

2.2 Diffusion Classifiers

Diffusion classifier [3, 5, 26] DC(·) : [0, 1]D → RK is a generative classifier that uses a single
off-the-shelf diffusion model for robust classification. It first approximates the conditional likelihood
log p(y|x0) via conditional ELBO (i.e., using ELBO as logit), and then calculates the class probability
p(y|x0) ∝ p(x0|y) through Bayes’ theorem, with the assumption that p(y) is a uniform prior:

DC(x0)y :=
exp(− 1

DT

∑T
t=1 Eϵ

[
wt∥hθ(xt, σt, y)− x0∥22

]
)∑

ŷ exp (−
1

DT

∑T
t=1 Eϵ [wt∥hθ(xt, σt, ŷ)− x0∥22])

≈ exp(log p(x0|y))∑
ŷ exp (log p(x0|ŷ))

=
p(x0|y)p(y)∑
ŷ p(x0|ŷ)p(ŷ)

≜ p(y|x0).

(6)
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In other words, it utilizes the ELBO of each conditional likelihood log p(y|x0) as the logit of each
class. This classifier achieves state-of-the-art empirical robustness across several types of threat
models and can generalize to unseen attacks as it does not require training on adversarial examples [3].
However, there is still lacking a rigorous theoretical analysis, leaving questions about whether they
will be vulnerable to (potentially) future stronger adaptive attacks.

2.3 Randomized Smoothing

Randomized smoothing [23, 6, 48, 20] is a model-agnostic technique designed to establish a lower
bound of robustness against adversarial examples. It is scalable to large networks and datasets
and achieves state-of-the-art performance in certified robustness [48]. This approach constructs a
smoothed classifier by averaging the output of a base classifier over Gaussian noise. Owing to the
Lipschitz continuity of this classifier, it remains stable within a certain perturbation range, thereby
ensuring certified robustness.

Formally, given a classifier f : [0, 1]D → RK that takes a D-dimensional input x0 and predicts class
probabilities over K classes, the y-th output of the smoothed classifier g is:

g(x0)y = P ( argmax
ŷ∈{1,...,K}

f(x0 + στ · ϵ)ŷ = y), (7)

where ϵ ∼ N (0, I) is a Gaussian noise and στ is the noise level. Let Φ−1 denote the inverse function
of the standard Gaussian CDF. Salman et al. [38] prove that Φ−1(g(x0)y) is 1

στ
-Lipschitz. However,

the exact computation of g(x0) is infeasible due to the challenge of calculating the expectation in a
high-dimensional space. Practically, one usually estimates a lower bound pA of g(x0)y and an upper
bound pB of maxŷ ̸=y g(x0)ŷ using the Clopper-Pearson lemma, and then calculates the lower bound
of the certified robust radius R for class y as

R =
στ

2

(
Φ−1(pA)− Φ−1(pB)

)
. (8)

Typically, the existing classifiers are trained to classify images in clean distribution q(x0). However,
the input distribution in Eq. (7) is q(xτ ) =

∫
q(x0)q(xτ |x0)dx0. Due to the distribution discrepancy,

g(x0) constructed by classifiers trained on clean distribution q(x0) exhibits low accuracy on q(xτ ).
Due to this issue, we cannot directly incorporate the diffusion classifier [3] with randomized smooth-
ing. In this paper, we propose a new category of diffusion classifiers, that can directly calculate
p(y|xτ ) via an off-the-shelf diffusion model.

To handle Gaussian-corrupted data, early work [6, 38] trains new classifiers on q(xτ ) but is not
applicable to pre-trained models. Orthogonal to our work, there is also some recent work on using
denoiser for certified robustness [39, 46], and some of them choose diffusion model as denoiser [2,
47, 52]. They first denoise xτ ∼ q(xτ ), followed by an off-the-shelf discriminative classifier for
classifying the denoised image. However, the efficacy of such an algorithm is largely constrained by
the performance of the discriminative classifier.

3 Methodology

In this section, we first derive an upper bound of the Lipschitz constant in Sec. 3.1. Due to the
difficulty in deriving a tighter Lipschitzness for such a mathematical form, we propose two variants
of Noised Diffusion Classifiers (NDCs), and integrate them with randomized smoothing to obtain a
tighter robust radius, as detailed in Sec. 3.2 and Sec. 3.3. Finally, we propose several techniques in
Sec. 3.4 to reduce time complexity and enhance scalability for large datasets.

3.1 The Lipschitzness of Diffusion Classifiers

We observe that the logits − 1
DT

∑T
t=1 wtEϵ

[
∥hθ(xt, σt)− x0∥22

]
of diffusion classifier in Eq. (6)

can be decomposed as

− 1

DT

T∑
t=1

wt

(
Eϵ

[
∥hθ(xt, σt)∥22

]
+ ∥x0∥22 − 2Eϵ

[
hθ(xt, σt)

⊤]x0

)
. (9)
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Algorithm 1 EPNDC
1: Require: A pre-trained diffusion model hθ , a noisy input image xτ , noisy level τ .
2: for y = 0 to K − 1 do
3: for t = τ + 1 to T do
4: Calculate the analytical form of Eq(xt|xt+1,xτ ,y)[xt] by:

(σ2
t+1−σ2

t )xτ+(σ2
t−σ2

τ )xt+1

σ2
t+1−σ2

τ

5: Calculate the analytical form of Ep(xt|xt+1,y)[xt] by:
(σ2

t+1−σ2
t )h(xt+1,σt+1,y)+σ2

txt+1

σ2
t+1

6: end for
7: Calculate the lower bound log p(xτ |y) of log p(xτ |y) using w

(τ)
t =

σ2
t+1−σ2

τ

2(σ2
t−σ2

τ )(σ2
t+1−σ2

t )
by:∑T

t=τ+1 w
(τ)
t Eq(xt+1|xτ )∥Eq(xt|xt+1,xτ ,y)[xt]− Ep(xt|xt+1,y)[xt]∥2;

8: end for
9: Approximate pθ(y|xτ ) by

exp (log pθ(xτ |y))∑
ŷ exp (log pθ(xτ |ŷ)) , and Return: ỹ = argmaxy pθ(y|xτ ).

Given that Eϵ

[
∥hθ(xt, σt)∥22

]
and Eϵ [hθ(xt, σt)] are smoothed by Gaussian noise and lie within

the range [0, 1]D, they satisfy the Lipschitz condition [38]. Consequently, the logits of diffusion
classifiers should satisfy a Lipschitz condition. Thus, it can be inferred that the entire diffusion
classifier is robust and possesses a certain robust radius.

We derive an upper bound for the Lipchitz constant of diffusion classifiers in the following theorem:
Theorem 3.1. The upper bound of Lipschitz constant of diffusion classifier is given by:

|DC(x0 + δ)y − DC(x0)y| ≤
1

2
√
2

T∑
t=1

wt

σtT
(

√
2

π
+

2√
D
)∥δ∥2. (10)

If one can get a lower bound pA for DC(x0)y and a upper bound pB for maxŷ ̸=y DC(x0)ŷ (e.g.,
probabilistic bound by Bernstein inequality [30]), the lower bound of certified radius for diffusion
classifier can be obtained:

RDC =

√
2T (pA − pB)

(2/
√
D +

√
2/π)

∑T
t=1 wt/σt

. (11)

Proof. (Sketch; details in Appendix A.2). Employing a similar methodology to that used by Salman
et al. [38], we derive the gradient of the diffusion classifier. Since the gradient norm of a neural
network is unbounded, we transfer the target of the gradient operator from the neural network to the
Gaussian density function, so that we can bound the gradient norm and the Lipschitz constant.

As demonstrated in Theorem 3.1, the Lipschitz constant of diffusion classifiers is nearly identical
to that in the “weak law” of randomized smoothing (See Appendix A.3, or Lemma 1 in Salman
et al. [38]). This constant is small and independent of the dimension D, indicating the inherent
robustness of diffusion classifiers. However, similar to the weak law of randomized smoothing,
such certified robustness has limitations because it assumes the maximum Lipschitz condition
is satisfied throughout the entire perturbation path, i.e., it assumes the equality always holds in
|f(xadv)y − f(x)y| ≤ L∥x − xadv∥2 when f has Lipschitz constant L. As a result, the equality
also holds in f(xadv)y ≥ f(x)y − L∥x − xadv∥2 and f(xadv)ŷ ≤ f(x)ŷ + L∥x − xadv∥2 for
maxŷ ̸=y f(x)ŷ. To guarantee the prediction is unchanged (i.e., f(xadv)y ≥ f(xadv)ŷ), its requires
the perturbation ∥x− xadv∥2 must be less than 1

2L .

To be specific, under the weak law of randomized smoothing, it is impossible to achieve a certified
radius greater than 1.253. According to Eq. (11), a certified radius greater than 0.39 is unattainable,
and empirically, the average certified radius achieved is only 0.156 (refer to Appendix C.3). This is
significantly lower than the empirical robustness upper bound obtained through adaptive attacks as
reported in Chen et al. [3].

On the other hand, the “strong law” of randomized smoothing (See Eq. (8) or Lemma 2 in Salman
et al. [38]) can yield a non-constant Lipschitzness, leading to a more precise robust radius, with the
upper bound of the certified radius potentially being infinite. Therefore, in the subsequent sections,
we aim to combine diffusion classifier with randomized smoothing to achieve a tighter certified radius,
thus thoroughly explore its robustness.
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Algorithm 2 APNDC
1: Require: A pre-trained diffusion model hθ , a noisy input image xτ , noisy level τ .
2: for y = 0 to K − 1 do
3: Calculate the lower bound log p(xτ |y) of log p(xτ |y) by:∑T

t=τ+1 wt∥hθ(xτ , στ )− hθ(xt, σt+1, y)∥2, where wt =
σt+1−σt

σ3
t+1

;

4: end for
5: Approximate pθ(y|xτ ) by

exp (log pθ(xτ |y))∑
ŷ exp (log pθ(xτ |ŷ)) ;

6: Return: ỹ = argmaxy pθ(y|xτ ).

3.2 Exact Posterior Noised Diffusion Classifier

As explained in Sec. 2.3, randomized smoothing constructs a smoothed classifier g from a given base
classifier f by aggregating votes over Gaussian-corrupted data. This process necessitates that the
base classifier can classify data from the noisy distribution q(xτ ). However, the diffusion classifier
in Chen et al. [3] is limited to classifying data solely from q(x0). Therefore, in this section, we
generalize the diffusion classifier to enable the classification of images from q(xτ ) for any given τ .

