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Abstract

The Predictive Uncertainty problem exists in001
Transformers. We present that pre-trained002
Transformers can be further regularized by mu-003
tual information to alleviate such issue in Neu-004
ral Machine Translation (NMT). In this paper,005
we explicitly capture the nonlinear mutual de-006
pendencies existing in two types of attention007
in the decoder to reduce the model uncertainty008
concerning token-token interactions. Specif-009
ically, we adopt an unsupervised objective010
of mutual information maximization on atten-011
tions with the contrastive learning methodol-012
ogy and construct the estimation of mutual in-013
formation by using InfoNCE. Experimental re-014
sults on WMT’14 En→De, WMT’14 En→Fr015
demonstrate the consistent effectiveness and016
evident improvements of our model over the017
strong baselines. Quantifying the model un-018
certainty again verifies our hypothesis. The019
proposed plug-and-play approach can be eas-020
ily incorporated and deployed into pre-trained021
Transformer models. Code will be released022
soon1.023

1 Introduction024

Predictive uncertainty ubiquitously exists in Deep025

Learning or Machine Learning based models (Ott026

et al., 2018a; Xiao and Wang, 2019; Wang et al.,027

2019; Abdar et al., 2020; Xiao and Wang, 2021). It028

consists of data uncertainty (aleatoric uncertainty)029

and model uncertainty (epistemic uncertainty). Re-030

searchers capture and quantify uncertainties to031

better interpret models and enhance performance.032

Generally, model uncertainty depicts whether the033

model can best describe the data distribution (Wang034

et al., 2019). Different from the data uncertainty,035

model uncertainty can be reduced by feeding more036

data or knowledge to the model.037

Recently, almost all research fields of Artificial038

Intelligence have been deeply influenced by the039

1Anonymous: https://github.com/self-attention-MI/UE

Token-token Uncertainty
interactions Token Token-token

Transformer linear ↑ ↓ (implicitly)
Our model linear + nonlinear ↑ ↓ (explicitly)

Table 1: Comparison between the vanilla Transformer
and our model on the interaction style between tokens
and how to deal with the uncertainty. Both models em-
ploy the label smoothed cross entropy to properly raise
the uncertainty (↑) of determining a single token across
the vocabulary. In addition, we explicitly reduce the
uncertainty (↓) in the dimension of token-token interac-
tions within a certain context to address the predictive
uncertainty problem (Xiao and Wang, 2021).

Transformer (Vaswani et al., 2017). State-of-the- 040

art Neural Machine Translation (NMT) models are 041

mostly built upon Transformers (Ott et al., 2018b; 042

Dehghani et al., 2018; So et al., 2019; Zhou et al., 043

2020a; Liu et al., 2020). 044

However, Transformer models with the train- 045

ing paradigm of teacher-forcing suffer from the 046

exposure bias problem (Tan et al., 2018; Zhang 047

et al., 2019) and the uncertainty problem (Ott et al., 048

2018a; Wei et al., 2020; Xiao and Wang, 2021; 049

Shelmanov et al., 2021). Xiao and Wang (2021) 050

and Wei et al. (2020) handle with such problem 051

outside of the model2. Namely, manually feeding 052

more unseen samples due to the data uncertainty 053

to the model to reduce the model uncertainty. By 054

contrast, we address the issue inside the model. 055

Given existing training data, we enhance the model 056

representation to better fit the data distribution. 057

In this paper, we aim to explicitly capture the 058

nonlinear mutual dependencies among tokens dur- 059

2Note that, the word ’uncertainty’ is somewhat heavily
reused in the literature. For instance, Xiao and Wang (2021)
incorporated uncertainty into the decoding process to reduce
the hallucination. In practice, the introduced uncertainty en-
ables the model to see otherwise unseen cases to reduce the
model uncertainty in a certain context. Wei et al. (2020) em-
ployed the similar presentation. It should be appropriately
distinguished from the data uncertainty and the model uncer-
tainty in the literature (Kochkina and Liakata, 2020).
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ing the self-attentions (self-attention and encoder-060

