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Abstract

Uncovering cause-effect relationships from observational time series is fundamental
to understanding complex systems. While many methods infer static causal graphs,
real-world systems often exhibit dynamic causality—where relationships evolve
over time. Accurately capturing these temporal dynamics requires time-resolved
causal graphs. We propose UnCLe, a novel deep learning method for scalable
dynamic causal discovery. UnCLe employs a pair of Uncoupler and Recoupler
networks to disentangle input time series into semantic representations and learns
inter-variable dependencies via auto-regressive Dependency Matrices. It estimates
dynamic causal influences by analyzing datapoint-wise prediction errors induced by
temporal perturbations. Extensive experiments demonstrate that UnCLe not only
outperforms state-of-the-art baselines on static causal discovery benchmarks but,
more importantly, exhibits a unique capability to accurately capture and represent
evolving temporal causality in both synthetic and real-world dynamic systems (e.g.,
human motion). UnCLe offers a promising approach for revealing the underlying,
time-varying mechanisms of complex phenomena.

1 Introduction
Understanding the intricate web of cause-effect relationships is fundamental to unraveling the mecha-
nisms of real-world complex systems, from climate patterns and biological processes to economic
or network fluctuations and human biomechanics [20, 28]. A critical, yet often overlooked, aspect
is that these systems are inherently dynamic, with causal influences frequently evolving over time
due to changing internal states or external conditions. For instance, predator-prey dynamics can shift
seasonally, gene regulatory networks can alter during developmental stages, and the biomechanical
interplay between human joints changes distinctly across different phases of motion. Accurately cap-
turing these dynamic causal structures through time-resolved causal graphs is therefore essential for
achieving a deeper, more veridical understanding, enabling more precise predictions and potentially
more effective interventions. The practical success of specialized dynamic models in high-stakes
domains, such as real-time fault diagnosis in data centers [2], underscores this urgent need. However,
the predominant paradigm in temporal causal discovery has largely focused on inferring static causal
graphs, which represent an aggregated or time-averaged view of dependencies, thereby obscuring the
rich, evolving nature of causality in many real-world phenomena.

While foundational approaches to temporal causal discovery, such as Granger causality [7] and
its various linear (e.g., VAR-based) and nonlinear extensions (e.g., constraint-based methods like
PCMCI [22], or early neural network adaptations [27, 17]), have laid crucial groundwork for inferring
causal links from time series data, they are often not inherently designed to explicitly model or
represent how these causal relationships themselves change over time. Some methods might capture
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lagged effects or offer a global summary graph, but the challenge of constructing and interpreting time-
resolved causal graphs—where the set of active causal edges can vary from one time point or interval
to another—remains a significant hurdle. This limitation hinders our ability to fully comprehend
systems where causal laws are not fixed but adapt, shift, or switch, which is characteristic of many
complex adaptive systems.

To bridge this critical gap, we propose UnCLe (UnCoupLing causality), a novel deep learning
framework specifically engineered for the scalable discovery and representation of dynamic causal
graphs from observational time series. UnCLe’s core innovation lies in its ability to first disentangle
complex, multivariate time series into meaningful semantic channels using a pair of parameter-sharing
Uncoupler and Recoupler networks, and then to model evolving inter-variable dependencies within
these channels via auto-regressive Dependency Matrices. Crucially, UnCLe infers time-resolved
causal influences by meticulously analyzing datapoint-wise prediction errors that are induced by
targeted temporal perturbations of individual series. This mechanism allows UnCLe to quantify how
the predictive relationship between variables changes at different points in time, thus constructing
a dynamic causal narrative. Furthermore, UnCLe is designed with scalability in mind, enabling its
application to large-scale, non-linear systems commonly encountered in real-world applications.

The main contributions of this paper are:

• We propose UnCLe, a novel and scalable deep learning method for dynamic temporal causal
discovery, capable of generating and representing time-resolved causal graphs that capture
evolving cause-effect relationships.

• We introduce a methodology that combines semantic disentanglement of time series with
perturbation-based, datapoint-wise error analysis to effectively identify and quantify dynamic
causal influences.

• We demonstrate UnCLe’s superior ability to uncover and track evolving causal structures
through extensive experiments on synthetic datasets with known dynamic ground truths (e.g.,
time-varying SEMs) and challenging real-world systems, notably human motion capture
(MoCap) data, where UnCLe provides interpretable, phase-specific biomechanical insights.

• We show that UnCLe also achieves competitive or state-of-the-art performance on standard
static causal discovery benchmarks, highlighting its versatility and robustness.

By offering a principled and effective approach to dynamic causal discovery, UnCLe aims to provide
a more powerful lens for understanding the complex, ever-changing mechanisms that govern the
world around us.

2 Background and Related Work

Notations A dynamic causal graph is defined as a time-varying graph Gt = {Vt, Et} for each
timestep t ∈ {1, . . . , T}, where Vt = {vti | vti ∈ V} represents the set of vertices at time t,
corresponding to time series xt

i observed at time t, and Et = {(vti , vtj) | vti ∈ Vt, vtj ∈ Vt} represents
the set of directed edges at time t. An edge (vti , v

t
j) denotes a causal-effect relationship, where vti is

the cause variable and vtj is the effect variable at time t. A static causal graph [20] is defined as a
time-invariant graph G = {V, E} whose variables and cause-effect relationship remain constant over
time.

Granger causality Granger causality [7] is a widely used statistical framework for defining causality
based on predictive relationships. It is grounded in the intuition that a time series xi can be considered
a cause of another time series xj if the inclusion of xi’s past values improves the prediction of xj’s
future values. Formally, the generalized form of Granger causality can be expressed as follows [24]:

xi,t = hi (x1,<t, . . . ,xN,<t) + εi,t,

where hi is a prediction function that maps the past values of all N time series to the current value of
series xi, and εi,t represents the prediction error.

Traditional Granger causal discovery methods typically employ statistical autoregressive (AR) models
for hi and use statistical significance tests on the prediction error ε to infer causal relationships between
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time series. In contrast, recent approaches leverage neural networks to model hi and determine causal
relationships through various mechanisms.

Neural Granger Causality Neural Granger causality methods leverage a variety of neural net-
work architectures as their backbone networks, including MLPs [27, 29], RNNs [10], LSTMs [27],
CNNs [17], and GNNs [15, 5], with some works successfully employing TCN-based autoencoders
for representation learning in specific causality-driven applications like root cause diagnosis [2].
Additionally, design concepts such as attention mechanisms [17], variational autoencoders [12],
self-explaining neural networks [16], and inductive modeling [15] are actively incorporated into these
methods. The standard procedure for neural Granger causality analysis involves training prediction
models using neural networks and then inferring the causal structure from the learned models through
various techniques.

For instance, NeuralGC [27] and GVAR [16] analyze the weights of specific network layers to interpret
the influence relationships between variables. In contrast, TCDF [17] identifies causal dependencies
using attention scores and quantifies the predictive contribution of variables by computing permutation
importance [3]. However, NeuralGC, GVAR, and TCDF face significant scalability challenges on
large-scale datasets due to their component-wise design, which lacks parameter sharing. This results
in O(N2) parameters to train as the number of variables increases.

To address the scalability problem, both JRNGC [29] and CUTS+ [5] utilize parameter sharing,
making them more suitable for large-scale datasets. JRNGC incorporates an input-output Jacobian
regularizer into the training objective to learn Granger causality, while CUTS+ enhances scalability
on high-dimensional temporal data by splitting time series into groups and applying a coarse-to-fine
filtering strategy.

While some methods, such as NeuralGC, JRNGC, and TCDF, support time-lag recognition, only
GVAR is capable of generating dynamic causal graphs. Furthermore, to the best of our knowledge,
no existing method has been rigorously evaluated on dynamic causal datasets to assess its ability to
identify causal evolutions over time.