Similar to Chen et al. [3], our fundamental idea involves deriving the ELBO for log p(xτ |y) and
subsequently calculating p(y|xτ ) using the estimated log p(xτ |y) via Bayes’ theorem. Drawing
inspiration from Ho et al. [11], we derive a similar ELBO for log p(xτ ), as elaborated in the following
theorem (the conditional ELBO is similar to unconditional one, see Appendix A.4 for details):
Theorem 3.2. (Proof in Appendices A.4 and A.5). The ELBO of log p(xτ ) is given by:

log p(xτ ) ≥ −
T∑

t=τ

w
(τ)
t Eq(xt+1|xτ )[∥Eq(xt|xt+1,xτ )[xt]− Ep(xt|xt+1)[xt]∥2] + C2, (12)

where

xt+1 ∼ q(xt+1|xτ ), Eq(xt|xt+1,xτ )[xt] =
(σ2

t+1 − σ2
t )xτ + (σ2

t − σ2
τ )xt+1

σ2
t+1 − σ2

τ

,

w
(τ)
t =

σ2
t+1 − σ2

τ

2(σ2
t − σ2

τ )(σ
2
t+1 − σ2

t )
, Ep(xt|xt+1)[xt] =

(σ2
t+1 − σ2

t )h(xt+1, σt+1) + σ2
txt+1

σ2
t+1

.

(13)

Remark 3.3. Notice that the summation of KL divergence in the ELBO of log p(xτ ) starts from τ +1
and ends at T , while that of log p(x0) starts from 1. Besides, the posterior is q(xt|xt+1,xτ ) instead
of q(xt|xt+1,x0).
Remark 3.4. When τ = 0, this result degrades to the diffusion training loss σt+1−σt

σ3
t+1

∥x0 −
h(xt+1, σt+1)∥2, consistent with Kingma et al. [17] and Karras et al. [16].

Due to the page width limit, we only present the unconditional ELBO in the main text. We can get
the conditional ELBO by adding y to the condition. Using the conditional ELBOs as approximation
for log likelihood (i.e., using ELBOs as logits), one can calculate p(y|xτ ) = elog pθ(xτ |y)∑

ŷ elog pθ(xτ |ŷ) for

classification. We name this algorithm as Exact Posterior Noised Diffusion Classifier (EPNDC), as
demonstrated in Algorithm 1.

Although this classifier achieves non-trivial certified robustness, it still has limitations. For instance,
we cannot theoretically determine the optimal weight w(τ)

t (see Appendix C.2 for details). Addi-
tionally, the time complexity is high. In the next section, we propose a new diffusion classifier
called the Approximated Posterior Noised Diffusion Classifier (APNDC), which addresses these
problems and acts like an ensemble of EPNDC so that greatly enhanced certified robustness without
any computational overhead.

3.3 Approximated Posterior Noised Diffusion Classifier

Greatly inspired by Song et al. [42] and Meng et al. [31], we propose to approximate the posterior in
a similar manner:

q(xt|xt+1,xτ ) = q(xt|xt+1,xτ ,x0 = hθ(xτ , στ )) ≈ q(xt|xt+1,x0 = hθ(xτ , στ )). (14)
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Table 1: Certified accuracy at CIFAR-10 test set. The clean accuracy for each smoothed model is in
the parentheses. The certified accuracy for each cell is from Xiao et al. [47], same as the results from
their respective papers. Carlini et al. [2] and Xiao et al. [47] use ImageNet-21k as extra data.

Method Off-the-shelf Extra data Certified Accuracy at R (%)
0.25 0.5 0.75 1.0

PixelDP [23] ✗ ✗ (71.0)22.0 (44.0)2.0 - -
RS [6] ✗ ✗ (75.0)61.0 (75.0)43.0 (65.0)32.0 (65.0)23.0

SmoothAdv [38] ✗ ✗ (82.0)68.0 (76.0)54.0 (68.0)41.0 (64.0)32.0

Consistency [13] ✗ ✗ (77.8)68.8 (75.8)58.1 (72.9)48.5 (52.3)37.8

MACER [50] ✗ ✗ (81.0)71.0 (81.0)59.0 (66.0)46.0 (66.0)38.0

Boosting [12] ✗ ✗ (83.4)70.6 (76.8)60.4 (71.6)52.4 (73.0)38.8
SmoothMix [14] ✓ ✗ (77.1)67.9 (77.1)57.9 (74.2)47.7 (61.8)37.2

Denoised [39] ✓ ✗ (72.0)56.0 (62.0)41.0 (62.0)28.0 (44.0)19.0

Lee [24] ✓ ✗ (−)60.0 (−)42.0 (−)28.0 (−)19.0

Carlini [2] ✓ ✓ (88.0)73.8 (88.0)56.2 (88.0)41.6 (74.2)31.0

DensePure [47] ✓ ✓ (87.6)76.6 (87.6)64.6 (87.6)50.4 (73.6)37.4
DiffPure+DC (baseline, ours) ✓ ✗ (87.5)68.8 (87.5)53.1 (87.5)41.2 (73.4)25.6
EPNDC (T ′ = 100, ours) ✓ ✗ (89.1)77.4 (89.1)60.0 (89.1)35.7 (74.8)24.4
APNDC (T ′ = 100, ours) ✓ ✗ (89.5)80.7 (89.5)68.8 (89.5)50.8 (76.2)35.2
APNDC (T ′ = 1000, ours) ✓ ✗ (91.2)82.2 (91.2)70.7 (91.2)54.5 (77.3)38.2

As a result, the KL divergence can be simplified using this approximation:

DKL(q(xt|xt+1,xτ )∥pθ(xt|xt+1)) ≈ DKL(q(xt|xt+1,x0 = hθ(xτ , στ ))∥pθ(xt|xt+1))

=
σt+1 − σt

σ3
t+1

∥h(xτ , στ )− h(xt+1, σt+1)∥2 + C3.
(15)

Intriguingly, Eq. (15) is the ELBO of Eq(x̂τ |x0=hθ(xτ ,στ ))[log pτ (x̂τ )], i.e.,

Eq(x̂τ |x0=hθ(xτ ,στ ))[log pτ (x̂τ )] ≥ C4 −
T−1∑

t=τ+1

wtEq(xt|x0=hθ(xτ ,στ ))[∥hθ(xt, σt)− x0∥22]. (16)

Therefore, one can use the ELBO in Eq. (16) as a approximation for log p(xτ ) (i.e., employing the EL-
BOs of this expected log likelihood as the logits), and calculate the class probabilities through Bayes’
theorem. We name this method as Approximated Posterior Noised Diffusion Classifier (APNDC), as
shown in Algorithm 2.

APNDC is functionally equivalent to an ensemble of EPNDC, as it calculates the ELBO of
Eq(x̂τ |x0=hθ(xτ ,στ ))[log pτ (x̂τ )], which corresponds to the expected log p(xτ |y). This nearly-free
ensemble can be executed with only one more forward pass of UNet to compute hθ(xτ , τ). For
detailed explanations, please refer to Appendix A.7.
Remark 3.5. From a heuristic standpoint, one might consider first employing a diffusion model for
denoising (named DiffPure by Nie et al. [34]), followed by using a diffusion classifier for classification.
This approach differs from our method, where we calculate the diffusion loss only from τ + 1 to T ,
and the noisy samples xt are obtained by adding noise to xτ instead of x0. In Table 1, we demonstrate
that our APNDC method significantly outperforms this heuristic approach (DiffPure+DC).

3.4 Time Complexity Reduction

Variance reduction. The main computational effort in our approach is dedicated to calculating
the evidence lower bound for each class. This involves computing the sum of reconstruction
losses. For instance, in DC, the reconstruction loss is ∥x0 − hθ(xt, σt+1)∥22. In EPNDC, it is
∥Eq(xt|xt+1,xτ )[xt]−Ep(xt|xt+1)[xt]∥22, and in APNDC, the loss is ∥hθ(xτ , στ )−hθ(xt+1, σt+1)∥22,
with the summation carried out over t. Chen et al. [3] attempt to reduce the time complexity by
only calculating the reconstruction loss at certain timesteps. However, this approach proves ineffec-
tive. We identify that the primary reason for this failure is the large variance in the reconstruction
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Table 2: Certified accuracy at ImageNet-64x64. The clean accuracy is in the parentheses.

Method Off-the-shelf Extra data Certified Accuracy at R (%)
0.25 0.5 0.75 1.0

RS [6] ✗ ✗ (45.5)37.3 (45.5)26.6 (37.0)20.9 (37.0)15.1
SmoothAdv [38] ✗ ✗ (44.4)37.4 (44.4)27.9 (34.7)21.1 (34.7)17.0
Consistency [13] ✗ ✗ (43.6)36.9 (43.6)31.5 (43.6)26.0 (31.4)16.6
MACER [50] ✗ ✗ (46.3)35.7 (46.3)27.1 (46.3)15.6 (38.7)11.3
Carlini [2] ✓ ✗ (41.1)37.5 (39.4)30.7 (39.4)24.6 (39.4)21.7
DensePure [47] ✓ ✗ (37.7)35.4 (37.7)29.3 (37.7)26.0 (37.7)18.6
APNDC (Sift-and-Refine, ours) ✓ ✗ (54.4)46.3 (54.4)38.3 (43.5)35.2 (43.5)32.8

loss, necessitating sufficient calculations for convergence. To address this, we propose an effective
variance reduction technique that uses identical input samples across all categories at each timestep.
In other words, we use the same xt for different classes. This approach significantly reduces the
difference in prediction difficulty among various classes, allowing for a more equitable calculation of
the reconstruction loss for each class. As shown in Figure 2(a), we can utilize a much smaller number
of timesteps, such as 8, without sacrificing accuracy, thereby substantially reducing time complexity.

Sift-and-refine algorithm. The time complexity of these diffusion classifiers is proportional to the
number of classes, presenting a significant obstacle for their application in datasets with numerous
classes. Chen et al. [3] suggest the use of multi-head diffusion to address this issue. However, this
approach requires training an additional diffusion model, leading to extra computational overhead.
In our work, we focus solely on employing a single off-the-shelf diffusion model to construct a
certifiably robust classifier. To tackle the aforementioned challenge, we propose a Sift-and-refine
algorithm. The core idea is to swiftly reduce the number of classes, thereby limiting our focus to a
manageable subset of classes. We provide more detailed analysis in Algorithm 5.

4 Experiment

Following previous studies [2, 47, 52], we evaluate the certified robustness of our method on two
standard datasets, CIFAR-10 [19] and ImageNet [37], selecting a subset of 512 images from each.
We adhere to the certified robustness pipeline established by Cohen et al. [6], although our method
potentially offers a tighter certified bound, as demonstrated in Appendix A.3. To make a fair
comparison with previous studies, we also select στ ∈ {0.25, 0.5, 1.0} for certification (thus τ is
determined) and use EDM [16] as our diffusion models. For a re-clarification on the hyper-parameters
and additional experiments (including ablation studies on diffusion checkpoints and time complexity
comparison), please refer to Appendix B.

