
High-dimensional Location Estimation via Norm Concentration for Subgamma
Vectors

Shivam Gupta 1 Jasper C.H. Lee 2 Eric Price 1

Abstract
In location estimation, we are given n samples
from a known distribution f shifted by an un-
known translation λ, and want to estimate λ as
precisely as possible. Asymptotically, the max-
imum likelihood estimate achieves the Cramér-
Rao bound of error N(0, 1

nI ), where I is the
Fisher information of f . However, the n required
for convergence depends on f , and may be ar-
bitrarily large. We build on the theory using
smoothed estimators to bound the error for finite
n in terms of Ir, the Fisher information of the
r-smoothed distribution. As n → ∞, r → 0 at
an explicit rate and this converges to the Cramér-
Rao bound. We (1) improve the prior work for
1-dimensional f to converge for constant failure
probability in addition to high probability, and (2)
extend the theory to high-dimensional distribu-
tions. In the process, we prove a new bound on
the norm of a high-dimensional random variable
whose 1-dimensional projections are subgamma,
which may be of independent interest.

1. Introduction
Location estimation—a variant of mean estimation—is a
fundamental problem in parametric statistics. Suppose there
is a translation-invariant model fλ(x) = f(x−λ) for some
known distribution f over Rd. The statistician receives
n i.i.d. samples from fλ for some arbitrarily chosen true
parameter λ ∈ Rd, and the goal is to estimate λ with high
accuracy, succeeding with high probability over the samples.

In contrast to general mean estimation, which aims to es-
timate the mean under minimal assumptions on the distri-
bution, here we know the exact shape of the distribution
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up to translation. Such additional information allows us to
estimate λ to higher accuracy.

The classic “textbook” theory for location estimation, and
indeed for parametric estimation in general, recommends us-
ing the Maximum Likelihood Estimate (MLE). The MLE en-
joys asymptotic normality: if we fix a distribution f and take
the number of samples n to infinity, the distribution of the
MLE converges to the multivariate Gaussian N (λ, 1

nI−1),
where I is the Fisher information matrix, defined by

I = E
x∼f

[
(∇ log f(x)) (∇ log f(x))

⊤
]

As a basic property, if we denote the covariance matrix
of f by Σ, then we always have I−1 ⪯ Σ, implying that
the asymptotic performance of the MLE is always at least
as good as the sample mean, whose performance is con-
trolled by the covariance Σ. Furthermore, the Crámer-Rao
bound states that no unbiased location estimator can have
covariance smaller than 1

nI−1, and so the MLE has the best
asymptotic performance of any unbiased estimator.

Even though the textbook theory is satisfying in that the
Fisher information essentially captures the information-
theoretic limits of location estimation, its predictions may
be misleading in practice. Specifically, this is due to the
asymptotic nature of the MLE performance guarantee: we
need to take the number of samples n to infinity in order to
achieve subgaussian estimation error. The asymptotic result
may have arbitrarily bad dependence on n in terms of the
model f . While bounds exist in terms of regularity proper-
ties of f (Miao, 2010; Spokoiny, 2011; Pinelis, 2017), these
bounds are infinite for simple examples like the Laplace
distribution. The research goal, therefore, is to establish a
finite-sample theory of location estimation, which bounds
the estimation error explicitly as a function of n, applies to
every f , and ideally attains even optimal constants in the
estimation error.

Recent work by Gupta et al. (2022) addressed this ques-
tion in the special case of 1 dimension. They showed that,
while the MLE can have bad finite-sample performance, it
is possible to improve the behavior by a simple adaptation:
add Gaussian noise of some appropriately chosen radius r,
where r decreases with the number of samples, to both the
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Figure 1. Gaussian+Sawtooth Distribution

Figure 2. Constant probability error lower bound for Gaus-
sian+Sawtooth

samples and model before performing MLE. Accordingly,
the theoretical guarantees for the smoothed MLE replaces
the Fisher information of f with the Fisher information of
the smoothed distribution fr = f ∗N (0, r2), also called the
smoothed Fisher information Ir. Smoothed MLE achieves
finite-sample subgaussian error bounds analogous to a Gaus-
sian with variance (1 + o(1))I−1r , where the o(1) term can
be explicitly calculated and is independent of f .

Characterization by smoothed Fisher information. Our
results will follow the approach of Gupta et al. (2022) and
show finite sample bounds in terms of the smoothed Fisher
information. Here, focusing on the 1-dimensional case, we
briefly discuss why Fisher information is inadequate and
why smoothed Fisher information is a suitable substitute.

Consider the “Gaussian+Sawtooth” distribution shown in
Figure 1, which is a sawtooth of tooth width w and slope
±∆ added to the central section of the standard Gaussian
density. As w → 0, the density converges to the standard
Gaussian, yet the Fisher information grows to Θ(∆2) as
∆ → ∞. The asymptotic theory thus predicts an error of
O(1/(∆

√
n)) with constant probability.

However, Gupta et al. (2022) showed that for n ≪ 1/w2,
the constant probability error for every algorithm is in fact
at least Ω(1/

√
n), as if the distribution were just a standard

Gaussian. Intuitively, we need to align the model to within
a single sawtooth width of w in order to leverage the saw-
tooth structure for high accuracy estimation. For a standard
Gaussian, Ω(1/w2) samples are needed for error less than
w. Figure 2 shows a plot of the constant probability error

lower bound for the Gaussian+Sawtooth model, with the
error scaled by

√
n for normalization.

Since the sample threshold depends on w, this example
shows that there is no algorithm that converges to the
asymptotic error in a distribution-independent way. Con-
cretely, no algorithm can be within a 1 + o(1) factor of
the N (0, 1/(nI)) error for a distribution-independent o(1)
term. We therefore need an alternative quantity to replace I
for finite-sample error bounds, which can capture the phase
transition in Figure 2.

Smoothed Fisher information exhibits this phase transition
behavior. Smoothing by radius r ≫ w blurs out the saw-
tooth structure—Ir is small and close to the standard Gaus-
sian Fisher information of 1. On the other hand, smoothing
by radius r ≪ w preserves the sawtooth and keeps Ir
close to I = Θ(∆2). Both Gupta et al. (2022) and we
leverage this behavior to show finite sample bounds analo-
gous to (1 + o(1))N (0, 1/(nIr)), with a o(1) term that is
distribution-independent.

We need to choose the smoothing parameter carefully, as
the smoothed Fisher information can depend delicately on
r. Intuitively, we expect r → 0 as n→∞; however, this is
not true of Gupta et al.’s results. Their choice of smoothing
vanishes only in the high-probability regime, i.e. when both
n→∞ and δ → 0 for failure probability δ. Thus, for small
constant δ, their results can be very sub-optimal. One of our
new results removes the spurious dependence of r on δ.

Our results. In this paper, we improve and extend the
result of Gupta et al. (2022) in two ways. First, we show that
a variant of the algorithm has a simpler and better analysis
in one dimension. This better analysis supports smaller
smoothing radius r, and hence higher Fisher information
Ir:
Theorem 1.1 (1-d Smoothed MLE). Given a model f , let
the r-smoothed Fisher information of a distribution f be Ir,
and let IQR be the interquartile range of f . Fix the failure
probability be δ ≤ 0.5, and assume that n ≥ c · log 2

δ for
some sufficiently large constant c.

Choose r∗ = Ω((
log 2

δ

n )1/8)IQR. Then, with probability at
least 1− δ, the output λ̂ of Algorithm 2 satisfies

|λ̂− λ| ≤

1 +O

(
log 2

δ

n

) 1
10

√2 log 2
δ

nIr∗

The main difference between this result and (Gupta et al.,
2022) is the dependence on δ: the previous result needed
δ → 0 for r to decay to 0 and for the leading constant
to decay to 1. In ours, both decay polynomially in n for
constant δ.
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Consider how this result behaves on the Gaussian+Sawtooth
example above (Figure 1), for constant δ. For small n,
we will choose r∗ = 1

poly(n) > w and get error within 1 +
1

poly(n) of the regular Gaussian tail; for large n, r∗ ≪ w and
the error is within 1+ 1

poly(n) of the asymptotically optimal
N (0, 1/(nIr)). Thus we get the same qualitative transition
behavior as Figure 2, albeit at a different transition point
( 1
w8 rather than 1

w2 ). The prior work (Gupta et al., 2022)
additionally required vanishing δ, roughly δ < 2− poly(n),
to observe this behavior.

Second, our simpler approach lets us generalize the result
to high dimensions. We show an analogous result to the
one-dimensional result. In an ideal world, since the (un-
smoothed) MLE satisfies (λ̂−λ)→ N (0, 1

nI−1) asymptot-
ically, we would aim for the Gaussian tail error (Boucheron
et al. (2013), Example 5.7)

∥λ̂− λ∥2 ≤
√

Tr(I−1)
n

+

√
2∥I−1∥ log

1
δ

n
(1)

with probability 1− δ. We show that this almost holds. Let
deff(A) = Tr(A)

∥A∥ denote the effective dimension of a positive
semidefinite matrix A. If we smooth by a spherical Gaussian
R = r2Id for some r2 ≤ ∥Σ∥, then for a sufficiently large n
as a function of ∥Σ∥/r2, log 1

δ , deff(Σ), and deff(I−1R ), our
error is close to (1) replacing I with the smoothed Fisher
information IR.

Theorem 1.2 (High-dimensional MLE, Informal; see The-
orem B.16). Let f have covariance matrix Σ. For any
r2 ≤ ∥Σ∥, let R = r2Id and IR be the R-smoothed Fisher
information of the distribution. For any constant 0 < η < 1,

∥λ̂− λ∥2 ≤ (1 + η)

√
Tr(I−1R )

n
+ 5

√
∥I−1R ∥ log 4

δ

n

with probability 1− δ, for

n > Oη

((∥Σ∥
r2

)2(
log

2

δ
+ deff(I−1R ) +

deff(Σ)
2

deff(I−1R )

))

When deff(I−1R ) ≫ log 1
δ , the bound is (1 + η +

o(1))
√

Tr(I−1R ). This is very close to the Cramer-Rao

bound for the expected error of
√
Tr(I−1) for unbiased

estimators (Bickel & Doksum (2015), Theorem 3.4.3).

The formal version of this theorem, Theorem B.16, also
gives bounds for general distances ∥λ̂ − λ∥M induced by
symmetric PSD matrices M ; the exact bound, and the n
required for convergence, depend on M .

One key piece of our proof, which may be of independent
interest, is a concentration bound for the norm of a high-
dimensional vector x with subgamma marginals in every

direction. If a vector is Gaussian in every direction, it is a
high-dimensional Gaussian and satisfies the tail bound (1)
(replacing I−1 by the covariance matrix Σ). It was shown
in (Hsu et al., 2012) that the same bound applies even if the
marginals are merely subgaussian with parameter Σ. We
extend this to get a bound for subgamma marginals:

Theorem 1.3 (Norm concentration for subgamma random
vectors; see Theorem 5.1). Let x be a mean-zero random
vector in Rd that is (Σ, C)-subgamma, i.e., it satisfies that
for any vector v ∈ Rd,

E[eλ⟨x,v⟩] ≤ eλ
2vTΣv/2

for |λ| ≤ 1
∥Cv∥ . Then with probability 1− δ,

∥x∥ ≤
√
Tr(Σ) + 4

√
∥Σ∥ log 2

δ
+ 16∥C∥ log 2

δ

+min

(
4∥C∥F

√
log

2

δ
, 8
∥C∥2F√
Tr(Σ)

log
1

δ

)

The first, trace term is the expected norm and the next
two terms are (up to constants) the tight bound from 1-
dimensional subgamma concentration. When x is an aver-
age of n samples, both Σ and C drop by a factor n; thus,
the terms involving C decay at a rate of 1/n, versus the
terms involving only Σ, which decay at a rate of 1/

√
n. As

n → ∞, the terms involving C disappear compared with
the Gaussian terms involving Σ.

To better understand the last term, consider x to be the
average of n samples Xi drawn from the spherical case
(Σ = σ2I, C = cI). We also focus on the high-dimensional
regime where d ≥ (2/η2) log(1/δ) for some small η, where
the target error bound of (1) becomes (1 + η)

√
tr(Σ)/n,

that is, within a (1+ η) factor of the expected ℓ2 norm error.
In the subgamma setting, the bound of Theorem 1.3 implies
an error of (1 +O(η))

√
Tr(Σ)/n whenever n ≳ (c/σ)2d,

where the threshold for n is due to comparing the last “min”

term in the bound with the
√
∥Σ∥ log 2

δ term.

Under the stronger assumption that the random vectors have
distance at most c from their expectation, one can compare
our tail bound with Talagrand’s/Bousquet’s suprema con-
centration inequality (Boucheron et al. (2013), Theorem
12.5). Focusing again on the high-dimensional, spherical
regime where d ≥ (2/η2) log(1/δ) and Σ = σ2I, C = cI ,
Bousquet’s inequality implies an almost-identical ℓ2 error
of (1 + O(η))

√
Tr(Σ)/n whenever n ≳ (c/σ)2d, albeit

with smaller hidden constant. Given that the n threshold for
our bound is due to our last “min” term, it is likely that such
a term is qualitatively necessary, and that our last term is
not too large at least in the relevant regimes we consider in
this paper.
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Results by (Adamczak, 2008) and (van de Geer & Lederer,
2011) can also be used to bound the norm of random vectors.

Adamczak (2008) shows a high probability bound similar to
(1) on

∑n
i=1 Xi when ∥maxiXi∥ is subexponential with

a bounded Orlicz norm ∥maxiXi∥ψ1 . By contrast, our
Theorem 1.3 assumes only that Xi is direction-by-direction
subgamma instead of the norm being subexponential, and is
independent of n. Moreover, even in the simplest case when
the Xi are i.i.d. Gaussian, the Orlicz norm ∥maxiXi∥ψ1

is as large as
√
Tr(Σ) +

√
∥Σ∥ log n, and so (Adamczak,

2008) needs n≫ log2 1
δ to get close to the standard norm

bound in (1). Theorem 1.3 on the other hand yields error√
nTr(Σ) + 4

√
n∥Σ∥ log 2

δ for any value of n, since a
Gaussian is subgamma with C = 0. This almost completely
recovers the standard Gaussian bound of (1), except for
replacing the constant

√
2 by 4 in the second term.

van de Geer & Lederer (2011) implies a variant of Theo-
rem 1.3 with three main differences: (a) it is designed for
the spherical setting, (b) it loses a constant factor on the√

Tr(Σ) term (and more if Σ is not spherical), and (c) it re-
places our possibly-lossy terms involving ∥C∥F with ∥C∥d,
which is incomparable in general, and worse if d > log 1

δ .
In the context of this work, the main issue is (b) since we
aim for a (1 + o(1))-approximation to (1).