decoder attention in decoder) calculation and re-061

duce the uncertainty residing in the token-token062

interactions as shown in Table 1. Specifically, we063

employ mutual information to measure the nonlin-064

ear mutual dependencies between pairs of tokens.065

Mutual information is a good measure of nonlinear066

relationships between random variables. To avoid067

the intractable feature of certain problems by us-068

ing mutual information, we resort to InfoNCE for069

mutual information estimation (Logeswaran and070

Lee, 2018; van den Oord et al., 2019; Gutmann071

and Hyvärinen, 2012). InfoNCE is a mature frame-072

work for unsupervised contrastive learning. It has073

the theoretical and practical guarantee that a reli-074

able lower bound can be obtained by maximizing075

it. Experiments on WMT’14 En→De, WMT’14076

En→Fr present that the performance of our model077

has achieved competitive results over the strong078

baselines and other counterparts. By contrast, to079

reach the same performance, contrast models either080

consume extra training corpus or more trainable081

parameters.082

Contributions and highlights are as follows:083

• The proposed idea is simple and makes little084

change to the model. It can potentially gen-085

eralize to other pre-trained models leveraging086

self-attention.087

• We explicitly capture nonlinear mutual depen-088

dencies between pairs of tokens in attentions089

of the decoder to reduce the model uncer-090

tainty.091

• We adopt an unsupervised contrastive learning092

framework to estimate the mutual information,093

which serves in the NMT problem.094

• We present a detailed analysis of the variants095

of the model uncertainty before and after en-096

hancing the mutual dependencies.097

2 Preliminary098

2.1 Mutual Information099

Mutual information in discrete distributions is gen-100

erally described as Equation 1:101

I(X;Y ) = DKL(p(X,Y )‖p(X)p(Y ))

=
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)

= Ep(x,y)
[
log

p(x, y)

p(x)p(y)

]
,

(1)102

where, X , Y denote two random variables. x, y in- 103

dicate concrete samples inX and Y . p(·) and p(·, ·) 104

represent marginal probability and joint probability 105

respectively. DKL is the Kullback–Leibler diver- 106

gence (also known as the relative entropy) (Kull- 107

back and Leibler, 1951). 108

2.2 Contrastive Learning 109

Following Kong et al. (2019), we employ InfoNCE 110

to estimate the mutual information under the con- 111

trastive learning framework. InfoNCE maximizes 112

the mutual information to obtain a lower bound, 113

which in practice is a good estimation of mutual 114

information: 115

I(X,Y ) ≥

Ep(X,Y )

fθ(x, y)− Eq(Ỹ)

log∑
ỹ∈Ỹ

exp fθ(x, ỹ)


+ log |Ỹ|,

(2) 116

where, x is the positive sample token of the source 117

sentence and y is the positive sample token of the 118

target sentence. fθ is a measure of relevance be- 119

tween x and y. Usually, a similarity score function 120

is adopted. Ỹ is the negative sample set of y, note 121

that it contains the positive sample. q(·) is a distri- 122

bution proposal function offering the specific rule 123

to build the negative sample set. ỹ is a random 124

sample from the negative sample set. 125

The following part of Equation 2 is the crucial 126

component when we incorporate the contrastive 127

learning framework into the NMT problem: 128

Ep(X,Y )

[
fθ(x, y)− log

∑
ỹ∈Y exp fθ(x, ỹ)

]
. (3) 129

3 Enhancing the Mutual Dependencies in 130

Transformers 131

3.1 Motivation to Reduce the Model 132

Uncertainty 133

As mentioned in Ott et al. (2018a), a well-trained 134

model still spreads too much probability mass 135

across sequences. In other words, model distri- 136

bution is too spread in hypothesis spaces in that 137

it has to cater to the uncertainty brought by the 138

data distribution. Also, as stated in Xiao and Wang 139

(2021), unsuitable tokens attaining considerable 140

probability mass attribute to the uncertainty of the 141

token prediction. Moreover, Wang et al. (2019); 142

Zhou et al. (2020b) present that lower model un- 143

certainty indicates a better fitting of the data distri- 144

bution. Therefore, in a certain context, the model 145
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uncertainty should be reasonably and appropriately146

reduced.147

The widely adopted training paradigm is token-148

level teacher-forcing in NMT, which notoriously149

leads to the discrepancy between training and in-150

ference, namely, the exposure bias problem (Xie151

et al., 2016; Ranzato et al., 2016; Norouzi et al.,152

2016). During inference, model distribution domi-153

nates the decoding process. However, high model154

uncertainty directly indicates unsatisfactory fitting155

of the data distribution (Zhou et al., 2020b; Xiao156

and Wang, 2019). Canonical auto-regressive gener-157

ation can be formulated as Equation 4:158

p(Y | X; θ) =
∏N+1
t=1 p (yt | y<t, x1:M ; θ) , (4)159

where, θ denotes the parameters modeling the lan-160

guage model. M is the length of the source sen-161

tence and N is the length of the target sentence.162

At each time step, clues on the next token are all163

from previously generated tokens. In other words,164

it depends on how much uncertainty on the next165

token can be reduced by knowing partially gener-166

ated prefix tokens. Vanilla Transformer implicitly167

reduces the uncertainty of token-token interactions168

during decoding. By contrast, we aim to explicitly169

reduce the uncertainty of the token-token interac-170

tions during the next token generation.171

3.2 Contrastive Learning Framework172

Construction in NMT173

Methods to Build the Training Samples: Con-174

trastive learning needs an effective and efficient175

relevance measure of two tokens. Specifically, a176

clear distinction should be presented between the177

similarity score of a positive sample a and a pos-178

itive sample b and the similarity score of a posi-179

tive sample a and a negative sample b̃. However,180

the cosine-based similarity measure solely cannot181

properly reflect the subtle difference in this con-182

text3. Therefore, we elaborately design a simple183

but effective method as Equation 5 and Equation 6:184

185

fθ(x, y) = f_sim(x, y) + f_logit(y), (5)186

3The vanilla cosine similarity does not elaborately distin-
guish the positive samples and the negative samples in this
context. No matter the positives or negatives, it calculates
a score. The score can be very close to each other due to
the candidates from top ranking. For NMT problems under
contrastive learning, we need to be deliberate in distinguish-
ing them. Therefore, we add an explicit factor to the original
cosine similarity to enhance its representation.