4.1 Results on CIFAR-10

Experimental settings. Due to computational constraints, we employ a sample size of N = 10, 000
to estimate pA. The number of function evaluations (NFEs) for each image in our method is
O(N · T ′ ·K), amounting to 108 for T ′ = 100 and 109 for T ′ = 1000 since K = 10 in this dataset.
In contrast, the NFEs for the previous state-of-the-art method [47] are 4 · 108, which is four times
higher than our method when T ′ is 100. It is important to highlight that our sample size N is 10 times
smaller than those baselines in (Table 1), potentially placing our method at a significant disadvantage,
especially for large στ .

Experimental results. As shown in Table 1, our method, utilizing an off-the-shelf model without
the need for extra data, significantly outperforms all previous methods at smaller values of ϵ =
{0.25, 0.5}. Notably, it surpasses all previous methods on clean accuracy, and exceeds the previous
state-of-the-art method [47] by 5.6% at ϵ = 0.25 and 6.1% at ϵ = 0.5. Even with larger values of
ϵ, our method attains performance levels comparable to existing approaches. This is particularly
noteworthy considering our constrained setting of N = 10, 000, substantially smaller than the
N = 100, 000 used in prior works. Considering that the community of randomized smoothing
employs hypothesis tests to establish a probabilistic upper bound of the smoothed function, with
consistent type-one error rates, our method encounters significant disadvantages. This is particularly
the case since, with equivalent accuracy on noisy data, certified robustness is a monotonically
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Figure 2: (a) The accuracy (%) on CIFAR-10 dataset with time complexity reduction technique in
Chen et al. [3] and ours. (b, c) The upper envelop of certified radii of different methods.

increasing function with respect to sample size N . However, we still achieve competitive performance
despite its inherent sample size disadvantage.

4.2 Results on ImageNet

Experimental settings. We conduct experiments on ImageNet64x64 due to the absence of con-
ditional diffusion models for 256x256 resolution. Due to computational constraints, we employ a
sample size of N = 1000, 10 times smaller than all other works in Table 2. We use the Sift-and-Refine
algorithm to improve the efficiency.

Experimental results. As demonstrated in Table 2 and Figure 2(c), our method, only employing a
single off-the-shelf diffusion model without requiring extra data, significantly outperforms previous
training-based and training-free approaches. In contrast, diffusion-based purification methods, when
applied with small CNNs and no extra data, do not maintain their superiority over training-based
approaches. It is noteworthy that our experiments are conducted with only one-tenth of the sample
size typically used in previous works. This success on a large dataset like ImageNet64x64 underscores
the scalability of diffusion classifiers in handling extensive datasets with a larger number of classes.

4.3 Discussions

Comparison with heuristic methods. From a heuristic standpoint, one might consider initially
using a diffusion model for denoising, followed by a diffusion classifier for classification. As shown in
Table 1, this heuristic approach outperforms nearly all prior off-the-shelf and no-extra-data baselines.
However, the methods derived through our theoretical analysis significantly surpass this heuristic
strategy. This outcome underscores the practical impact of our theoretical contributions.

Trivial performance of EPNDC. Although EPNDC exhibits non-trivial improvements compared to
previous methods, it still lags significantly behind APNDC. There are two main reasons for this gap.
First, as extensively discussed in Appendix C.2, the weight in EPNDC is not optimal, and we cannot
theoretically determine the optimal weight. Additionally, APNDC is equivalent to an ensemble of
EPNDC, which may contribute to its superior performance compared to EPNDC.

Explanation of Eq. (11). Eq. (11) is extremely similar to the weak law of randomized smoothing.
When σt is larger, it could potentially have a larger certified radius, but the input images will be more
noisy and hard to classify. This trade-off is quite similar to the role of στ in randomized smoothing.
However, there are two key differences. First, the inputs to the network contain different levels of
noisy images, which means the network could see clean images, less noisy images, and very noisy
images, hence could make more accurate predictions. Besides, the trade-off parameter is wt

σt
, allowing

users some freedom to select different noise levels and balance them by wt. We observe that this is
the common feature of such denoising and reconstructing classifiers. We anticipate this observation
will aid the community in developing more robust and certifiable defenses.
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5 Conclusion

In this work, we conduct a comprehensive analysis of the robustness of diffusion classifiers. We
establish their non-trivial Lipschitzness, a key factor underlying their remarkable empirical robustness.
Furthermore, we extend the capabilities of diffusion classifiers to classify noisy data at any noise
level by deriving the evidence lower bounds for noisy data distributions. This advancement enable
us to combine the diffusion classifiers with randomized smoothing, leading to a tighter certified
radius. Experimental results demonstrate substantial improvements in certified robustness and time
complexity. We hope that our findings contribute to a deeper understanding of diffusion classifiers in
the context of adversarial robustness and help alleviate concerns regarding their robustness.
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APPENDIX
Appendix organization:

Appendix A: Proofs.
A.1: Assumptions and Lemmas.
A.2: Lipschitz Constant of Diffusion Classifiers.
A.3: Stronger Randomized Smoothing When f Possess Lipschitzness.
A.4: ELBO of log pτ (xτ ) in EPNDC.
A.5: The Analytical Form of the KL Divergence in ELBO.
A.6: The Weight in EPNDC.
A.7: The ELBO of log pτ (xτ ) in APNDC.
A.8: Converting Other Diffusion Models into Our Definition.

Appendix B: Experimental Details.
B.1: Certified Robustness Details.
B.2: ImageNet Baselines.
B.3: Ablation Studies of Diffusion Models.
B.4: Ablation Studies on Time Complexity Reduction Techniques.

Appendix C: Discussions.
C.1: ELBO, Likelihood, Classifier and Certified Robustness.
C.3: Certified Robustness of Chen et al. [3].
C.2: The Loss Weight in Diffusion Classifiers.
C.4: Time Complexity Reduction Techniques that Do Not Help.

A Proofs

A.1 Assumptions and Lemmas

Assumption A.1. We adopt the following assumptions. These assumptions are quite common in the
context of certified robustness [38, 6] and diffusion models [42, 28], and they apply to most common
neural networks:

1. Input image x ∈ [0, 1]D.

2. ∀0 ≤ t ≤ T, qt(x) ∈ C2, h(x, σt) ∈ C1 and Eqt(x)[∥x∥22] ≤ ∞.

3. For any classifier f mentioned in this paper, f(x) ∈ C1, and ∃C ≥ 0,∀x : ∥f(x)∥2 ≤ C.

4. The output of the diffusion U-Net is bounded: h(x, σt) ∈ [0, 1]D for all x and t. This property
can be ensured by using the CLIP operator to clip the output of the U-Net.
Lemma A.2. The second norm of the gradient of softmax function || ∂

∂x softmax(x/β)y||2 is less than
or equal to 1

2
√
2β

. In other words,

|| ∂
∂x

softmax(x/β)y||2 ≤ 1

2
√
2β

.

Proof.

max || ∂
∂x

softmax(x/β)y||2

= max ||(ey − softmax(x/β))
softmax(x/β)y

β
||2

= max
1

β
·
√

softmax(x/β)2y[(1− softmax(x/β)y)2 +
∑
i ̸=y

softmax(x/β)2i ]

≤ max

√
2

β
·
√

softmax(x/β)2y(1− softmax(x/β)y)2 ≤ 1

2
√
2β

.
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A.2 Lipschitz Constant of Diffusion Classifiers

Lemma A.3. (Adapted from Chen et al. [3].) The gradient of the diffusion classifier is given by

d

dx
Eϵ[∥hθ(xt, σt, y)−x∥22] = Eϵ[

∂ log p(xt|x)
∂x

∥hθ(xt, σt, y)−x∥22]+Eϵ[(hθ(xt, σt, y)−x)
2

σt
],

where
∂ log p(xt|x)

∂x
=

∂

∂x
log exp (−∥xt − x∥22

2σ2
t

) = −x− xt

σ2
t

=
σtϵ

σ2
t

=
ϵ

σt
.

Lemma A.3 already derive the gradient of the diffusion classifier, and transfer the target of nabla
operator to distribution function. Hence, we only need to bound the ℓ2 norm of both term in
Lemma A.3.

For the first term:

∥Eϵ[
∂ log p(xt|x)

∂x
∥hθ(xt, σt, y)− x∥22]∥2

=∥
∫

p(ϵ)[
ϵ

σt
∥hθ(xt, σt, y)− x∥22]dϵ∥2

≤ 1

σt
max

∥u∥2=1
u⊤
∫

p(ϵ)ϵ∥hθ(xt, σt, y)− x∥22dϵ

=
D

σt
max

∥u∥2=1
u⊤
∫

p(ϵ)ϵ
∥hθ(xt, σt, y)− x∥22

D
dϵ︸ ︷︷ ︸

The term in Salman et al. [38]

≤D

σt

√
2

π
.

The last inequality holds since ∥hθ(xt,σt,y)−x∥2
2

D is a function in [0, 1]D, thus it satisfies the condition
of Lemma 1 in Salman et al. [38]. For the second term, since x ∈ [0, 1]D and hθ(xt, σt, y) ∈ [0, 1]D,
hence hθ(xt, σt, y)− x ∈ [0, 1]D, consequently,

∥Eϵ[(hθ(xt, σt, y)− x)
2

σt
]∥2 = ∥Eϵ[(hθ(xt, σt, y)− x)]∥2

2

σt
≤

√
D · 2

σt
.

Therefore,

∥ d

dx
Eϵ[∥hθ(xt, σt, y)− x∥22]∥2 ≤ D

σt

√
2

π
+
√
D · 2

σt
=

1

σt
(D

√
2

π
+ 2

√
D). (17)

Both Chen et al. [3], Li et al. [26], Clark and Jaini [5] formulate the logit of the diffusion classifier
as
∑T

t=1 Eϵ[∥hθ(xt, σt, y)− x∥22]. However, in practice, both Chen et al. [3] and Li et al. [26] use
MSE loss rather than L2 loss in the diffusion classifier. In other words, they multiply the logit by
1

DT . Therefore, in this paper, we directly formulate the diffusion classifier using the MSE loss, as
demonstrated in Eq. (6). Consequently, the maximum gradient norm of the logits in the diffusion
classifier is:

∥ d

dx

1

DT

T∑
t=1

wtEϵ[∥hθ(xt, σt, y)− x∥22]∥2 ≤ 1

T

T∑
t=1

wt

σt

(√
2

π
+

2√
D

)
. (18)

Remark A.4. There may be concerns regarding how the selection of temperature (whether multiplying
logits by 1

DT ) can significantly influence certified robustness. However, this is not the case. The
temperature simultaneously affects both the scale of output from the diffusion classifier and the
Lipschitz scale, with these scales changing proportionately. This is analogous to multiplying a
function by a constant k: the Lipschitz constant will increase by a factor of k, but the gap between
the outputs will also increase by the same factor, thus leaving the certified robustness unchanged.