3 Methodology

We introduce UnCLe, a scalable method for dynamic causal discovery rooted in the principles of
neural Granger causality. The overall framework is depicted in Figure 1 and comprises two primary
phases:

1. Training Phase. Given an input multivariate time series dataset x ∈ RN×T (represented as
green blocks in Figure 1, denoting data for N variables over T timesteps), UnCLe first trains
its core architecture. This architecture consists of a pair of parameter-sharing Uncoupler
and Recoupler networks, along with a set of auto-regressive Dependency Matrices (Ψ).
The Uncoupler transforms the input series x into multi-channel semantic representations
z ∈ RN×T×C (visualized as stacked, colorful blocks for C semantic channels). This
transformation is learned through a reconstruction task, where the Recoupler aims to
reconstruct the original series x̃ from z. Concurrently, the Dependency Matrices Ψ are
optimized via a prediction task to capture inter-variable dependencies within each semantic
channel, forecasting future latent representations ẑ which are then mapped back to the
original space as x̂.

2. Post-hoc Analysis Phase. Subsequent to training, UnCLe infers causal relationships. For
dynamic causal discovery, individual time series xi (denoting the i-th variable’s series)
within the input dataset are chronologically perturbed (e.g., via permutation, resulting in
x\j , shown as red blocks) to disrupt their temporal structure and thereby diminish their
predictive utility. The resulting datapoint-wise increase in prediction error for other series
xi is then quantified as the strength of the dynamic causal link from xj to xi, forming the
dynamic causal graph ĜPert. Furthermore, for static causal discovery, the learned weights of
the Dependency Matrices Ψ are aggregated (e.g., via average pooling) to derive a summary
static causal graph ĜAgg.

The subsequent subsections provide detailed expositions of the UnCLe model architecture and the
causal inference procedures.

3



Average Pooling

i-th series purturbed
Perturbed Dataset

U
ncoupler

(Shared across variables)

Recoupler
(Shared across variables)

Reconstruction

Prediction

Auto-regressive
Dependency

N*T
original space

N*T*C
representation space

N*T
original space

Original Dataset

Original Dataset

Training
Phase

Post-hoc A
nalysis

Phase

Causal Discovery
Dependency Aggregation

Causal Discovery
Temporal Perturbation

Figure 1: The UnCLe framework. Training involves reconstruction and prediction using Uncou-
pler/Recoupler and Dependency Matrices (Ψ). Post-hoc analysis uses temporal perturbation for
dynamic graphs (ĜPert) and aggregation of Ψ for static graphs (ĜAgg).

3.1 Model Architecture

Uncoupler and Recoupler Networks The Uncoupler and Recoupler form the backbone of UnCLe’s
representation learning, functioning akin to a parameter-sharing Temporal Convolutional Network
(TCN) autoencoder [1]. Their primary role is to model intra-variable temporal dynamics and
disentangle the input time series x ∈ RN×T into meaningful latent representations. By sharing
parameters across all N variables, this design significantly enhances learning efficiency, model
stability, and the quality of learned representations, especially for high-dimensional data.

The Uncoupler, denoted as TCNUnc(·;φUnc), maps each univariate time series xi ∈ RT (the i-th
row of x) into a C-channel latent sequence zi ∈ RT×C . Collectively, for all variables, this yields
z ∈ RN×T×C . The Recoupler, TCNRec(·;φRec), then aims to reconstruct the original series x̃i ∈ RT

from its corresponding latent sequence zi. This reconstruction process is formalized as:
zi = TCNUnc(xi;φUnc), x̃i = TCNRec(zi;φRec) (1)

where φUnc and φRec represent the learnable parameters of the Uncoupler and Recoupler, respectively.
The objective for the reconstruction task is to minimize the Mean Squared Error (MSE) loss:

LRecon(φUnc, φRec) =
1

NT

N∑
i=1

T∑
t=1

(x̃i,t − xi,t)2 (2)

The TCN architecture, characterized by stacked dilated causal convolution blocks [18], ensures that
information processing is strictly temporal (no leakage from future to past), a crucial property for
subsequent causal discovery. Furthermore, the parallelizable nature of TCN computations contributes
to UnCLe’s efficiency on large-scale datasets.

Auto-regressive Dependency Matrices To model inter-variable dependencies, UnCLe introduces
a set of C lightweight Dependency Matrices, Ψ = {Ψ1, . . . ,ΨC}, where each Ψc ∈ RN×N . These
matrices operate on the disentangled latent representations z to perform auto-regressive prediction.
Specifically, for each semantic channel c, the latent representation at the next timestep, ẑc

:,t+1 ∈ RN ,
is predicted from the current latent representations across all variables in that channel, zc

:,t ∈ RN :
ẑc
:,t+1 = σ(Ψczc

:,t) (3)
where zc

:,t denotes the N -dimensional vector of latent features for channel c at time t, and σ denotes
the same activation function as TCNs. This linear update is motivated by the principle that a suitable
coordinate transformation, learned here by our Uncoupler, can approximate complex non-linear
dynamics with a linear system [26, 4].

The predicted latent sequences ẑ = {ẑ1, . . . , ẑC} are then fed into the (shared) Recoupler network
to generate predictions in the original data space:

x̂:,t+1 = TCNRec({ẑ1
:,t+1, . . . , ẑ

C
:,t+1};φRec) (4)

The prediction loss LPred is also an MSE loss, calculated between the predicted values x̂i,t+1 and the
true future values xi,t+1:

LPred(φUnc, φRec,Ψ) =
1

N(T − 1)

N∑
i=1

T−1∑
t=1

(x̂i,t+1 − xi,t+1)2 (5)
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Regularization To mitigate overfitting and discourage the discovery of overly complex causal
structures or spurious inter-variable relationships, UnCLe incorporates several regularization tech-
niques. First, L1 regularization is applied to the Dependency Matrices Ψ to promote sparsity in the
learned inter-variable connections:

LL1(Ψ) = λ1

C∑
c=1

N∑
k=1

N∑
l=1

|Ψc
k,l| (6)

where λ1 is the L1 regularization hyperparameter. Additionally, to enhance the robustness of the
feature disentanglement process within the TCNs, dropout with a rate of 0.2 is applied during the
training of the Uncoupler and Recoupler networks.

Overall Training Objective and Procedure UnCLe is trained in two stages. In the pretraining
stage, the model focuses on representation learning by optimizing only the reconstruction loss LRecon.
This stage trains φUnc and φRec, providing a strong initialization for the subsequent phase. In the full
model training stage, all components, including the Dependency Matrices Ψ, are trained jointly by
minimizing a composite loss function:

LTotal = LRecon + αLPred + LL1 (7)

where α is a hyperparameter balancing the prediction task’s contribution. This joint optimization
allows the model to simultaneously learn to represent the data, predict its future, and identify
underlying dependencies.

3.2 Post-hoc Causal Discovery

Once the UnCLe model is trained, causal relationships are inferred in a post-hoc analysis phase using
two distinct approaches.

Perturbation-based Dynamic Granger Causality To uncover dynamic causal influences, UnCLe
employs a temporal perturbation strategy. The core idea is that because the trained model has learned
an approximation of the data’s causal generative mechanism, disrupting the temporal structure of a
true cause xj will violate the learned dynamics and significantly impair the model’s ability to predict
its effect xi. Formally, let x ∈ RN×T be the original multivariate time series dataset. We denote by
x\j the dataset where the j-th time series, xj , has been perturbed by a random permutation of its
temporal values. This permutation preserves the marginal distribution and statistical properties of
xj but destroys its original sequential order, thus nullifying its valid predictive information for other
series that depend on its specific temporal evolution.