Figure 1: Graphical illustration of how to calculate
fθ(a, b). a and b denote two positions (tokens) in tar-
get sentence. In this context, T is an abbreviation for
"Top", which should be distinguished from the notation
of "the number of forward passes". Suppose T1 and
T3 are ground-truth targets of position a and b respec-
tively. There are two critical components composing
fθ(a, b), namely f_sim(a, b) and logit(b) for the pair
of a and positive b while f_sim(a, b) and logit(b̃) for
the pair of a and negative sample b̃ from top k candi-
dates. The value of f_sim(a, b) can be directly fetched
from the self-attention matrix. In the left subfigure, neg-
ative samples are from the top k candidates in position b
marked by ’×’ or marked by ’X’, which offer logit(·).
Causal self-attention matrix is demonstrated in the right
sub-figure. Due to the property of symmetry, there are
two f_sim(a, b) scores of the same value. However,
position m is taken into account rather than position n
in view of the causal relationship.

where, f_sim(x, y) is the cosine similarity score 187

between x and y as usual. f_logit(y) is the logit 188

(score before softmax) by the most confident pre- 189

diction of y (during inference) or the logit corre- 190

sponding to the ground-truth token of y (during 191

training). 192

fθ(x, ỹ) = f_sim(x, y) + f_logit(ỹ), (6) 193

where, the first part of the right-hand side is exactly 194

the same with Equation 5. Difference between 195

Equation 5 and Equation 6 relies on f_logit(·). 196

Figure 1 depicts how to calculate the concrete value 197

of fθ(a, b). 198

Due to the steady state of the pre-trained NMT 199

model, the component f_logit can take up most 200

of the constituent that well distinguishes a legal 201

pair of tokens with contrastive pairs. Moreover, 202

this divergence can be further amplified due to the 203

monotonicity of softmax operation. This is a key 204

point our idea leverages to distinguish positive sam- 205

ple pairs from contrastive sample pairs. 206

Leveraging the Pre-trained Self-attention Log- 207

its: To fetch f_sim(x, y) from multi-head at- 208

tention, we need a rational strategy. According 209

to Michel et al. (2019); Voita et al. (2019); Rogers 210
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Model
BLEU

En→De En→Fr
GNMT+RL Wu et al. (2016) 25.20 40.50
ConvS2S Gehring et al. (2017) 25.16 40.46
Transformer (base) Vaswani et al. (2017) 27.30 38.10
Transformer (big) Vaswani et al. (2017) 28.40 41.80
Evolved Transformer (big) So et al. (2019) 29.80 / 29.20 41.30
Transformer (ADMIN init) Liu et al. (2020)† 30.10 / 29.50 43.80 / 41.80
Uncertainty-Aware SANMT Wei et al. (2020) 30.29 42.92
Baseline (WMT only) Ott et al. (2018b) 29.30 / 28.60 43.20 / 41.40
Baseline (WMT+Paracrawl) Ott et al. (2018b) 29.80 / 29.30 42.10 / 40.90
Baseline (Reproduced)†† 29.75 / 29.30 43.16 / 41.06
Baseline + finetuning (Contrast group)‡ 29.89 / 29.40 43.17 / 41.06
Ours (tokenized BLEU / detok. sacreBLEU) 30.45∗∗/29.80∗∗ 43.67∗/41.51∗

† The model has approx. 40M more parameters than ours.
†† Our reproduced results are from the provided pre-trained checkpoints.
‡ This is for a fair comparison. Results by directly finetuning fail to pass the significance tests.

Table 2: Performance comparison between different models on WMT’14 dataset. ’DS’ indicates the proposed
regularization method applied on the decoder self-attention. ’ED’ means the proposed regularization method
applied on the encoder-decoder attention in the decoder. Our results are based on the reproduced results. Default
values are case-sensitive tokenized BLEU scores and otherwise a pair of (case-sensitive tokenized BLEU) / (detok.
sacreBLEU). BLEU scores are based on newstest2014 for WMT’14 English-German (En→De) and WMT’14
English-French (En→Fr). Checkpoint averaging is not used in our results. For WMT’14 En→De, we use the
general configuration of L3,4,5+DS+ED and k = 40. For WMT’14 En→Fr, we use the general configuration
of L3,4,5+DS+ED and k = 50. ’∗/∗∗’: significantly better than the baselines (p < 0.05 / p < 0.01) tested by
bootstrap resampling. Note that, our results also significantly outperform the contrast groups (p < 0.05).