Eq. (18) provides the maximum gradient norm (Lipschitz constant) in the logit space. One can already
use Eq. (18) to perform certified robustness in the logit space, which is precisely what we did in
our experiments. However, since our diffusion classifier is defined by the class probabilities rather
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than the logits, to ensure consistency with our main text, we will derive the Lipschitz constant of the
diffusion classifier in the class probabilities space in the following.

Let’s define one-hot vector ei in Rn to be the vector where the i-th element is 1 and all other elements
are 0. Hinton et al. [10] proves that ∂

∂x log softmax(x/β)y = 1
β (ey − softmax(x/β)), where β is

the softmax temperature. Consequently,

∂

∂x
softmax(x/β)y =

(
∂

∂x
log softmax(x/β)y

)
softmax(x/β)y

= (ey − softmax(x/β))
softmax(x/β)y

β
.

We can derive the maximum ℓ2 norm of the gradient as

∥ ∂

∂x0
p(y|x0)∥2

=∥ ∂

∂x0
softmax(f(x))y∥2

=∥
K∑

y=1

∂softmax(f(x))y

∂(− 1
DT

∑T
t=1 Eϵ [wt∥hθ(xt, t, y)− x0∥22])

∂(− 1
DT

∑T
t=1 Eϵ

[
wt∥hθ(xt, t, y)− x0∥22

]
)

∂x0
∥2

≤
K∑

y=1

∥ ∂softmax(f(x))y

∂(− 1
DT

∑T
t=1 Eϵ [wt∥hθ(xt, t, y)− x0∥22])

∥2∥
∂(− 1

DT

∑T
t=1 Eϵ

[
wt∥hθ(xt, t, y)− x0∥22

]
)

∂x0
∥2

≤ 1

2
√
2

T∑
i=1

wi

σiT
(

√
2

π
+

2√
D
).

The last step is get by using Lemma A.2 for the first term and Eq. (18) for the second term. Denote u
as a unit vector, the Lipschitz constant of the diffusion classifier p(y|x) is

max
u

u⊤ ∂

∂x
p(y|x) = max

u
∥u⊤ ∂

∂x
p(y|x)∥2 = ∥ ∂

∂x
p(y|x)∥2 =

1

2
√
2

T∑
i=1

wi

σiT
(

√
2

π
+

2√
D
)

(19)
It is important to note that this represents the upper bound of the Lipschitz constant for the diffusion
classifier. In practical scenarios, the actual Lipschitz constant is much smaller, due to the conservative
nature of the inequalities used in the derivation. To gain an intuitive understanding of the practical
Lipschitz constant for diffusion classifiers, we measure the gradient norm of the classifier on clean
and noisy data. Furthermore, employing the algorithm from Chen et al. [4], we empirically determine
the maximum gradient norm. Our results on the CIFAR-10 test set indicate that the gradient norm is
less than 0.02, suggesting that the Lipschitz constant for our diffusion classifier is smaller than 0.02
on this dataset.

A.3 Stronger Randomized Smoothing When f Possess Lipschitzness

In this section, we will show that if f has a smaller Lipschitz constant, it will induce a more smoothed
function g, thus has a higher certified robustness. Here we discuss a simple case: the weak law of
randomized smoothing proposed in Salman et al. [38] with σ = 1. We complement the derivation of
this law with much more details, and we hope our detailed explanation could assist newcomers in the
field in quickly grasping the key concepts in randomized smoothing.

To derive the Lipschitz constant of the smoothed function g, we only need to derive the maximum
dot product between the gradient of g and a unit vector u for the worst f .

max
f

u⊤∇xg(x) = max
f

u⊤∇xEϵ[f(x+ ϵ)]

= max
f

u⊤∇x

∫
p(ϵ)f(x+ ϵ)dϵ

= max
f

u⊤∇x
1

(2π)n/2

∫
exp (−∥ϵ∥22

2
)f(x+ ϵ)dϵ
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= max
f

u⊤∇x
1

(2π)n/2

∫
exp (−∥t− x∥22

2
)f(t)dt

= max
f

u⊤ 1

(2π)n/2

∫
exp (−∥t− x∥22

2
)(t− x)f(t)dt

= max
f

u⊤ 1

(2π)n/2

∫
exp (−∥t− x∥22

2
)(t− x)f(t− x)dt

= max
f

1

(2π)n/2

∫
exp (−∥t− x∥22

2
)[u⊤(t− x)]f(t− x)dt

In the next step, we transition to another orthogonal coordinate system, denoted as u,u2, · · · ,uD.
This change is made with the assurance that the determinant of the Jacobian matrix, representing the
transformation from the old coordinates to the new ones, equals 1. We then decompose the vector
t− x in the new coordinate system as follows:

t− x = a1u+ a2u2 + a3u3 + · · ·+ aDuD.

Therefore,

max
f

1

(2π)n/2

∫
exp (−∥t− x∥22

2
)[u⊤(t− x)]f(t− x)dt

=max
f

1

(2π)n/2

∫
exp (−∥a1u+ a2u2 + a3u3 + · · ·+ aDuD∥22

2
)a1f(a)da

=max
f

1

(2π)n/2

∫
exp (−a21 + a22 + a23 + · · ·+ a2D

2
)a1f(a)da

=max
f

1

(2π)n/2

∫ ∞

−∞
exp (−a21

2
)a1

∫ ∞

−∞
exp (−a22

2
) · · ·

∫ ∞

−∞
exp (−a2D

2
)f(a)da1da2 · · · daD

≤max
f

1

(2π)n/2

∫ ∞

−∞
exp (−a21

2
)a1f(a1)da1

∫ ∞

−∞
exp (−a22

2
)da2 · · ·

∫ ∞

−∞
exp (−a2D

2
)daD

=max
f

1

(2π)1/2

∫ ∞

−∞
exp (−a21

2
)a1f(a1)da1

≤max
f

1

(2π)1/2

∫ ∞

0

exp (−s2

2
)sds.

We could get easily the result by change of variable:

1

(2π)1/2

∫ ∞

0

exp (−s2

2
)sds =

1

(2π)1/2
(− exp (−s2

2
))|+∞

0 =
1√
2π

.

The classifier will robustly classify the input data as long as the probability of classify the noisy data
as the correct class is greater than the probability of classifying the noisy data as the wrong class. If
one estimate a lower bound pA of the accuracy of the correct class over noisy sample and a upper
bound pB of the probability of classify the noisy input as wrong class using the Clopper-Pearson
interval, we could get the robust radius by

R =

√
π

2
(pA − pB),

which will ensure that for any ∥δ∥2 ≤ R and any wrong class ŷ ̸= y:

g(x+ δ)y = P (f(x+ δ + ϵ) = y) > g(x+ δ)ŷ = P (f(x+ δ + ϵ) = ŷ).

Hence, g(x) will robustly classify the input data.

When f satisfies the Lipschitz condition with Lipschitz constant L, since it is impossible to be one
when x > 0 and zero when x ≤ 0, the inequality here can be tighter, so we can get a smaller Lipschitz
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constant. In fact, in this case, the maximum Lipschitz constant of g is:

max
f

1√
2π

∫ +∞

−∞
exp(−s2/2)sf(s)ds

s.t., 0 ≤ f(s) ≤ 1, f(s) is L-lipschitz

However, obtaining an analytical solution for the certified radius when f adheres to Lipschitz
continuity appears infeasible. To understand why, consider the following: firstly, f should approach
zero as x tends toward negative infinity and one as x tends toward positive infinity. Secondly, f must
be an increasing function, with only one interval of increase. Additionally, within this interval, f is
either zero or one outside the bounds of increase, and it must take a linear form within, with a slope
of 1

L . We define the left endpoint of this increasing interval as a, which necessarily lies in the range
[− 1

L , 0]. Also notice that both a = − 1
L and a = 0 yield the same certified radius. However, when

a ∈ (− 1
L , 0), the certified radius must be smaller. To see why, let’s consider

fa(s) =


0, s ≤ a

L(s− a), a ≤ s ≤ a+
1

L

1, s ≥ a+
1

L

, with special case f0(s) =


0, s ≤ 0

Ls, 0 ≤ s ≤ 1

L

1, s ≥ 1

L

.

Denote f̂a(x) =
1√
2π

exp(−x2/2)xfa(x). The difference of Lipschitz constant between two ran-
domized function is∫ +∞

−∞
[f̂0(s)− f̂a(s)]ds =

∫ 0

a

[f̂0(s)− f̂a(s)] +

∫ −a

0

[f̂0(s)− f̂a(s)] +

∫ 1/L

−a

[f̂0(s)− f̂a(s)]

=

∫ −a

0

[−aL− f̂a(s)] +

∫ 1/L

−a

[f̂0(s)− f̂a(s)] ≤ 0

Consequently, the corner case for a must lie within the open interval (−1/L, 0). However, the
corresponding integral lacks an analytical solution, and taking the derivative of it results in a function
whose zero points are indeterminable. Therefore, obtaining an analytical solution for the improvement
in certified robustness when a function exhibits Lipschitz continuity is challenging. Nevertheless, we
can approximate the result with numerical algorithms, and it is evident that this Lipschitzness leads
to a non-trivial enhancement in certified robustness of randomized smoothing.

A.4 ELBO for Noisy Data in EPNDC

Similar to Ho et al. [11], we derive the ELBO as

log p(xτ ) = log

∫
p(xτ :T )q(xτ+1:T |xτ )

q(xτ+1:T |xτ )
dxτ+1:T

= logEq(xτ+1:T |xτ )[
p(xτ :T )

q(xτ+1:T |xτ )
]

= logEq(xτ+1:T |xτ )[
p(xT )p(xτ :T−1|xT )

q(xτ+1:T |xτ )
]

≥ Eq(xτ+1:T |xτ )[log
p(xT )p(xτ :T−1|xT )

q(xτ+1:T |xτ )
]

= Eq(xτ+1:T |xτ )[log
p(xT )

∏T−1
t=τ p(xt|xt+1)∏T−1

t=τ q(xt+1|xt,xτ )
]

= Eq(xτ+1:T |xτ )[log
p(xT )

∏T−1
t=τ p(xt|xt+1)∏T−1

t=τ
q(xt+1|xτ )q(xt|xt+1,xτ )

q(xt|xτ )

]

= Eq(xτ+1:T |xτ )[log
p(xT )

∏T−1
t=τ p(xt|xt+1)∏T−1

t=τ q(xt|xt+1,xτ )
− log

T−1∏
t=τ

q(xt+1|xτ )

q(xt|xτ )
]
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= Eq(xτ+1:T |xτ )[log
p(xT )

∏T−1
t=τ p(xt|xt+1)∏T−1

t=τ q(xt|xt+1,xτ )
− log

q(xT |xτ )

q(xτ |xτ )
]

= Eq(xτ+1:T |xτ )[log

∏T−1
t=τ p(xt|xt+1)∏T−1

t=τ q(xt|xt+1,xτ )
− log

q(xT |xτ )

p(xT )
]

= Eq(xτ+1:T |xτ )[log

∏T−1
t=τ p(xt|xt+1)∏T−1

t=τ q(xt|xt+1,xτ )
]− Eq(xT |xτ )[DKL(q(xT |xτ )||p(xT ))]

=

T−1∑
t=τ

Eq(xt,xt+1|xτ )[log
p(xt|xt+1)

q(xt|xt+1,xτ )
]− Eq(xT |xτ )[DKL(q(xT |xτ )||p(xT ))]

=

T−1∑
t=τ

Eq(xt+1|xτ ),q(xt|xt+1,xτ )[log
p(xt|xt+1)

q(xt|xt+1,xτ )
]− Eq(xT |xτ )[DKL(q(xT |xτ )||p(xT ))]

= log p(xτ |xτ+1)−
T−1∑

t=τ+1

Eq(xt+1|xτ )[DKL(q(xt|xt+1,xτ )||p(xt|xt+1))]

− Eq(xT |xτ )[DKL(q(xT |xτ )||p(xT ))]

= −
T−1∑

t=τ+1

Eq(xt+1|xτ )[DKL(q(xt|xt+1,xτ )||p(xt|xt+1))] + C

This could be understood as a generalization of the ELBO in Ho et al. [11], which is a special case
when τ = 0. Notice that the summation of KL divergence in ELBO of log p(xτ ) start from τ + 1
and end at T , while that of log p(x0) start from 1. Besides, the posterior is q(xt|xt+1,xτ ) instead of
q(xt|xt+1,x0).