1.1. Notation

We denote the known distribution by f . In 1 dimension, fr
is the r-smoothed distribution f ∗ N (0, r2), with smoothed
Fisher information Ir. In high dimensions, fR is the R-
smoothed distribution f ∗N (0, R) with smoothed Fisher in-
formation IR—note the quadratic difference between r and
R, analogous to the usual conventions for the (co)variance
of 1-dimensional vs high-dimensional Gaussians.

The true parameter is denoted by λ. Both our 1-dimensional
and high-dimensional algorithms first gets an initial estimate
λ1, before refining it into the final estimate λ̂.

Unless otherwise specified, for a given vector x, ∥x∥ de-
notes the ℓ2 norm, and similarly ∥A∥ is the operator norm
of a square matrix A. Given a square positive semidef-
inite matrix A, we define its effective dimension to be
deff(A) = tr(A)/∥A∥. The effective dimension of a matrix
A is d when it is spherical, but decays if one or more of its
eigenvalues deviate from the maximum eigenvalue.

2. Related work
For an in-depth textbook treatment of the asymptotic theory
of location estimation and parametric estimation in general,
see (van der Vaart, 2000). There have also been finite-
sample analysis of the MLE ((Spokoiny, 2011) in high di-
mensions, (Pinelis, 2017; Miao, 2010) in 1 dimension), but

they require strong regularity conditions in addition to los-
ing (at least) multiplicative constants in the estimation error
bounds. Most related to this paper is the prior work of
Gupta et al. (2022), which introduced smoothed MLE in
the context of location estimation in 1 dimension, as well as
formally analyzed its finite sample performance in terms of
the smoothed Fisher information for large n and small δ.

There has been a flurry of work in recent years on the closely
related problem of mean estimation, under the minimal as-
sumption of finite (co)variance. The bounds then depend
on this variance, rather than the Fisher information. In 1
dimension, the seminal paper of Catoni (2012) initiated the
search for a subgaussian mean estimator with estimation
error tight to within a 1 + o(1) factor; improvements by
Devroye et al. (2016) and Lee and Valiant (2022a) have
given a 1-dimensional mean estimator that works for all dis-
tributions with finite (but unknown) variance, with accuracy
that is optimal to within a 1 + o(1) factor. Crucially, the
o(1) term is independent of the underlying distribution.

It remains an open problem to find a subgaussian mean esti-
mator with tight constants under bounded covariance in high
dimensions. A line of work (Lugosi & Mendelson, 2017;
Hopkins, 2018; Cherapanamjeri et al., 2019) has shown how
to achieve the subgaussian rate, ignoring constants, in poly-
nomial time. More recently, Lee and Valiant (2022b) has
achieved linear time and a sharp constant, but requires the
effective dimension of the distribution to be much larger
than log2 1

δ .

Our other contribution is our novel norm concentration
bound for subgamma random vectors. The norm concen-
tration for Gaussian vectors has long been understood, see
for example the textbook (Boucheron et al. (2013), Exam-
ple 5.7). Hsu et al. (2012) generalized this bound to the
case of direction-by-direction subgaussian vectors. Norm
concentration can also be viewed as the supremum of an
empirical process. Bousquet’s version (2002; 2003) of Ta-
lagrand’s suprema concentration inequality implies a norm
concentration bound for random vectors bounded within
an ℓ2 ball of their expectation. Our bound generalizes this
case of Bousquet’s inequality from bounded vectors to all
subgamma vectors. As discussed after Theorem 1.3, the
results are quite similar for spherical Σ and C. Other results
that can be used to bound the norm of random vectors are
(Adamczak, 2008; van de Geer & Lederer, 2011). However,
as discussed after Theorem 1.3, neither is adequate in our
setting.

3. 1-dimensional location estimation
We discuss our 1-dimensional location estimation algorithm
and its analysis at a high level in this section. See Ap-
pendix A for the complete analysis.
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Algorithm 1 below is a local algorithm in the sense that it
assumes we have an initial estimate λ1 that is within some
distance ϵ of λ, with the goal of refining the estimate to high
accuracy.

Algorithm 1 Local smoothed MLE for one dimension

Input Parameters:
• Description of f , smoothing parameter r, samples
x1, . . . , xn

i.i.d.∼ fλ and initial estimate λ1 of λ

1. Let s(λ̂) be the score function of fr, the r-smoothed
version of f .

2. For each sample xi, compute a perturbed sample x′i =
xi +N (0, r2) where all the Gaussian noise are drawn
independently across all the samples.

3. Compute the empirical score at λ1, namely ŝ(λ1) =
1
n

∑n
i=1 s(x

′
i − λ1).

4. Return λ̂ = λ1 − (ŝ(λ1)/Ir).

Let Ir be the Fisher information of fr, the r-smoothed
version of f . Basic facts about the score s(x) are:

0 = E
x∼fr

[s(x)]

Ir = E
x∼fr

[−s′(x)] = E
x∼fr

[s(x)2].

First, Algorithm 1 adds N(0, r2) perturbation independently
to each xi to get x′i, which are drawn as (y1 + λ, y2 +
λ, . . . , yn + λ) for yi ∼ fr. It then computes

ŝ(λ1) :=
1

n

n∑
i=1

s(x′i − λ1) =
1

n

n∑
i=1

s(yi − ϵ)

which is, in expectation,

E
x∼fr

[s(x− ϵ)] ≈ E
x∼fr

[s(x)− ϵs′(x)] = ϵIr.

Thus we expect λ̂ = λ1 − ŝ(λ1)/Ir ≈ λ.

There are two sources of error in this calculation: (I) the
Taylor approximation to s(x − ϵ), and (II) the difference
between the empirical and true expectations of s(x − ϵ).
When ϵ = 0, the Taylor error is 0 and the empirical estimator
has variance

Var(s(x))

n
=
Ir
n
.

Thus, when λ1 = λ, λ̂ would be an unbiased estimator
of λ with variance 1

nIr : exactly the Cramér-Rao bound.
Moreover, one can show that s(x) is subgamma with vari-
ance proxy Ir and tail parameter 1/r, giving tails on λ̂− λ

matching the 1
nIr -variance Gaussian (up to some point de-

pending on r). All we need to show, then, is that shifting
by ϵ introduces little excess error in (I) and (II); intuitively,
this happens for |ϵ| ≪ r because fr has been smoothed by
radius r.

In fact, (Gupta et al., 2022) already bounded both errors:
for (I), their Lemma C.2 shows that

E
x∼fr

[s(x− ϵ)] = Irϵ±O(
√
Ir

ϵ2

r2
) (2)

for all |ϵ| ≤ r/2, and for (II), their Corollary 3.3 and Lemma
C.3 together imply that a subgamma concentration of

|ŝ(λ1)− E
x∼fr

[s(x− ϵ)]| ≲

(1 + o(1))

√
Ir log 2

δ

n
+

log 2
δ

nr
(3)

when r ≫ |ϵ|.
Therefore, for sufficiently large r, the total error in ŝ(λ1)

is dominated by the leading
√
Ir log 2

δ

n term, giving a result
within 1 + o(1) of optimal.

Getting an initial estimate. We estimate λ by the empiri-
cal α-quantile of a small κ fraction of the samples, for some

α; one can show that this has error at most O(IQR ·
√

log 1
δ

κn )
with 1− δ probability, where IQR denotes the interquartile
range. This strategy is essentially identical to (Gupta et al.,
2022), except we use fresh samples for the two stages while
they reuse samples.

Algorithm 2 Global smoothed MLE for one dimension

Input Parameters:
• Failure probability δ, description of f , n i.i.d. samples

drawn from fλ for some unknown λ

1. Let q be
√
2(log 2

δ /n)
2/5.

2. Compute an α ∈ [q, 1 − q] to minimize the width of
interval defined by the α± q quantiles of f .

3. Take the sample α-quantile of the first (log 1
δ /n)

1/10

fraction of the n samples.

4. Let r∗ = Ω((
log 1

δ

n )1/8)IQR.

5. Run Algorithm 1 on the rest of the samples, using
initial estimate λ1 = xα and r∗-smoothing, and return
the final estimate λ̂.

Combining the above strategies and balancing parameters
gives our final Algorithm 2. We prove in Appendix A that
the algorithm gives our 1-dimensional result, Theorem 1.1.
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Comparison to prior work. All the properties of the
score function we need for this 1-dimensional result were
shown in (Gupta et al., 2022), but that paper uses a different
algorithm for which they could only prove a worse result.
The (Gupta et al., 2022) algorithm looks for a root of ŝ,
while we essentially perform one step of Newton’s method
to approximate the root. General root finding requires uni-
form convergence of ŝ, which (Gupta et al., 2022) could not
prove without additional loss factors. By using one step, and
(a small number of) fresh samples for the initial estimate,
our algorithm only needs pointwise convergence.

4. High-dimensional location estimation
The high-dimensional case is conceptually analogous to the
1-d case. The complete analysis can be found in Appendix B.
The main differences are: 1) The initial estimate comes from
a heavy-tailed subgaussian estimator, and 2) We bound the
difference between our estimate and the true mean using
our concentration inequality for the norm of a subgamma
vector (Theorem 5.1).

Let λ be the true location, and λ̂ our final estimate. We first
state our main theorem, which gives a bound on ∥λ̂− λ∥M ,
induced by symmetric PSD matrices M .

Theorem 4.1 (High-dimensional MLE, Informal; see The-
orem B.16). Let f have covariance matrix Σ. For any
r2 ≤ ∥Σ∥, let R = r2Id and IR be the R-smoothed Fisher
information of the distribution. Let M be any symmetric
PSD matrix, and let T = M1/2I−1R M1/2. For any constant
0 < η < 1,

∥λ̂− λ∥M ≤ (1 + η)

√
Tr(T )

n
+ 5

√
∥T∥ log 4

δ

n

with probability 1− δ, for

n > Oη

((∥Σ∥
r2

)2(
log

2

δ
+ deff(T ) +

deff(Σ)
2

deff(T )

))

As a Corollary, we obtain Theorem 1.2 which bounds
∥λ̂− λ∥2, as well as the following, which bounds the Ma-
halanobis distance ∥λ̂− λ∥IR .

Corollary 4.2. Let f have covariance matrix Σ. For any
r2 ≤ ∥Σ∥, let R = r2Id and IR be the R-smoothed Fisher
information of the distribution. For any constant 0 < η < 1,

∥λ̂− λ∥IR ≤ (1 + η)

√
d

n
+ 5

√
log 4

δ

n

with probability 1− δ, for

n > Oη

((∥Σ∥
r2

)2(
log

2

δ
+ d+

deff(Σ)
2

d

))

We now sketch our analysis. Algorithm 3 below takes an
initial estimate λ1 of the mean, and refines it to a precise
estimate λ̂, analogously to Algorithm 1 for the 1-d case.

Algorithm 3 High-dimensional Local MLE

Input Parameters:
• Description of distribution f on Rd, smoothing R, sam-

ples x1, . . . , xn
i.i.d.∼ fλ, and initial estimate λ1

1. Let IR be the Fisher information matrix of fR, the
R-smoothed version of f . Let sR be the score function
of fR.

2. For each sample xi, compute a perturbed sample x′i =
xi +N (0, R) where all the Gaussian noise are drawn
independently across all the samples.

3. Let ϵ̂ = 1
n

∑n
i=1 I−1R sR(x

′
i − λ1) and return λ̂ =

λ1 − ϵ̂.

We discuss the runtime of Algorithm 3 in Appendix D.

Let f be a distribution on Rd, and let IR be the Fisher
information matrix of fR, the R-smoothed version of f .
Then, for score sR, if JsR is the Jacobian of sR,

IR = E
x∼fR

[
sR(x)sR(x)

T
]
= E
x∼fR

[−JsR(x)]

Analogously to the 1-d case, Algorithm 3 takes an initial
estimate λ1 = λ + ϵ with ϵTR−1ϵ ≤ 1/4. The algorithm
first adds N(0, R) independently to each sample xi, to get
x′i which are drawn as yi+λ for yi ∼ fR. Then, it computes

ϵ̂ =
1

n

n∑
i=1

I−1R sR(x
′
i − λ1) =

1

n

n∑
i=1

I−1R sR(yi − ϵ)

which is in expectation

E
x∼fR

[
I−1R sR(x− ϵ)

]
≈ E
x∼fR

[
−I−1R JsR(x)ϵ

]
= ϵ

So, again, we expect λ̂ = λ1− ϵ̂ ≈ λ up to error from (I) the
Taylor approximation to sR(x− ϵ), and (II) the difference
between the empirical and true expectations of sR(x− ϵ).

For (I), Lemma B.3 shows that

∥ϵ− E
x∼fR

[
I−1R sR(x− ϵ)

]
∥2 ≲ ∥I−1R ∥(ϵTR−1ϵ)

for ϵTR−1ϵ ≤ 1/4. For (II), Corollary B.12 shows that for
any unit direction v, vTI−1R sR(x− ϵ) is subgamma:

vTI−1R sR(x− ϵ) ∈ Γ(I−1R (1 + o(1)), I−1R R−1/2)

when ϵTR−1ϵ ≤ 1/4 and√
(ϵTR−1ϵ) log

(
∥I−1R ∥∥R−1∥

)
≪ 1, so that together

6
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with our norm concentration inequality for subgamma
vectors (Theorem 5.1), Lemma B.13 shows

∥ϵ̂− E
x∼fR

[
I−1R sR(x− ϵ)

]
∥ ≤

(1 + o(1))

(√
Tr(I−1R )

n
+ 4

√
∥I−1R ∥ log 2

δ

n

+ 16
∥I−1R R−1/2∥ log 2

δ

n
+ 8
∥I−1R R−1/2∥2F log 2

δ

n3/2

√
Tr(I−1R )

)

For R = r2Id, when r is large, the total error is dominated
by the first two terms in the above bound, which correspond
to subgaussian concentration with covariance I−1R .

