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Abstract

Contrastive decoding strategies are widely used to reduce object hallucinations in
multimodal large language models (MLLMs). These methods work by construct-
ing contrastive samples to induce hallucinations and then suppressing them in the
output distribution. However, this paper demonstrates that such approaches fail to
effectively mitigate the hallucination problem. The performance improvements
observed on POPE Benchmark are largely driven by two misleading factors: (1)
crude, unidirectional adjustments to the model’s output distribution and (2) the
adaptive plausibility constraint, which reduces the sampling strategy to greedy
search. To further illustrate these issues, we introduce a series of spurious im-
provement methods and evaluate their performance against contrastive decoding
techniques. Experimental results reveal that the observed performance gains in
contrastive decoding are entirely unrelated to its intended goal of mitigating hal-
lucinations. Our findings challenge common assumptions about the effectiveness
of contrastive decoding strategies and pave the way for developing genuinely ef-
fective solutions to hallucinations in MLLMs. The source code is available at
https://github.com/ustc-hyin/cd_rethink

1 Introduction

The hallucination problem [[L, 213 4] in multimodal large language models (MLLMs) [5} 16, 7] refers
to the generation of outputs that are factually incorrect or misaligned with the input data. This issue
arises from challenges in aligning diverse data modalities, such as text and images, which amplify
reasoning errors. Such hallucinations can have serious consequences in critical domains, including
autonomous driving [8, 9, [10, L 1] (e.g., false object detection leading to accidents) and healthcare
[12}[13] (e.g., incorrect diagnostic interpretations).

Contrastive decoding methods [[14} 15/ [16]] are widely recognized as an effective approach to address-
ing object hallucination in generative models. As illustrated in Figure|l} these methods construct
contrastive samples designed to induce hallucinations, then suppress the corresponding output dis-
tributions, ensuring closer alignment between model outputs and visual inputs. Representative
approaches within this framework include Visual Contrastive Decoding (VCD) [17]], Instruction
Contrastive Decoding (ICD) [18]], and Self-Introspective Decoding (SID) [[19]. Their training-free
nature and purported ability to address hallucinations have made them highly regarded in the field.

Although methods like VCD have demonstrated remarkable performance improvements on the POPE
benchmark [1]], we reveal in Section [] that these results are highly misleading. In reality, these
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methods fail to effectively address model hallucination. The observed performance gains on the
POPE benchmark are primarily driven by two factors:

Misleading Nature of Performance Improvement

R1: A unidirectional adjustment of the output distribution, which simply biases the model
towards producing more "Yes" outputs, leading to a balanced distribution on certain datasets.

Ro: The adaptive constraints in these methods degrade the sampling decoding strategy into
an approximation of greedy search, resulting in deceptively improved performance.

To expose the misleading nature of the improvement in the first scenario, we implemented two forced
distribution adjustment algorithms in Section [5.1] to show that the apparent gains of contrastive
decoding on the POPE Benchmark are not genuine. The methods are as follows: (1) Prompt-Based
Adjustment, where we added a prompt to the instruction, such as "Whenever possible, please select
Yes." to bias outputs toward "Yes"; and (2) Output Layer Modification, where we altered the output
layer to favor "Yes" when the probabilities for "Yes" and "No" were similar. Although neither
method mitigates hallucinations, both achieved performance gains comparable to those of contrastive
decoding, confirming that these improvements do not represent a genuine solution to the problem.

To highlight the misleading nature of the performance improvement in the second scenario, we
incorporated the adaptive plausibility constraint into the standard sampling strategy and compared
its predictions with those from contrastive decoding in Section[5.2] The experimental results reveal
that, despite having no theoretical connection to hallucination mitigation, the adaptive plausibility
constraint accounts for nearly all the performance gains attributed to contrastive decoding. This
finding underscores that the contrastive decoding methods, in essence, fail to mitigate hallucinations.

Overall, this paper makes the following three contributions:

* We identified that the performance improvement of contrastive decoding methods stems from its
unidirectional and blunt adjustment of the output distribution, which coincidentally balances the
distribution on certain datasets.

* We discovered that another key factor driving the performance gains of contrastive decoding
methods is their adaptive plausibility constraints, which streamline the sampling strategy into an
approximation of greedy search.

* We developed a series of spurious improvement methods and evaluated their performance against
contrastive decoding methods. Our findings convincingly show that contrastive decoding methods
do not alleviate hallucinations in any meaningful way.

2 Related Work

Multimodal Large Language Models. The evolution of MLLMs [20}[21] has progressed from BERT-
based decoders [22, 23] to advanced LLM architectures [24, [25]], enabling more effective multimodal
relationship modeling 26| 27]. Models such as BLIP-2 [28]] and MiniGPT-4 [29] employ Q-Former
mechanisms to enhance the alignment between visual and textual inputs, facilitating more precise
cross-modal interactions. InstructBLIP [30] extends this framework by integrating task-specific
instructions, improving the model’s ability to interpret context-sensitive visual semantics. Meanwhile,
LLaVA [31,132] and Qwen-VL [33]] adopt simpler linear projection methods that streamline alignment,
leading to superior performance in vision-language tasks. Despite these advancements, hallucination
remains a persistent challenge that warrants further investigation.