Let f(·) represent the trained UnCLe prediction model (Equations 3-4). The prediction for xi,t using
the original dataset is x̂i,t. The original prediction error for xi,t can be defined, for instance, as the
squared error:

εi,t = (x̂i,t − xi,t)2 (8)

When xj is perturbed to create x\j , the model yields a new prediction x̂\ji,t for xi,t. The prediction
error under this perturbation is:

ε
\j
i,t = (x̂

\j
i,t − xi,t)

2 (9)
The increase in prediction error, or error gain, quantifies the causal influence of xj on xi at time t:

∆ε
\j
i,t = max(0, ε

\j
i,t − εi,t) (10)

This value, ∆ε
\j
i,t, represents the strength of the causal link from xj to xi specifically at time t,

forming an element of the time-resolved adjacency matrix Â
t,Pert
j,i of the dynamic causal graph

ĜPert. UnCLe computes these pairwise error gains for all variable pairs and timesteps. Since the
errors are computed at each timestep, this perturbation-based approach inherently captures dynamic
causality, allowing causal relationships to evolve over time. For a static summary, these dynamic
strengths can be aggregated across the time axis (e.g., by averaging or summing ∆ε

\j
i,t over t). The

detailed algorithm for dynamic causal discovery via temporal perturbation is listed as Algorithm 1 in
Appendix L. The batch processing of these computations significantly enhances the efficiency of the
causal discovery process.
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Static Causal Graph via Dependency Aggregation A static, or summary, causal graph ĜAgg can
also be directly inferred from the learned Dependency Matrices Ψ. The rationale is that if variable
xk does not influence xl in channel c, the L1 regularization (Equation 6) will drive the corresponding
coefficient Ψc

l,k towards zero. Conversely, a significant non-zero coefficient suggests a dependency.
The elements of the multi-channel Dependency Matrices Ψ are thus interpreted as causal strengths.
The aggregated static causal influence from xk to xl, denoted by ÂAgg

l,k , is obtained by pooling the
magnitudes of these coefficients across all C channels. A common pooling method is the L2-norm
(root mean square) of the coefficients:

ÂAgg
l,k =

√√√√ 1

C

C∑
c=1

(Ψc
l,k)2 (11)

This aggregation yields a single N × N adjacency matrix representing the overall static causal
structure.

UnCLe thus offers two complementary modes for causal discovery: (P) Temporal Perturbation, which
yields dynamic causal graphs and is generally more accurate as it leverages the full model including
the learned representations from the Uncoupler/Recoupler and the input data characteristics. (A)
Dependency Aggregation, which produces a static causal graph more rapidly as it directly uses the
learned Ψ without further post-hoc predictive analysis.

4 Experiments

4.1 Experimental Setup

Datasets We evaluate UnCLe using various synthetic / real-world datasets from a great variety
domains. Apart from other existing datasets, we propose NC8 (Non-linear, Constant connections, 8
variables) and ND8 (Non-linear, Dynamic connections, 8 variables) to better evaluate causal discovery
methods. The detailed dataset setup is included in Appendix A.

Baselines We compare UnCLe against nine baseline methods spanning a range of categories,
including constraint-based, score-based, and cutting-edge neural Granger approaches: (i) VAR, the
classic Granger causality method [7] based on pairwise VAR F-tests; (ii) PCMCI, a constraint-based
approach [22] that uses partial correlation for independence tests; (iii) cMLP [27], a neural Granger
causality method that relies on MLP prediction networks and sparse-inducing regularization; (iv)
TCDF [17], which interprets attention weights and validates them using permutation importance;
(v) GVAR [16], which leverages neural network-generated dynamic VAR coefficients; (vi) VAR-
LiNGAM [9], a method that uses a non-Gaussian structural vector autoregressive model to assess the
significance of causal influences; (vii) DYNOTEARS [19], a score-based method that minimizes a
penalized loss subject to an acyclicity constraint; and (viii) CUTS+ [5], a neural Granger causality
method that utilizes passing-based graph neural networks and supports high-dimensional data; and
(ix) JRNGC [30], which employs an input-output Jacobian regularizer to learn causality from a single,
shared prediction model. Note that GVAR is the only baseline method that can generate dynamic
causal graphs.

4.2 Results

We first report the causal discovery accuracy on static graphs. Next, we evaluate dynamic causal
discovery performance on two datasets. Finally, we present results on two large-scale real-world
transportation datasets. The best accuracies are bolden and the second best are underlined, and "-"
indicates the running time of the method exceeded the reasonable time limit.

Static: Lorenz 96 Table 1 reports the causal discovery performance of UnCLe and other baseline
methods on synthetic datasets. Lorenz96 [14] is a ODE model to simulate climate dynamics used
by [16, 27, 10, 29, 5]. The system dynamics increasingly chaotic and thus hard to model for higher
values of forcing constant F . We design three sets of system configurations of Lorenz96, setting
number of variables p = {20, 20, 100}, timesteps T = {250, 250, 500}, force F = {10, 10, 40}
for Lorenz#1, #2, and #3 respectively. On all Lorenz datasets, UnCLe(P) perturbation consistently
achieves the highest AUROC and AUPRC scores. The added chaostic strength of Lorenz#2 and
large number of variables of Lorenz#3 pose significant challenges to baseline methods. Notably,
DYNOTEARS struggles with large-scale datasets, and its DAG constraint conflicts with the ground
truth causal structure of the Lorenz system.
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Table 1: Static causal discovery performance comparison on synthetic datasets.

Methods Lorenz#1 Lorenz#2 Lorenz#3 NC8 FINANCE

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

VAR .853(±.007) .485(±.012) .709(±.015) .295(±.025) .798(±.017) .142(±.014) .633(±.202) .218(±.200) .630(±.138) .103(±.140)
PCMCI .833(±.025) .482(±.066) .670(±.027) .269(±.038) .712(±.008) .084(±.009) .895(±.052) .408(±.168) .589(±.154) .055(±.048)
cMLP .994(±.004) .975(±.013) .885(±.016) .370(±.054) .814(±.019) .465(±.041) .928(±.030) .717(±.081) .619(±.108) .069(±.052)
GVAR .974(±.014) .878(±.071) .839(±.027) .613(±.075) .558(±.015) .040(±.003) .956(±.024) .831(±.044) .999(±.001) .990(±.020)
TCDF .727(±.047) .345(±.043) .615(±.019) .225(±.030) .885(±.033) .370(±.109) .620(±.058) .279(±.124) .915(±.003) .509(±.050)
VARLiNGAM .854(±.066) .721(±.130) .627(±.029) .481(±.040) .673(±.018) .383(±.043) .880(±.060) .586(±.036) .946(±.040) .337(±.149)
DYNOTEARS .544(±.055) .315(±.049) .546(±.018) .240(±.022) - - .546(±.018) .240(±.022) - -
CUTS+ .947(±.033) .800(±.090) .894(±.034) .620(±.056) .863(±.030) .247(±.052) .777(±.032) .297(±.119) .885(±.033) .370(±.109)
JRNGC .983(±.002) .714(±.024) .807(±.015) .266(±.044) .612(±.014) .018(±.001) .756(±.010) .162(±.006) .688(±.410) .714(±.294)

UnCLe(P) .999(±.002) .996(±.008) .940(±.011) .804(±.036) .922(±.012) .636(±.071) .975(±.004) .835(±.056) .987(±.041) .933(±.141)
UnCLe(A) .994(±.007) .962(±.054) .871(±.023) .531(±.080) .865(±.024) .356(±.053) .952(±.035) .770(±.178) .972(±.087) .887(±.283)
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Figure 2: The dynamic causal strengths between Xt and Yt discovered by UnCLe and GVAR.

Static: NC8 and FINANCE The NC8 dataset evaluates the ability of methods to uncover long-term
nonlinear relationships between variables, and UnCLe delivers the best AUROC and AUPRC scores.
On the FINANCE dataset, UnCLe demonstrates the second-best performance.

Dynamic: Time-variant SEM To evaluate the dynamic causal discovery capability of UnCLe,
we construct a bivariate time-varying Structural Equation Model (TVSEM) with a total length of
T = 2000 time points. The model is defined as:

at =

{
0.8 if b(t− 1)/400c (mod 2) = 0

0.2 if b(t− 1)/400c (mod 2) = 1
, bt =

{
0.1 if b(t− 1)/400c (mod 2) = 0

0.7 if b(t− 1)/400c (mod 2) = 1
(12)

Xt = atYt−1 + εX,t, Yt = btXt−1 + εY,t (13)

Here, Xt and Yt represent the observed variables at time t. The error terms εX,t and εY,t ∼ N(0, 0.1).
The model’s coefficients at and bt switch values every 400 time points, creating five segments. This
switching pattern is governed by the parity of the segment index b(t− 1)/400c. When the index is
even (segments 1, 3, 5), (at, bt) = (0.8, 0.1), indicating a dominant Y → X causal direction due to
the strong influence from Yt−1 to Xt. When the index is odd (segments 2, 4), (at, bt) = (0.2, 0.7),
indicating a dominant X → Y causal direction due to the strong influence from Xt−1 to Yt. The
dominant causal direction thus alternates between Y → X and X → Y across the five segments.