Getting an initial estimate. For our initial estimate λ1,
we make use of a heavy-tailed estimator (Hopkins, 2018;
Cherapanamjeri et al., 2019; Diakonikolas et al., 2020),
which guarantee subgaussian error dependent on the covari-
ance Σ of f , up to constants.

As in the 1-d case, combining our initial estimate with Al-
gorithm 3 gives our final theorem, Theorem B.16. Below,
Algorithm 4 shows how to compute our initial estimate and
combine it with the local MLE Algorithm 3 to obtain our
final estimate.

Algorithm 4 High-dimensional Global MLE

Input Parameters:
• Failure probability δ, description of distribution f , n

samples from fλ, Smoothing R, Approximation pa-
rameter η

1. Let Σ be the covariance matrix of f . Compute an
initial estimate λ1 using the first η/C fraction of of
the n samples for large constant C, using an estimator
from Theorem B.15.

2. Run Algorithm 3 using the remaining 1−η/C fraction
of samples using R-smoothing and our initial estimate
λ1, returning the final estimate λ̂.

5. Norm concentration for subgamma vectors
Theorem 5.1 (Norm concentration for subgamma vectors).
Let x be a mean-zero random vector in Rd that is (Σ, C)-
subgamma, i.e., for all v ∈ Rd, vTx ∈ Γ(vTΣv, ∥Cv∥). In
other words, it satisfies that for any vector v ∈ Rd,

E[eλ⟨x,v⟩] ≤ eλ
2vTΣv/2

for |λ| ≤ 1
∥Cv∥ . Let γ > 0. Then,

P
[
∥x∥ ≥

√
Tr(Σ) + t

]
≤ 2e

− 1
16 min( t2

∥Σ∥ ,
t

∥C∥ ,
2t
√

Tr(Σ)+t2

∥C∥2
F

)
.

Thus, with probability 1− δ,

∥x∥ ≤
√
Tr(Σ) + 4

√
∥Σ∥ log 2

δ
+ 16∥C∥ log 2

δ

+min

(
4∥C∥F

√
log

2

δ
, 8
∥C∥2F√
Tr(Σ)

log
2

δ

)

The proof idea, similar to (Hsu et al., 2012) for the sub-
gaussian case, is as follows. Define v ∼ N(0, I). We
relate P[∥x∥ > t] to the MGF Ex[eλ

2∥x∥2 ], which equals
Ex,v[eλ⟨x,v⟩]. If we interchange the order of expectation, as
long as ∥Cv∥ ≤ 1/|λ|, this is at most Ev[eλ

2vTΣv]. Since v
is Gaussian, we can compute the last MGF precisely.

To handle the subgamma setting, we need a way to control
Ex,v[eλ⟨x,v⟩] over those v with ∥Cv∥ > 1/|λ|. We do so by
showing that (I) WLOG ∥x∥ is never strictly larger than the
bound we want to show, and (II) then the contribution to the
expectation from such cases is small.

Proof. Define γ = t√
Tr(Σ)

, so we want to bound P[∥x∥ ≥
(1 + γ)

√
Tr(Σ)]. We start by showing that WLOG ∥x∥

never strictly exceeds this threshold.

Introducing a bounded norm assumption. We first show
that, without loss of generality, we can assume ∥x∥ ≤ (1 +
γ)
√

Tr(Σ) always. Let s ∈ {±1} be distributed uniformly
independent of x, and define

y = s · x ·min

(
1,

(1 + γ)
√

Tr(Σ)

∥x∥

)
.

to clip x’s norm and symmetrize. For any v and x,

E
s
[eλ⟨y,v⟩] = cosh

(
λ⟨x, v⟩ ·min

(
1,

(1 + γ)
√

Tr(Σ)

∥x∥

))
≤ cosh(λ⟨x, v⟩)

Now, since x is (Σ, C)-subgamma,

E
x
[cosh(λ⟨x, v⟩)] = 1

2

(
E
x
[eλ⟨x,v⟩] + E

x
[eλ⟨x,−v⟩]

)
≤ 1

2

(
eλ

2vTΣv/2 + eλ
2(−v)TΣ(−v)/2

)
= eλ

2vTΣv/2

and so
E
y
[eλ⟨y,v⟩] ≤ eλ

2vTΣv/2.

Thus y is also (Σ, C)-subgamma. The target quantity in
our theorem is the same for y as for x: P[∥x∥ ≥ (1 +
γ)
√

Tr(Σ)] = P[∥y∥ ≥ (1 + γ)
√
Tr(Σ)]. Since ∥y∥ ≤

(1 + γ)
√
Tr(Σ) always, by considering y instead of x, we

can WLOG assume that ∥x∥ ≤ (1 + γ)
√
Tr(Σ) in our

theorem proof.
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Relating probability to Ex,v[eλ⟨x,v⟩]. Define

α := P
[
∥x∥ ≥ (1 + γ)

√
Tr(Σ)

]
so that by Markov’s inequality applied to eλ

2∥x∥2/2,

α ≤ E[eλ2∥x∥2/2]

eλ2(1+γ)2 Tr(Σ)/2

for any λ. Now, let v ∼ N(0, Id). For any x,

E
v
[ϵλ⟨x,v⟩] = eλ

2∥x∥2/2

so
α ≤ E

x,v
[eλ⟨x,v⟩]e−λ

2(1+γ)2 Tr(Σ)/2. (4)

Upper bounding Ex,v[eλ⟨x,v⟩]. We will bound the RHS
above by making the inner expectation over x. Since x is
(Σ, C)-subgamma, for every v,

E
x
[eλ⟨x,v⟩] ≤ eλ

2vTΣv/2 ∀|λ| ≤ 1

∥Cv∥ ,

Therefore

E
x,v

[eλ⟨x,v⟩] = E
x,v

[eλ⟨x,v⟩1∥Cv∥≤1/|λ| + eλ⟨x,v⟩1∥Cv∥>1/|λ|]

≤ E
v
[eλ

2vTΣv/21∥Cv∥≤1/|λ|] + E
x,v

[eλ⟨x,v⟩1∥Cv∥>1/|λ|]

≤ E
v
[eλ

2vTΣv/2] + E
x
[E
v
[eλ⟨x,v⟩1∥Cv∥>1/|λ|]] (5)

We start with the first term. Let the eigenvalues of Σ be
σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
d. Then, vTΣv/2 is a generalized chi-

squared distribution, distributed as
∑
i u

2
i for independent

Gaussian variables ui ∼ N(0, σ2
i /2). It is easy to check

that u2 for u ∼ N(0, 1) is (4, 4)-subgamma, i.e.,

E[eλ(u
2−E[u2])] =

e−λ√
1− 2λ

≤ e2λ
2 ∀|λ| ≤ 1

4
.

Therefore
∑

u2
i is (

∑
i σ

4
i , 2maxσ2

i ) = (∥Σ∥2F , 2∥Σ∥)-
subgamma. Since ∥Σ∥2F ≤ ∥Σ∥Tr(Σ), vTΣv is also
(∥Σ∥Tr(Σ), 2∥Σ∥)-subgamma.

Including the mean term as well (E[vTΣv/2] = Tr(Σ)/2),
we have

E
v
[eλ

2vTΣv/2] ≤ eλ
2 Tr(Σ)/2 · eλ4 Tr(Σ)∥Σ∥/2 ∀λ2 ≤ 1

2∥Σ∥ .
(6)

We now bound the second term in (5) for each x. Since

v is i.i.d. gaussian, ∥Cv∥ ≤ ∥C∥F + ∥C∥
√
2 log 1

δ with
probability 1− δ (see Equation 1). Therefore, for all |λ| <

1
2∥C∥F ,

P[∥Cv∥ > 1/|λ|] ≤ e
− (1/|λ|−∥C∥F )2

2∥C∥2 ≤ e
− 1

8λ2∥C∥2

and so by Cauchy-Schwarz, and our bound on ∥x∥,

E
v
[eλ⟨x,v⟩1∥Cv∥>1/|λ|] ≤

√
E
v
[e2λ⟨x,v⟩]P[∥Cv∥ > 1/|λ|]

≤
√
e2λ2∥x∥2e

− 1
8λ2∥C∥2

= e
λ2(1+γ)2 Tr(Σ)− 1

16λ2∥C∥2 .

Therefore, as long as λ2 ≤ min( 1

4(1+γ)
√

Tr(Σ)∥C∥
, 1
4∥C∥2F

),

E
v
[eλ∥x∥v11∥Cv∥>1/|λ|] ≤ 1.

Combining with (6) (which is a bound always larger than 1)
and (5),

E
x,v

[eλ⟨x,v⟩] ≤ 2eλ
2 Tr(Σ)/2 · eλ4 Tr(Σ)∥Σ∥/2

∀λ2 ≤ min(
1

2∥Σ∥ ,
1

4(1 + γ)
√

Tr(Σ)∥C∥
,

1

4∥C∥2F
)

and with (4),

α ≤ 2e
1
2λ

2 Tr(Σ)(λ2∥Σ∥−2γ−γ2)

∀λ2 ≤ min(
1

2∥Σ∥ ,
1

4(1 + γ)
√
Tr(Σ)∥C∥

,
1

4∥C∥2F
)

Final bound. By also restricting λ2 to be at most 2γ+γ2

2∥Σ∥ ,
and setting λ2 to the maximum of this range, we get

α ≤ 2e
− (2γ+γ2) Tr(Σ)

4 min( 1
2∥Σ∥ ,

2γ+γ2

2∥Σ∥ , 1

4(1+γ)
√

Tr(Σ)∥C∥
, 1

4∥C∥2
F

)

The first two cases can be merged:
min( 2γ+γ

2

2 , (2γ+γ2)2

2 ) ≥ γ2

2 . Thus:

α ≤ 2e
− 1

16 min(
γ2 Tr(Σ)

∥Σ∥ ,
γ
√

Tr(Σ)

∥C∥ ,
(2γ+γ2) Tr(Σ)

∥C∥2
F

)
.

Plugging in γ = t√
Tr(Σ)

gives the first result, and setting t

such that the exponent is log 2
δ gives the second.

6. Experiments
We perform experimental validation1 on a synthetic high-
dimensional example. We consider a mixture of three
gaussians, two at similar scales and one very narrow
and rare: d = 20, and x ∼ N(−e1, I) + N(e1, 9I) +
10−4N(104e2, 10

−6I).

We consider three algorithms: our algorithm with smoothing
radius 0.1; the empirical mean; and an approximation to the
MLE given by Newton’s method (i.e., our algorithm except

1Our implementation is available here:
https://github.com/shivamgupta2/High-dimensional-location
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Figure 3. Error scaled by
√
N for different algorithms, for a syn-

thetic Gaussian mixture.

with R = 0 and multiple steps; we use 10 steps). We use
this approximation because we do not know how to compute
the actual MLE efficiently in high dimensions.

For each algorithm, and for a variety of sample sizes N , we
compute

√
N times the estimation ℓ2 error. Our theorem

suggests that this should be about
√
Tr(I−1R ) ≈ 6.0 for our

algorithm with R = 0.01I , which is significantly better than
the empirical mean’s typical error of

√
Tr(Σ) ≈ 70, but sig-

nificantly worse than the Cramer-Rao bound
√
Tr(I−1) ≈

0.6.

We find that:

• The observed constant for our algorithm’s median error
lies within [6.0, 6.2], which is within 4% of the con-

stant in the main term in our theorem (
√
Tr(I−1R ) ≈

6.0);

• The empirical mean does not benefit from the Fisher
information being much better than the covariance, so
it performs much worse than our algorithm.

• Asymptotically the approximate MLE is optimal, and it

does work very well for large enough N , but struggles
for small N .

In this experiment we fixed R as n varies; for very large n,
one should run our algorithm with smaller R to make IR
converge down to 0.6.

7. Conclusion and Future Work
In this paper we gave an algorithm for location estimation
in high dimensions, getting non-asymptotic error bounds

approaching those of N (0,
I−1
R

n ), where IR is the Fisher
information matrix of our distribution when smoothed using
N (0, R) for small R that decays with n. In the process
of proving this result, we obtained a new concentration in-
equality for the norm of high-dimensional random variables
whose 1-dimensional projections are subgamma, which may
be of independent interest. Even in 1 dimension, our results
give improvement for constant failure probability. For func-
tion classes such as a mixture of Laplacians, no previous
work gives a rate for the asymptotic convergence to the
Cramér-Rao bound as n→∞ for fixed δ.

This paper is one step in the finite-sample theory of pa-
rameter estimation. Our quantitative bounds could be im-
proved: our bound on the rate of convergence to Cramér-Rao
is 1 + 1

poly(n) , but one could hope for faster convergence
(1 + 1√

n
in general, and 1 + 1

n for some specific function
classes). More generally, one can consider estimation of
parameters other than location; the Cramér-Rao bound still
relates the asymptotic behavior to the Fisher information,
but a rate of convergence remains elusive. We believe that
understanding high-dimensional location estimation is a
good step toward understanding the estimation of multiple
parameters.
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A. Complete analysis of 1-dimensional location estimation
A.1. 1-dimensional local estimation

The following algorithm (Algorithm 1) is the local part of the 1-dimensional estimation: it assumes that there is an initial
estimate that is close to the true parameter λ.

Algorithm 1 Local smoothed MLE for one dimension

Input Parameters:

• Description of f , smoothing parameter r, samples x1, . . . , xn
i.i.d.∼ fλ and initial estimate λ1 of λ

1. Let s(λ̂) be the score function of fr, the r-smoothed version of f .

2. For each sample xi, compute a perturbed sample x′i = xi + N (0, r2) where all the Gaussian noise are drawn
independently across all the samples.

3. Compute the empirical score at λ1, namely ŝ(λ1) =
1
n

∑n
i=1 s(x

′
i − λ1).