et al. (2020), it is non-trivial to partition these heads211

into groups. Therefore, we take as similarity scores212

the average of all heads as follows4:213

F_sim(X,Y ) = Average (head1, . . . ,headh) , (7)214

where, X and Y are a set of tokens. Average is215

the average operation on similarity scores over all216

attention heads. head∗ is a collection of similarity217

scores from attention heads. h is the number of218

attention heads. F_sim(X,Y ) contains all pairs of219

similarity scores between tokens and other tokens220

to be attended. The value of f_sim(x, y) can be221

indexed by (x, y).222

Combination objective: The overall objective223

consists of the label smoothed cross entropy and224

another two custom objectives based on mutual225

information maximization constraints as follows:226

loss = (1− α− β)× lce_loss
+ α×mi_loss_cross
+ β ×mi_loss_self,

(8)227

4We employed other methods to do such work, say MAX
operation. However, the average operation meets our expecta-
tion.

where, lce_loss indicates the label smoothed cross 228

entropy loss, mi_loss_cross represents the mu- 229

tual information constraints on encoder-decoder 230

attention and mi_loss_self denotes the mutual 231

information constraints on decoder self-attention. 232

Both of them are defined and estimated as Equa- 233

tion 2. α and β are hyperparameters to balance the 234

label smoothed cross entropy loss and two custom 235

losses. 236

4 Experiments 237

In this section, we describe the details of our ex- 238

periments. We evaluate our model on WMT’14 239

English-German (WMT’14 En→De) and WMT’14 240

English-French (WMT’14 En→Fr) datasets. More- 241

over, we conduct ablation studies to assess the ef- 242

fectiveness of different objectives and hyperparam- 243

eters setup. 244

4.1 Experimental Setup 245

We implement our model based on the official 246

Fairseq toolkit implemented by PyTorch5 (Ott et al., 247

2019) and report statistical significance tests by us- 248

5https://github.com/pytorch/fairseq
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Figure 2: Ablation studies on the layer-level performance. The vertical axis is the BLEU value and the horizontal
axis is the value of α and β. L∗ denotes certain layers. To simplify the experiments, we employ the same value
of α and β. We try to cover those representative cases and leave the rest for future work. Experiments are
conducted on WMT’14 En→De. To reduce the overheads of training, we ignore the influence of k and set k = 10
in these experiments. From these results, we can infer that ’DS’ has a slight better performance compared with
’ED’. Employing either ’DS’ or ’ED’ on all layers of the decoder is somewhat over-constraint. In a certain range,
appropriately adding regularization can be effective in improving performance. Detailed results are presented in
the Appendix.

ing compare-mt (Neubig et al., 2019)6 and sacre-249

BLEU 7.250

Dataset and Metric We train our model on251

WMT’14 English-German (En→De, 4.5M)8 and252

WMT’14 English-French (En-Fr, 36M). For253

WMT’14 En→De, we validate our model on254

newstest13 and test on newstest2014. Follow-255

ing Ott et al. (2018b), we use byte pair encod-256

ing (BPE) (Sennrich et al., 2016) to prepare the257

joint vocabulary of 32K symbols. For WMT’14258

En→Fr, we validate our model on newstest12+13259

and test on newstest14. The joint vocabulary is260

40K. We mainly use two BLEU metrics to evaluate261

our performance, namely, case-sensitive tokenized262

BLEU and detokenized sacreBLEU. When neces-263

sary, compound split BLEU is also reported. We264

report BLEU scores with a beam size of 4 and a265

length penalty of 0.6.266

6https://github.com/neulab/compare-mt
7https://github.com/mjpost/sacreBLEU
8To be consistent with the baseline and other counterparts,

we use WMT’16 En→De to train our model and report results
on the WMT’14 test set.

Model and Hyperparameters Our model lever- 267

ages the pre-trained baseline model, which is 268

an extension of the Transformer big model 269

(dmodel = dhidden = 1024, nlayer = 6, 270

nhead = 16) (Vaswani et al., 2017). We adopt 271

Adam (Kingma and Ba, 2015) to optimize our 272

model by setting β1 = 0.90, β2 = 0.98 and 273

ε = 1e-08. We finetune our model from a pre- 274

trained checkpoint with the learning rate 3e-04 for 275

En→De and 5e-04 for En→Fr. Our criterion to 276

configure ’ntokens’ and ’update-freq’ is that, nei- 277

ther hitting the OOM nor the threshold of the loss 278

scale. ’ntokens’ is 10240 for En→De and 9216 for 279

En→Fr. ’update-freq’ is 1 for En→De and 4 for 280

En→Fr. The maximum epoch for En→De is 20 281

and 10 for En→Fr. Embeddings are shared in all 282

positions. We tune hyperparameters on the valida- 283

tion set. 284

All experiments are conducted on a machine 285

with 8 NVIDIA TITAN RTX GPU and a memory- 286

efficient version of FP16 half-precision training. 287

Performance Analysis Table 2 demonstrates the 288

performance comparison of our model and the base- 289

line models along with other SOTA models on the 290
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k 1 2 3 4 5 10 20 30 40 50 100 200
BLEU 27.52 27.63 27.77 27.79 27.86 27.79 27.89 27.85 27.92 27.89 27.91 -