Fig. 2 illustrates the evolution of dynamic causality between Xt and Yt as discovered by UnCLe and
GVAR [16]. For better interpretability, the strengths are smoothed using a Gaussian moving average
and presented as two lines. The orange and green segments on the timestamp axis divided by red
dotted vertical lines indicate which variable is dominant over the other. UnCLe initially identifies
Yt as determining Xt, flips the causal direction shortly after t = 400, and reverts to the another
causal direction correctly after each subsequent switch points. This behavior aligns perfectly with
the underlying data generation mechanism, demonstrating UnCLe’s capability to accurately capture
temporal causal dynamics. In contrast, while GVAR generates dynamic causal strength, the perceived
dominance between Yt and Xt never flips.

Table 2: Dynamic causal discovery performance
comparison on TVSEM and ND8.

Methods TVSEM ND8

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

GVAR 0.733(±.000) 0.400(±.000) 0.723(±.016) 0.220(±.028)
UnCLe(P) 1.000(±.000) 1.000(±.000) 0.921(±.007) 0.633(±.045)

Static Best 0.467(±.000) 0.300(±.000) 0.905(±.000) 0.799(±.000)

Table 2 quantifies the accuracy of dynamic
causal discovery accuracy on TVSEM by eval-
uating separately on each segments with dif-
ferent system settings. Static Best denotes
the best possible accuracy by a non-changing
static causal graph. UnCLe(P) achieved pre-
fect estimated of the directions of the two vari-
ables.
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Figure 3: Dynamic causal analysis on a forward jump motion.

Dynamic: ND8 ND8 is a much harder dataset compared to TVSEM as it contains non-linear
connections, more variables, multiple switches of direction simultaneously. The detailed data
generated process of ND could be found in Appendix G. As reported in Table 2, UnCLe achieved
better dynamic causal discovert accuracy then GVAR and Static Best.

Dynamic: Human Motion Capture (MoCap) The Motion Capture (MoCap) dataset contains
sensor observations reflecting the sophisticated biomechanics of the human body, which involve
dynamic cooperation and interactions across joints, muscles, and bones. This dataset records the
3-axis angles of 31 joints. We selected a forward jump as a representative motion for our study,
illustrated in Figure 3(a). The underlying joint skeleton is depicted in Figure 3(b).

To evaluate the ability of different methods to capture evolving causal structures, we extracted 6
snapshots of the causal graphs inferred by UnCLe, GVAR, and JRNGC from the forward jump data.
For JRNGC, which does not inherently produce dynamic graphs, these snapshots were obtained
by training the model on distinct segments of the motion data corresponding to different phases.
These 6 snapshots are presented chronologically in Figure 3(c), aligned with the three motion phases
(Crouch, Flight, Touchdown), and anchored to the skeletal structure for visual interpretation. The
causal graphs generated by UnCLe demonstrate comparatively clear interpretability corresponding to
the biomechanics of each phase:

Crouch Phase (first two UnCLe snapshots). Focus on the upper body, particularly the coordinated
movement of the arms, with some connections to the lower body and strong links to the hip/root
joint. This aligns with biomechanical findings that a coordinated arm swing is crucial for maximizing
jump height by increasing the work and torque produced by the lower extremities. The dense,
whole-body connectivity discovered by UnCLe reflects this principle of synergistic power generation
for propulsion [8].

Flight Phase (middle two UnCLe snapshots). Highlights the lower body, characterized by coordinated
leg movements, minimal upper body involvement, and weaker connections to the hip/root joint. This
aligns with the biomechanical expectation that during mid-flight, with the body’s trajectory already
determined, the coordination strategy shifts from power generation to in-air balance. The graph
correctly becomes sparser, reflecting a reduction in active, large-scale interdependencies.

Touchdown Phase (last two UnCLe snapshots). Reveals involvement from both upper and lower
body segments with medium-strength connections, evidence of ipsilateral coordination, and renewed
strong links to the hip/root joint. This is consistent with the demands of landing, which requires the
entire kinetic chain—from the ankle up to the hip and core—to work in a coordinated fashion to
absorb impact forces and re-stabilize the body. The re-emergence of a complex causal graph mirrors
the body’s need to manage ground reaction forces and dissipate energy across multiple joints [6].

In contrast, the snapshots generated by the baseline methods (GVAR and JRNGC) exhibit more subtle
differences between phases. Their respective causal graphs often appear densely interconnected and
are considerably more challenging to interpret in terms of distinct biomechanical phases.
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Table 3: Missing rate of
skeletal connections.

Method Missing Rate ↓

UnCLe .200(±.019)
GVAR .622(±.031)
JRNGC .600(±.000)

To quantify the extent to which these methods recover fundamental anatom-
ical connections, Table 3 reports the proportion of missing edges corre-
sponding to adjacent joint connections present in the basic skeleton (Fig-
ure 3(b)) that were not captured in the inferred causal graph snapshots
(averaged across the six snapshots for each method). UnCLe demonstrates
a superior ability to preserve these fundamental T-pose connections, in-
dicated by a lower missing rate. This experiment suggests that dynamic
causal discovery algorithms like UnCLe hold significant promise for elu-
cidating the mechanisms underlying real-world phenomena and complex systems by providing
interpretable, time-evolving causal insights.
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Figure 4: Time efficiency
and causal discovery accu-
racy on Lorenz#1.

Time Efficiency Figure 4 presents a comparative scatter plot of Un-
CLe(P) and baseline methods, illustrating their trade-off between causal
discovery accuracy (AUROC) and computational time on the Lorenz#1
dataset. UnCLe demonstrates a compelling balance: it achieves the
highest AUROC score while maintaining a competitive execution time.
Specifically, UnCLe is notably faster than several complex neural meth-
ods such as TCDF and score-based methods like Dynotears, and ex-
hibits comparable or moderately higher computational cost than some
traditional or highly optimized approaches like VAR and CUTS+, re-
spectively. This positions UnCLe as an effective and relatively efficient
solution for accurate causal discovery.

5 Ablation Study
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Figure 5: Ablation study on UnCLe’s key
components.

We analyze the importance of UnCLe’s key architec-
tural components and methodological choices. First,
we evaluate the contributions of parameter sharing, the
Auto-regressive Dependency Matrices, and the predic-
tion task using the high-dimensional Lorenz#3 dataset.
Figure 5 presents the performance of the standard Un-
CLe(P) model compared to modified versions. Second,
we assess the sensitivity of our causal discovery mecha-
nism to different perturbation strategies on the Lorenz#1
dataset.

w/o Parameter Sharing Disables the parameter sharing strategy, resulting in individual TCN
Uncoupler and Recoupler pairs being trained for each time series component-wise. As reported, the
causal discovery performance drops significantly, although this variation can still learn some valid
causal structures. This outcome demonstrates the effectiveness of representational knowledge sharing,
particularly in high-dimensional scenarios.

w/o Auto-regressive Dependency Matrices Omit the Dependency Matrices of UnCLe. The
parameter sharing strategy is also disabled. The multivariate time series prediction task is handled
directly by the TCN Uncoupler and Recoupler. This leads to the AUROC score dropping below 0.5,
equivalent to random guessing, indicating that the model can no longer effectively learn the causal
structure. This result highlights the critical role of Dependency Matrices in uncoupling and explicitly
capturing inter-variable dependencies in multivariate time series. Additionally, when the Dependency
Matrices are disabled, causal structure inference via dependency aggregation becomes unavailable.

w/o Prediction Task When the model is optimized solely for the reconstruction task (i.e., predicting
xt using x≤t), the causal structure cannot be effectively extracted, as the task becomes overly trivial.
Each time series learns to reconstruct itself based solely on its own data rather than integrating
information from others. This underscores the necessity of the prediction task as a bridge for
modeling complex systems and learning inter-variable dependencies.