4. Return λ̂ = λ1 − (ŝ(λ1)/Ir).

The local algorithm is what uses the simplified view of smoothed MLE and distinguishes our approach from the previous
approach of Gupta et al. (2022).

We will show the following guarantee for Algorithm 1. It says that, if the initial estimate λ1 has distance at most ϵmax from
true parameter λ, and suppose we choose a sufficiently large smoothing parameter r, then the output of Algorithm 1 will be
close to the true parameter λ.

Lemma A.1. In Algorithm 1, suppose |λ1 − λ| ≤ ϵmax for some ϵmax ≥
√

2 log 2
δ

n
1
Ir . Suppose also that the smoothing

parameter is r ≥ 2ϵmax, and there exists a parameter γ ≥ 1 such that 1) r2
√Ir ≥ γϵmax, 2) r2

√
log 2

δ /n ≥ γϵ2max and 3)

(log 2
δ )/n ≤ 1/γ2. (For interpretation, γ is supposed to be large and “ω(1)” when the lemma is used.)

Then, with probability at least 1− δ over n samples from fλ, the output of Algorithm 1 satisfies

|λ̂− λ| ≤
(
1 +O

(
1

γ

))√
2 log 2

δ

nIr

The proof of Lemma A.1 relies on the following facts from (Gupta et al., 2022) about the concentration of the empirical
score of the smoothed distribution, when evaluated at an initial parameter estimate that are close to the true parameter.

The first fact is the subgamma concentration of the score.

Fact A.2. Suppose we take n i.i.d. samples y1, . . . , yn ← fλr , and consider the empirical score function ŝ mapping a
candidate parameter λ̂ to 1

n

∑
i sr(yi − λ̂), where sr is the score function of fr.

Then, for any |ϵ| ≤ r/2,

P
yi

i.i.d.∼ fλ
r

(
|ŝ(λ+ ϵ)− E

x←fr
[s(x− ϵ)]| ≥

√
2max(Ex[s2r(x− ϵ)], Ir) log 2

δ

n
+

15 log 2
δ

nr

)
≤ δ

The next two facts bound the expectation and second moment of the score.

Fact A.3. For any |ϵ| ≤ r/2, the expected score Ex∼fr [sr(x+ ϵ)] satisfies

E
x∼fr

[sr(x+ ϵ)] ∈
[
−Irϵ±O

(√
Ir

ϵ2

r2

)]
11
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Fact A.4. For any |ϵ| ≤ r/2, if r/ϵ = Ω(
√
log e/(r2Ir)), the second moment of the score satisfies

E
x∼fr

[
s2r(x+ ϵ)

]
≤ Ir

(
1 +O

(
ϵ

r

√
log

e

r2Ir

))
Furthermore, we always have Ir ≤ 1/r2, and therefore

√
log 1/(r2Ir) above is well-defined.

We can now prove Lemma A.1 using these facts. The proof strategy is straightforward: we use Facts A.2 and A.4 to show
that ŝ(y) concentrates close to its expectation with high probability, and we use Fact A.3 to show that the expectation of
ŝ(y), which is E[s(x− ϵ)] for y = λ+ ϵ, is very close to Irϵ. The triangle inequality then implies that y − (ŝ(y)/Ir) must
be close to λ with high probability.

Proof of Lemma A.1. Let λ1 = λ+ ϵ. By the lemma assumptions, |ϵ| ≤ ϵmax.

First, we show that, under the lemma assumption that r2
√Ir ≥ γϵmax, Fact A.4 implies that the second moment of the

score at λ− ϵ, namely Ex∼fr [s2r(x+ ϵ)], is upper bounded by (1 +O(1/γ))Ir.
To check that the precondition of Fact A.4 holds, note that r2

√Ir ≥ γϵmax ≥ γϵ is equivalent to r/ϵ ≥ γ/
√
r2Ir, which

implies that

r

ϵ
≥ γ√

r2Ir
=

γ√
e

√
e

r2Ir

≥ γ√
e

√
log

e

r2Ir
satisfying the precondition of Fact A.4.

Then, the fact implies that

E
x∼fr

[s2r(x+ ϵ)] ≤ Ir
(
1 +O

(
ϵ

r

√
log

e

r2Ir

))
≤ Ir

(
1 +O

(
ϵmax

r

√
log

e

r2Ir

))
≤ Ir

(
1 +O

(
ϵmax

r

√
e

r2Ir

))
≤ Ir

(
1 +O

(
ϵmax

r2
√Ir

))
≤ Ir

(
1 +O

(
1

γ

))

Next, we combine the concentration bound of Fact A.2 with the second moment bound for Ex[s2r(x+ ϵ)] we just derived to
show that ŝ(λ− ϵ) is close to its expectation with high probability.

∣∣∣∣ŝ(y)− E
x←fr

[s(λ− ϵ)]

∣∣∣∣ ≤
√

2 log 2
δ

n
Ir
(
1 +O

(
1

γ

))
+

15 log 2
δ

nr

≤
(
1 +O

(
1

γ

))√
2 log 2

δ

n
Ir +

15

2
√
γ

(
2 log 2

δ

n

) 1
4

√
2 log 2

δ

n
Ir (see below)

≤
(
1 +O

(
1

γ

))√
2 log 2

δ

n
Ir +O

(
1

γ

)√
2 log 2

δ

n
Ir since log

2

δ
/n ≤ 1/γ2

12
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=

(
1 +O

(
1

γ

))√
2 log 2

δ

n
Ir

where the second inequality is due to the assumption that r2
√Ir ≥ γϵmax ≥ γ

√
2 log 1

δ

n
1
Ir .

Further using Fact A.3, this implies that ϵ = y − λ is well-approximated by ŝ(y)/Ir, as follows.

|ϵ− (ŝ(y)/Ir)| =
1

Ir
|Irϵ− ŝ(y)|

=
1

Ir

∣∣∣∣ŝ(y)− E
x←fr

[s(λ− ϵ)] + E
x←fr

[s(λ− ϵ)]− Irϵ
∣∣∣∣

≤ 1

Ir

∣∣∣∣ŝ(y)− E
x←fr

[s(λ− ϵ)]

∣∣∣∣+ 1

Ir

∣∣∣∣ E
x←fr

[s(λ− ϵ)]− Irϵ
∣∣∣∣

=

(
1 +O

(
1

γ

))√
2 log 2

δ

nIr
+O

(
ϵ2

r2
√Ir

)
by the previous bound and Fact A.3

By the lemma assumption, we have ϵ2/r2 ≤ ϵ2max/r
2 ≤ (1/γ)

√
log 2

δ /n, and so we have bounded |ϵ− (ŝ(y)/Ir)| by

|ϵ− (ŝ(y)/Ir)| ≤
(
1 +O

(
1

γ

))√
2 log 2

δ

nIr

To conclude, we have

|λ̂− λ| = |y − (ŝ(y)/Ir)− λ| = |λ+ ϵ− (ŝ(y)/Ir)− λ| ≤
(
1 +O

(
1

γ

))√
2 log 2

δ

nIr
as desired.

A.2. 1-dimensional global estimation

We can now state the 1-dimensional global estimation algorithm (Algorithm 2), which first gets a preliminary estimate of the
true parameter from a o(1) fraction of the data, before invoking the local Algorithm 1 on the rest of the data.

Algorithm 2 Global smoothed MLE for one dimension

Input Parameters:
• Failure probability δ, description of f , n i.i.d. samples drawn from fλ for some unknown λ

1. Let q be
√
2(log 2

δ /n)
2/5.

2. Compute an α ∈ [q, 1− q] to minimize the width of interval defined by the α± q quantiles of f .

3. Take the sample α-quantile of the first (log 2
δ /n)

1/10 fraction of the n samples.

4. Let r∗ = Ω((
log 2

δ

n )1/8)IQR.

5. Run Algorithm 1 on the rest of the samples, using initial estimate λ1 = xα and r∗-smoothing, and return the final
estimate λ̂.

Both the global part of the algorithm and its analysis are essentially identical to what Gupta et al. (2022), up to minor
changes in certain parameters. We note again that the algorithmic improvement lies in the local part of the algorithm, in
Algorithm 1.

13
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Theorem 1.1 (1-d Smoothed MLE). Given a model f , let the r-smoothed Fisher information of a distribution f be Ir, and
let IQR be the interquartile range of f . Fix the failure probability be δ ≤ 0.5, and assume that n ≥ c · log 2

δ for some
sufficiently large constant c.

Choose r∗ = Ω((
log 2

δ

n )1/8)IQR. Then, with probability at least 1− δ, the output λ̂ of Algorithm 2 satisfies

|λ̂− λ| ≤

1 +O

(
log 2

δ

n

) 1
10

√2 log 2
δ

nIr∗

The analysis of Algorithm 2 requires one more technical fact from (Gupta et al., 2022), which is a lower bound on smoothed
Fisher information.

Fact A.5. Let Ir be the Fisher information for fr, the r-smoothed version of distribution f . Let IQR be the interquartile
range of f . Then, Ir ≳ 1/(IQR + r)2. Here, the hidden constant is a universal one independent of the distribution f and
independent of r.

Proof of Theorem 1.1. Step 2 uses (log 2
δ /n)

1/10 n samples to compute the sample α-quantile. By standard Chernoff
bounds, with probability at least 1 − δ(log 2

δ /n)
2, the error of the sample quantile (in terms of its quantile in the true

distribution) is at most √√√√2 log 2
δ(log 2

δ /n)
2

(log 2
δ /n)

1/10 n

≤

√√√√2(log 2
δ )(

n
log 2

δ

)1/10

(log 2
δ /n)

1/10 n

=
√
2

(
log 2

δ

n

)2/5

Therefore, if the above event happens, Step 2 will yield a sample α-quantile xα such that xα − λ is within the α −√
2(log 2

δ /n)
2/5 and α+

√
2(log 2

δ /n)
2/5 quantiles of f . Furthermore, by the minimality condition in the definition of α,

the distance between these two quantiles is at most O((log 2
δ /n)

2/5)IQR.

We will apply Lemma A.1 using failure probability δ(1 − (log 2
δ /n)

2). We will check that, (A) conditioned on Step 2
succeeding in the above sense, the preconditions of Lemma A.1 will hold for λ1 = xα, the chosen r∗ and an appropriate
choice of γ, and also that (B) the estimation error guaranteed by Lemma A.1 implies the desired error bound. If the above
deterministic checks are true, then by a union bound, Algorithm 2 will satisfy the desired intermediate bound guarantees
except with probability δ.

For the following calculations, note that log 2
δ(1−(log 2

δ /n)
2)
≤ 1.1 log 2

δ since n≫ log 2
δ and δ ≤ 0.5.

(A): We condition on Step 2 succeeding, and check the preconditions of Lemma A.1.

We now check the precondition that r∗ ≥ 2ϵmax, for ϵmax = max(
√
2 log 2

δ(1−(log 2
δ /n)

2)
/(nIr∗), O(log 2

δ /n)
2/5IQR).

First, r∗ = Ω((
log 2

δ

n )1/8)IQR ≫ O((log 2
δ /n)

2/5)IQR, where the ≫ uses the assumption on the size of n. We can

also show that O(log 1
δ /n)

2/5IQR ≥
√
2 log 2

δ /(nIr∗). Recall by Fact A.5 that Ir ≥ Ω(1/(IQR + r)2) for any r >

0. Therefore,
√

2 log 2
δ(1−(log 2

δ /n)
2)
/(nIr∗) ≤ O(

√
log 2

δ /(nIr∗)) ≤ O((log 2
δ /n)

1/2IQR) ≪ O((log 2
δ /n)

2/5)IQR,

where the≪ is due to the theorem assumption on the size of n.

We now need to check the last 3 preconditions of Lemma A.1. Let n′ = (1− (log 2
δ /n)

1/10)n be the number of samples
used in the call to Algorithm 1, in Step 4. By the theorem assumption, we have n′ = Θ(n). Further, recall by Fact A.5 that
Ir ≥ Ω(1/(IQR + r)2). Picking γ = O( n

log 2
δ

)1/10, we check that the following remaining conditions from Lemma A.1
are satisfied when applied to the n′ = Θ(n) points used in Step 4:
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1. (r∗)2
√Ir∗ ≥ (r∗)2/(IQR + r∗) ≥ Ω(

log 2
δ

n )1/4IQR ≥ Ω(
log 2

δ

n )3/10IQR ≥ γϵmax.

2. (r∗)2
√
log 2

δ(1−(log 2
δ /n)

2)
/n′ ≥ Ω(

log 2
δ

n )1/4IQR2
√

log 1
δ /n = Ω(

log 2
δ

n )7/10IQR2 = γϵ2max

3. log 2
δ(1−(log 2

δ /n)
2)
/n′ ≤ O(log 2

δ /n
′) ≤ O((log 2

δ /n)
1/5) ≤ 1/γ2.

(B): We check that the guarantees of Lemma A.1 is sufficient to imply the desired bound. To do so, we need a slightly more
refined bound on log 2

δ(1−(log 2
δ /n)

2)
:

log
2

δ(1− (log 2
δ /n)

2)
=

(
1 +

log 1
1−(log 2

δ /n)
2

log 2
δ

)
log

2

δ

≤
(
1 +O

(
(log 2

δ /n)
2

log 2
δ

))
log

2

δ
since n≫ log

2

δ

≤
(
1 +O

(
log 2

δ

n

))
log

2

δ

When the preconditions of Lemma A.1, the success of Step 4 implies a final estimate λ̂ satisfying

|λ̂− λ| ≤
(
1 +O

(
1

γ

))√2 log 2
δ(1−(log 2

δ /n)
2)

n′Ir∗

≤
(
1 +O

(
1

γ

)
+O

(
log 2

δ

n

))√
2 log 2

δ

n′Ir∗

=

1 +O

(
log 2

δ

n

) 1
10

+O

(
log 2

δ

n

)√2 log 2
δ

n′Ir∗

=

1 +O

(
log 2

δ

n

) 1
10

√2 log 2
δ

n′Ir∗

=

1 +O

(
log 2

δ

n

) 1
10

√2 log 2
δ

nIr∗

since n′ =

(
1−

(
log

2

δ
/n

)1/10
)
n

B. High dimensional location estimation
This section provides a complete analysis of our main Theorem B.16 for estimating the location of a high-dimensional
distribution. We start by providing some important definitions in Appendix B.1. Then, in Appendix B.2, we prove some
key properties of the score of our smoothed distribution. In Appendix B.3 we show that our score function is subgamma
with appropriate variance and scale parameters. Then, Appendix B.4 shows an error bound for the deviation between the
empirical score estimate and true true score. Finally Appendix B.5 and B.6 provide analyses of our Local MLE and Global
MLE algorithms respectively.