Contrastive Decoding Strategies. Contrastive decoding [34, 135 136] are widely recognized as
effective in addressing object hallucination in generative models. Visual Contrastive Decoding (VCD)
[L7] addresses object hallucination by comparing output distributions generated from standard visual
inputs and distorted visual inputs. This approach reduces the model’s dependence on linguistic
priors within integrated LLMs and minimizes the impact of statistical biases in MLLM pretraining
corpus. Instruction Contrastive Decoding (ICD) [18]], in contrast, focuses on the role of instruction
perturbations in amplifying hallucinations. By examining the differences in output distributions
between standard and perturbed instructions, ICD detects hallucination-prone content and mitigates its
impact effectively. Building upon these two hallucination mitigation methods, numerous approaches,
including Adaptive Focal-Contrast Decoding (HALC) [37]], Self-Introspective Decoding (SID) [19],



and Visual Layer Fusion Contrastive Decoding (VaLiD) [38]], have been developed based on similar
principles. Although these methods have demonstrated substantial performance improvements on
the POPE Benchmark, we will show that these improvements are, in fact, entirely unrelated to the
original objective of hallucination mitigation.

3 Preliminary

This section outlines the main components and operational workflows of three leading hallucination
mitigation methods: VCD, ICD, and SID, as illustrated in Figure m All three adopt contrastive
decoding strategies to reduce hallucinations and improve consistency with the visual input. The POPE
Benchmark is also discussed as one of the most important metrics for evaluating their performance.
Further technical details of VCD, ICD, and SID can be found in Section[A]

Vanilla Decoding. We consider a MLLM parametrized by 6. The model takes as input a textual
query x and a visual input v, where v provides contextual visual information to assist the model in
generating a relevant response y to the textual query. The response y is sampled auto-regressively
from the probability distribution conditioned on the query = and the visual context v. Mathematically,
this can be formulated as:

Yt ~ po (Yt | v, 2, y<¢) o< exp (logity (y: | v, 7,y<t)) (1

where y; denotes the token at time step ¢, and y represents the sequence of generated tokens up to
the time step (¢t — 1).
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Figure 1: An illustration of hallucination mitigation methods: Visual Contrastive Decoding, Instruc-
tion Contrastive Decoding, and Self-Introspective Decoding. The hallucination induction module
shifts outputs toward negative responses, while the contrastive decoding module shifts them toward
positive responses, rather than achieving their intended effects.

Visual Contrastive Decoding. VCD is a corrective strategy aimed at reducing hallucinations in
MLLMs. Given a textual query and its corresponding image, the model produces two output
distributions: one from the original image and another from a perturbed variant, typically generated
by applying controlled modifications such as Gaussian noise. By evaluating the divergence between
these distributions, VCD constructs a contrastive output distribution that improves the reliability and
factual accuracy of the model’s response.

Instruction Contrastive Decoding. 1CD addresses hallucinations by leveraging the observation
that instruction perturbations, particularly those involving negative prefixes, increase uncertainty in
multimodal alignment. ICD operates by first amplifying the probabilities of hallucinated concepts,



then systematically detaching these from the original output distribution. This contrastive process
reduces the model’s vulnerability to object hallucinations.

Self-Introspective Decoding. SID extends the ideas of VCD and ICD by addressing a key limitation:
perturbing the full input can inject too much noise, making it harder to produce useful hallucinations.
To resolve this, SID adaptively prunes the input by keeping only a small set of image tokens with
low attention scores after the early decoder layers (see Figure[I] far right). This focused adjustment
encourages vision-and-text hallucinations to emerge during decoding. These hallucinated elements
are then separated from the original output distribution to improve the model’s reliability.

Adaptive Plausibility Constraint. One key challenge inherent in the three aforementioned methods is
the risk of indiscriminate penalization across the entire output space, which can unintentionally sup-
press valid predictions and, paradoxically, favor the generation of implausible tokens. To mitigate this,
all three methods incorporate an adaptive plausibility constraint. This constraint dynamically adjusts
penalization based on confidence scores derived from the model’s output distribution, conditioned on
the original visual input v. Formally, the constraint is defined as:

Vieat (y<t) = {0 €V | po (e | 0,2, y<1) = Bmaxpy (w | v,2,y<0)}

Ped (Yt | v,2) =0 if yr & Vieas (Y<t)
Here, V represents the output vocabulary of the multimodal large language model (MLLM), and £ is
a hyperparameter controlling the truncation threshold of the next-token distribution. A higher value
of 3 results in more aggressive truncation, thereby retaining only the most probable tokens.

@

Polling-based Object Probing Evaluation. POPE [1}39] offers a robust framework for evaluating
object hallucinations in multimodal large language models (MLLMs). Departing from caption-based
methods, it frames hallucination detection as a binary task using direct Yes-or-No questions (e.g.,
“Is there a chair in the image?”’), enabling clearer interpretation. The benchmark ensures a balanced
distribution of “Yes” and “No” samples (50% each). Contrastive decoding—based mitigation strategies
have demonstrated their effectiveness primarily through improved performance on POPE, reinforcing
their credibility within the research community.

4 Misleading Performance Improvement

In this section, we highlight two misleading factors contributing to the performance improvement
of contrastive decoding methods on the POPE Benchmark: (1) Unidirectional output adjustment
skews the model towards generating more "Yes" outputs, leading to a balanced distribution in certain
datasets. (2) The adaptive plausibility constraint degrades sampling decoding strategy into greedy
search, resulting in deceptively improved outcomes.

Table 1: Performance of various contrastive de-  Table 2: Output distribution generated from con-

coding methods on subsets of POPE Benchmark.

trastive inputs in contrastive decoding methods.