Table 3: The impact of different choices of k (regarding the capacity of a negative sample set) on performance.
The experiment is conducted on the WMT’14 En→De valid set. A combination of two regularizations (ED+DS)
is adopted. Here, the metric ’BLEU’ indicates case-sensitive tokenized BLEU. In the case of k = 200, the model
hits the OOM under the same setup of other configurations. We use k = 40 to report the final result of WMT’14
En→De. Similarly, we use k = 50 to report the final result of WMT’14 En→Fr.
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Figure 3: Variation of the model uncertainty before regularization and after regularization. The vertical axis is the
model uncertainty. We employ Monte Carlo Dropout on all layers. We adopt three Uncertainty Estimation (UE)
methods, namely, sampled maximum probability (SMP), mean entropy (ME) and BALD-VR to investigate the
variations. The number of forward passes T is 10. The results are not normalized over the number of tokens. We
add a control group for a fair comparison. We can infer that our method (histogram in the middle) reliably reduces
the model uncertainty after regularization. However, directly finetuning the baselines introduces more uncertainty
(histogram in the right).

WMT’14 dataset. For a fair comparison, we de-291

pict both the case-sensitive tokenized BLEU and292

detokenized SacreBLEU (Post, 2018)9.293

From these results, it is apparent to infer that294

our model achieves a competitive improvement295

over the strong baselines and other SOTA models.296

Since our method does minute changes to the base-297

line models, the improvements are reasonable and298

justified. An additional contrast group makes our299

results more convincing and credible. Moreover,300

it is easy to incorporate our approach to existing301

models.302

4.2 Ablation Study303

Hyperparameter k in Contrastive Learning304

Framework Construction: According to Kong305

et al. (2019), the larger the capacity of the nega-306

tive sample set, the more accurate the framework307

is to estimate the lower bound of mutual informa-308

tion. Also, as we demonstrated in Equation 2 and309

Equation 3, the lower bound becomes even tighter310

when the number of tokens in the negative sample311

set is large enough. We conduct experiments with312

different hyperparameter k as shown in Table 3,313

9SacreBLEU hash: BLEU+case.mixed+lang.en-de+ num-
refs.1+smooth.exp+test.wmt14/full+tok.13a+version.1.4.14

in which we can infer that capacity of a negative 314

sample set has a positive impact on performance 315

in a certain range. In the case of k = 1, model 316

performance is not far from satisfactory, which is 317

due to the pre-trained nature of the NMT model. In 318

other words, a pre-trained NMT model itself is a 319

competent distribution proposal function. 320

Contribution of Different Objectives: We em- 321

ploy two hyperparameters α and β to balance differ- 322

ent losses as shown in Equation 8. We validate the 323

effectiveness of the proposed mutual information 324

constraints by setting the hyperparameter 1−α−β 325

from 0.4 to 0.9. When it comes to the case of mul- 326

tiple layers, α and β are equally divided by the 327

number of layers. Results are depicted in Figure 2. 328

From Figure 2, it is intuitive to infer that both cus- 329

tom objectives have a positive impact on the model 330

performance. ’DS’ performs slightly better than 331

’ED’. The boundary cases are considered as con- 332

trast groups. 333

Impact of the Proposed Regularization Meth- 334

ods on Different Layers of the Decoder: We 335

conduct ablation experiments of regularization on 336

layer-level performance in this section. Results are 337

presented in Figure 2. From Figure 2, it can be 338
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Figure 4: Experiments on the selection of hyperparameters in uncertainty estimation. The vertical axis is the
unnormalized model uncertainty score and the horizontal axis is the number of forward pass T in the figures of
the first row, and the dropout ratio p in the figures of the second row. Bad cases are marked by red boxes. From
these ablation results, we can infer that the number of T has little impact on performance in our work. Following
the general literature, we employ T = 10 throughout the experiments. However, the dropout ratio p matters a lot.
From the results shown above, we should use a value less than 0.4. Therefore, we adopt p = 0.3 throughout the
experiments.

inferred that there is no consistently positive rela-339

tionship between the increase in performance and340

the increase in regularization on more layers. To a341

certain extent, appropriately adding regularization342

can be effective in improving performance. How-343

ever, too much regularization can lead to perfor-344

mance degradation. We speculate that it is caused345

by over-regularization. Therefore, considering the346

performance and the overhead, we recommend that347

the number of regularization layers should be less348

than 3.349

4.3 Analysis350

Variation of Model Uncertainty: Follow-351

ing Shelmanov et al. (2021); Zhou et al. (2020b);352

Xiao and Wang (2019); Wang et al. (2019), we353

employ Monte Carlo Dropout (Gal and Ghahra-354

mani, 2016) to approximate Bayesian inference to355

conduct the Uncertainty Estimation (UE). Specifi-356

cally, we demonstrate the quantification of model357

uncertainty before and after the regularization to358

investigate the variation:359

UE(θ)