B.1. Definitions

Let f be an arbitrary distribution on Rd and let Y ∼ f . Let our smoothing parameter R ∈ Rd×d be the covariance matrix of
our noise ZR ∼ wR = N (0, R) sampled independently of Y . We define the R-smoothed distribution fR to be such that
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X = Y + ZR ∼ fR. Thus, the pdf of fR is given by

fR(x) = E
ZR∼wR

[f(x+ Zr)]

Let sR be the score function of fR. We have

sR(x) = ∇ log fR(x) =
∇fR(x)
fR(x)

Let IR be the Fisher information matrix of fR. Then,

IR = E
x∼fR

[sR(x)sR(x)
T ]

We define the M -norm of vector x to be
∥x∥M =

√
xTMx

B.2. Properties of the smoothed score

In this section, we prove some properties of the score function sR of the R-smoothed distribution fR that we make use of
throughout the paper. First, in Lemma B.1, we provide a useful characterization of sR. Then, using Lemma B.2 we prove
Lemma B.3, which tells us for good initial estimates of our location, say incurring error ϵ ∈ Rd for “small” ϵ, “inverting
the score” by left multiplying sR(x+ ϵ) by −I−1R provides a good estimate of the error ϵ in expectation. After this, using
Lemma B.4, we prove Lemma B.5, which says that for small ϵ, the shifted score sR(x+ ϵ) when appropriately transformed
has covariance similar to the corresponding transformation of the Fisher information matrix IR.

We begin by providing a characterization of the score sR that we make use of throughout.

Lemma B.1. Let f be an arbitrary distribution on Rd, and let fR be the R-smoothed version of f . That is, fR(x) =
Ey∼f

[
(2π)−d/2 det(R)−1/2 exp

(
− 1

2 (x− Y )TR−1(x− Y )
)]

. Let sR be the score function of fR. Let (X,Y, ZR) be the
joint distribution such that Y ∼ f , ZR ∼ N (0, R) are independent, and X = Y + ZR ∼ fR. We have for ϵ ∈ Rd,

fR(x+ ϵ)

fR(x)
= E
ZR|x

[
eϵ

TR−1ZR− 1
2 ϵ

TR−1ϵ
]

so that
sR(x) = E

ZR|x

[
R−1ZR

]
Proof. First, we show that for ϵ ∈ R

fR(x+ ϵ)

fR(x)
= E
ZR|x

[
wR(ZR + ϵ)

wR(ZR)

]
Note that

p(z|x) = p(z, x)

p(x)
=

f(x− z)wR(z)

fR(x)

So,

fR(x+ ϵ) =

∫
[−∞,∞]d

wR(z)f(x+ ϵ− z)dz

=

∫
p(z|x)fR(x)

wR(z + ϵ)

wR(z)
dz

= fR(x) E
ZR|x

[
wR(ZR + ϵ)

wr(ZR)

]
But now, wR(x) = (2π)−d/2 det(R)−1/2e−

1
2x

TR−1x So,

fR(x+ ϵ)

fR(x)
= E
ZR|x

[
eϵ

TR−1ZR− 1
2 ϵ

TR−1ϵ
]
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which is the first claim. Now, let ϵ = γei. We take the derivative wrt γ, and evaluate at γ = 0 to get

∇eifR(x)
fR(x)

= E
ZR|x

[
(R−1ZR)i

]
So,

sR(x) =
∇fR(x)
fR(x)

= E
ZR|x

[
R−1ZR

]

The next Lemma B.2 is a utility result that we make use of in Lemma B.3.

Lemma B.2. Let fR be the R-smoothed version of distribution f on Rd. For ϵ ∈ Rd, let

∆ϵ(x) :=
fR(x+ ϵ)− fR(x)− (∇fR(x))T ϵ

fR(x)

Then, for any ϵ such that |ϵTR−1ϵ| ≤ 1
4 , we have

E
x∼fR

[∆ϵ(x)
2] ≲ (ϵTR−1ϵ)2

Proof. By Lemma B.1, we have

∆ϵ(x) =
fR(x+ ϵ)− fR(x)− (∇fR(x))T ϵ

fR(x)
= E
ZR|x

[
eϵ

TR−1ZR− 1
2 ϵ

TR−1ϵ − 1− ZTRR
−1ϵ
]

Let αϵ : Rd → R be such that
αϵ(z) = eϵ

TR−1z− 1
2 ϵ

TR−1ϵ − 1− zTR−1ϵ

We want to bound

E
x
[∆ϵ(x)

2] = E
x
[ E
ZR|X

[αϵ(Zr)]
2]

≤ E
x,ZR

[(αϵ(ZR))
2]

= E
ZR∼N (0,R)

[(αϵ(ZR))
2]

(7)

For the remaining proof, let W = ϵTR−1ZR. Since ZR ∼ N (0, R), we have that W ∼ N (0, ϵTR−1ϵ). When |W | ≤ 1,
by a Taylor expansion, we have

eW−
1
2 ϵ

TR−1ϵ = 1 +W − 1

2
ϵTR−1ϵ+O

((
W − 1

2
ϵTR−1ϵ

)2
)

so that

|αϵ(ZR)| ≲ ϵTR−1ϵ+W 2

This implies that αϵ(ZR)2 ≲ (ϵTR−1ϵ)2 +W 4, meaning that

E
ZR∼N (0,R)

[
(αϵ(ZR))

2 · 1|ϵTR−1ZR|≤1
]
≲ E
W∼N (0,ϵTR−1ϵ)

[(
(ϵTR−1ϵ)2 +W 4

)
· 1|ϵTR−1ϵ|≤1

]
≲ (ϵTR−1ϵ)2 + E

W∼N (0,ϵTR−1ϵ)
[W 4]

≲ (ϵTR−1ϵ)2

(8)

On the other hand, when |W | ≥ 1,
|αϵ(ZR)| ≤ e|W |
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E
ZR∼N (0,R)

[
αϵ(ZR)

2 · 1|ϵTR−1Zr|≥1
]
≤ E
W∼N (0,ϵTR−1ϵ)

[e2|W |1|W |≥1]

= 2

∫ ∞
1

1√
2πϵTR−1ϵ

e2|w|e−
w2

2ϵT R−1ϵ dw

= 2e2|ϵ
TR−1ϵ|

∫ ∞
1

1√
2πϵTR−1ϵ

e−
(w−2|ϵT R−1ϵ|)2

2ϵT R−1ϵ dw

≤ 2
√
e P
W∼N (0,ϵTR−1ϵ)

[
W ≥ 1− 2|ϵTR−1ϵ|

]
≲ e−

(1−2|ϵT R−1ϵ|)2

2ϵT R−1ϵ

≤ e−
1

8ϵT R−1ϵ ≲ (ϵTR−1ϵ)2

(9)

which combines with (7) and (8) to give the claim.

The next Lemma B.3 tells us that for good initial estimates ϵ ∈ Rd, “inverting the score” by left multiplying sR by −I−1R
provides a good estimate of ϵ in expectation.

Lemma B.3 (Score Inversion). Let fR be an R-smoothed distribution with Fisher information matrix IR. Let sR : Rd → Rd
be the score function of fR. Let M ∈ Rd×d be a symmetric matrix such that M ≽ 0. Then, for any ϵ ∈ Rd with
|ϵTR−1ϵ| ≤ 1/4, we have

∥ E
x∼fR

[−I−1R sR(x+ ϵ)]− ϵ∥2M ≲ ∥M1/2I−1R M1/2∥(ϵTR−1ϵ)2

Proof. By definition of sR,

E
x∼fR

[sR(x+ ϵ)] =

∫
[−∞,∞]d

fR(x)
∇fR(x+ ϵ)

fR(x+ ϵ)
dx

=

∫
∇fR(x)

(
fR(x− ϵ)− fR(x)

fR(x)

)
dx

since ∫
∇fR(x)dx = 0

Now, by the definition of IR

IR = E
x∼fR

[sR(x)sR(x)
T ] =

∫
[−∞,∞]d

∇fR(x)(∇fR(x))T
fR(x)

dx

So,

E
x∼fR

[sR(x+ ϵ)] + IRϵ =
∫
−[∞,∞]d

∇fR(x)
fR(x)

(
fR(x− ϵ)− fR(x) + (∇fR(x))T ϵ

)
dx

= E
x∼fR

[∆−ϵ(x)sR(x)]

where ∆ϵ(x) :=
fR(x+ϵ)−fR(x)−(∇fR(x))T ϵ

fR(x) . Now, left multiplying both sides by −M1/2I−1R ,

M1/2

(
E

x∼fR
[−I−1R sR(x+ ϵ)]− ϵ

)
= E
x∼fR

[
∆−ϵ(x)(−M1/2I−1R sR(x))

]
So, we have

∥ E
x∼fR

[−I−1R sR(x+ ϵ)]− ϵ∥2M = ∥ E
x∼fR

[∆−ϵ(x)
(
−M1/2I−1R sR(x)

)
]∥2
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Now, by Cauchy-Schwarz

∥ E
x∼fR

[
∆−ϵ(x)(−M1/2I−1R sR(x))

]
∥2 = sup

w∈Sd−1

E
x∼fR

[∆−ϵ(x)(−M1/2I−1R sR(x))
Tw]2

≤ sup
w∈Sd−1

E
x∼fR

[∆−ϵ(x)
2] E
x∼fR

[
(−M1/2I−1R sR(x))

Tw)2
]

= E
x∼fR

[
∆−ϵ(x)

2
]
∥ E
x∼fR

[
(−M1/2I−1R sR(x))(sR(x)

TI−1R M1/2)
]
∥

= E
x∼fR

[∆−ϵ(x)
2]∥M1/2I−1R M1/2∥

Using Lemma B.2, we finally have

∥ E
x∼fR

[−I−1R sR(x+ ϵ)]− ϵ∥2M ≲ ∥M1/2I−1R M1/2∥(ϵTR−1ϵ)2

Next, in Lemma B.4 we prove a utility result that we make use of in Lemma B.5.

Lemma B.4. Let fR be the R-smoothed version of f on Rd. For ϵ ∈ Rd, let

ζϵ(x) =
fR(x− ϵ)− fR(x)

fR(x)

Then, for any ϵ such that |ϵTR−1ϵ| ≤ 1/4, and for any α such that α2(ϵTR−1ϵ) ≲ 1 we have

E
x∼fR

[ζϵ(x)
2] ≲ (ϵTR−1ϵ)(α2e−Ω(α2) + e−Ω(α2))

Proof. By Lemma B.1, we have

ζϵ(x) =
fR(x− ϵ)− fR(x)

fR(x)
= E
ZR|x

[
e−ϵ

TR−1ZR− 1
2 ϵ

TR−1ϵ − 1
]

For the remaining proof, let W = ϵTR−1ZR. Since ZR ∼ N (0, R), we have that W ∼ N (0, ϵTR−1ϵ). So, we have that

ζϵ(x) = E
W |x

[
e−W−

1
2 ϵ

TR−1ϵ − 1
]

Let α be a parameter such that α2(ϵTR−1ϵ) ≲ 1. Now, we have

ζϵ(x) ≤ O
(
α
√
ϵTR−1ϵ

)
+ E
W |x

[
1|W |>α

√
ϵTR−1ϵ

(
e−W − 1

)]
So,

ζϵ(x)
2 ≲ α2(ϵTR−1ϵ) + E

W |x

[
1|W |>α

√
ϵTR−1ϵ(e

−W − 1)
]2

Now, to bound the second term, by Jensen’s inequality, we have

E
W |x

[
1|W |>α

√
ϵTR−1ϵ(e

−W − 1)
]2
≤ E
W |x

[
1|W |>α

√
ϵTR−1ϵ(e

−W − 1)2
]

So, we have

E
x∼fR

[
ζϵ(x)

2
]
≲ α2(ϵTR−1ϵ) + E

W

[
1|W |>α

√
ϵTR−1ϵ(e

−W − 1)2
]

We will now bound the second term above, EW
[
1|W |>α

√
ϵTR−1ϵ(e

−W − 1)2
]
, in two separate cases, when
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1. |W | ≤ 1

2. |W | > 1

When |W | ≤ 1, by linear approximations to the exponential function, we have

(e−W − 1)2 ≲ W 2

So,

E
W

[
1|W |>α

√
ϵTR−1ϵ1|W |≤1(e

−W − 1)2
]
≲ E
W∼N (0,ϵTR−1ϵ)

[
1|W |>α

√
ϵTR−1ϵ ·W 2

]
≲ α2(ϵTR−1ϵ)e−Ω(α2)

On the other hand, when |W | > 1

E
W

[
1|W |>max(1,α

√
ϵTR−1ϵ)(e

−W − 1)2
]

≤
∫ −(1+α√ϵTR−1ϵ)

−∞

1√
2πϵTR−1ϵ

e−
w2

2ϵT R−1ϵ (e−w − 1)2dw +

∫ ∞
1+α
√
ϵTR−1ϵ

1√
2πϵTR−1ϵ

e−
w2

2ϵT R−1ϵ (e−w − 1)2dw

≲
∫ ∞
1+α
√
ϵTR−1ϵ

1√
2πϵTR−1ϵ

e−
w2

2ϵT R−1ϵ (ew − 1)2dw

≲
∫ ∞
1+α
√
ϵTR−1ϵ

1√
2πϵTR−1ϵ

e−
w2

2ϵT R−1ϵ e2wdw

= e2(ϵ
TR−1ϵ)

∫ ∞
1+α
√
ϵTR−1ϵ

1√
2πϵTR−1ϵ

e−
(w−2ϵT R−1ϵ)2

2ϵT R−1ϵ dw

≲ e−Ω(
1

ϵT R−1ϵ
+α2) ≲ (ϵTR−1ϵ)e−Ω(α2) since |ϵTR−1ϵ| ≤ 1/4

Thus, we have shown that

E
x∼fR

[
ζϵ(x)

2
]
≲ α2(ϵTR−1ϵ)e−Ω(α2) + (ϵTR−1ϵ)e−Ω(α2)

The claim follows.