Dataset | COCO Random | GQA Adversarial

Dataset | COCO Random | GQA Adversarial

Method | Acc % Yes % | Acc % Yes % Method | Acc % Yes % | Acc % Yes %
Greedy 87.1 39.2 80.9 54.0 Greedy 87.1 39.2 80.9 54.0
VCD 88.6 46.4 78.0 63.3 VCD-C 76.7 28.2 71.5 41.3
SID 87.9 42.3 79.9 57.8 SID-C 79.0 23.6 74.2 43.1

4.1 Unidirectional Output Adjustment

In this subsection, we illustrate how contrastive decoding algorithms can deceptively enhance the
performance of MLLMs on the POPE Benchmark by applying targeted, unidirectional modifications
to the output distribution. We begin by evaluating the performance of various contrastive decoding
methods on the MSCOCO [40] and GQA [41] datasets, analyzing both accuracy and the distribution
of the model’s responses. For this study, we selected LLaVA-v1.5-7B as the foundational MLLM,
using a greedy search decoding strategy.

As shown in Table[T] both VCD and SID significantly skewed the model’s output distribution toward
“Yes” across all subsets. On MSCOCO-Random subset, where the original output distribution was



skewed toward "No," VCD and SID corrected this imbalance, resulting in a more balanced distribution
and improved accuracy. Conversely, for GQA-Adversarial subset, where the output distribution was
already biased toward "Yes," these methods intensified the skew, ultimately reducing accuracy.

We further illustrate how model outputs change after applying contrastive decoding methods, pro-
viding a clearer understanding of their performance improvements. As shown in Figure [2] the
method primarily alters predictions from "No" to "Yes," significantly outpacing the reverse. On
the MSCOCO-Random dataset, where the output distribution is initially skewed toward "No," this
adjustment converts many false negatives into true positives, thereby improving accuracy. Conversely,
on the GQA-Adversarial dataset, which is biased toward "Yes," these modifications lead to the mis-
classification of numerous true negatives as false positives, resulting in a performance decline. For
more details on prediction shifts, please refer to Section [B]

,
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Figure 2: Changes in the distribution of predictions after applying contrastive decoding methods.

To understand why contrastive decoding methods consistently increase the likelihood of a "Yes"
response, we analyzed the output distribution generated from contrastive samples, as shown in
Table 2] In Section 3] we proposed that the primary function of contrastive samples is to induce
hallucinations, allowing contrastive decoding to subsequently filter out these hallucinated elements
from the output distribution. However, the results in Table 2] reveal that this objective was entirely
unmet. Most outputs derived from contrastive samples were incorrect, not due to successfully induced
hallucinations, but because the model overwhelmingly favored "No" responses. This severe bias in
the output distribution led to a significant decline in accuracy. A more detailed explanation of why
outputs generated from contrastive inputs are biased toward “No” is provided in Section[C]

(a) LLaVA-v1.5-7B Greedy

02

Popular Adversarial

(d) LLaVA-v1.5-7B Sample (e) LLaVA-v1.5-13B Sample (f) QwenVL-Chat-7B Sample
Figure 3: Skewness in the Raw Output Distribution of MLLMs across Different Datasets



Based on the above discussion, the practical performance of contrastive decoding methods is illus-
trated in the lower section of Figure[I] The output distribution derived from the contrastive inputs is
heavily biased toward "No." However, the contrastive decoding method suppresses this content in the
original output, thereby unilaterally increasing the model’s likelihood of answering "Yes." Whether
the model’s performance on the dataset improves depends heavily on whether this increased "Yes"
frequency leads to a more balanced output distribution. However, as shown in Figure[3] the output
distribution of MLLMs tends to be biased toward "No" in most data subsets. Therefore, contrastive
decoding methods still manage to achieve a strong overall performance on the POPE Benchmark.

4.2 Sampling Decoding Degradation

In this subsection, we will illustrate how contrastive decoding methods misleadingly enhance model
performance by degrading sampling-based decoding strategies into greedy search through the adaptive
plausibility constraint.

Notably, the POPE Benchmark, which requires models to answer "Yes" or "No," functions as a binary
classification task. Consequently, greedy search is the most suitable decoding strategy, rendering
sampling-based methods unjustifiable. As shown in the upper-left corner of Figure [d] experimental
results further confirm that greedy search significantly outperforms direct sampling. In fact, greedy
search outperforms direct sampling on the vast majority of tasks[42]. Additional comparisons of
decoding strategies and their effects on prediction outcomes are provided in Section [D| However,
many contrastive decoding methods report performance improvements using sampling strategies,
necessitating a closer examination of these claims.

We revisit the adaptive plausibility constraint introduced in Section [3] and formally defined in
Equation (2). This constraint ensures that when the model exhibits high confidence in its outputs
corresponding to the original input, the candidate pool is refined to retain only high-probability tokens.
By incorporating this mechanism into contrastive decoding methods, it aims to mitigate adverse
effects by preventing the generation of implausible tokens, while safeguarding the coherence and
quality of the generated content.

In its original design, the constraint was intended as a complement to contrastive decoding strategies,
with no explicit connection to mitigating hallucinations. Consequently, it was assumed to have
no significant effect when applied independently. However, our findings challenge this assumption:
under a sampling strategy, the constraint emerges as a pivotal contributor to performance gains.
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Figure 4: Why does the adaptive plausibility constraint alone result in improvements?

Figure [ provides a detailed explanation of why the adaptive plausibility constraint alone significantly
improves performance when using the sampling strategy. For the question "Is there a cell phone in
the image?", LLaVA-v1.5-7B model generates the correct output distribution: Yes: 8.8% and No:
91.2%. Using a greedy search strategy, the model consistently produces the correct answer, "No."



However, when employing a sampling strategy, there is an 8.8% chance that the model generates the
incorrect answer, "Yes."