Perturbation Strategies To validate our choice of temporal permutation, we compare its perfor-
mance against three alternative strategies on the Lorenz#1 dataset: (1) Zero-Masking, where the target
series is replaced with zeros; (2) Noise Injection, where Gaussian white noise is added to the target
series; and (3) No Perturbation, which serves as a baseline to confirm that error gain is necessary.
The results are shown in Table 4.
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Table 4: Causal discovery performance (UnCLe(P)) on Lorenz#1 with different perturbation strate-
gies.

Perturbation Strategy AUROC ↑ AUPRC ↑ ACC ↑

Temporal Permutation (Ours) .999(±.002) .996(±.008) .994(±.010)
Noise Injection .981(±.056) .946(±.134) .978(±.048)
Zero-Masking .974(±.082) .932(±.177) .969(±.052)

No Perturbation .500(±.000) .575(±.000) .850(±.000)

Temporal permutation significantly outperforms the alternatives. We reason that this is because it
uniquely satisfies two crucial conditions: it effectively nullifies the predictive temporal information
while perfectly preserving the variable’s marginal distribution, thus ensuring model stability. In
contrast, Zero-Masking disrupts the data distribution, and Noise Injection does not fully remove the
original signal. The "No Perturbation" baseline confirms that without a valid perturbation, the method
defaults to random guessing (AUROC ≈ 0.5), validating the core principle of our post-hoc analysis.

6 Limitations and Future Work
The primary limitation of our work, which also defines a critical direction for future research, is the
lack of formal identifiability guarantees. While UnCLe demonstrates strong empirical performance,
we do not provide a theoretical proof under which conditions it is guaranteed to recover the true
dynamic causal graph. Establishing the theoretical conditions under which our learned latent space
provides a causally faithful linearization remains a key open question. Our future work will focus on
bridging this gap, potentially by exploring connections to causal representation learning and imposing
further structural constraints on the model to ensure that the learned latent dynamics are not just
predictive, but verifiably causal.

7 Broader Impacts
Potential for Misuse. As with any observational causal discovery method, the outputs of UnCLe
are hypotheses subject to underlying assumptions (e.g., no hidden confounders) and should not be
interpreted as definitive proof of causation. The primary risk lies in the uncritical application of our
method in high-stakes domains, such as finance, healthcare, or social policy, where spurious causal
claims could lead to flawed and potentially harmful decisions.

Safeguards and Responsible Application. To mitigate these risks, we strongly advocate for
responsible use. The causal graphs generated by UnCLe should be treated as a tool for exploration
and hypothesis generation, not as a substitute for rigorous scientific validation. We recommend
that any findings be validated by domain experts and, where feasible, tested through controlled
experiments or prospective studies before being used for decision-making.

8 Conclusion
In this paper, we propose a novel dynamic causal discovery method, UnCLe, which consists of a pair
of Uncouplers and Recouplers alongside Dependency Matrices. This architecture disentangles input
time series into semantic representations and learns causal connections between variables through
auto-regressive prediction. Extensive experiments demonstrate UnCLe’s effectiveness and scalability
across static and dynamic datasets from diverse domains. By bridging the gap in dynamic causal
discovery methods, UnCLe aims to inspire further advancements in this domain.
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A Dataset Details

Overview of Datasets We evaluate UnCLe using datasets from a great variety of domains, as
detailed in Table 5. The table provides information on the dataset types, the number of variables (p),
the series length (T ), and the number of replicas (R). The replicas of a dataset start with different
initial system status. We provide the time series and true causal adjacency matrices in CSV format of
all datasets in our public code and datasets repository.

Table 5: Used synthetic static (top), synthetic dynamic (middle) and real-world (bottom) datasets.
Dataset Type p T R

Lorenz#1 climate dynamics ODE 20 250 5
Lorenz#2 climate dynamics ODE 20 250 5
Lorenz#3 climate dynamics ODE 100 500 5
fMRI medical measurements 15 200 50
NC8 nonlinear constant interactions 8 2000 5
FINANCE financial portfolios 20, 40 4000 8

TVSEM time-variant auto-regressive 2 2000 5
ND8 nonlinear dynamic interactions 8 2000 5

MoCap human motion capture 93 ≈ 300 8
METR-LA traffic flow speed 207 10240 1
PEMS-BAY traffic flow speed 325 10240 1

A.1 Synthetic Datasets

Lorenz96 [14] is a nonlinear model to simulate climate dynamics used by [16, 27, 10]. The system
dynamics become increasingly chaotic and thus hard to model for higher values of the forcing
constant F . We design three sets of system configurations of Lorenz96, setting p = {20, 20, 100},
T = {250, 250, 500}, and F = {10, 40, 40} for Lorenz#1, #2, and #3 respectively.

fMRI (functional Magnetic Resonance Imaging) [25] used by [16, 10, 17] contains time-ordered
samples of the blood-oxygenation-level dependent (BOLD) signals, measuring activity in different
brain regions of interest in human subjects.

NC8 (Non-linear Constant interactions with p = 8 variables) is a dataset we propose that contains a
wide variety of inter-variable interactions with time lags ranging from 1 (short-term) to 16 (long-term).
The generating equations include non-linear functions such as sin(·), (·)3, and max(·), and involve all
three common causal structures: fork, chain, and collision [21]. We provide the detailed generation
equations in Appendix F.

TVSEM (Time-Varying Structural Equation Model) is a bivariate synthetic dataset we constructed
to evaluate dynamic causal discovery. It features two variables whose causal dominance switches
periodically every 400 timesteps over a total length of T = 2000, governed by changing autoregressive
coefficients, as detailed in the main paper.

ND8 (Non-linear Dynamic interaction with p = 8 variables) is the dynamic version of NC8, where
some connections from the original dataset change direction periodically. We provide the detailed
generation equations in Appendix G.

FINANCE [11] used in [17] is a simulated financial time series dataset that uses a factor model to
describe a portfolio’s return.

A.2 Real-world Datasets

MoCap (CMU human motion capture) contains real-time 3-axis joint angles of 31 different parts of
the human body at a frequency of 120 Hz. We selected seven actions from the database: walk, run,
kick, jump, golf, sidestep, and bend.
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(a) METR-LA by UnCLe (b) PEMS-BAY by UnCLe

Figure 6: Traffic roadmaps discovered by UnCLe in the METR-LA and PEMS-BAY datasets. The
locations of the sensors are aligned with the map in the background.

METR-LA and PEMS-BAY [13] contain traffic speed data from highways in Los Angeles County and
the Bay Area, respectively. The data is sampled at a 5-minute rate, and we use the first T = 10240
observations, spanning approximately 7 weeks.

B Methodology of Evaluation

All baseline methods produce weighted causal graphs. For the VAR method, we set 1− p as strength
of causal relationships where p denotes the significance in Granger causality tests. We evaluate
the causal discovery performance of all methods by comparing the inferred structures of against
the true structure using areas under receiver operating characteristic (AUROC) and precision-recall
(AUPRC) curves and accuracy (ACC). AUROC and AUPRC are measured on weighted graphs
whereas ACC is calculated on binary adjacency matrices. We set the binarization thresholds to
maximize ACC according the true causal structures. For all evaluation metrics, we only consider
off-diagonal elements of adjacency matrices and ignore self-causal relationships which are basically
always true and usually the easiest to infer . All reported metrics are the mean across all replications
of the datasets, with 95% confidence intervals. The performance of the two available causal graph
inference approaches of UnCLe are reported seperately, and we denote variable perturbation as (P)
and weight aggregation as (A). We perform grid search on the hyperparameters of all methods to
maximize AUROC. We list the hyperparameter settings of UnCLe and other baseline methods in
Section L.

C Additional Results on Large-scale Transportation Dataset (METR-LA and
PEMS-BAY)

The METR-LA (207 sensors) and PEMS-BAY (325 sensors) datasets are large-scale transportation
datasets. Using 10,240 data points, UnCLe and JRNGC attempt to recover the real-world road
network from traffic flow speed sensor observations, as shown in Fig. 6 and 7.

In the graphs generated by UnCLe, most nodes are connected to their neighboring nodes, while the
influence of a small set of hub nodes extends to distant areas. By referencing the maps, we identify
these hub nodes as primarily airports or large overpasses, which handle the majority of traffic flow
in their respective regions. The road network graphs discovered by UnCLe in real-world regions
can be seamlessly integrated into practical scenarios, providing valuable support for analysis and
decision-making.