The next Lemma B.5 shows that for small ϵ, the covariance of the appropriately transformed version of the shifted score
sR(x+ ϵ) is similar to the corresponding transformation of the Fisher information matrix IR.

Lemma B.5. Suppose fR is a R-smoothed distribution on Rd with Fisher information matrix IR. Let M ∈ Rd×d be a
symmetric matrix such that M ≽ 0. Then for any ϵ ∈ Rd with |ϵTR−1ϵ| ≤ 1/4, we have, for every v ∈ Rd with ∥v∥ = 1,

∣∣∣∣vT ( E
x∼fR

[
M1/2I−1R sR(x+ ϵ)sR(x+ ϵ)TI−1R M1/2

]
−M1/2I−1R M1/2

)
v

∣∣∣∣
≲
√
ϵTR−1ϵ · (vTM1/2I−1R M1/2v)

√
log

(
sup

w∈Sd−1

wTR−1w

wTIRw

)
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Proof. We have, by definition of score,

E
x∼fR

[sR(x+ ϵ)sR(x+ ϵ)T ] =

∫
[−∞,∞]d

fR(x)
∇fR(x+ ϵ)(∇fR(x+ ϵ))T

fR(x+ ϵ)2
dx

=

∫
fR(x− ϵ)

∇fR(x)(∇fR(x))T
fR(x)2

dx

= IR +

∫
(fR(x− ϵ)− fR(x))

(∇fR(x)(∇fR(x))T
fR(x)2

)
dx

= IR +

∫
ζϵ(x)

(∇fR(x)(∇fR(x))T
fR(x)

)
dx

= IR + E
x∼fR

[
ζϵ(x)

∇fR(x)(∇fR(x))T
fR(x)2

]
where ζϵ(x) =

fR(x−ϵ)−fR(x)
fR(x) . Now, since sR(x) =

∇fR(x)
fR(x) , the above is equivalent to

E
x∼fR

[
sR(x+ ϵ)sR(x+ ϵ)T

]
− IR = E

x∼fR

[
ζϵ(x)sR(x)sR(x)

T
]

Left and right multiplying both sides by M1/2I−1R , this is

E
x∼fR

[
M1/2I−1R sR(x+ ϵ)sR(x+ ϵ)TI−1R M1/2

]
−M1/2I−1R M1/2 = M1/2I−1R E

x∼fR

[
ζϵ(x)sR(x)sR(x)

T
]
I−1R M1/2

Then, for v ∈ Rd with ∥v∥ = 1

vT
(

E
x∼fR

[
M1/2I−1R sR(x+ ϵ)sR(x+ ϵ)TI−1R M1/2

]
−M1/2I−1R M1/2

)
v = E

x∼fR

[
ζϵ(x)(v

TM1/2I−1R sR(x))
2
]

Then, using Cauchy-Schwarz,∣∣∣∣vT ( E
x∼fR

[
M1/2I−1R sR(x+ ϵ)sR(x+ ϵ)TI−1R M1/2

]
−M1/2I−1R M1/2

)
v

∣∣∣∣
≤
√

E
x∼fR

[ζϵ(x)2] E
x∼fR

[
(vTM1/2I−1R sR(x))4

] (10)

To bound the second term inside the square root, recall that by Lemma B.1, we have

sR(x) = E
ZR|x

[R−1ZR]

So, by Jensen’s inequality, we have

E
x∼fR

[(vTM1/2I−1R sR(x))
4] = E

x∼fR

[
(vTM1/2I−1R E

ZR|x
[R−1ZR])

4

]
= E
x∼fR

[
E

ZR|x
[vTM1/2I−1R R−1ZR]

4

]
≤ E
x∼fR

[
E

ZR|x
[(vTM1/2I−1R R−1ZR)

4]

]
= E
ZR

[
(vTM1/2I−1R R−1ZR)

4
]

Now, since ZR ∼ N (0, R), we have that v⊤M1/2I−1R R−1ZR ∼ N (0, v⊤M1/2I−1R R−1I−1R M1/2v) is a 1-dimensional
Gaussian. Thus, using the standard fact about the 4th moment of a 1-dimensional Gaussian, we have

E
x∼fR

[
(vTM1/2I−1R sR(x))

4
]
≤ E
ZR

[
(vTM1/2I−1R R−1ZR)

4
]
= 3(vTM1/2I−1R R−1I−1R M1/2v)2
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For the first term under the square root in (10), by Lemma B.4, for any α ∈ R such that α2(ϵTR−1ϵ) ≲ 1, we have

E
x∼fR

[ζϵ(x)
2] ≲ (ϵTR−1ϵ)(α2e−Ω(α2) + e−Ω(α2))

So, combining the above with (10), we have∣∣∣∣vT ( E
x∼fR

[
M1/2I−1R sR(x+ ϵ)sR(x+ ϵ)TI−1R M1/2

]
−M1/2I−1R M1/2

)
v

∣∣∣∣
≲ (vTM1/2I−1R R−1I−1R M1/2v)

√
(ϵTR−1ϵ)(α2e−Ω(α2) + e−Ω(α2))

≲ (vTM1/2I−1R R−1I−1R M1/2v)
√
ϵTR−1ϵ(αe−Ω(α2))

Setting α = O

(√
log

vTM1/2I−1
R R−1I−1

R M1/2v

vTM1/2I−1
R M1/2v

)
yields

∣∣∣∣vT ( E
x∼fR

[
M1/2I−1R sR(x+ ϵ)sR(x+ ϵ)TI−1R M1/2

]
−M1/2I−1R M1/2

)
v

∣∣∣∣
≲
√
ϵTR−1ϵ · (vTM1/2I−1R M1/2v)

√
log

vTM1/2I−1R R−1I−1R M1/2v

vTM1/2I−1R M1/2v

Since

vTM1/2I−1R R−1I−1R M1/2v

vTM1/2I−1R M1/2v
≤ sup
w∈Sd−1

wTR−1w

wTIRw

the claim follows.

B.3. Subgamma concentration of score

In this section, we establish that every one-dimensional projection of the score function sR after applying a symmetric PSD
linear transformation is subgamma with appropriate variance and scale parameters. We begin by showing a bound on the
Jacobian of the score, which we make use of in future lemmas.

Lemma B.6. Let sR : Rd → Rd be the score function of fR, the R-smoothed version of distribution f . Let JsR be the
Jacobian of sR. We have that

JsR ≽ −R−1

Proof. Taking the gradient in Lemma B.1 wrt ϵ, we have

∇fR(x+ ϵ)

fR(x)
= E
ZR|x

[
eϵ

TR−1ZR− 1
2 ϵ

TR−1ϵ
(
R−1ZR −R−1ϵ

)]
So,

sR(x+ ϵ) =
∇fR(x+ ϵ)

fR(x+ ϵ)
· fR(x+ ϵ)

fR(x)
=

EZR|x

[
eϵ

TR−1ZR− 1
2 ϵ

TR−1ϵ
(
R−1ZR −R−1ϵ

)]
EZR|x

[
eϵ

TR−1ZR− 1
2 ϵ

TR−1ϵ
]

Now, let ϵ = γv for γ ∈ R, γ > 0 so that ∥v∥ = 1. Now, eϵ
TR−1ZR− 1

2 ϵ
TR−1ϵ and vTR−1ZR − vTR−1ϵ are monotonically

non-decreasing in vTR−1ZR. So, by Lemma C.1, they are positively correlated. That is,

vT E
ZR|x

[
eϵ

TR−1ZR− 1
2 ϵ

TR−1ϵ
(
R−1ZR −R−1ϵ

)]
≥ E
ZR|x

[
eϵ

TR−1ZR− 1
2 ϵ

TR−1ϵ
]
·
(
vT E

ZR|x

[
R−1ZR −R−1ϵ

])
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So,

vT sR(x+ ϵ) ≥ vT E
ZR|x

[
R−1ZR −R−1ϵ

]
(11)

Now, by definition of Jacobian

JsRv =

[
∂

∂γ
sR(x+ γv)

]
γ=0

So, in (11), taking the derivative wrt γ and setting γ = 0, we get

vT JsRv ≥ −vTR−1v

as required.

The next lemma shows that every 1-dimensional projection of the score sR(x) is subgamma with appropriate variance
and scale parameters. As a corollary (Corollary B.8) we obtain that every 1-dimensional projection of the score when
transformed using a symmetric PSD matrix is also subgamma, with appropriately transformed variance and scale.

Lemma B.7. Let sR : Rd → Rd be the score function of an R-smoothed distribution fR with Fisher information matrix IR.
For any fixed v ∈ Rd with ∥v∥ = 1, we have

E
x∼fR

[|vTR1/2sR(x)|k] ≤ (1.6)k−2kk/2(vTR1/2IRR1/2v)

Equivalently, for any v ∈ Rd, vTR1/2sR(x) is a subgamma random variable.

vTR1/2sR(x) ∈ Γ(vTR1/2IRR1/2v, 1.6∥v∥)

Proof. For x, γ ∈ Rd, by Lemma B.1, and Jensen’s inequality,

fR(x+ γ) ≥ fR(x)e
γT sR(x)− 1

2γ
TR−1γ

Set γ = R1/2v. Then,
fR
(
x+ γ · sign(γT sR(x))

)
≥ fR(x)e

|γT sR(x)|/
√
e

Now, by Lemma B.6, we have,

γT sR(x+ γ) = γT sR(x) + γT JsRγ

= γT sR(x) + vTR1/2JsRR
1/2v

≥ γT sR(x)− 1

Similarly,
γT sR(x− γ) ≤ γT sR(x) + 1

Combining these two, we have
|γT sR(x+ γ · sign(γT sR(x))| ≥ |γT sR(x)| − 1

So, for any k ≥ 2, and |γT sR(x)| > α for α := 2 + 1.2
√
k

fR(x+ γ · sign(γT sR(x))|γT sR(x+ γ · sign(γT sR(x)))|k

≥ 1√
e
fR(x)e

|γT sR(x)| (|γT sR(x)| − 1
)k

= fR(x)|γT sR(x)|k ·
(

1√
e
e|γ

T sR(x)|
(
1− 1

|γT sR(x)|

)k)

≥ fR(x)|γT sR(x)|k ·
(

1√
e
eα−1.4

k
α

)
≥ fR(x)|γT sR(x)|k · 4
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Thus,

fR(x)|γT sR(x)|k ≤
1

4

(
fR(x− γ)|γT sR(x− γ)|k + fR(x+ γ)|γT sR(x+ γ)|k

)
when k ≥ 2 and |γT sR(x)| ≥ α. Integrating this,

E
x∼fR

[
|γT sR(x)|k

]
=

∫
[−∞,∞]d

fR(x)|γT sR(x)|kdx

≤ 2

∫
fR(x)|γT sR(x)|k −

1

4
fR(x− γ)|γT sR(x− γ)|k − 1

4
fR(x+ γ)|γT sR(x+ γ)|dx

≤ 2

∫
fR(x)|γT sR(x)|k1|γT sR(x)|<αdx

≤ 2

∫
fR(x)|γT sR(x)|2αk−21|γT sR(x)|<αdx

≤ 2αk−2 E[|γT sR(x)|2] = 2αk−2γTIRγ
Finally, for any k ≥ 2,

2αk−2 = 2(1.2
√
k + 2)k−2 ≤ kk/2 · 1.6k−2

The claim follows.

Corollary B.8. Let sR : Rd → Rd be the score function of an R-smoothed distribution fR with Fisher information matrix
IR. Let M ∈ Rd×d be a symmetric matrix such that M ≽ 0. For any fixed v ∈ Rd with ∥v∥ = 1, we have

E
x∼fR

[|vTM1/2I−1R sR(x)|k] ≤ (1.6∥M1/2I−1R R−1/2v∥)k−2kk/2(vTM1/2I−1R M1/2v)

Equivalently, vTM1/2I−1R sR(x) is subgamma.

|vTM1/2I−1R sR(x)| ∈ Γ(vTM1/2I−1R M1/2v, 1.6∥M1/2I−1R R−1/2v∥)

Lemmas B.9 and B.10 proved next are helper lemmas that we make use of to prove the main result of this section,
Lemma B.11, which shows that every one dimensional projection of sR(x+ ϵ) for x ∼ fR is subgamma.
Lemma B.9. Let sR : Rd → Rd be the score function of an R-smoothed distribution fR with Fisher information matrix
IR. For any fixed v ∈ Rd with ∥v∥ = 1, x ∈ Rd, k ≥ 3, and ϵ ∈ Rd with 0 ≤ ϵTR−1ϵ ≤ 1/4, if vTR1/2sR(x + ϵ) ≥
max(2

√
k + 2, 9.5), then, for γ = R1/2v,

fR(x)|γT sR(x+ ϵ)|k ≤ 1

5
max

(
fR(x− ϵ)|γT sR(x− ϵ)|k, fR(x+ ϵ+ γ)|γT sR(x+ ϵ+ γ)|k

)
Proof. Let α := fR(x)

fR(x+ϵ) . By Lemma B.1, we have

α = E
ZR|x+ϵ

[
e−ϵ

TR−1ZR− 1
2 ϵ

TR−1ϵ
]

(12)

Let γ = R1/2v. We will consider two cases

When logα < 3
4γ

T sR(x+ ϵ)− 2. First, by Lemma B.1 and Jensen’s inequality, we have

fR(x+ ϵ+ γ)

fR(x+ ϵ)
≥ eγ

T sR(x+ϵ)−1/2

Also, by Lemma B.6, we have
γT sR(x+ ϵ+ γ) ≥ γT sR(x+ ϵ)− 1

So,

fR(x+ ϵ+ γ)|γT sR(x+ ϵ+ γ)|k ≥ fR(x+ ϵ)|γT sR(x+ ϵ)|keγT sR(x+ϵ)− 1
2

(
1− 1

γT (sR(x+ ϵ)