Similarly, the conditional ELBO is give by:
log p(xτ |y) ≥ log p(xτ |xτ+1, y)− Eq(xT |xτ )[DKL(q(xT |xτ )||p(xT ))]

−
T−1∑

t=τ+1

Eq(xt+1|xτ )[DKL(q(xt|xt+1,xτ , y)||p(xt|xt+1, y))]

= −
T−1∑

t=τ+1

Eq(xt+1|xτ )[DKL(q(xt|xt+1,xτ , y)||p(xt|xt+1, y))] + C5.

This is equivalent to adding the condition y to all posterior distributions in the unconditional ELBO.

A.5 The Analytical Form of the KL Divergence in ELBO

The KL divergence in Theorem 3.2 is the expectation of the log ratio between posterior and predicted
reverse distribution, which requires integrating over the entire space. To compute this KL divergence
more efficiently, we derives its analytical form:

q(xt|xt+1,xτ ) =
q(xt|xτ )q(xt+1|xt)

q(xt+1|xτ )

=
N (xt|xτ , (σ

2
t − σ2

τ )I)N (xt+1|xt, (σ
2
t+1 − σ2

t )I)

N (xt+1|xτ , (σ2
t+1 − σ2

τ )I)

=

1
(2π(σ2

t−σ2
τ ))

n/2 exp(
∥xt−xτ∥2

−2(σ2
t−σ2

τ )
) 1
(2π(σ2

t+1−σ2
t ))

n/2 exp(
∥xt+1−xt∥2

−2(σ2
t+1−σ2

t )
)

1
(2π(σ2

t+1−σ2
τ ))

n/2 exp(
∥xt+1−xτ∥2

−2(σ2
t+1−σ2

τ )
)

.

Since the likelihood distribution q(xt+1|xt) and the prior distribution q(xt|xτ ) are both Gaussian
distribution, the posterior q(xt|xt+1,xτ ) is also a Gaussian distribution. Therefore, we only need to
derive the expectation and the covariance matrix. In the following, instead of derive the q(xt|xt+1,xτ )
using equations, we use some trick to simplify the derivation:
q(xt|xt+1,xτ )
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∝ exp(
∥xt − xτ∥2

−2(σ2
t − σ2

τ )
+

∥xt+1 − xt∥2

−2(σ2
t+1 − σ2

t )
− ∥xt+1 − xτ∥2

−2(σ2
t+1 − σ2

τ )
)

= exp(−1

2

[
∥xt − xτ∥2

(σ2
t − σ2

τ )
+

∥xt+1 − xt∥2

(σ2
t+1 − σ2

t )
− ∥xt+1 − xτ∥2

(σ2
t+1 − σ2

τ )

]
)

= exp(−1

2

[
∥xt∥2 − 2xT

t xτ

(σ2
t − σ2

τ )
+

∥xt∥2 − 2xT
t+1xt

(σ2
t+1 − σ2

t )
+ C(xt+1,xτ )

]
)

= exp(−1

2

[
∥xt∥2

(σ2
t − σ2

τ )
− 2xT

t xτ

(σ2
t − σ2

τ )
+

∥xt∥2

(σ2
t+1 − σ2

t )
−

2xT
t+1xt

(σ2
t+1 − σ2

t )
+ C(xt+1,xτ )

]
)

= exp(−1

2

[
(

1

(σ2
t − σ2

τ )
+

1

(σ2
t+1 − σ2

t )
)∥xt∥2 − 2(

xT
τ

(σ2
t − σ2

τ )
+

xT
t+1

(σ2
t+1 − σ2

t )
)xt + C(xt+1,xτ )

]
)

= exp(−1

2

[
(σ2

t − σ2
τ ) + (σ2

t+1 − σ2
t )

(σ2
t − σ2

τ )(σ
2
t+1 − σ2

t )
∥xt∥2 − 2(

xT
τ

(σ2
t − σ2

τ )
+

xT
t+1

(σ2
t+1 − σ2

t )
)xt + C(xt+1,xτ )

]
)

= exp(−1

2

[
σ2
t+1 − σ2

τ

(σ2
t − σ2

τ )(σ
2
t+1 − σ2

t )
∥xt∥2 − 2(

xT
τ

(σ2
t − σ2

τ )
+

xT
t+1

(σ2
t+1 − σ2

t )
)xt + C(xt+1,xτ )

]
)

= exp(−1

2

 σ2
t+1 − σ2

τ

(σ2
t − σ2

τ )(σ
2
t+1 − σ2

t )

∥xt∥2 − 2

xT
τ

(σ2
t−σ2

τ )
+

xT
t+1

(σ2
t+1−σ2

t )

σ2
t+1−σ2

τ

(σ2
t−σ2

τ )(σ
2
t+1−σ2

t )

xt

+ C(xt+1,xτ )

)
= exp(−1

2

[
σ2
t+1 − σ2

τ

(σ2
t − σ2

τ )(σ
2
t+1 − σ2

t )

(
∥xt∥2 − 2

(σ2
t+1 − σ2

t )x
T
τ + (σ2

t − σ2
τ )x

T
t+1

σ2
t+1 − σ2

τ

xt

)
+ C(xt+1,xτ )

]
)

= exp(− 1

2
(σ2

t−σ2
τ )(σ

2
t+1−σ2

t )

σ2
t+1−σ2

τ

[(
xt −

(σ2
t+1 − σ2

t )xτ + (σ2
t − σ2

τ )xt+1

σ2
t+1 − σ2

τ

)2

+ C(xt+1,xτ )

]
)

∝ N (xt;
(σ2

t+1 − σ2
t )xτ + (σ2

t − σ2
τ )xt+1

σ2
t+1 − σ2

τ

,
(σ2

t − σ2
τ )(σ

2
t+1 − σ2

t )

σ2
t+1 − σ2

τ

I).

The KL divergence between the posterior and predicted reverse distribution is

DKL(q(xt|xt+1,xτ )∥pθ(xt|xt+1))

=DKL(N (xt;
(σ2

t+1 − σ2
t )xτ + (σ2

t − σ2
τ )xt+1

σ2
t+1 − σ2

τ

,
(σ2

t − σ2
τ )(σ

2
t+1 − σ2

t )

σ2
t+1 − σ2

τ

I)∥

N (xt;
(σ2

t+1 − σ2
t )h(xt+1, σt+1) + σ2

t xt+1

σ2
t+1

, σ̃2
t I))

=
1

2
(σ2

t−σ2
τ )(σ

2
t+1−σ2

t )

σ2
t+1−σ2

τ

∥Eq(xt|xt+1,xτ )[xt]− Ep(xt|xt+1)[xt]∥2 + C2

=
σ2
t+1 − σ2

τ

2(σ2
t − σ2

τ )(σ
2
t+1 − σ2

t )
∥Eq(xt|xt+1,xτ )[xt]− Ep(xt|xt+1)[xt]∥2 + C2.

When τ = 0, the result degrade to:

q(xt|xt+1,x0) = N (xt;
(σ2

t+1 − σ2
t )x0 + σ2

t xt+1

σ2
t+1

,
σ2
t (σ

2
t+1 − σ2

t )

σ2
t+1

I).

When dσt := σt+1−σt → 0, the KL divergence between posterior and model prediction is simplified
by:

lim
dσt→0

DKL(q(xt|xt+1,x0)∥pθ(xt|xt+1))

= lim
dσt→0

DKL(N (xt;
(σ2

t+1 − σ2
t )x0 + σ2

t xt+1

σ2
t+1

,
σ2
t (σ

2
t+1 − σ2

t )

σ2
t+1

I)∥

20



N (xt;
(σ2

t+1 − σ2
t )h(xt+1, σt+1) + σ2

t xt+1

σ2
t+1

, σ̃t))

= lim
dσt→0

1

2
σ2
t (σ

2
t+1−σ2

t )

σ2
t+1

∥
(σ2

t+1 − σ2
t )x0

σ2
t+1

−
(σ2

t+1 − σ2
t )h(xt+1, σt+1)

σ2
t+1

∥2

= lim
dσt→0

(σ2
t+1 − σ2

t )
2

2
σ2
t (σ

2
t+1−σ2

t )

σ2
t+1

σ4
t+1

∥x0 − h(xt+1, σt+1)∥2

= lim
dσt→0

(σ2
t+1 − σ2

t )

2
σ2
t

σ2
t+1

σ4
t+1

∥x0 − h(xt+1, σt+1)∥2

= lim
dσt→0

(σ2
t+1 − σ2

t )

2σ4
t+1

∥x0 − h(xt+1, σt+1)∥2

=
dσt

σ3
t+1

∥x0 − h(xt+1, σt+1)∥2

=w(i)∥x0 − h(xt+1, σt+1)∥2,
which is consistent to the results in Kingma et al. [17] and Karras et al. [16].