In contrast, the graphs produced by JRNGC exhibit causal relationships scattered across the map,
scarcely recovering connections between neighboring road network nodes. As a result, these graphs
provide limited insights for real-world decision-making.
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(a) METR-LA by JRNGC (b) PEMS-BAY by JRNGC

Figure 7: Traffic roadmaps discovered JRNGC.

D Additional Results on ND8 with Static Baselines

To provide a comprehensive comparison on the ND8 dataset, which features dynamic ground truth
causality, we also evaluate the performance of several static causal discovery baselines with the
same hyperparameter settings as with NC8. This evaluation is presented in Table 6. Since these
baseline methods inherently produce a single static causal graph, their output is assessed against the
evolving ground truth of ND8. For context, the "Static Best" row in the table indicates the theoretical
upper bound on performance achievable by any single, optimal static graph when evaluated against
this dynamic ground truth. This effectively benchmarks how well any time-invariant model could
possibly capture the changing causal relationships. As the results show, UnCLe(P), with its ability to
model dynamic causality, significantly outperforms all evaluated static methods and surpasses the
"Static Best" theoretical limit in terms of AUROC, highlighting the inherent advantage of dynamic
approaches for such datasets.

Table 6: Causal discovery performance on the dynamic ND8 dataset. Static baselines are compared
against the evolving ground truth, with "Static Best" representing the optimal performance for a
single static graph.

Methods ND8

AUROC ↑ AUPRC ↑
VAR 0.578(±.035) 0.053(±.033)

PCMCI 0.848(±.028) 0.369(±.062)

cMLP 0.686(±.024) 0.152(±.045)

TCDF 0.741(±.011) 0.292(±.007)

VARLiNGAM 0.902(±.055) 0.614(±.129)

DYNOTEARS 0.533(±.001) 0.086(±.006)

CUTS+ 0.805(±.009) 0.345(±.014)

JRNGC 0.744(±.034) 0.151(±.011)

GVAR 0.723(±.016) 0.220(±.028)

UnCLe(P) 0.921(±.007) 0.633(±.045)

Static Best 0.905(±.000) 0.799(±.000)

E Additional Results on fMRI

We extended our evaluation of UnCLe to include fMRI dataset, a synthetic medical dataset. Perfor-
mance metrics are detailed in Table 7. On this dataset, UnCLe(P) achieved a competitive Accuracy
(ACC) of 0.925(±.010), underscoring its ability to correctly classify the presence or absence of connec-
tions.
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Table 7: Causal discovery performance on the fMRI dataset.

Method fMRI Dataset

AUROC ↑ AUPRC ↑ ACC ↑

VAR 0.615(±.088) 0.175(±.108) 0.910(±.012)

PCMCI 0.813(±.096) 0.278(±.156) 0.924(±.008)

cMLP 0.616(±.136) 0.191(±.116) 0.846(±.050)

GVAR 0.687(±.132) 0.289(±.232) 0.806(±.140)

TCDF 0.812(±.082) 0.368(±.252) 0.899(±.046)

VARLiNGAM 0.677(±.131) 0.264(±.173) 0.924(±.009)

DYNOTEARS 0.544(±.055) 0.315(±.049) 0.857(±.008)

CUTS+ 0.689(±.116) 0.212(±.145) 0.924(±.009)

JRNGC 0.776(±.030) 0.289(±.066) 0.975(±.001)

UnCLe(P) 0.792(±.118) 0.286(±.154) 0.925(±.010)

UnCLe(A) 0.783(±.068) 0.235(±.108) 0.923(±.006)

Walk

Jump

Run

Golf

Kick soccer

Bend

Large sidestep to right

Average Causal Graph
Figure 8: The discovered causal structures of human joints across 7 collected human actions. The
last structure is averaged from these 7 actions.

F Additional Results on MoCap

We use UnCLe to analyze 7 different human actions, and the resulting causal structure is shown in
Figure 8. Note that we aggregate the 3-axis variables to a single variable that represents the joint
by max pooling to display the causal structure more clearly. Generally, the found causal structure
is in line with our intuition on how joints of humans affect each other when we perform specific
actions, to name a few: the structure of walking and running are similar; the causal structure is
prominent around legs in soccer kicking and sidestepping; jump shows complex connections on feet;
golf shows most sophisticated causal relation as this sport basically involves every muscle of the
human body. In conclusion, UnCLe provides effective insight into how the joints in our physical
body work collaboratively to complete motion actions.

Figure 9 shows the joint structure discovered from "kick soccer" motion of the MoCap dataset by
UnCLe, VAR, PCMCI, cMLP and CUTS+. The results from UnCLe are the clearest and align
more closely with the actual patterns of human motion. Additionally, UnCLe is capable of detecting
differences in the strength of relationships, whereas the differences detected by other methods are
very subtle.

G NC8: A Synthetic Dataset with Nonlinear Interactions

The time series of NC8 dataset are generated with following equations:
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UnCLe (Ours) PCMCI CUTS+cMLPVAR

Figure 9: The discovered causal structures of human joints of the "kick soccer" motion on UnCLe
and other methods.
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where ε(·) ∼ N (0, 1) are the noise factors conforming to the standard normal distribution. The NC8
dataset contains 5 replicas with different random seeds and different t0 = [0, 100, 200, 300, 400]
beginning offsets. Figure 10 illustrates the causal structure of NC8, with the numbers on the edges
indicating the lags of influence.
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Figure 10: The true causal structure of NC8.

H ND8: A Synthetic Dataset with Dynamic Causal Structures

The ND8 dataset is designed to evaluate the capability of methods to detect dynamic, or time-varying,
causal relationships. It is derived from the static NC8 dataset by introducing periodic switches in

17



the causal dependencies between specific variable pairs. Specifically, the generating equations for
variables zt, wt, ct, and ot remain identical to those defined for the NC8 dataset (as presented in the
previous section). However, the causal relationships involving variables xt, yt, at, and bt are subject
to change.

The dynamic nature is implemented as follows: the primary causal direction between the
pair (x, y) and the pair (a, b) reverses every 500 timesteps. Initially (e.g., for timesteps t =
1, . . . , 500; 1001, . . . , 1500; etc.), the generating equations for xt, yt, at, and bt are:

xt =0.45 sin
t

4π
+ 0.45 sin

t

9π
+ 0.25 sin

t

3π
+ 0.1εx

yt =0.24xt−1 − 0.28xt−2 + 0.08xt−3 + 0.2xt−4+

0.2yt−1 − 0.12yt−2 + 0.16yt−3 + 0.04yt−4 + 0.02εy

at =0.15 sin
t

6
+ 0.35 sin

t

80
+ 0.65 sin

t

125
+ 0.1εa

bt =0.54at−13 − 0.63at−14 + 0.18at−15 + 0.45at−16+

0.36bt−13 + 0.27bt−14 − 0.36bt−15 + 0.18bt−16 + 0.02εb

During the alternate 500-timestep intervals (e.g., for timesteps t = 501, . . . , 1000; 1501, . . . , 2000;

etc.), the generating equations for xt, yt, at, and bt switch to the following:

xt =0.08xt−1 − 0.08xt−2 + 0.04xt−3 + 0.04xt−4+

0.04yt−1 + 0.28yt−2 − 0.08yt−3 − 0.04yt−4 + 0.1εx

yt =0.45 sin
t

4π
+ 0.45 sin

t

9π
+ 0.25 sin

t

3π
+

0.2yt−1 − 0.12yt−2 + 0.16yt−3 + 0.04yt−4 + 0.02εy

at =0.09at−13 − 0.18at−14 + 0.09at−15 + 0.09at−16+

0.72bt−13 + 0.27at−14 − 0.63at−15 + 0.18at−16 + 0.1εa

bt =0.15 sin
t

6
+ 0.35 sin

t

80
+ 0.65 sin

t

125
+

0.36bt−13 + 0.27bt−14 − 0.36bt−15 + 0.18bt−16 + 0.02εb

In all equations, ε(·) ∼ N (0, 1) represent independent noise factors drawn from a standard normal

distribution. The ND8 dataset comprises 5 replicas, each generated with different random seeds
for the noise terms. The evolving ground truth causal structure of the ND8 dataset is illustrated in
Figure 11, with Figure 11a showing the initial causal relationships and Figure 11b depicting the
structure after the causal switches. To provide a concrete visualization of the generated time series,
Figure 12 displays one such replica from the ND8 dataset, generated using random seed 500. The
plot clearly demarcates the "Reversal Points" at t = 500, 1000, 1500, where the causal dependencies
between specific variable pairs (x− y and a− b) are designed to switch.