When the adaptive plausibility constraint is applied, many candidate options are eliminated by setting
their logits to negative infinity for failing to satisfy the condition:

Po (ye | v 2, y<i) = Bmaxpg (w | v, 2,y<1) - (3)

Among the excluded candidates is the option "Yes." Consequently, the sampling strategy reduces to a
greedy search, ensuring a 100% probability of correctly answering "No."

Consequently, the adaptive plausibility constraint greatly limits the pool of candidate options, trans-
forming the sampling strategy into a predominantly greedy search. As demonstrated in Figure 4}
MLLMs exhibit markedly superior performance on the POPE Benchmark under a greedy strategy,
underscoring the constraint’s pivotal contribution to performance gains.

4.3 Insights

In Section 4.1} we show that when using greedy search as the decoding strategy, contrastive decoding
methods modify the model’s predictions in a unidirectional manner, shifting the output distribution
toward Yes. As a result, performance improvements primarily depend on whether the model’s original
output distribution was biased toward No.

In Section f.2] we demonstrate that when direct sampling is used as the decoding strategy, the
adaptive plausibility constraint effectively reduces it to greedy search, serving as a key driver of the
observed performance gains.

These findings suggest that the reported improvements from contrastive decoding may be misleading.
Specifically, the gains observed on the POPE Benchmark could falsely imply effective hallucination
mitigation when, in reality, they stem from unrelated factors.

5 Spurious Improvement Methods

In this section, we propose a series of spurious improvement methods based on the two fundamental
reasons for performance improvement discussed in Section4.3] Although these methods are entirely
unrelated to hallucination mitigation, they yield experimental results comparable to contrastive
decoding techniques. This evidence suggests that while contrastive decoding enhances performance
on POPE Benchmark, it does not address hallucinations.

Prompt-Based Adjustment Output Layer Modification

User Instructions NO Predicted YES

| |
| |
Is there a black banana [ | YES probabilities for YES NO
in the picture? | | and NO are close.
L )|
LLM I
Additional Prompt g} F -

inal prediction is
consistently adjusted to
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| |

. . I |

Answer Yes if possible. | |
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Figure 5: Tllustration of Prompt-Based Adjustment and Output Layer Modification Algorithms.

5.1 Forced Distribution Adjustment

For the first misleading factor in performance improvement, which involves modifying model
predictions in a single direction to bias the output distribution toward "Yes," we introduce two pseudo-
performance enhancement methods: Prompt-Based Adjustment and Output Layer Modification. The
implementation of these algorithms is detailed in Figure 3]



Prompt-Based Adjustment modifies the input side of the model by appending an additional prompt,
"Answer Yes if possible," after the user’s instruction. This extra input biases the model’s output
distribution toward "Yes." Output Layer Modification refers to adjustments made at the output stage
of the model. After generating its initial prediction, the model evaluates the probabilities of "Yes" and
"No." If their difference is small, i.e.,

|pg(Y€S | v, I) - p@(NO | v, .73)| <T, 4
the prediction is forcibly set to "Yes." Here, 7 controls how close the probabilities must be to trigger
this modification. This adjustment increases the likelihood of the model predicting "Yes."

Experimental Settings. We selected QwenVL-7B, LLaVA-v1.5-7B, and LLaVA-v1.5-13B as the
backbone MLLMs. For decoding, we employed a greedy search strategy. Regarding the critical POPE
benchmark, our experiments were conducted on COCO dataset, where the raw output distribution
of MLLMs tends to be biased toward "No." As a result, all contrastive decoding methods exhibited
notable improvements on this dataset. In addition, we conducted experiments on several other
benchmarks that have not been evaluated by many contrastive decoding methods, including MME[43]],
CHAIR[44], NoCaps[45] and LLaVA-Bench[31]], covering both discriminative and generative tasks.

Table 3: Performance of Prompt-Based Adjustment (PBA) and Output Layer Modification (OLM).

LLaVA-v1.5-7B | LLaVA-v1.5-13B | QwenVL-Chat-7B

Category ‘ Method ‘

| | Accuracy  Yes (%) | Accuracy  Yes (%) | Accuracy Yes (%)

Greedy 87.1 10.0 39.2 10.0 86.7 10.0 38.7 10.0 85.910.0 37.810.0

VCD | 886115 464172 | 89.212.5 444157 | 87.711.8 40.612.8

Random SID 87.9 10.8 424132 87.210.5 42.513.8 86.510.6 39.912.1
PBA | 876105 40211.0 | 90213.5 457170 | 873414 41.513.7

OLM 89.6 12.5 442 15.0 90.013.3  48.8 110.1 88.212.3 43.816.0

Greedy 85.8 10.0 40.4 10.0 86.0 10.0 39.410.0 85.6 10.0  38.210.0

VCD | 862104 4887184 | 873113 4637169 | 87.1115 41.273.0

Popular SID 85.1 10.7 45.114.7 85.1 /0.9 44.6 15.2 85310.3 39.8711.6
PBA | 862104 416112 | 8847124 475718.1 | 868712 423 714.1

OLM 87.311.5 46.5 16.1 88.612.6 50.27110.8 | 87.47T1.8 44.816.6

Greedy 83.6 70.0 42.6 10.0 84.370.0 41.0 70.0 84.0 10.0  39.710.0

VCD 819 1.7 53.1710.5 | 83.8 /0.5 49.7 18.7 84.510.5 43.714.0

Adversarial | SID | 82313 479153 | 82914 469159 | 83208 425728
PBA 83.7 10.1 44.011.4 84.510.2 51.31710.3 | 84.110.1 452 15.5

OLM | 83.610.0 50.117.5 | 839104 54971139 | 848108 484187

Results and Analysis on POPE. The experimental results, presented in Table [3] show that PBA
achieves an even greater performance improvement than SID, while OLM surpasses VCD. Prediction
accuracy increases as the output distribution approaches balance. However, it is worth noting that on
the Adversarial subset, when the distribution shifts beyond balance and biases toward "Yes," accuracy
begins to decline, aligning with the conclusion in Section [#.3] Although PBA and OLM are not
designed for hallucination mitigation, they produce results similar to contrastive decoding methods,
suggesting that contrastive decoding does not effectively address hallucinations. For the experimental
results on the AOKVQA and GQA datasets, please refer to Section [E]

Table 4: Performance of contrastive decoding methods on other benchmarks using greedy search.