A.6 Deriving the Weight in EPNDC

If we interpret the shift in weight from σt+1−σt

σt+1
to σ2

t+σ2
d

σ2
tσ

2
d

1√
2πkσ

exp(−∥ log σt−kµ∥2

2k2
σ

) as a reweighting

of DKL(q(xt|xt+1,x0)∥pθ(xt|xt+1)) by ŵt

wt
, a similar methodology can be applied to derive the

weight for DKL(q(xt|xt+1,xτ )∥pθ(xt|xt+1)):

lim
dσt→0

ŵt

wt
DKL(q(xt|xt+1,xτ )∥pθ(xt|xt+1))

= lim
dσt→0

ŵt

wt

1

2
(σ2

t−σ2
τ )(σ

2
t+1−σ2

t )

σ2
t+1−σ2

τ

∥Eq(xt|xt+1,xτ )[xt]− Ep(xt|xt+1)[xt]∥22

= lim
dσt→0

ŵt

dσt

σ3
t+1

1

2
(σ2

t−σ2
τ )(2σtdσt)

σ2
t+1−σ2

τ

∥Eq(xt|xt+1,xτ )[xt]− Ep(xt|xt+1)[xt]∥22

= lim
dσt→0

ŵt

(dσt)2

σ2
t+1

1

4
(σ2

t−σ2
τ )

σ2
t+1−σ2

τ

∥Eq(xt|xt+1,xτ )[xt]− Ep(xt|xt+1)[xt]∥22

= lim
dσt→0

ŵtσ
2
t+1(σ

2
t+1 − σ2

τ )

4(σ2
t − σ2

τ )(dσt)2
∥Eq(xt|xt+1,xτ )[xt]− Ep(xt|xt+1)[xt]∥22

= lim
dσt→0

σ2
t + σ2

d

σ2
t σ

2
d

1√
2πkσ

exp(−∥ log σt − kµ∥2

2k2σ
)
σ2
t+1(σ

2
t+1 − σ2

τ )

4(σ2
t − σ2

τ )(dσt)2

· ∥Eq(xt|xt+1,xτ )[xt]− Ep(xt|xt+1)[xt]∥22

= lim
dσt→0

σ2
t + σ2

d

σ2
d

1√
2πkσ

exp(−∥ log σt − kµ∥2

2k2σ
)

σ2
t+1 − σ2

τ

4(σ2
t − σ2

τ )(σt+1 − σt)2

· ∥Eq(xt|xt+1,xτ )[xt]− Ep(xt|xt+1)[xt]∥22

We compare different weights in EPNDC. As demonstrated in Table 3, these weights are not as
effective as the derived weight. Interestingly, simply setting the weight to zero when the standard
deviation falls below a certain threshold significantly boosts the performance of the derived weight.
This suggests that the latter part of the derived weight might be close to the optimal weight. We
observe a similar phenomenon with the final weight we use, suggesting that the current weight might
not be optimal. We defer the investigation into how to find the optimal weight, what constitutes this
optimal weight, and why it is considered optimal to future work.
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Table 3: The accuracy of EPNDC using the EDM checkpoint [16] on CIFAR-10 test set with various
weight when σ = 0.25. Result are tested on the same subset with 512 images as we clarified in
Sec. 4.1.

Weight Name Weight Accuracy(%)

Normalized Weight 1
∥Eq(xt|xt+1,xτ )[xt]−Ep(xt|xt+1)[xt]∥2

2
81.6

Derived Weight wt 67.5
Truncated Derived Weight wt · I{σt > 1} 82.8
Linear Weight wT−w0

σt−σ0
+ w0 43.8

Truncated Linear Weight (wT−w0

σt−σ0
+ w0) · I{σt > 0.5} 77.0

We also attempt to learn an optimal weight for our EPNDC. However, the learning process is difficult
due to the high variance of ∥Eq(xt|xt+1,xτ )[xt]−Ep(xt|xt+1)[xt]∥22. Attempts to simplify the learning
process through cubic spline interpolation for reducing the number of learned parameters are also
time-consuming. Our work primarily focuses on robust classification of input data using a single
off-the-shelf diffusion model. Therefore, we leave the exploration of this aspect for future research.

A.7 ELBO for Noisy Data in APNDC

In this section, we show that APNDC is actually use the expectation of the ELBOs calculated from
samples that are first denoised from the input and then have noise added back. In other word, APNDC
approximate log p(x̂τ ) by the lower bound of Ep(x0|x̂τ )Eq(xτ |x0)[log pτ (xτ )].

We first derive the lower bound for Eq(xt|x0)[log pτ (xτ )]. The derivation of this lower bound is just
the discrete case of the proof in Kingma and Gao [18]. We include it here only for completeness.

Eq(xτ |x0)[log pτ (xτ )]

=

∫
q(xτ |x0)

log q(xτ |x0) log pτ (xτ )

log q(xτ |x0)

=Eq(xτ |x0)[log q(xτ |x0)]−DKL(q(xτ |x0)∥pτ (xτ ))

≥Eq(xτ |x0)[log q(xτ |x0)]−DKL(q(xτ :T |x0)∥p(xτ :T ))

=Eq(xτ |x0)[log q(xτ |x0)]−
T−1∑
t=τ

[DKL(q(xt:T |x0)∥p(xt:T ))

−DKL(q(xt+1:T |x0)∥p(xt+1:T ))] +DKL(q(xT |x0)∥p(xT ))

=C4 −
T−1∑
t=τ

[DKL(q(xt:T |x0)∥p(xt:T ))−DKL(q(xt+1:T |x0)∥p(xt+1:T ))]

=C4 −
T−1∑
t=τ

DKL(q(xt|xt+1,x0)∥p(xt|xt+1))

=C4 −
T−1∑

t=τ+1

wτExt∼q(xt|x0)[∥hθ(xt, σt)− x∥22].

Given a input image xτ , we use the ELBOs of Eq(x̂τ |x0=hθ(xτ ,στ ))[log pτ (x̂τ )], rather than its own
ELBO, to approximate its log likelihood:

log p(xτ ) ≈ Eq(x̂τ |x0=hθ(xτ ,στ ))[log pτ (x̂τ )] ≥ C4 −
T−1∑

t=τ+1

wtExt∼q(xt|x0)[∥hθ(xt, σt)− x∥22].

Hence, APNDC is actually use the expectation of the ELBOs calculated from samples that are first
denoised from the input and then have noise added back.
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Algorithm 3 Linear to EDM
1: Require: A pre-trained EDM hθ, a noisy input image xt, noise level t, linear schedule {αi}Ti=1

and {σi}Ti=1.

2: Calculate the denoised image x0 using hθ: x0 = hθ

(
xt

αt
, σt

αt

)
3: if performing x0-prediction then
4: Return: x0.
5: end if
6: Calculate the noise component ϵ: ϵ = xt−αtx0

σt

7: if performing ϵ-prediction then
8: Return: ϵ.
9: end if

Algorithm 4 EDM to Linear
1: Require: A pre-trained predictor hθ, a noisy input image xt, noise level σ, linear schedule

{αi}Ti=1 and {σi}Ti=1.
2: Calculate t = argmint | σt

αt
− σ|;

3: if performing ϵ-prediction then
4: Predict ϵ = ϵ(αtxt, t)
5: Calculate x0 = xt − σ · ϵ
6: end if
7: if performing x0-prediction then
8: Predict x0 = ϵ(αtxt, t)
9: end if

10: Return: x0.

A.8 Converting Other Diffusion Models into Our Definition.

In this paper, we introduce a new definition for diffusion models, specifically as the discrete version
of Karras et al. [16]. This definition encompasses various diffusions, including VE-SDE, VP-SDE,
and methods like x-prediction, v-prediction, and epsilon-prediction, transforming their differences
into the difference of parametrization in hθ(·, ·), makes theoretical analysis extremely convenient.
This operation also decouple the training of diffusion models and the sampling of diffusion models,
i.e., any diffusion model could use any sampling algorithm. To better demonstrate this transformation,
we present the pseudocodes.

Linearly adding noise diffusion models. These kind of diffusion models define the forward process
as a linear interpolation between the clean image and Gaussian noise, i.e., xt = αtx0 + σtϵ. It could
be transformed as:

xt in EDM︷︸︸︷
xt

αt
= x0 +

σt in EDM︷︸︸︷
σt

αt
ϵ.

Hence, we could directly pass xt

αt
and σt

αt
to an EDM model to get the predicted x0, as shown in

Algorithm 4.

DDPM. DDPM define a sequence {βt}Tt=0 and xt =
√∏t

i=0(1− βi)x0 +
√

1−
∏t

i=0(1− βi)ϵ,
which could be seen as a special case of Linear diffusion models.

VP-SDE. VP-SDE is the continuous case of DDPM, which define a stochastic differential equa-
tion (SDE) as

dXt = −1

2
β(t)Xtdt+

√
β(t)dWt, t ∈ [0, 1],

where β(t) = βt·T · T . Consequently, we could also use an EDM model to solve the reverse VP-SDE

by predicting x0 = hθ(
xt√

exp (−
∫ t
0
β(s)ds)

,

√
1−exp (−

∫ t
0
β(s)ds)

exp (−
∫ t
0
β(s)ds)

).
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VE-SDE. The forward process of VE-SDE is defined as

dXt =

√
dσ(t)2

dt
dWt.

EDM is a special case of VE-SDE, where σ(t) = t. For a xt in VE-SDE, the variance of the noise is
σ(t). Hence, we could directly use hθ(xt, σ(t)) to get the predicted x0.

B Experimental Details

B.1 Certified Robustness Details

We adhere to the certified robustness pipeline established by Cohen et al. [6], yet our method
potentially offers a tighter certified bound, as demonstrated in Appendix A.3. To prevent confusion
regarding our hyper-parameters and those in Cohen et al. [6], we clarify these hyper-parameters as
follows:

ϵ = maximum allowed ℓ2 perturbation of the input
N = number of samples used in binomial test to estimate the lower bound pA

σ = std. of Gaussian noise data augmentation during training and certification
T = number of diffusion timesteps

T ′ = number of diffusion timesteps we selected to calculate/(estimate) evidence lower bounds
α = Type one error for estimating the lower bound pA.

To ensure a fair comparison, we follow previous work and do not estimate pB , instead directly setting
pB = 1 − pA. This approach results in a considerably lower certified robustness, especially for
ImageNet. Therefore, it is possible that the actual certified robustness of diffusion classifiers might
be significantly higher than the results we present.

There are multiple ways to reduce the number of timesteps selected to estimate the evidence lower
bounds (e.g., uniformly, selecting the first T ′ timesteps). Chen et al. [3] demonstrate that these
strategies achieve similar results. In this work, we just adopt the simplest strategy, i.e., uniformly
select T ′ timesteps.

B.2 ImageNet Baselines

We compare our methods with training-based methods as outlined in Cohen et al. [6], Salman
et al. [38], Jeong and Shin [13], Zhai et al. [50], and with diffusion-based purification methods in
Carlini et al. [2], Xiao et al. [47]. Since none of these studies provide code for ImageNet64x64, we
retrain ResNet-50 using these methods and certify it via randomized smoothing. For training-based
methods, we utilize the implementation by Jeong and Shin [13]2 with their default hyper-parameters
for ImageNet. For diffusion-based purification methods, we first resize the input images to 64x64,
then resize them back to 256x256, and feed them into the subsequent classifiers. This process ensures
a fair comparison with our method.