)k
≥ fR(x+ ϵ)|γT sR(x+ ϵ)|keγ

T sR(x+ϵ)− k

γT sR(x+ϵ)−1
− 1

2
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Since γT sR(x+ ϵ) ≥ 2
√
k + 2,

fR(x+ ϵ+ γ)|sR(x+ ϵ+ γ)|k ≥ fR(x+ ϵ)|sR(x+ ϵ)|ke 3
4γ

T sR(x+ϵ)

So, since

α =
fR(x)

fR(x+ ϵ)
≤ e

3
4γ

T sR(x+ϵ)−2

we have
f(x)|sR(x+ ϵ)|k = αfR(x+ ϵ)|sR(x+ ϵ)|k ≤ 1

5
fR(x+ ϵ+ γ)|sR(x+ ϵ+ γ)|k

When logα > 3
4γ

T sR(x+ ϵ)− 2. Evaluating (12) at x− ϵ gives

fR(x− ϵ)

fR(x)
= E
ZR|x

[
e−ϵ

TR−1ZR− 1
2 ϵ

TR−1ϵ
]

Taking the gradient wrt ϵ, we have

∇fR(x− ϵ)

fR(x)
= E
ZR|x

[
R−1(ZR + ϵ)e−ϵ

TR−1ZR− 1
2 ϵ

TR−1ϵ
]

so evaluating at x+ ϵ,
∇fR(x)
fR(x+ ϵ)

= E
ZR|x+ϵ

[
R−1(ZR + ϵ)e−ϵ

TR−1ZR− 1
2 ϵ

TR−1ϵ
]

In particular,

ϵT
∇fR(x)
fR(x+ ϵ)

= E
ZR|x+ϵ

[
ϵTR−1(ZR + ϵ)e−ϵ

TR−1ZR− 1
2 ϵ

TR−1ϵ
]

Define y = e−ϵ
TR−1ZR−ϵTR−1ϵ so that EZR|x+ϵ[y] = αe−

1
2 ϵ

TR−1ϵ, and

ϵTR−1(ZR + ϵ)e−ϵ
TR−1ZR− 1

2 ϵ
TR−1ϵ = −e 1

2 ϵ
TR−1ϵy log y

is concave, so by Jensen’s inequality,

ϵT
∇fR(x)
fR(x+ ϵ)

≤ −e 1
2 ϵ

TR−1ϵ
(
e−

1
2 ϵ

TR−1ϵα
)
log
(
e−

1
2 ϵ

TR−1ϵα
)
= −α logα+

1

2
αϵTR−1ϵ

So,

ϵT sR(x) = ϵT
∇fR(x)
fR(x)

≤ − logα+
1

2
ϵTR−1ϵ

Finally we consider the move to x− ϵ. By Lemma B.6, we have

ϵT sR(x− ϵ) ≤ sR(x) + ϵTR−1ϵ ≤ − logα+
3

2
ϵTR−1ϵ

By Lemma B.1,

fR(x− ϵ)

fR(x+ ϵ)
= E
ZR|x+ϵ

[
e−2ϵ

TR−1ZR−2ϵTR−1ϵ
]
= E
ZR|x+ϵ

[y2] ≥ E
ZR|x+ϵ

[y]2 = α2e−ϵ
TR−1ϵ

Since logα ≥ 3
4γ

T sR(x+ ϵ)− 2,

−ϵT sR(x− ϵ) ≥ 3

4
γT sR(x+ ϵ)− 2− 3

2
ϵTR−1ϵ ≥ 3

4
γT sR(x+ ϵ)− 19

8
≥ γT sR(x)

where the second inequality comes from the fact that 3
4γ

T sR(x+ ϵ)− 2 > 0, so that the function is decreasing in ϵTR−1ϵ,
and ϵTR−1ϵ ≤ 1/4. Thus,

fR(x− ϵ)|γT sR(x− ϵ)|k ≥ αe−ϵ
TR−1ϵfR(x)|sR(x+ ϵ)|k

Since our assumptions give αe−ϵ
TR−1ϵ ≥ 5, we get the result.
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Lemma B.10. Let sR : Rd → Rd be the score function of an R-smoothed distribution fR with Fisher information matrix
IR.

For any fixed v ∈ Rd with ∥v∥ = 1, x ∈ Rd, k ≥ 3 and ϵ ∈ Rd with 1/4 ≤ ϵTR−1ϵ ≤ 0, if vTR1/2sR(x + ϵ) ≥ α for
α = 2 + 1.2

√
k, then we have for γ = R1/2v,

fR(x)|γT sR(x+ ϵ)|k ≤ 1

4

(
fR(x− γ)|γT sR(x+ ϵ− γ)|k + fR(x+ γ)|sR(x+ ϵ+ γ)|k

)
As an immediate corollary, the statement is also true when 0 ≤ ϵTR−1ϵ ≤ 1/4 and vTR1/2sR(x) ≤ −α.

Proof. By Lemma B.1 and Jensen’s inequality,

fR(x+ γ) ≥ fR(x)e
γT sR(x)/

√
e

By Lemma B.6, we have that
γT sR(x+ ϵ+ γ) ≥ γT sR(x+ ϵ)− 1

Since the right hand side is positive by assumption, we have

|γT sR(x+ ϵ+ γ)| ≥ |γT sR(x+ ϵ)| − 1

Now, when ϵTR−1ϵ < 0, we have by Lemma B.6, and since |ϵTR−1ϵ| ≤ 1 that

γT sR(x) ≥ γT sR(x+ ϵ)− 1

So,

fR(x+ γ)|γT sR(x+ ϵ+ γ)|k ≥ 1√
e
fR(x)e

γT sR(x)
(
|γT sR(x+ ϵ)| − 1

)k
≥ 1√

e
fR(x)e

γT sR(x+ϵ)−1 (|γT sR(x+ ϵ)| − 1
)k

≥ fR(x)|γT sR(x+ ϵ)|k
(

1√
e
eγ

T sR(x+ϵ)−1
(
1− 1

|γT sR(x+ ϵ)|

)k)
≥ fR(x)|γT sR(x+ ϵ)|k ·

(
e−3/2eα−1.4k/α

)
≥ fR(x)|γT sR(x+ ϵ)|k · 4

We are now ready to prove that every 1-dimensional projection of sR(x + ϵ) for x ∼ fR is subgamma with appropriate
variance and scale. As a corollary (Corollary B.12), we obtain that every 1-dimensional projection of sR(x + ϵ) when
transformed by applying a symmetric PSD matrix is also subgamma, with appropriately transformed variance and scale.

Lemma B.11. Let sR be the score function of an R-smoothed distribution fR with Fisher information matrix IR. For k ≥ 3
and ϵ ∈ Rd such that |ϵTR−1ϵ| ≤ 1/4, we have that for any v ∈ Rd with ∥v∥ = 1,

E
x∼fR

[
|vTR1/2sR(x+ ϵ)|k

]
≤ (15)k−2kk/2 max

(
E

x∼fR
[vTR1/2sR(x+ ϵ)sR(x+ ϵ)TR1/2v], vTR1/2IRR1/2v

)
Equivalently, vTR1/2sR(x+ ϵ) is a subgamma random variable.

vTR1/2sR(x+ ϵ) ∈ Γ

(
max

(
E

x∼fR
[vTR1/2sR(x+ ϵ)sR(x+ ϵ)TR1/2v], vTR1/2IRR1/2v

)
, 15

)
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Proof. Without loss of generality, we only show the ϵTR−1ϵ ≥ 0 case. As before, let γ = R1/2v. Using Lemma B.9 and
Lemma B.7, we have∫

[−∞,∞]d
fR(x− ϵ)|γT sR(x)|k1γT sR(x)>max(2

√
k+2,9.5)dx

≤
∫
[−∞,∞]d

1

5
max

(
fR(x− 2ϵ)|γT sR(x− 2ϵ)|k, fR(x+ γ)|γT sR(x+ γ)|k

)
dx

=
2

5
E

x∼fR
[|γT sR(x)|k]

≤ 2

5
(1.6)k−2kk/2(γTIRγ)

Then, we can start bounding the kth moment quantity in the lemma. Using Lemma B.10, we have

E
x∼fR

[
|γT sR(x+ ϵ)|k

]
=

∫
[−∞,∞]d

fR(x− ϵ)|γT sR(x)|kdx

= 2

∫
fR(x− ϵ)|γT sR(x)|k −

1

4
fR(x− ϵ− γ)|γT sR(x− γ)|k − 1

4
fR(x− ϵ+ γ)|γT sR(x+ γ)|kdx

≤
∫

fR(x− ϵ)|γT sR(x)|k1γT sR(x)≥−max(2
√
k+2,9.5)dx

Now, using the previous claim, we get

E
x∼fR

[
|γT sR(x+ ϵ)|k

]
≤ 2

∫
fR(x− ϵ)|γT sR(x)|k1|γT sR(x)|≤max(2

√
k+2,9.5)dx+

4

5
(1.6)k−2kk/2(γTIRγ)

≤ 2

∫
fR(x− ϵ)|γT sR(x)|2(max(2

√
k + 2, 9.5))k−21|γT sR(x)|≤max(2

√
k+2,9.5)dx+

4

5
(1.6)k−2kk/2(γTIRγ)

≤ 2max(2
√
k + 2, 9.5)k−2 E

x∼fR
[|γT sR(x+ ϵ)|2] + 4

5
(1.6)k−2kk/2(γTIRγ)

≤ 2kk/2(2.5)k−2 E
x∼fR

[|γT sR(x+ ϵ)|2] + 4

5
(1.6)k−2kk/2(γTIRγ)

≤ 3kk/2(2.5)k−2 max( E
x∼fR

[|γT sR(x+ ϵ)|2], γTIRγ)

≤ kk/2(15)k−2 max

(
E

x∼fR
[γT sR(x+ ϵ)sR(x+ ϵ)T γ], γTIRγ

)
as required.

Corollary B.12. Let sR be the score function of an R-smoothed distribution fR with Fisher information matrix IR. Let
M ∈ Rd×d be a symmetric matrix such that M ≽ 0. For k ≥ 3 and ϵ ∈ Rd such that |ϵTR−1ϵ| ≤ 1/4, we have that for
any v ∈ Rd with ∥v∥ = 1,

E
x∼fR

[
|vTM1/2I−1R sR(x+ ϵ)|k

]
≤ (15∥M1/2I−1R R−1/2v∥)k−2kk/2vT

(
M1/2I−1R M1/2

(
1 +O

(√
ϵTR−1ϵ

√
log sup

w∈Sd−1

wTR−1w

wTIRw

)))
v

In other words,

M1/2I−1R sR(x+ ϵ) ∈ Γ

(
M1/2I−1R M1/2

(
1 +O

(√
ϵTR−1ϵ

√
log sup

w∈Sd−1

wTR−1w

wTIRw

))
,M1/2I−1R R−1/2

)
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Proof. By the Lemma,

E
x∼fR

[
|vTM1/2I−1R sR(x+ ϵ)|k

]
≤ (15∥M1/2I−1R R−1/2v∥)k−2kk/2

max

(
E

x∼fR

[
vTM1/2I−1R sR(x+ ϵ)sR(x+ ϵ)TI−1R M1/2v

]
, vTM1/2I−1R M1/2v

)
Then, using Lemma B.5, the claim follows.

B.4. Estimation of inverted score

In this section, we use the subgamma bound on 1-dimensional projections of sR(x+ ϵ) for x ∼ fR from Corollary B.12, as
well as our norm concentration bound for subgamma vectors from Theorem 5.1 to establish a bound on the deviation of our
inverted empirical score at x+ ϵ from its expectation.

Lemma B.13. Let f be an arbitrary distribution on Rd and let fR be the R-smoothed version of f . Let IR be the Fisher
information matrix of fR. Let ϵ ∈ Rd be such that ϵTR−1ϵ ≤ 1/4. Consider the parametric family of distributions
fλR(x) = fR(x − λ). Suppose we have n i.i.d. samples x1, . . . , xn ∼ fλR. Let M ∈ Rd×d be a symmetric matrix with
M ≽ 0. Let ϵ̂ = 1

n

∑n
i=1 I−1R sR(xi − λ− ϵ). Let

T := M1/2I−1R M1/2

(
1 +O

(√
ϵTR−1ϵ

√
log sup

w∈Sd−1

wTR−1w

wTIRw

))

Then, with probability 1− δ, we have

∥ϵ̂− E
x∼fR

[I−1R sR(x− ϵ)]∥M

≤
√

Tr(T )

n
+ 4

√
∥T∥ log 2

δ

n
+ 16

∥M1/2I−1R R−1/2∥ log 2
δ

n
+ 8
∥M1/2I−1R R−1/2∥2F

n3/2
√
Tr(T )

log
2

δ

Proof. By Corollary B.12, M1/2I−1R sR(x) is (T,M1/2I−1R R−1/2)-subgamma. Then, applying our subgamma norm
concentration bound from Theorem 5.1 gives

∥ϵ̂− E
x∼fR

[
I−1R sR(x− ϵ)

]
∥M

=

∥∥∥∥∥M1/2

(
1

n

n∑
i=1

I−1R sR(xi − λ− ϵ)

)
−M1/2 E

x∼fR

[
I−1R sR(x− ϵ)

]∥∥∥∥∥
=

∥∥∥∥∥
(
1

n

n∑
i=1

M1/2I−1R sR(xi − λ− ϵ)

)
− E
x∼fR

[
M1/2I−1R sR(x− ϵ)

]∥∥∥∥∥
≤
√

Tr(T )

n
+ 4

√
∥T∥ log 2

δ

n
+ 16

∥M1/2I−1R R−1/2∥ log 2
δ

n
+ 8
∥M1/2I−1R R−1/2∥2F

n3/2
√
Tr(T )

log
2

δ

B.5. Local MLE

In this section, we show how to estimate our location λ at rate that depends on IR when given samples from fλ, along with
an initial uncertainty region S that is guaranteed to contain λ.
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Algorithm 3 High-dimensional Local MLE

Input Parameters:

• Description of distribution f on Rd, smoothing R, samples x1, . . . , xn
i.i.d.∼ fλ, and initial estimate λ1

1. Let IR be the Fisher information matrix of fR, the R-smoothed version of f . Let sR be the score function of fR.

2. For each sample xi, compute a perturbed sample x′i = xi + N (0, R) where all the Gaussian noise are drawn
independently across all the samples.