Method | MME-PT  MME-C1 | CHAIR-S| CHAIR-I| | Nocaps? LLaVA-Bench 1

Greedy | 1475.1100.0 349.6 100.0 | 21.6 0.0 72100 | 83.870.0 65.710.0
VCD | 1389.9 /852 294.6155.0 | 254138 8.110.9 | 81.22.6 64.6 |1.1
SID | 13964 [78.7 304.11455 | 249133 75103 | 81.9]1.9 64.9 [0.8

Results and Analysis on Other Benchmarks. As shown in Table ] for the discriminative task
MME, contrastive decoding methods did not yield any performance gains, as the model’s output



did not exhibit an initial distributional bias. In fact, it led to a decline in performance. Similarly,
in generative tasks such as CHAIR, Nocaps, and LLaVA-Bench, contrastive decoding offered no
improvements. This clearly demonstrates that contrastive decoding can only enhance performance
in discriminative tasks where the initial output distribution is skewed towards "No." However, such
improvements do not fundamentally address the issue of object hallucination.

5.2 Standalone Application of the Constraint.

The second misleading factor contributing to performance improvement is that the adaptive plausibility
constraint degrades the sampling strategy into a greedy search strategy.

To investigate this, we plan to apply the adaptive plausibility constraint in isolation while using
sampling as the decoding strategy. This will demonstrate the significant performance gains that occur
when the constraint forces the sampling strategy to behave like greedy search. When the adaptive
plausibility constraint is applied independently, the model’s output distribution can be defined as:

Ye ~ po (Y | v, 2, y<t) oc exp (logity (yr | v,7,y<¢)), Yt € Vheaa(y<t) (5)

Experimental Settings. We utilize QwenVL-7B, LLaVA-v1.5-7B, and LLaVA-v1.5-13B as our
foundational MLLMs, employing a sampling decoding strategy. Regarding the critical POPE
benchmark, our experiments are conducted on the GQA dataset, where the original output distribution
of MLLMs is relatively balanced. Consequently, the modification introduced by contrastive decoding
methods, which shifts the output distribution towards "Yes," does not introduce a positive bias.
However, since the adaptive plausibility constraint converts the sampling strategy into a greedy
search, the model’s performance still improves.

Table 5: Influence of Independent Application of the Adaptive Plausibility Constraint on Model
Performance. Sample' refers to the sampling strategy that applies the constraint independently.

Category | Methoa | PLaVAVLS7B | LLaVA-v15-13B | QwenVL-Chat-7B

| | Accuracy  Yes (%) | Accuracy Yes (%) | Accuracy Yes (%)

sample | 83.810.0 45.610.0 | 84.610.0 459700 | 81.510.0 41.110.0
VCD | 86.612.8 525169 | 86.712.1 49513.6 | 83.812.3 44.012.9
Random ICD | 852114 47.011.4 | 85.811.2 44910 | 82511.0 42.010.9
SID | 84911.1 491135 | 860114 498139 | 829114 435124
sample! | 85.411.6 45.100.5 | 861115 453 0.6 | 83.011.5 418107

sample | 77.310.0 52.110.0 | 80.610.0 49.910.0 | 76.810.0 46.110.0
VCD | 787114 594173 | 829123 524125 | 782114 494133
Popular ICD | 78.110.8 540119 | 81.510.9 493 /0.6 | 77.510.7 47.211.1
SID | 78411.1 53.711.6 | 825119 533134 | 77.911.1 48.011.9
sample! | 78.611.3 520 /0.1 | 81.811.2 49.6 0.3 | 78.111.3 46.810.7

sample | 75.110.0 54.110.0 | 78210.0 53.210.0 | 76.410.0 45.510.0
VCD | 764113 625184 | 80.312.1 57.013.8 | 78.612.2 492137
Adversarial | ICD | 75.810.7 54210.1 | 79211.0 528104 | 76.810.4 46.010.5

SID | 763112 575134 | 787105 575143 | 772108 47.512.0
sample’ | 763112 54.210.1 | 79.511.3 53.100.1 | 779115 46.210.7

Results and Analysis on POPE. The experimental results in Table [5] show that when MLLMs
adopt sampling as the decoding strategy, applying the adaptive plausibility constraint alone yields an
approximate 2.5% performance improvement, effectively validating the conclusion in Section[#.3]
Notably, since the adaptive plausibility constraint is entirely unrelated to hallucination mitigation yet
achieves performance on par with various contrastive decoding methods, this strongly suggests that
contrastive decoding methods do not actually mitigate hallucinations. For the experimental results on
the AOKVQA and COCO datasets, please refer to Section [E

Results and Analysis on Other Benchmarks. As shown in Table @ across all other benchmarks,
employing the adaptive plausibility constraint alone under direct sampling yields the most significant
performance gains. This suggests that the main reason behind the performance improvements
observed with contrastive decoding lies in the fact that the constraint reduces direct sampling to
greedy search. Crucially, this mechanism is unrelated to the original goal of mitigating hallucination.
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Table 6: Performance of contrastive decoding methods on other benchmarks using direct sampling.