B.3 Ablation Studies of Diffusion Models

In the ImageNet dataset, we employ the same diffusion models as our baseline studies, Carlini et al.
[2] and Xiao et al. [47]. For the CIFAR-10 dataset, however, we opt for a 55M diffusion model from
Karras et al. [16], as its parameterization aligns more closely with our definition of diffusion models.
In contrast, Carlini et al. [2] utilizes a 50M diffusion model from Nichol and Dhariwal [33]. When
we replicate the study by Carlini et al. [2] using the model from Karras et al. [16] and a WRN-70-2
[49], we achieve certified robustness of 76.56%, 59.76%, and 41.01% for radii 0.25, 0.5, and 0.75,
respectively, which is nearly identical to their results shown in Table 1. This finding suggests that the
choice of diffusion models does not significantly impact certified robustness.

We choose the discrete version of the diffusion model from Karras et al. [16] as our definition
because it is the simplest version for deriving the ELBOs in this paper. For more details, please see
Appendix A.8.

2https://github.com/jh-jeong/smoothing-consistency
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Name Properties

DC

ELBO: log p(x0|y) ≥ −
∑T

t=1 E
[
wt∥hθ(xt, σt, y)− x0∥22

]
+ C

Diffusion Classifier: DC(x)y =
exp(−

∑T
t=1 E[wt∥hθ(xt,σt,y)−x0∥22])∑

ŷ exp (−
∑T

t=1 E[wt∥hθ(xt,σt,ŷ)−x0∥22])

Smoothed Classifier: gDC(x) = DC(x)

Certified Robustness: R =
√

2T (pA−pB)

(2/
√
D+

√
2/π)

∑T
i=1 wi/σi

EPNDC

ELBO: log p(xt|y) ≥ −
∑T

i=t wiE[∥E[q(xi|xi+1, xt)]− E[p(xi|xi+1, y)]∥2] + C2

Diffusion Classifier: EPNDC(xt)y =
exp(−

∑T
i=t wiE[∥E[q(xi|xi+1,xt)]−E[p(xi|xi+1,y)]∥2])∑

ŷ exp (−
∑T

i=t wiE[∥E[q(xi|xi+1,xt)]−E[p(xi|xi+1,ŷ)]∥2])

Smoothed Classifier: gEPNDC(x)y = Pϵ∼N (0,I)(argmaxŷ EPNDC(x0 + σ · ϵ)ŷ = y)

Certified Robustness: R = σ
2

(
Φ−1(pA)− Φ−1(pB)

)

APNDC

ELBO: Eq(x̂t|x0),x0=h(xt,σt)[log p(xt|y)] ≥ −
∑T

i=t E
[
wi∥hθ(xi, σi, y)− x0∥22

]
+ C3

Diffusion Classifier: APNDC(xt)y =
exp(−

∑T
i=t E[wi∥hθ(xi,σi,y)−hθ(xt,σt)∥22])∑

ŷ exp (−
∑T

i=t E[wi∥hθ(xi,σi,ŷ)−hθ(xt,σt)∥22])

Smoothed Classifier: gAPNDC(x)y = Pϵ∼N (0,I)(argmaxŷ APNDC(x0 + σ · ϵ)ŷ = y)

Certified Robustness: R = σ
2

(
Φ−1(pA)− Φ−1(pB)

)
Table 4: An illustration of the relationship between different ELBOs, likelihood, classifiers, and
certified robustness.

B.4 Ablation Studies on Time Complexity Reduction Techniques

Variance reduction proves beneficial. As illustrated in Figure 2(a), our variance reduction technique
enables a significant reduction in time complexity while maintaining high clean accuracy. Regarding
certified robustness, Table 1 shows that a tenfold reduction in time complexity results in only a minor,
approximately 3%, decrease in certified robustness across all radii. Notably, with T ′ = 100, our
method still attains state-of-the-art clean accuracy and certified robustness for ϵ = 0.25, 0.5, 0.75
while only cost one-fourth of the NFEs in Xiao et al. [47]. This underscores the effectiveness of our
variance reduction approach.

Sift-and-refine proves beneficial. Our method’s requirement for function evaluations (NFEs) is
proportional to the number of classes, which limits its scalability in datasets with a large number
of candidate classes. For instance, in the ImageNet dataset, without the Sift-and-refine algorithm,
our method necessitates approximately 108 NFEs per image (i.e., 100 · 1000 · 1000), translating to
about 3× 106 seconds for certifying each image on a single 3090 GPU. In contrast, Xiao et al. [47]’s
method requires about 4× 106 NFEs (i.e., 40 · 10 · 10000), or roughly 3× 105 seconds. Our proposed
Sift-and-refine technique, however, can swiftly identify the most likely candidates, thereby reducing
the time complexity. It adjusts the processing time based on the difficulty of the input samples. With
this technique, our method requires only about 1× 105 seconds per image, making it more efficient
compared to Xiao et al. [47].

C Discussions

C.1 ELBO, Likelihood, Classifier and Certified Robustness

As demonstrated in Figure 1 and Table 4, the basic idea of all these diffusion classifiers is to
approximate the log likelihood by ELBO and calculate the classification probability via Bayes’
theorem. All these classifiers possess non-trivial robustness, but certified lower bounds vary in
tightness.
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Table 5: The accuracy of diffusion classifier [3] using the EDM checkpoint [16] on CIFAR-10 test set
with various weight. Result are tested on the same subset with 512 images as in Chen et al. [3].

Weight Name ŵt Accuracy (%)

EDM σ2
t+σ2

d

σ2
t σ

2
d

1√
2πkσ

exp(− ∥ log σt−kµ∥2

2k2
σ

) 94.92

Uniform 1 85.76
DDPM 1

σt
90.23

EDM-W σ2
t+σ2

d

σ2
t σ

2
d

88.67

EDM-p(t) 1√
2πkσ

exp(− ∥ log σt−kµ∥2

2k2
σ

) 93.75

ELBO σt+1−σt

σ3
t

44.53

The diffusion classifier is intuitively considered the most robust, as it can process not only clean
images but also those corrupted by Gaussian noise. This means it can achieve high clean accuracy
by leveraging less noisy samples, while also enhancing robustness through more noisy samples
where adversarial perturbations are significantly masked by Gaussian noise. However, its certified
robustness is not as tight as desired. As explained in Appendix A.2, this is because we assume that the
maximum Lipschitz condition holds across the entire space, which is a relatively broad assumption,
resulting in a less stringent certified robustness.

EPNDC and APNDC utilize the Evidence Lower Bound (ELBO) of corrupted data log p(xτ ). This
implies that the least noisy examples they can process are at the noise level corresponding to τ . As
τ increases, the upper bound of certified robustness also rises, but this simultaneously diminishes
the classifiers’ ability to accurately categorize clean data. As highlighted in Chen et al. [3], this
mechanism proves less effective, particularly in datasets with a large number of classes but low
resolution. In such cases, the addition of even a small variance of Gaussian noise can render the
entire image unclassifiable.

Generally, the Diffusion Classifier is intuitively more robust than both EPNDC and APNDC. However,
obtaining a tight theoretical certified lower bound for the Diffusion Classifier proves more challenging
compared to EPNDC and APNDC. Therefore, we contend that in practical applications, the Diffusion
Classifier is preferable to both EPNDC and APNDC. Looking forward, we aim to derive a tighter
certified lower bound for the Diffusion Classifier in future research.

C.2 The Loss Weight in Diffusion Classifiers

Typically, when training diffusion models by Eq. (5), most researchers opt to use a re-designed weight
ŵt (e.g., ŵt = 1 in Ho et al. [11]), rather than the derived weight wt. When constructing diffusion
classifier from an off-the-shelf diffusion model, we find that maintaining consistency between the loss
weight in diffusion classifier and the training weight is crucial. As shown in Table 5, any inconsistency
in loss weight leads to a decrease in performance. Conversely, performance enhances when the
diffusion classifier’s weight closely aligns with the training weight. Surprisingly, the derived weight
(ELBO) yields the worst performance. Therefore, when τ = 0, we use the training weight ŵt rather
than the derived weight wt.

Similarly, when τ ̸= 0, the derived weight w(τ)
t also results in the worst performance among different

weight configurations, as detailed in Appendix C.2. However, determining the optimal weight in
this general case is a complex challenge. Directly replacing w

(τ)
t with the training weight ŵt is not

appropriate, as w(τ)
t ̸= wt. To address this issue, we propose an alternative: multiplying the weight

by ŵt

wt
(i.e., using ŵtw

(τ)
t

wt
as the weight for EPNDC). This method effectively acts as a substitution

of wt with ŵt when τ = 0. However, it is important to note that this approach is not optimal, and
deriving an optimal weight appears to be infeasible.

To enhance generative performance, most researchers opt not to use the derived weight wt for the
training loss ∥E[q(xt|xt+1,x0)]− E[p(xt|xt+1)]∥2. Instead, they employ a redesigned weight ŵt.
For example, Ho et al. [11] define ŵt =

1
σt

. Another approach involves sampling i from a specifically
designed distribution p(t), rather than a uniform distribution. This approach can be interpreted as
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adjusting the loss weight to ŵt = p(t), without altering the distribution of i:

Ex,t∼p(t)Ext [∥h(xt, σt)− x∥22]

=Ex

T∑
t=0

p(t)Ext
[∥h(xt, σt)− x∥22]

=Ex,tExt
[p(t)∥h(xτ , σt)− x∥22].

For example, Karras et al. [16] employ σ2
t+σ2

d

σ2
tσ

2
d

as the loss weight but modify p(t) to
1√

2πkσ
exp (−∥ log σt−kµ∥2

2k2
σ

), where σd, kσ, kµ are hyper-parameters. Thus, it is equivalent to setting

ŵt =
σ2
t+σ2

d

σ2
tσ

2
d

1√
2πkσ

exp (−∥ log σt−kµ∥2

2k2
σ

).

We discover that maintaining consistency in the loss weight used in diffusion classifiers and during
training is crucial. Take EDM as an example. As demonstrated in Table 5, if we fail to maintain the
consistency of the loss weight between training and testing, a significant performance drop occurs.
The closer the weight during testing is to the weight used during training, the better the performance.