3. Let ϵ̂ = 1
n

∑n
i=1 I−1R sR(x

′
i − λ1) and return λ̂ = λ1 − ϵ̂.

Lemma B.14 (Local MLE). Suppose we have a known model f on Rd, and that fR is the R-smoothed version of f , for
R = r2Id for scalar r > 0. Suppose fR has Fisher information matrix IR. Further, suppose that the unknown true
parameter is λ, and that we have access to an initial estimate λ1 = λ+ ϵ with the guarantee that ϵTR−1ϵ ≤ τ for τ ≤ 1/4.
Suppose there exists a large parameter γ ≥ 1 such that τ ≤ 1

γ2 log2
∥I−1

R
∥

r2

. Further, suppose r2 ≥ 4γ2∥I−1R ∥
log 2

δ

n Then,

with probability 1− δ over n samples from fλ, the output of Algorithm 3 satisfies

∥λ̂− λ∥M ≤
(
1 +O

(
1

γ

))√Tr(M1/2I−1R M1/2)

n
+ 4

√
∥M1/2I−1R M1/2∥ log 2

δ

n


+O

(
τ
√
∥M1/2I−1R M1/2∥

)

Proof. By the guarantee on λ1 = λ+ ϵ, we have that ϵTR−1ϵ ≤ τ . Let T be as defined in Lemma B.13. Now

sup
w∈Sd−1

wTR−1w

wTIRw
=
∥I−1R ∥
r2

so that since τ ≤ 1

γ2 log2
∥I−1

R
∥

r2

,

√
τ log

(
sup

w∼Sd−1

wTR−1w

wTIRw

)
≤ 1

γ

So, we have

Tr(T ) ≤ Tr(M1/2I−1R M1/2)

(
1 +

1

γ

)
and

∥T∥ ≤ ∥M1/2I−1R M1/2∥
(
1 +

1

γ

)
So, by Lemma B.13

∥ϵ̂− E
x∼fR

[I−1R sR(x− ϵ)]∥M

≤
(
1 +O

(
1

γ

))√Tr(M1/2I−1R M1/2)

n
+ 4

√
∥M1/2I−1R M1/2∥ log 2

δ

n
+

8∥M1/2I−1R ∥2F
r2n3/2

√
Tr(M1/2I−1R M1/2)

log
2

δ


+ 16

∥M1/2I−1R ∥ log 2
δ

rn
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Since r2 ≥ 4γ2∥I−1R ∥
log 2

δ

n , 1
r ≤

(
n

log 2
δ

)1/2
1

2γ
√
∥I−1

R ∥
. So,

16
∥M1/2I−1R ∥ log 2

δ

rn
≤ 8∥M1/2I−1R ∥

γ
√
∥I−1R ∥

(
log 2

δ

n

)1/2

≤ 8

γ

√
∥M1/2I−1R M1/2∥ log 2

δ

n

since
(∥M1/2I−1R ∥)2
∥M1/2I−1R M1/2∥ =

(
∥M1/2I−1R ∥
∥M1/2I−1/2R ∥

)2

≤ ∥I−1R ∥

Similarly, 1
r2 ≤ n

4γ2∥I−1
R ∥ log

2
δ

. So,

8∥M1/2I−1R ∥2F
r2n3/2

√
Tr(M1/2I−1R M1/2)

log
2

δ
≤ 8Tr(MI−2R )

r2n3/2

√
Tr(MI−1R )

log
2

δ

≤ 2Tr(MI−2R )

γ∥I−1R ∥n
√

Tr(MI−1R )

√
log

2

δ

≤ 8

γ

√
Tr(M1/2I−1R M1/2)

n
using Lemma C.3

So, we have∥∥∥∥ϵ̂− E
x∼fR

[
I−1R sR(x− ϵ)

]∥∥∥∥
M

≤
(
1 +O

(
1

γ

))√Tr(M1/2I−1R M1/2)

n
+

√
∥M1/2I−1R M1/2∥ log 2

δ

n


Now, using Lemma B.3∥∥∥∥ϵ− E

x∼fR

[
I−1R sR(x− ϵ)

]∥∥∥∥
M

≲
√
∥M1/2I−1R M1/2∥(ϵTR−1ϵ) ≤ τ

√
∥M1/2I−1R M1/2∥

So, we have

∥ϵ̂− ϵ∥M ≤ ∥ϵ̂− E
x∼fR

[
I−1R sR(x− ϵ)

]
∥M + ∥ϵ− E

x∼fR

[
I−1R sR(x− ϵ)

]
∥M

≤
(
1 +O

(
1

γ

))√Tr(M1/2I−1R M1/2)

n
+ 4

√
∥M1/2I−1R M1/2∥ log 2

δ

n


+O

(
τ
√
∥M1/2I−1R M1/2∥

)
Now, since λ̂ = λ1 − ϵ̂ and λ = λ1 − ϵ, λ̂− λ = ϵ̂− ϵ. The claim follows.

B.6. Global MLE

In this section, we state and prove our main theorem, which shows how to estimate the location λ on rate that depends on
IR, given n samples from fλ.

We begin by stating a result from the heavy-tailed estimation literature, which we will make use of to generate an initial
estimate λ+ ϵ. We will then apply the result from the previous section to refine this estimate in order to recover our final
estimate.
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Theorem B.15 ((Hopkins, 2018; Cherapanamjeri et al., 2019; Diakonikolas et al., 2020)). There are universal constants
C0, C1, C2 such that for every n, d ∈ N and δ > 2−n/C2 , there is an algorithm which runs in time O(nd) + (d log(1/δ))C0

such that for every random variable X on Rd, given i.i.d. copies X1, . . . , Xn of X , outputs a vector µ̂δ(X1, . . . , Xn) such
that

P

[
∥µ− µ̂δ∥ > C1

(√
Tr(Σ)

n
+

√
∥Σ∥ log(1/δ)

n

)]
≤ δ

where E[X] = µ and E
[
(X − µ)(X − µ)T

]
= Σ

Algorithm 4 High-dimensional Global MLE

Input Parameters:
• Failure probability δ, description of distribution f , n samples from fλ, Smoothing R, Approximation parameter γ

1. Let Σ be the covariance matrix of f . Compute an initial estimate λ1 using the first 1/γ fraction of of the n samples,
using an estimator from Theorem B.15.

2. Run Algorithm 3 using the remaining 1 − 1/γ fraction of samples using R-smoothing and our initial estimate λ1,
returning the final estimate λ̂.

Theorem B.16 (Global MLE). Let f be a given model on Rd, and suppose we are given n samples from fλ for unknown λ.
Let R = r2Id for 0 < r2 < ∥Σ∥ so that IR is the R-smoothed Fisher information matrix of f , and let Σ be the covariance
of f . Let M ∈ Rd×d be any symmetric matrix with M ≽ 0 and let dR := deff(M

1/2I−1R M1/2). Fix failure probability

δ > 0 and let 2 ≤ γ ≤
(

n
dR+log 1

δ

)1/8−α
for some α > 0. Let n ≥ Cγ4(∥Σ∥r2 )2

(
log 4

δ + dR +
(
deff(Σ)2

dR

))
for large

enough constant C > 0. Then, with probability 1− δ, the output λ̂ of Algorithm 4 satisfies

∥λ̂− λ∥M ≤
(
1 +O

(
1

γ

))√Tr(M1/2I−1R M1/2)

n
+ 4

√
∥M1/2I−1R M1/2∥ log 4

δ

n


Proof. By the guarantee from Theorem B.15, our initial estimate λ1 = λ + ϵ from Step 1 has the property that with
probability 1− δ/2,

∥ϵ∥2 ≲
Tr(Σ)

n/γ
+
∥Σ∥ log 2

δ

n/γ

We condition on the success of Step 1. Let n′ = n(1− 1/γ) ≥ n/2 be the number of samples used in Step 2 to call the
Local MLE Algorithm 3. By our lower bound on n,

r2 ≥
√
Cγ2 ∥Σ∥√

n

(
deff(Σ)√

dR
+ dR +

√
log

4

δ

)
≥
√
Cγ2Tr(Σ) + ∥Σ∥ log 4

δ√
2n′

· (n′)1/2√
dR + log 4

δ

So, for large enough C, since γ > 1, setting

τ =
1

γ

√
dR + log 4

δ

n′

yields that

ϵTR−1ϵ =
∥ϵ∥2
r2
≤ τ

Also τ ≤ 1/4 since n′ ≥ C
2 (log

4
δ + dR). So, the condition on the confidence set S in Lemma B.14 is satisfied.
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By the constraint on n, we have

r2 ≥
√
Cγ2∥Σ∥

√√√√ log 4
δ + dR +

(
deff(Σ)2

dR

)
n

≥
√

C

2
γ3∥Σ∥τ

We also have by Lemma C.2 that ∥I−1R ∥/∥Σ∥ ≤
∥Σ+R∥
∥Σ∥ ≤ 2, so

log
∥I−1R ∥
r2

≤ log
2
√
2√

Cγ3τ

so the τ constraint is that

γ2τ log2
2
√
2√

Cγ3τ
≤ 1

the LHS is at most
O(τ0.99γ2.01) < 1

since τ < 1/γ5, with a constant that is arbitrarily small with C. So the constraint on τ of Lemma B.14 is satisfied.

Using the fact that n′ ≥ C
2

(
log 4

δ

)
,

r2n′

∥I−1R ∥ log 4
δ

≥ C

2
γ2 ∥Σ∥√n
∥I−1R ∥ log 4

δ

(
deff(Σ)√

dR
+

√
log

4

δ

)

≥ C

2
γ2 ∥Σ∥√n
∥Σ+R∥ log 4

δ

√
log

4

δ
by Lemma C.2

≥ γ2 since R = r2Id so that ∥R∥ = r2 < ∥Σ∥

So the conditions of Lemma B.14 are satisfied, and with probability 1− δ/2,

∥λ̂− λ∥M ≤
(
1 +O

(
1

γ

))√Tr(M1/2I−1R M1/2)

n′
+ 4

√
∥M1/2I−1R M1/2∥ log 4

δ

n′


+O

(
τ
√
∥M1/2I−1R M1/2∥

)

≤
(
1 +O

(
1

γ

))√Tr(M1/2I−1R M1/2)

n
+ 4

√
∥M1/2I−1R M1/2∥ log 4

δ

n


since n′ = n(1− 1/γ) and τ = 1

γ

√
dR+log 4

δ

n′ . So, our total failure probability is δ. The claim follows.

Theorem B.17 (Global MLE, Informal). Let f have covariance matrix Σ. For any r2 ≤ ∥Σ∥, let R = r2Id and IR be the
R-smoothed Fisher information of the distribution. For any constant 0 < ϵ < 1,

∥λ̂− λ∥2 ≤ (1 + ϵ)

√
Tr(I−1R )

n
+ 5

√
∥I−1R ∥ log 4

δ

n

with probability 1− δ, for n > Oϵ

((
∥Σ∥
r2

)2 (
log 2

δ + deff(I−1R ) +
deff(Σ)2

deff(I−1
R )

))
.

Proof. First, if ϵ > 1/4, we reset ϵ = 1/4. Setting M = Id so that dR = deff(I−1R ), and setting γ = C0

ϵ for sufficiently
large constant C0 in Theorem B.16 gives the claim.
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C. Useful Results
The following is a continuous version of the rearrangement inequality (user940, 2015):

Lemma C.1. Let f, g : R→ R be monotonically non-decreasing functions, and X be a random variable over R. Then

E[f(X)]E[g(X)] ≤ E[f(X)g(X)]

Proof. Let Y be an independent copy of X . By monotonicity,

(f(X)− f(Y ))(g(X)− g(Y )) ≥ 0

always. Taking the expectation of both sides,

2E[f(X)g(X)]− 2E[f(X)g(Y )] ≥ 0.

Since Y is independent of X , this gives the result.

Lemma C.2. Let f be an arbitrary distribution on Rd, and let Σ be its covariance matrix. Let fR be the R-smoothed
version of f , with Fisher information matrix IR. Then,

IR ≽ (Σ +R)−1

Proof. Follows from the fact that the covariance of fR is Σ+R, and using Theorem 1.2 from (Hendeby, 2005).

Lemma C.3. Let A,B be symmetric PSD matrices. Then

Tr(AB) ≤ Tr(A)∥B∥

Proof. Let the eigenvectors of B be v1, . . . , vd. Then

Tr(AB) =

d∑
i=1

vTi A(Bvi) ≤ ∥B∥
d∑
i=1

vTi Avi = ∥B∥Tr(A).

D. Computing the high-dimensional R-smoothed local MLE (Algorithm 3)
A precise bound on the complexity of Algorithm 3 depends on how the high-dimensional distribution is represented.
However, the algorithm is polynomial time (in n, d) as long as (a) sampling from the distribution and (b) computing the
score of the smoothed distribution at a point are both efficient operations.

Reading Algorithm 3, the only non-trivial computation is for IR, the R-smoothed Fisher information matrix. Since IR is
the covariance matrix of the score vector, and the score vector has nice tails (e.g. Lemma B.7), we can estimate it by the
empirical covariance of simulated samples from the smoothed model. With enough samples, we get a spectral approximation
to IR and hence I−1R . This approximation can then be used in place of the true IR in Algorithm 3. The number of simulated
samples required, such that the approximation adds minimal extra estimation error, will be poly(1/η, d, ∥Σ∥/r2), where η
is the approximation parameter in Theorem 4.1. The bounds on η and r imply this is poly(nd).

A popular representation of high-dimensional distributions is Gaussian mixture models with different covariances, which
appear also in our experiments in Section 6. For a GMM with k components, the runtime of Algorithm 3 is dominated by
O(knd2) time to compute the scores and Õ(kn1.5d4 + d3) time to estimate IR and invert it.
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