I Interpreting Channel-wise Causal Contributions

Figure 13 provides a visual inspection of the learned Dependency Matrices, Ψc, for each of the
C = 20 semantic channels after training UnCLe on a synthetic dataset with a known ground
truth causal graph G. Each matrix Ψc (displayed as Ψ0 through Ψ19 in the figure) represents the
inter-variable dependencies captured within that specific channel.

As observed in Figure 13, the individual channel-wise dependency matrices exhibit varied structures.
Some channels (e.g., channels 0-3, 7-15, 17) learn very sparse connections, suggesting they might
focus on noise modeling or highly specific, subtle interactions not prominent in the overall ground
truth. Other channels, however, capture more discernible patterns of dependency. For instance,
channel 19 appears to strongly reflect the primary diagonal dependencies present in G, while channels
such as 6 and 16 seem to contribute to capturing off-diagonal interactions. Channels 4 and 5 also
highlight certain non-diagonal relationships. This visualization suggests that different channels
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Figure 11: The true dynamic causal structure of the ND8 dataset, illustrating the initial state and the
state after causal relationship reversals.

0 250 500 750 1000 1250 1500 1750 2000

1
0
1

Time Series A

a
Reversal Point

0 250 500 750 1000 1250 1500 1750 2000

1
0
1

Time Series B

b
Reversal Point

0 250 500 750 1000 1250 1500 1750 2000
0

1

Time Series C

c
Reversal Point

0 250 500 750 1000 1250 1500 1750 2000

1

0

1
Time Series O

o
Reversal Point

0 250 500 750 1000 1250 1500 1750 2000
1

0

1
Time Series X

x
Reversal Point

0 250 500 750 1000 1250 1500 1750 2000
2

0

2
Time Series Y

y
Reversal Point

0 250 500 750 1000 1250 1500 1750 2000
2

0

2
Time Series Z

z
Reversal Point

0 250 500 750 1000 1250 1500 1750 2000
2

0

2
Time Series W

w
Reversal Point

Figure 12: Visualization of a single replica from the ND8 dataset (generated with seed 500). The
vertical dashed lines indicate the "Reversal Points" at t = 500, 1000, 1500, where predefined causal
relationships switch.
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Figure 13: The full demostration of UnCLe’s causal discovery via weight aggregation. G is the true
causal graph and ĜAgg is the aggregated causal graph by averaging all Ψ from Ψ0 to Ψ19.
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indeed learn to emphasize different facets or subsets of the underlying systemic dependencies, rather
than each channel necessarily isolating entirely distinct and orthogonal causal mechanisms.

The final aggregated static causal graph, ĜAgg, is derived by pooling information across all these
channel-specific dependency matrices (as described in Section 3.2 on Static Causal Graph via
Dependency Aggregation). The resulting ĜAgg in Figure 13 demonstrates a close resemblance to
the true causal graph G. This illustrates how the aggregation of these diverse, channel-specific
perspectives allows UnCLe to reconstruct a comprehensive and accurate representation of the overall
static causal structure, even if individual channels provide only partial or specialized views.

J Demonstration of UnCLe’s Causal Discovery Mechanisms

UnCLe offers two primary mechanisms for causal discovery, as outlined in Section 3.2 Post-hoc
Causal Discovery: (P) dynamic causal graph inference via temporal perturbation and analysis of
datapoint-wise prediction errors, and (A) static causal graph inference via the aggregation of learned
Dependency Matrices. We illustrate these mechanisms below.

J.1 Dynamic Causal Discovery via Temporal Perturbation

UnCLe’s primary approach for dynamic causal discovery involves quantifying the impact of temporal
perturbations on prediction accuracy (Section 3.2 Perturbation-based Dynamic Granger Causality).
The principle is that if variable xj causally influences xi, then disrupting the temporal information in
xj (e.g., via permutation) should lead to a noticeable increase in the prediction error for xi.

Figure 14 illustrates this concept. Consider the task of predicting series x9. The left panel shows the
model’s predictions for x9 under normal conditions (blue line) versus when series x8 is perturbed
(orange line). Assuming x8 is a true cause of x9 (as suggested by a typical Lorenz system structure
or the ground truth G in Figure 15), perturbing x8 significantly degrades the prediction quality for
x9, causing the orange line to deviate markedly from the blue line. This deviation, quantified as the
datapoint-wise error gain ∆ε

\8
9,t, indicates a causal link from x8 to x9.

Conversely, the right panel of Figure 14 shows the predictions for x9 when a non-causal (or weakly
causal) variable, say x12, is perturbed. In this case, the predictions with x12 perturbed (orange line)
remain very close to the original predictions (blue line). The minimal error gain ∆ε

\12
9,t suggests a

weak or absent causal link from x12 to x9.

By systematically applying such perturbations and quantifying the error gains for all variable pairs
across all timesteps, UnCLe constructs the dynamic causal graph ĜPert. The heatmap on the far right
of Figure 14 represents a static summary or snapshot derived from these dynamic causal influences,
demonstrating how this perturbation-based analysis reveals the causal structure.
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Figure 14: Demonstration of inferring causal influences for ĜPert via temporal perturbation. Left:
Predictions for x9 with original data (Normal) vs. x8 perturbed. Middle: Predictions for x9 with
original data vs. x12 perturbed. Right: Resulting (static summary of) causal graph ĜPert derived from
such perturbation analysis.

J.2 Static Causal Discovery via Dependency Matrix Aggregation

One approach UnCLe employs for static causal discovery is the aggregation of its learned Dependency
Matrices (Ψ). As detailed in Section 3.2 Static Causal Graph via Dependency Aggregation and
visualized in Figure 13, UnCLe learns multiple channel-specific Dependency Matrices, Ψc, each
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capturing different aspects of inter-variable relationships. By pooling the information from all these
channels (e.g., using the L2-norm), UnCLe constructs a single, comprehensive static causal graph,
ĜAgg. The effectiveness of this aggregation in accurately recovering the underlying causal structure
(compared to a ground truth G) is demonstrated in Figure 13, where ĜAgg closely matches G for the
Lorenz#1 example. This method provides a direct way to obtain a summary causal graph from the
trained model parameters.

Figure 15: Demonstration of inferring the static causal graph ĜAgg via aggregation of Dependency
Matrices Ψ. Left: True causal graph G. Middle: Examples of learned Dependency Matrices (e.g.,
Ψ6,Ψ18,Ψ19). Right: Aggregated causal graph ĜAgg.

K Additional Ablation Study on Higher-Order Lags

To address the model’s sensitivity to the autoregressive lag, we conducted an additional ablation study
on the Lorenz#1 dataset. The ‘lag‘ hyperparameter determines the temporal lookback for the linear
prediction step in the latent space (Equation 3, modified to use lags > 1). The results for different lag
values are presented in Table 8.

As shown, increasing the lag from 1 to 2 and 4 led to a decrease in causal discovery performance for
both UnCLe(P) and UnCLe(A). We hypothesize this is because the TCN architecture’s large receptive
field already encodes sufficient long-range historical information into the latent representation zt.
Adding explicit higher-order lags in the linear prediction step may introduce parameter redundancy,
making the model more prone to overfitting on spurious, non-primary relationships, while also
increasing computational cost. This result suggests that a lag of 1 is sufficient and optimal for
UnCLe’s architecture on this task.

Table 8: Causal discovery performance on Lorenz#1 with different lag settings.