=
1

N

N∑
n=1

Var
[
P
(
yn | xn, θ̂t

)]T
t=1

,
(9)360

where, θ is the set of model parameters. x and361

y are training samples. N indicates the num-362

ber of samples. T is the number of stochastic363

passes.
{
θ̂1, ..., θ̂T

}
are sampled parameters dur- 364

ing stochastic passes. To be consistent with Wang 365

et al. (2019), we calculate the uncertainty after the 366

prediction process is done in that we do not employ 367

the model uncertainty to improve the model predic- 368

tion, instead, we quantify the model uncertainty. 369

We employ a combination of BALD (Bayesian 370

Active Learning Disagreement) (Houlsby et al., 371

2011; Hazra et al., 2021) and Variation Ra- 372

tio (Kochkina and Liakata, 2020) to conceptually 373

form a new metric BALD-VR. Along with BALD- 374

VR, we also use Mean Entropy (Kochkina and 375

Liakata, 2020) and Sampled Maximum Probabil- 376

ity (Shelmanov et al., 2021) to evaluate the model 377

uncertainty, results are shown in Figure 3. From 378

Figure 3, we can infer that the proposed method re- 379

duces the model uncertainty to some extent, which 380

verifies our hypothesis. More details are depicted 381

in the appendix. 382

Hyperparameters in MC Dropout Inference 383

Two key factors that affect the MC dropout infer- 384

ence. Namely, the number of forward passes T and 385

the dropout ratio p. We investigate such factors in 386

this section. We conduct ablation experiments and 387

demonstrate the results in Figure 4. From Figure 4, 388

we can infer that T = 10 and p = 0.3 meet the 389

requirements. More details are illustrated in the 390

appendix. 391
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Correlation with the Label Smoothed Cross En-392