Method | MME-P 1 MME-C1 | CHAIR-S| CHAIR-I| | Nocapst LLaVA-Bencht

Sample | 1282.110.0  286.710.0 | 23.210.0 77100 | 81.410.0 64.3 10.0
Sample’ | 1392.4 11103 302.6 1159 | 224038 74103 | 831117 65.311.0
VCD | 1361.7179.6  278.6/8.1 | 258126 8310.6 | 80.9 0.5 64.2 10.1
SID 1364.6 1825  284.102.6 | 252120 79102 | 81.210.2 64.5 10.2

6 Discussion on Hallucination Mitigation

Based on the insights from Sections 4] and [5] we propose some new criteria for evaluating object
hallucination mitigation in MLLMs.

Impact of Decoding Strategies. When evaluating on POPE, it is essential to account for the
substantial influence of different decoding strategies on model performance. Notably, greedy search
consistently outperforms sampling-based methods such as direct sampling and nucleus sampling. If a
hallucination mitigation method involves modifications to the sampling module, careful consideration
must be given to whether these changes affect the core properties of the decoding strategy.

Avoiding Unidirectional Modification. When evaluating hallucination mitigation methods, it is
essential to assess whether they alter responses unidirectionally. Given the skewed output distribution
of MLLMs across multiple datasets, a method that merely rebalances responses may create the illusion
of improved performance. However, such adjustments do not genuinely mitigate hallucinations.

Balancing Correction and Preservation. An effective hallucination mitigation method must
strike a balance: it should correct incorrect answers while preserving correct ones. However, as
shown in Figure 2] some flawed approaches, despite fixing many errors, also introduce unnecessary
modifications to originally correct responses. This behavior resembles mere answer editing rather
than genuine hallucination mitigation. To enhance evaluation rigor, future studies should explicitly
report instances where correct responses are mistakenly altered, providing a clearer measure of a
method’s true effectiveness.

7 Conclusion

This study demonstrates that the performance improvements of contrastive decoding on the POPE
benchmark largely stem from two misleading factors: (1) a unidirectional shift in the model’s output
distribution, which biases it toward generating "Yes" responses, artificially balancing the distribution
in certain datasets, and (2) the adaptive plausibility constraint, which reduces sampling decoding
to greedy search. By comparing experimental results from spurious improvement methods and
contrastive decoding, we confirm that while contrastive decoding enhances performance, it ultimately
fails to mitigate hallucinations.

Impact Statement

The broader impact of this work includes fostering more transparent and accountable Al systems,
particularly in applications where misinformation can have serious ethical and societal consequences,
such as healthcare, legal reasoning, and scientific discovery. Our analysis underscores the importance
of critical evaluation in Al research to prevent the deployment of methods that may not work as
intended. While our work does not introduce new risks, it serves as a cautionary study that helps
guide future research toward more robust and responsible Al development.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All contribution statements are as accurate as possible, with no overstatements.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]

Justification: The main contribution of this work is to show that previously proposed
methods do not work as claimed, thereby helping to redirect research efforts away from an
unproductive path. As the paper does not introduce a new method, it is not applicable to
discuss methodological limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not involve any theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All datasets used in this work are publicly available. We have included the
complete source code in the supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in this work are publicly available. We have included the
complete source code in the supplementary materials.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide detailed descriptions of the experimental setup for each experiment.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Greedy decoding was the primary strategy in most experiments, yielding
consistent outcomes across repeated runs, thus rendering statistical significance analysis
unnecessary. For experiments involving sampling-based decoding, results are averaged over
five runs and demonstrate statistical significance.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All experiments were conducted on a server equipped with one A800 GPU.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We did not violate any part of the Neur[PS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed the societal impacts of the work in Section |7}
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have ensured that all existing assets used in this work are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: All new assets introduced in the paper are well documented.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Contrastive Decoding for Hallucinations

This section details the components and workflows of three mainstream hallucination mitigation
methods: VCD, ICD, and SID. These techniques employ contrastive decoding strategies to reduce
hallucinatory content, ensuring outputs align more closely with the visual input.

A.1 Visual Contrastive Decoding

Visual Contrastive Decoding (VCD) acts as a corrective mechanism, reducing hallucinations by
contrasting with distributions derived from distorted visual inputs. Specifically, for a given textual
query z and a visual input v, the model generates two distinct output distributions: one conditioned
on the original v, and the other on a distorted version v’. The distorted input v’ is derived by
applying predefined perturbations (e.g., a Gaussian noise mask) to v. Subsequently, a new contrastive
probability distribution is computed by leveraging the differences between these two distributions.
This contrastive distribution, denoted as p,,.q, is defined as:

Puca (y | 0,0, ) = softmax [logity (y | v, ) + a - (1ogity (y | v,2) — logity (y | ', ) )], (6)

A challenge in this process is avoiding indiscriminate penalization of the entire output space, as this
could unfairly suppress valid predictions while encouraging the generation of implausible tokens.
To address this, VCD integrates an adaptive plausibility constraint. This constraint dynamically
adjusts penalization based on the confidence levels inferred from the output distribution conditioned
on the original visual input v. The constraint is defined as follows:

Vicaa () = {0 € V[ po (e | v.,y<0) 2 Bmaxpy (w | v,2,y<0) | -

Pucd (yt | v, ’UI,SU) =0 if Yt ¢ Vhead (y<t)

where V denotes the output vocabulary of MLLMs, and /3 is a hyperparameter that controls the
truncation of the next-token distribution. Larger values of 8 enforce more aggressive truncation,
retaining only the tokens with the highest probabilities.