Surprisingly, the derived weight (ELBO) yields the poorest performance, as indicated in Table 5.
This issue also occurs when calculating DKL(q(xt|xt+1,xt)||p(xt|xt+1)). The performance of
our derived weight is significantly inferior to both the uniform weight and the DDPM weight. For
DKL(q(xt|xt+1,x0)||p(xt|xt+1)), substituting the derived weight σt+1−σt

σ3
t

with the training weight
σ2
t+σ2

d

σ2
tσ

2
d

1√
2πkσ

exp(−∥ log σt−kµ∥2

2k2
σ

) is feasible. However, this substitution becomes problematic for

DKL(q(xt|xt+1,xτ )||p(xt|xt+1)), as there is no σt+1−σt

σ3
t

term, as outlined in Eq. (13). We propose
two alternative strategies: one interprets the shift from wt to ŵt as reweighting the KL divergence by
ŵt

wt
, requiring only the multiplication of ŵt

wt
to our derived weight. The other strategy involves using

the equation ŵt = wt to reduce the number of parameters. While these two interpretations yield iden-
tical results for DKL(q(xt|xt+1,x0)||p(xt|xt+1)), they differ for DKL(q(xt|xt+1,xτ )||p(xt|xt+1)).
Therefore, directly deriving an optimal weight appears infeasible. For detailed information, see
Appendix A.6.

C.3 Certified Robustness of Chen et al. [3].

In this section, our goal is to establish a certified lower bound of Chen et al. [3]. Specifically,
under the conditions where pA = 1 and pB = 0, the maximum certified radius is determined to
be approximately 0.39. This implies that the certified radius we derive could not surpass 0.39. In
practical applications, our method achieves an average certified radius of 0.0002.

Nevertheless, we can significantly enhance the certified radius by adjusting wt. For example, simply
set wt ≡ 1, we can get an average certified radius of 0.009, 34 times larger than previous one. By
reducing wt for smaller t and increasing it for larger t, such as zeroing the weight when σt ≤ 0.5, we
achieve an average radius of 0.156.

It is important to note that this finding does not imply that Chen et al. [3] lacks robustness in its
weight-adjusted version. As discussed in previous sections, the certified radius is merely a lower
bound of the actual robust radius, and a higher lower bound does not necessarily equate to a higher
actual robust radius. When wt is increased for larger t, obtaining a tighter certified radius will be
much easier, but the actual robust radius could intuitively decrease due to increased noise in the input
images.

C.4 Time Complexity Reduction Techniques that Do Not Help

Advanced Integration. In this work, we select T timesteps uniformly. As we discuss earlier, there
is a one-to-one mapping between σ and t in our context. When we change the variable to σ, this
can be seen as calculating the expectation using the Euler integral. We also try using more advanced
integration methods, like Gauss Quadrature, but only observe nuanced differences that there is no any
difference in clean accuracy and certified robustness, indicating that the expectation calculation is
robust to small truncation errors. We do not attempt any non-parallel integrals, as they significantly
reduce throughput.
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Algorithm 5 Sift-and-refine
1: Require: An ELBO computation function for a given timestep t and a class y, denoted as eθ (applicable for

DC, EPNDC, or APNDC); a noisy input image xτ ; sift timesteps {ti}Ts
i=0; refine steps {ti}Tr

i=0; threshold τ .
2: Initialize: the candidate class list C = {0, 1, . . . ,K}.
3: for i = 0 to Ts do
4: for each class y in C do
5: Calculate ELBO for class y at timestep ti: ey = eθ(xt, σti , y).
6: end for
7: Find the class m with the minimum ELBO: m = argminy∈C ey .
8: Update C by removing classes with a reconstruction loss τ greater than that of m:

C = {y ∈ C : ey − em < τ}
9: end for

10: Reinitialize ey: ey = ∞ ∀y /∈ C, 0 ∀y ∈ C.
11: for i = 0 to Tr do
12: for each class y in C do
13: Calculate and accumulate ELBO for class y at timestep ti: ey = ey + eθ(xt, ti, y).
14: end for
15: end for
16: Return: ỹ = argminy ey .

Algorithm 6 Discrete Progressive Class Selection
1: Require: A pre-trained diffusion model ϵθ , input image x, predefined number of classes K, class candidate

trajectory Ccand and timestep candidate trajectory Tcand.
2: Initialize: entire timesteps t̃ = vec([1, 2, · · · , T ]), counter pointer c = 0 and top-k cache Ktop =

{1, 2, · · · ,K}.
3: for (c1, c2) in (Ccand, Tcand) do
4: t̃select = t̃[c2 − c : c2].
5: Calculate logity =

∑
t∈t̃select

[wt∥hθ(xt, t, y)− ϵ∥22] for all y ∈ Ktop simultaneously using hθ .
6: Merge logity calculated in the previous step into logity currently calculated.
7: Sort {logity}y∈Ktop .
8: Set the smallest c1 class as new Ktop from the sorted {logity}y∈Ktop .
9: Update counter pointer c = c2.

10: end for
11: Return: Ktop.

Sharing Noise Across Different Timesteps. In Sec. 3.4, we demonstrate that by using the same
xi for all classes, we significantly reduce the variance of predictions. This allows us to use a fewer
number of timesteps, thereby greatly reducing time complexity. From another perspective, using
the same xi for all classes is equivalent to applying the same noise to samples at the same timestep.
This raises the question: ”If we share the noise across all samples, could we further reduce time
complexity?” However, this approach proves ineffective. Analyzing the difference between the logits
of two classes reveals that sharing noise does not reduce the variance of this difference. Consequently,
we opt not to share noise across different timesteps but only within the same timestep for different
classes.

Discrete progressive class selection algorithm. We design a normalized discrete critical class
selection algorithm for accelerating diffusion classifiers. Typically, the time complexity of the vanilla
diffusion classifier can be defined as O(KT ), where K denotes the count of classes and T denotes
the number of timesteps. Sharpening T is tractable, but overdoing that practice can have an extremely
negative impact on final performance. Another way to speed up the computation is to actively
discard some unimportant classes when estimating the conditional likelihood via conditional ELBO.
Indeed, these two sub-approaches can be merged in parallel in a single algorithm (i.e., our proposed
class selection algorithm). Additionally, to achieve an in-depth analysis of acceleration in diffusion
classifiers, the time complexity of our proposed discrete acceleration algorithm can be determined by
a predefined manual class candidate trajectory Ccand as well as a predefined manual timestep candidate
trajectory Tcand.

The procedure of the discrete progressive class selection algorithm can be described in Algorithm 6.
The specific mechanism of Algorithm 6 can be described from a simple example: the predefined
trajectory Ccand is set as [400, 80, 40, 1] and the predefined trajectory Tcand is set as [2, 5, 25, 50]

28



Table 6: The experimental results of discrete progressive class selection algorithm.

Timestep Trajectory Classes Trajectory Time Complexity Accuracy

[2, 5, 25, 50] [400, 80, 40, 1] 5800 58.00%
[2, 5, 17, 50] [500, 136, 37, 1] 6353 58.20%
[2, 5, 17, 50] [500, 100, 20, 1] 5360 57.80%
[2, 4, 12, 25] [500, 136, 37, 1] 4569 54.10%
[2, 4, 12, 25] [500, 100, 20, 1] 4060 54.69%
[2, 7, 35, 50] [297, 80, 15, 1] 5900 56.84%
[2, 7, 35, 50] [297, 100, 20, 1] 6535 57.42%
[2, 6, 20, 50] [350, 100, 20, 1] 5400 57.81%
[2, 6, 25, 50] [350, 100, 20, 1] 5800 56.10%
[2, 7, 35, 50] [297, 80, 40, 1] 6275 56.84%
[2, 5, 25, 50] [297, 80, 40, 1] 5491 57.42%
[2, 5, 15, 50] [500, 80, 40, 1] 5700 59.18%
[2, 4, 8, 50] [500, 200, 100, 1] 8000 56.05%
[2, 4, 8, 50] [400, 160, 80, 1] 6800 56.25%
[2, 4, 8, 50] [400, 120, 60, 1] 5800 56.05%
[2, 4, 8, 50] [400, 80, 40, 1] 4800 55.47%

simultaneously. Assume we conduct this accelerated diffusion classifier with K =1000 in the specific
ImageNet [47]. First, we estimate the diffusion loss, which is equivalent to conditional likelihood, for
1000 classes by 2 time points and then sort the losses of the different classes to obtain the smallest 400
classes. Subsequently, we estimate the diffusion loss for 400 classes by 3 (w.r.t. 5-2) time points and
then sort the losses for different classes to obtain the smallest 80 classes. Ultimately, the procedure
concludes with the selection of 40 out of 80 classes with 20 time points (w.r.t. 25-5), followed by
choosing 1 class from 40 classes with 25 (w.r.t. 50-25) time points.

The ablation outcomes presented in Table 6 illustrate that suitable design of predefined manual
timestep candidate trajectories Ccand and Tcand are crucial in the final performance of diffusion
classifiers. A salient observation in the initial definition of Ccand and Tcand is that Tcand can initially
be small, whereas Ccand must start significantly larger to achieve high accuracy while ensuring low
time complexity. Thus, the timestep trajectory [2, 5, 15, 50] and the classes trajectory [400, 80, 40, 1]
are in accordance with the above conditions and achieve the best performance in various predefined
trajectories.

Accelerated Diffusion Models. We observe that consistency models [43] and CUD [40] determine
the class of the generated object at large timesteps, while they primarily refine the images at lower
timesteps. In other words, at smaller timesteps, the similarity between predictions of different
classes is so high that classification becomes challenging. Conversely, at larger timesteps, the images
become excessively noisy, leading to less accurate predictions. Consequently, constructing generative
classifiers from consistency models and CUD appears to be a difficult task.

D Limitations

Despite the significant improvements in certified robustness, this work still presents limitations.
Firstly, the time complexity of the diffusion classifier restricts its applicability in real-world scenarios,
providing primarily theoretical benefits. Additionally, the certified bounds for diffusion classifiers are
not straightforward enough. Future efforts could emulate the strong law of randomized smoothing to
establish a more direct certified lower bound for Chen et al. [3].
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Ethics Statements

The advancement of robust machine learning models, particularly in the realm of classification under
adversarial conditions, is crucial for the safe and reliable deployment of AI in critical applications.
Our work on Noised Diffusion Classifiers (NDCs) represents a significant step towards developing
more secure and trustworthy AI systems. By achieving unprecedented levels of certified robustness,
our approach enhances the reliability of machine learning models in adversarial environments. This is
particularly beneficial in fields where decision-making reliability is paramount, such as autonomous
driving, medical diagnostics, and financial fraud detection. Our methodology could substantially
increase public trust in AI technologies by demonstrating resilience against adversarial attacks,
thereby fostering wider acceptance and integration of AI solutions in sensitive and impactful sectors.
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Guidelines:
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Justification: See Appendix D.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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31



Justification: Assumptions are provided in Appendix A.1. Proofs are in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• Theorems and Lemmas that the proof relies upon should be properly referenced.
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well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We only use CIFAR-10 and ImageNet.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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Answer: [NA]
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual
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• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Answer: [Yes]

Justification: See page 30.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Answer: [Yes]

Justification: See page 30.
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• The answer NA means that there is no societal impact of the work performed.
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impact or why the paper does not address societal impact.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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• The answer NA means that the paper does not use existing assets.
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• If this information is not available online, the authors are encouraged to reach out to
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