tropy: There is no conflict between the widely393

adopted label smoothed cross entropy (raising un-394

certainty) and the proposed idea (reducing uncer-395

tainty) in that they perform in the different dimen-396

sions. For clarity, label smoothing loosens a one-397

hot label to a soft alternative, which occurs from398

the viewpoint of a single token across the vocab-399

ulary. It aims to penalize the over-confidence of400

the model, namely raising the model uncertainty to-401

wards a single token decision. While our approach402

reduces the uncertainty existing in the interactions403

between token and token in a certain context. It404

occurs from the perspective of token-token inter-405

actions, especially when a certain context is held406

during decoding. By contrast, our model pays at-407

tention to the inevitably introduced uncertainty that408

takes up non-negligible probability mass (Ott et al.,409

2018a). Therefore, the proposed idea is a compan-410

ion to the label smoothed cross entropy rather than411

a replacement or alternative.412

5 Conclusion413

In this paper, we propose a novel regularization414

method based on the maximization of mutual infor-415

mation. We implement our ideas under the unsu-416

pervised contrastive learning framework to capture417

and enhance nonlinear mutual dependencies among418

tokens, which reduces the model uncertainty. Ex-419

periments and ablation studies demonstrate the con-420

sistent effectiveness of our approach. Besides, anal-421

ysis of model uncertainty quantification again veri-422

fies our hypothesis.423

Limitation and Future Work: To simplify the424

ablation studies, we employ the same weights on425

’DS’ and ’ED’. Whether there will be further per-426

formance gains when taking into account regular-427

ization on different encoder layers, we will leave428

in the future work. Besides, our idea is based on429

the self-attention mechanism, which serves plenty430

of pre-trained language models. Nonlinear mutual431

dependencies may potentially have a positive influ-432

ence on these models for downstream tasks. This is433

the first step we take to investigate how to incorpo-434

rate the model uncertainty analysis into the NMT435

problem.436
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Models†

1− α− β 0.4 0.5 0.6 0.7 0.8 0.9
α, β 0.6/2 0.5/2 0.4/2 0.3/2 0.2/2 0.1/2
L5+DS+ED 30.19/29.50 30.26/29.60 30.29/29.60 30.26/29.60 30.13/29.50 30.04/29.40
L0+DS+ED 30.22/29.50 30.30/29.60 30.34/29.60 30.27/29.60 30.37/29.80 30.09/29.50
α, β 0.6 0.5 0.4 0.3 0.2 0.1
L5+DS 30.09/29.40 30.24/29.50 30.41/29.70 30.21/29.60 30.30/29.70 30.08/29.50
L5+ED 30.12/29.40 30.31/29.60 30.25/29.50 30.21/29.60 30.25/29.70 30.08/29.50
L0+DS 30.10/29.40 30.22/29.50 30.39/29.70 30.23/29.60 30.22/29.60 30.09/29.50
L0+ED 30.06/29.40 30.38/29.70 30.23/29.50 30.24/29.60 30.28/29.70 30.15/29.50
α, β 0.6/2 0.5/2 0.4/2 0.3/2 0.2/2 0.1/2
L0,5+DS 30.28/29.60 30.29/29.60 30.42/29.70 30.34/29.70 30.26/29.60 30.17/29.60
L0,5+ED 30.22/29.50 30.29/29.60 30.29/29.60 30.17/29.50 30.32/29.70 30.20/29.60
L4,5+DS 30.27/29.60 30.31/29.60 30.43/29.70 30.41/29.70 30.30/29.70 30.19/29.60
L4,5+ED 30.14/29.40 30.27/29.60 30.25/29.60 30.24/29.60 30.25/29.70 30.22/29.70
L0,1+DS 30.27/29.60 30.38/29.70 30.46/29.70 30.35/29.70 30.30/29.70 30.18/29.60
L0,1+ED 30.06/29.30 30.24/29.60 30.27/29.60 30.19/29.60 30.28/29.70 30.18/29.60
α, β 0.6/3 0.5/3 0.4/3 0.3/3 0.2/3 0.1/3
L0,1,2+DS 30.26/29.60 30.29/29.60 30.42/29.70 30.38/29.70 30.29/29.70 30.16/29.60
L0,1,2+ED 30.07/29.40 30.27/29.60 30.28/29.60 30.23/29.60 30.26/29.70 30.14/29.60
L3,4,5+DS 30.21/29.50 30.24/29.50 30.46/29.70 30.42/29.70 30.30/29.70 30.13/29.60
L3,4,5+ED 30.14/29.50 30.18/29.50 30.28/29.60 30.23/29.60 30.25/29.70 30.19/29.60
α, β 0.6/4 0.5/4 0.4/4 0.3/4 0.2/4 0.1/4
L1,2,3,4+DS 30.27/29.60 30.30/29.60 30.44/29.70 30.32/29.70 30.27/29.70 30.16/29.60
L1,2,3,4+ED 30.18/29.50 30.19/29.60 30.20/29.50 30.33/29.70 30.21/29.60 30.22/29.70
L0,1,2,3+DS 30.22/29.50 30.31/29.60 30.39/29.70 30.37/29.70 30.31/29.70 30.19/29.60
L0,1,2,3+ED 30.15/29.40 30.22/29.50 30.18/29.50 30.27/29.60 30.29/29.70 30.29/29.60
L2,3,4,5+DS 30.25/29.50 30.30/29.60 30.40/29.70 30.35/29.70 30.34/29.70 30.20/29.60
L2,3,4,5+ED 30.12/29.40 30.23/29.60 30.24/29.60 30.28/29.70 30.23/29.70 30.22/29.60
α, β 0.6/5 0.5/5 0.4/5 0.3/5 0.2/5 0.1/5
Lall−0+DS 30.27/29.60 30.29/29.60 30.36/29.60 30.33/29.70 30.26/29.60 30.15/29.60
Lall−0+ED 30.12/29.40 30.21/29.60 30.24/29.60 30.31/29.70 30.27/29.70 30.18/29.60
Lall−5+DS 30.24/29.50 30.29/29.60 30.47/29.70 30.33/29.70 30.27/29.70 30.12/29.60
Lall−5+ED 30.17/29.50 30.15/29.50 30.18/29.50 30.27/29.60 30.27/29.70 30.19/29.60
α, β 0.6/6 0.5/6 0.4/6 0.3/6 0.2/6 0.1/6
Lall+DS 30.25/29.50 30.20/29.60 30.44/29.70 30.33/29.70 30.27/29.60 30.16/29.60
Lall+ED 30.12/29.40 30.26/29.60 30.22/29.50 30.31/29.70 30.24/29.70 30.15/29.60

† We tune the parameters on the validation set, and report these results on the test set. Values in this table may be
susceptible to different setups that we did not thoroughly explore. However, we do not aim to provide the best situations
of all cases, instead, we offer analysis of possible trends. We ignore the influence of k and set k = 10 in these
experiments.

Table 4: Ablation studies on the layer-level performance. ’DS’ indicates the proposed regularization approach
applied on the decoder self-attention. ’ED’ means the proposed regularization approach applied on the encoder-
decoder attention in the decoder. To simplify the experiments, we adopt the same value of α and β to balance ’DS’
and ’ED’. For instance, if the weight on the label smoothed cross entropy is w, then α, β = (1 − w)/2, when
’DS’ and ’ED’ are applied on a single layer of the decoder. Similarly, α, β = (1 − w)/6, when ’DS’ or ’ED’ are
applied on all layers of the decoder, and so on. Different contributions of ’DS’ or ’ED’ in the combination fashion
of ’DS+ED’, we leave them in the future work. L0 means the first layer in the decoder. L5 means the last layer.
L0,5 means the first layer and the last layer. L4,5 means the last two layers. L0,1 means the first two layers. L0,1,2

means the first three layers. L3,4,5 means the last three layers. Lall−0 means all layers except the first layer. Lall−5

means all layers except the last layer. We average the last 5 checkpoints to report these results. Experiments are
conducted on WMT’14 En→De. From these results, we can infer that ’DS’ has slight better performance compared
with ’ED’. Employing either ’DS’ or ’ED’ on all layers of the decoder is somewhat over-constraint. In a certain
range, appropriately adding regularization can be effective in improving performance.
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Dropout Type Model Acquisition
En→De En→Fr