By integrating the contrastive adjustment with the adaptive plausibility constraint, the complete
formulation is expressed as follows:

Yy ~ softmax (1 + Oé) . 10g1t9 (yt | v, T, y<t) — Q- 10g1t9 (yt | 1]/, Z, y<t) ) (8)
subject to Yy € Vhead(Y<t)-

A.2 Instruction Contrastive Decoding

Based on findings that instruction disturbances with negative prefixes significantly amplify hallu-
cinations by increasing multimodal alignment uncertainty, Instruction Contrastive Decoding (ICD)
mitigates hallucinations by initially emphasizing the probabilities of hallucinated concepts and sub-
sequently detaching these from the original probability distribution. Accordingly, the contrastive
distribution, p;.q4, can be defined as:

Picd (¥ | v, z,2") = softmax | logit, (y | v,2) — X - logit, (y | v,2') |. 9)
A larger )\ imposes a stronger penalty on the decisions made by MLLMs under disturbances. Here, z’

represents perturbed instructions involving negative prefixes. Additionally, ICD integrates adaptive
plausibility constraint from VCD to prevent the unjust suppression of valid predictions.

A.3 Self-Introspective Decoding

Building on VCD and ICD, SID recognizes that directly perturbing the entire original input introduces
excessive uncertainty and noise, hindering the induction of the desired hallucination effect. To
address this, as shown on the far right of Figure[I] SID adjusts the model architecture by retaining
only a small subset of image tokens with low attention scores after the early decoder layers. This
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adaptive mechanism enhances the generation of vision-and-text association hallucinations during auto-
regressive decoding. Subsequently, SID isolates these hallucinations from the original probability
distribution, leading to the definition of the contrastive distribution pg;q as:

Dsid (Y | v, ) = softmax [logitG (y|v,z)+a- (logite (y | v, z) — logity (y | v, x) >] (10)
Here, 0’ represents the MLLM with structural modifications introduced by SID. Additionally, SID

incorporates the adaptive plausibility constraint.

B Additional Research on Changes in Prediction

After applying Visual Contrastive Decoding, the prediction shifts of the LLaVA-v1.5-7B model
are shown in Figure[6] It is evident that across all datasets, the number of samples transitioning
from Positive to Negative is significantly smaller than those shifting from Negative to Positive. This
indicates that the model’s output distribution is biased towards Yes.
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Figure 6: Changes in the distribution of model predictions across all datasets after applying Visual
Contrastive Decoding.

C The True Impact of Contrastive Perturbations on Prediction Outcomes

We begin by presenting our conclusion: image perturbations in visual contrastive decoding can
cause the model to randomly "overlook" certain elements of the image due to their stochastic nature.
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Consequently, the model’s response is based on only a partial view of the input. This phenomenon is
illustrated with a concrete example, as shown in Figure[7]

Question: How many uncut fruits are in the image?

| TimeSteps=0 | | TimeSteps=100 | | Time Steps=300 | | Time Steps = 500

Answer: There are four Answer: There are three Answer: There are two Answer: No uncut fruits
uncut fruits in the image. uncut fruits in the image. uncut fruits in the image. appear in the image.

Figure 7: Visualization of the Actual Impact of Contrastive Perturbations.

With the original visual input, the model exhibited a hallucination, responding: “There are four uncut
fruits in the image.” After introducing diffusion noise and setting the diffusion time steps to 100, 300,
and 500 respectively, the LLaVA-v1.5-7B model produced the following responses: “There are 3 /2 /
0 uncut fruits in the image,” correspondingly. These results demonstrate that the presence of noise
causes the model to lose access to certain localized visual details, leading it to respond based on the
remaining visible features.

This also helps explain why, in POPE benchmark, contrastive examples often cause the model to
answer “No”, not due to external bias, but because it genuinely fails to detect the relevant object.
However, this effect should not be mistaken for hallucination. In fact, contrastive samples do not
induce hallucinations. For example, when visual contrastive decoding is applied to this case, the
model correctly outputs: “There are four uncut fruits in the image.”

This brings us back to the foundational assumption behind contrastive decoding methods for mitigating
hallucinations. These approaches are grounded in the belief that object hallucinations in MLLMs
primarily stem from overly dominant linguistic priors, and thus attempt to suppress such priors
through contrastive mechanisms. However, in practice, hallucinations often arise because MLLMs
fail to correctly ground specific semantic concepts in the visual input, for instance, the concept of
“uncut” in the previous example. As such, the failure of visual contrastive decoding can be attributed
to a fundamental flaw in its underlying assumption.

D Performance across different decoding strategies.

Table 7] presents the impact of various decoding strategies on the prediction performance of LLaVA-
v1.5-7B evaluated on the POPE Benchmark. It is evident that the greedy strategy yields significantly
better results compared to the sampling strategy.

Table 7: Performance on the MSCOCO dataset across different decoding strategies.

Model | Decoding | Random  Popular  Adversarial

Greedy | 87.1,0.0 858,00 83.6/0.0
Sample | 83.6/3.5 824/34 802]34

Greedy | 860,00 856,00 840,00
Sample | 852108 842]14 823/17

LLaVA ‘

QwenVL ‘
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E Further Experiments on Forced Distribution Adjustment

Tables [8] and [0 present the performance of Prompt-Based Adjustment (PBA) and Output Layer
Modification (OLM) on the AOKVQA and GQA datasets. On both datasets, PBA and OLM maintain
performance levels comparable to contrastive decoding methods. However, after surpassing the
balanced distribution, accuracy declines rather than improving.