Lag UnCLe(P) UnCLe(A)

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

1 .999(±.002) .996(±.008) .994(±.007) .962(±.054)
2 .961(±.042) .878(±.089) .956(±.021) .822(±.071)
4 .877(±.076) .670(±.121) .940(±.041) .783(±.099)

L Hyperparameter Settings

Here we list the hyperparameter settings on all experiments method by method. For VAR, cMLP,
TCDF, GVAR on the fMRI dataset, we adopt the experimental results of these methods in [16] and
show the hyperparameter settings provided in that paper.

UnCLe Table 9 lists the hyperparameter settings used for UnCLe of all experiments in this paper.

cMLP [27] (available at https://github.com/iancovert/Neural-GC) Table 10 lists the hy-
perparameter settings used for cMLP. We use Hierarchical lasso as the sparsity penalty and run a
5-step grid search on the penalty factor λ.

TCDF [17] (available at https://github.com/M-Nauta/TCDF) Table 11 lists the hyperparame-
ter settings used for TCDF. We run a 5-step grid search on the significance level α of the Permutation
Importance Validation Method.
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Table 9: Hyperparameter Settings for UnCLe.

Dataset Lag
Kernel
Size

TCN
Blocks

Kernel
Filters

Recon.
Epochs

Joint
Epochs

Learning
Rate

Lorenz#1 1 8 6 20 1,000 2,000 5e-3
Lorenz#2 1 6 8 12 1,000 2,500 2e-3
Lorenz#3 1 3 6 18 500 2,500 1e-3
fMRI 1 6 8 12 1,000 2,000 1e-5
NC8 1 8 6 20 1,000 2,000 3e-4
FINANCE 2 2 3 24 500 10,000 3e-4
ND8 1 8 6 20 1,000 2,000 3e-4
TVSEM 1 3 4 8 500 2,500 2e-3

Table 10: Hyperparameter Settings for cMLP.

Dataset Lag
Hidden
Layers

Training
Epochs

Learning
Rate

Sparsity
Hyperparams

Lorenz#1 5 1 2,000 1e-2 λ ∈ [0.0, 2.0]
Lorenz#2 5 1 3,000 1e-2 λ ∈ [0.0, 2.0]
Lorenz#3 5 1 2,000 1e-2 λ ∈ [0.0, 2.0]
fMRI 1 1 2,000 1e-2 λ ∈ [1e−3, 0.75]
NC8 16 1 1,000 5e-3 λ ∈ [0.0, 2.0]
FINANCE 3 1 1,000 1e-3 λ ∈ [0.0, 2.0]

Table 11: Hyperparameter Settings for TCDF.

Dataset
Kernel
Size

Hidden
Layers

Training
Epochs

Learning
Rate

Sparsity
Hyperparams

Lorenz#1 5 1 2,000 1e-2 α ∈ [0.0, 2.0]
Lorenz#2 5 1 2,000 1e-2 α ∈ [0.0, 2.0]
Lorenz#3 5 1 2,000 1e-2 α ∈ [0.0, 2.0]
fMRI 1 1 2,000 1e-3 α ∈ [0.0, 2.0]
NC8 16 1 1,000 5e-3 α ∈ [0.0, 2.0]
FINANCE 5 1 2,000 1e-2 α ∈ [0.0, 2.0]

GVAR [16] (available at https://github.com/i6092467/GVAR) Table 12 lists the hyperpa-
rameter settings used for GVAR. We run a 5x5-step grid search on the regularisation parameters
λ, γ.

Table 12: Hyperparameter Settings for GVAR.

Dataset Lag
Hidden
Layers

Training
Epochs

Learning
Rate

Sparsity
Hyperparams

Lorenz#1 5 2 1,000 1e-4 λ ∈ [0.0, 3.0], γ ∈ [0.0, 0.025]
Lorenz#2 5 2 1,000 1e-4 λ ∈ [0.0, 3.0], γ ∈ [0.0, 0.025]
Lorenz#3 5 2 1,000 1e-4 λ ∈ [0.0, 3.0], γ ∈ [0.0, 0.025]
fMRI 1 1 1,000 1e-3 λ ∈ [0.0, 3.0], γ ∈ [0.0, 0.1]
NC8 16 1 1,000 1e-4 λ ∈ [0.0, 3.0], γ ∈ [0.0, 0.025]
FINANCE 3 2 500 1e-4 λ ∈ [0.0, 3.0], γ ∈ [0.0, 0.025]

VAR [7] (as implemented in the statsmodels library [23]) & PCMCI [22] (available at https:
//github.com/jakobrunge/tigramite))

VAR and PCMCI share the lag hyperparameter L. We set L = 5 on all the Lorenz96 experiments
and the FINANCE experiment, L = 1 on fMRI, and L = 16 on NC8. The significance level of the
PC algorithm of PCMCI is set to 0.01.
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Algorithm 1 Causal discovery via temporal perturbation
Input: dataset x; trained UnCLe model f .
Output: Adjacency matrix Â

Pert
.

1: x̂2:T+1 ← f(x1:T ) {Predict on original dataset}
2: Â

Pert ← 0M×M

3: for i = 1 to N do
4: εi = `(x̂i,2:T ,xi,2:T ) {Original error of series i}
5: x\i ← x {Clone the dataset}
6: Permutate x

\i
i {Perturb series i with permutation}

7: x̂\i ← f(x\i) {Predict on perturbed dataset}
8: for j = 1 to N do
9: ε

\j
i = `(x̂

\j
i,2:T ,xi,2:T ) {Perturbed error}

10: for t = 2 to T do
11: ∆ε

\j
i,t = max(0, ε

\j
i,t − εi,t)

12: Â
t,Pert
j,i ← ∆ε

\j
i,t {Datapoint-wise error gain}

13: end for
14: end for
15: end for

VARLiNGAM [9] (available at https://github.com/cdt15/lingam) We run a 4-step grid
search on the lag from 2 to 5.

DYNOTEARS [19] (available at https://github.com/mckinsey/causalnex) We set the max
iteration to 1,000, regularisation parameters λw and λa to 0.1. We run a 4-step grid search on the lag
from 2 to 5.

CUTS+ [5] (available at https://github.com/jarrycyx/UNN/tree/main/CUTS_Plus) We
set learning rate to 1e-3, number of training epochs to 64 and max number of groups to 32. We run a
4-step grid search on the regularisation parameters λ from 0.1 to 0.005.

JRNGC [30] (available at https://github.com/ElleZWQ/JRNGC) We set the hidden size to
100, lag to 5, number of residual layers to 5 and learning rate to 1e-3. We run a 4-step grid search on
the Jacobian regularizer coefficient λ from 0.001 to 0.0001.

M Implementation of Temporal Perturbation

Algorithm 1 outlines the procedure for inferring the dynamic causal graph ĜPert using temporal
perturbation and datapoint-wise prediction errors. In this algorithm, ` denotes the Mean Squared
Error (MSE) loss function, and x\j represents the dataset where the j-th time series, xj , has been
perturbed (by permuting its temporal values). The core idea is to quantify the causal influence from
variable xj to variable xi at time t. This is achieved by computing ∆ε

\j
i,t, the datapoint-wise gain in

prediction error for xi,t when the historical information of xj (i.e., xj,<t) is disrupted by perturbation.
This error gain, ∆ε

\j
i,t, serves as the strength of the causal link Ĝt,Pert

j,i in the dynamic graph.

The computational efficiency of this process can be significantly enhanced through batch processing.
Instead of perturbing and predicting for each series sequentially, we can prepare multiple perturbed
versions of the dataset (each with a different series xj perturbed) and process them in batches. By
feeding these batches into the trained UnCLe model, predictions for multiple perturbed scenarios can
be obtained in parallel. This optimization reduces the number of sequential forward passes through
the model from N (where N is the number of series) to approximately N/B, where B is the batch
size, thereby reducing the overall inference time. The effective time complexity for the perturbation
analysis, originally proportional to O(N · Tmodel), where Tmodel is the time for one forward pass,
becomes closer to O(dN/Be · Tmodel), assuming efficient parallelization within each batch.
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made in the paper.
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Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We provide a Limitations section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Justification: We provide the software and hardware configuration of the experiments in this
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: As far as we concerned, the proposed causal discovery method won’t cause
societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: As far as we concerned, the proposed causal discovery method poses no such
risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the origin of all existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new causal discovery dataset and provide its formulation and
dataset files.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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