UE (before) UE (after) UE (before) UE (after)
MC-all Sampled max. probability 354.5077 337.3681 166.6318 146.3338
MC-all Mean entropy 2515.1008 2457.2503 1215.0922 1137.0944
MC-all BALD-VR 339.2128 334.9575 114.1011 108.4149

Table 5: Variation of the model uncertainty before regularization and after regularization. ’MC-all’ means ’Monte
Carlo Dropout’ employed on all layers. We employ three Uncertainty Estimation (UE) methods, namely, Sampled
max. probability, Mean Entropy and BALD-VR to investigate the variations. The number of forward passes T is
10. The results are not normalized over the number of tokens.

Num. of T 1 2 3 4 5 6
SMP 338.0088 / 319.5488 347.5487 / 329.9464 350.2366 / 333.0439 351.9552 / 334.9495 353.7504 / 335.7504 353.4781 / 336.2595
ME 2403.5835 / 2341.8491 2460.3462 / 2400.5967 2479.6318 / 2421.1494 2492.6663 / 2435.1404 2500.8201 / 2441.8916 2504.8918 / 2445.9519
BALD-VR 0 / 0 † 154.9255 / 150.7553 214.0106 / 210.4574 251.8404 / 246.7234 275.8936 / 270.2872 294.9787 / 288.6808
Num. of T 7 8 9 10 20‡ 30‡

SMP 353.6949 / 336.5727 353.9379 / 336.8132 354.3253 / 337.1445 354.5077 / 337.3681 176.3070 / 168.1396 87.0544 / 83.3469
ME 2507.3079 / 2449.6633 2509.6550 / 2451.1414 2512.8601 / 2454.7310 2515.1008 / 2457.2503 1249.8004 / 1224.1233 615.8340 / 605.8625
BALD-VR 307.9149 / 303.4787 321.2128 / 315.9893 331.2021 / 326.0425 339.2128 / 334.9575 193.9734 / 192.5053 101.8218 / 101.2766

† Zero values are due to the calculation of variance towards a single value.
‡ In the case of T = 20 and T = 30, results seem to be disproportionate to other cases. This is due to the setup of batch size during inference in order to avoid OOM.

Table 6: The impact of the number of forward passes T on MC dropout inference. We show the variations
of the three metrics. ’SMP’ for ’sampled maximum probability’; ’ME’ for ’mean entropy’; ’BALD-VR’ for a
combination of ’Bayesian Active Learning by Disagreement’ and ’variation ratio’. The values presented here are
UE (before) / UE (after). Experiments are conducted on WMT’14 En→De. Dropout ratio p is the default value
0.3. We can infer that as the value T increases, the gap between two UEs tends to decrease. However, UE (after)
is consistently smaller than UE (before). Considering the practical situation and following the common literature,
we choose T = 10 throughout the experiments.

dropout ratio p 0.1 0.2 0.3† 0.4 0.5
SMP 302.3890 / 286.0438 323.7969 / 306.6345 354.5077 / 337.3681 403.9660 / 388.3170 495.5341 / 485.3623
ME 2057.5542 / 1990.6696 2240.8325 / 2173.9890 2515.1008 / 2457.2503 2962.1492 / 2926.7832 3779.8779 / 3796.4238
BALD-VR 234.0745 / 231.3511 285.9575 / 282.3511 339.2128 / 334.9575 406.0213 / 403.2021 529.4787 / 537.0319
dropout ratio p 0.6 0.7 0.8 0.9 1.0
SMP 698.8461 / 703.8344 890.4090 / 887.0627 940.6628 / 943.8118 955.7371 / 955.7843 868.1199 / 868.6059
ME 5537.7705 / 5691.3364 7761.6455 / 7963.3516 9321.2520 / 9468.3799 9783.8789 / 9785.2402 5698.2153 / 5684.1841
BALD-VR 803.1170 / 823.4362 954.4681 / 955.8192 957.7553 / 957.7553 957.7553 / 957.7553 0 / 0

† There are three main types of dropout operation in the implementation of Transformer model, namely, dropout for layer output, dropout for attention weights and dropout for
activation in FFN. Here, we refer ’dropout’ to the first case. Note that, 0.3 is the default value for WMT’14 En→De model.

Table 7: The impact of the dropout ratio p on MC dropout inference. We show the variations of the three metrics.
’SMP’ for ’sampled maximum probability’; ’ME’ for ’mean entropy’; ’BALD-VR’ for a combination of ’Bayesian
Active Learning by Disagreement’ and ’variation ratio’. The values presented here are UE (before) / UE (after).
Experiments are conducted on WMT’14 En→De. The number of forward passes T is 10. From the results
above, we can infer that the appropriate value of the dropout ratio p is no more than 0.4, which is in line with our
expectations. Bad cases are marked by strikethrough.
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