Table 8: Performance of Prompt-Based Adjustment (PBA) and Output Layer Modification (OLM) on
AOKVQA dataset

| | LLaVA-v1.5-7B | LLaVA-v1.5-13B

Category | Decoding | Accuracy F1-Score Yes(%) | Accuracy F1-Score Yes(%)
Greedy 88.6 88.1 45.1 88.8 88.1 44.1

VCD 86.8 87.0 52.0 87.7 87.4 47.8

Random SID 88.6 88.5 48.7 87.6 87.4 48.5
PBA 89.0 88.5 45.9 88.7 89.0 52.8

OLM 89.0 89.1 51.3 87.3 87.9 559

Greedy 85.2 85.0 48.5 86.7 86.2 46.2

VCD 82.6 83.6 56.2 85.5 85.5 50.0

Popular SID 84.1 84.6 53.2 85.1 85.3 51.0
PBA 84.8 84.8 50.1 83.6 84.8 57.9

OLM 82.6 83.8 57.7 83.6 85.1 59.5

Greedy 78.8 79.8 54.9 80.3 80.8 52.6

VCD 75.5 78.4 63.6 79.4 80.7 56.4

Adversarial SID 77.8 79.7 59.1 79.2 80.6 57.4
PBA 78.3 79.6 56.6 74.7 78.3 66.8

OLM 75.0 78.3 65.3 74.8 78.7 68.3

Table 9: Performance of Prompt-Based Adjustment (PBA) and Output Layer Modification (OLM) on
GQA dataset

| | LLaVA-v1.5-7B | LLaVA-v1.5-13B

Category | Decoding | Accuracy F1-Score Yes(%) | Accuracy F1-Score Yes(%)
Greedy 89.4 88.9 45.5 89.5 88.9 45.1

VCD 88.0 88.4 53.6 88.1 88.0 49.7

Random SID 88.8 88.7 49.1 88.9 88.8 49.1
PBA 89.4 89.0 47.0 88.8 89.2 53.9

OLM 89.4 89.7 52.9 87.1 87.9 56.9

Greedy 84.0 84.2 50.8 86.4 86.1 48.1

VCD 82.5 83.9 59.1 85.7 85.5 52.1

Popular SID 82.9 83.8 55.0 84.8 85.2 53.2
PBA 83.2 83.7 53.1 84.8 84.8 61.9

OLM 79.8 82.0 62.5 80.8 83.1 63.1

Greedy 80.9 81.7 53.9 82.2 82.6 52.3

VCD 78.0 80.6 63.3 81.2 82.4 56.8

Adversarial SID 79.9 81.3 57.8 81.1 82.4 57.6
PBA 80.5 81.5 55.9 81.1 82.3 67.3

OLM 76.4 79.6 65.9 75.9 79.6 68.3

23



F Further Experiments on Standalone Application of the Constraint

Tables[10]and [TT] present the performance of the adaptive plausibility constraint on the AOKVQA
and COCO datasets. When applied independently, the adaptive plausibility constraint consistently
improves performance by 1.5% to 2% across both datasets.

Table 10: Impact of Adaptive Plausibility Constraint (Applied Independently) on AOKVQA Dataset

Category | Decoding | LLaVA-v1.5-7B | LLaVA-v1.5-13B

| | Accuracy F1-Score Yes(%) | Accuracy F1-Score Yes(%)

sample 84.6 83.9 45.4 84.7 83.9 453
VCD 85.9 86.1 51.7 86.7 86.5 48.4

Random ICD 86.5 85.8 453 86.3 85.5 44.5
SID 86.8 86.6 48.8 85.8 85.5 483

sample’ 86.5 85.8 45.3 86.6 85.8 44.8

sample 80.3 80.2 49.7 81.8 81.5 48.2

VCD 81.3 82.4 56.2 84.1 84.2 51.0

Popular ICD 82.2 82.1 49.6 83.4 82.9 47.4
SID 82.9 83.3 527 82.9 83.1 51.2

sample’ 82.2 82.1 49.6 83.6 83.2 47.8

sample 74.8 76.2 55.9 77.0 77.9 54.0

VCD 74.8 77.6 62.8 78.4 79.7 56.4

Adversarial ICD 76.1 715 56.4 715 783 53.5
SID 76.8 78.6 58.4 77.9 79.4 57.4

sample! 76.1 71.5 56.4 77.9 78.7 54.0

Table 11: Impact of Adaptive Plausibility Constraint (Applied Independently) on COCO Dataset

Category | Decoding | LLaVA-v1.5-7B | LLaVA-v1.5-13B

| | Accuracy F1-Score Yes(%) | Accuracy F1-Score Yes(%)

sample 83.6 81.8 39.8 83.9 82.3 40.8

VCD 87.8 87.3 46.4 87.8 87.1 44.6

Random ICD 854 83.7 39.8 85.5 83.9 40.3
SID 86.6 85.4 41.9 86.4 85.3 42.7

sample’ 854 83.7 39.8 85.5 84.0 40.6

sample 82.4 80.7 41.0 83.0 81.5 41.7

VCD 85.8 85.5 48.4 86.2 85.7 46.1

Popular ICD 84.1 82.5 41.1 84.6 83.1 41.2
SID 83.6 82.7 449 84.4 83.5 44.8

sample’ 84.1 82.5 41.1 84.6 83.1 41.6

sample 80.2 78.7 43.2 81.2 79.9 43.5

VCD 81.1 81.7 529 83.0 82.9 49.3

Adversarial ICD 81.8 80.5 433 82.6 81.3 432
SID 80.9 80.4 475 81.8 81.3 473

sample’ 81.8 80.5 43.3 82.7 81.5 434
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