Under review as a conference paper at ICLR 2026

LLM-BASED CODE TRANSLATION NEEDS FORMAL
COMPOSITIONAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have achieved impressive per-
formance on source-to-source code translation benchmarks, with potential appli-
cations ranging from enterprise code migration to safety-critical software modern-
ization. Yet today’s evaluations remain shallow: test suites, syntactic matches, and
heuristic similarity metrics conflate superficial success with true reliability. This
gap is critical in high-assurance domains, where subtle errors can compromise
security, safety, or maintainability. In this position paper, we argue that correct-
ness, not just plausibility, must become the governing principle of LLM-based
code translation. Specifically, we argue that principled definitions of correctness,
grounded in formal methods and enforced through compositional reasoning, are
essential for trustworthy code translation. We propose a layered view of correct-
ness, encompassing top-level functional equivalence, internal contracts and invari-
ants, and non-functional properties such as memory safety and timing guarantees.
We highlight why LLMs alone cannot satisfy these obligations, and advocate for
hybrid workflows where formal reasoning tools constrain, guide, and certify trans-
lation both during and after generation, which, we believe, offers a scalable path
forward to translating realistic code bases. By embracing compositional specifi-
cation, translation, and verification, we can turn LLMs from statistical translators
into reliable collaborators. Finally, we outline the key open challenges, including
cross-language reasoning, specification extraction, and correctness beyond func-
tional equivalence, that must be solved to realize this vision.

1 INTRODUCTION

Code translation (or, more generally, code migration) has become a popular benchmark for evaluat-
ing the capabilities of large language models (LLMs). Given the development of tooling, datasets,
and the rapid progress of LLMs in this domain, code translation has the potential to become widely
used in industry. Despite this, the dominant evaluation criteria remain shallow, primarily based
around test-case execution, exact match against a ground truth, and occasionally BLEU or Code-
BLEU metrics (Ren et al., 2020) for a heuristic notion of similarity. While they serve as proxies
that are often convenient to evaluate, these metrics fail to capture the deeper and broader notions
of correctness that are required of code used in higher assurance contexts, and when a ground truth
solution is not available. Failures of these criteria range from incomplete coverage, i.e., the trans-
lated program being equal to the source on the tests, while at the same time failing on others, to
fundamentally failing to enforce translation guarantees, e.g., the absence of security vulnerabilities,
or any standards of maintainability. As a result, current evaluations can conflate superficial success
with true reliability, a gap that becomes especially critical in high-consequence domains such as
cryptographic libraries, operating systems, or embedded systems, or memory management routines.

We believe it is essential that the Al code generation community looks beyond test-based correct-
ness and considers a broader definition that encompasses formal reasoning, including logical spec-
ifications and verification. This viewpoint is also supported by recent perspectives on Al safety
(e.g., Dalrymple et al. (2024)). We also believe that it is essential that both the formal specification
and verification, and the Al-based code translation are compositional. That is, the translation task
must be broken down into subtasks, and subtasks must have their own specifications. We believe this
compositional approach is essential for two primary reasons: scalability of the process and enabling
better communication of the intent of the translation.

Under review as a conference paper at ICLR 2026

Scalability in verification and translation. Formal reasoning tools typically suffer from scala-
bility issues when applied monolithically to large codebases. Instead, employing compositional
verification (McMillan, 1999) by decomposing proof obligations across a set of smaller components
enables proof convergence. Decomposition benefits LLM-based translation as well. While LLMs
might scale to industrial code bases, monolithic translation of large fragments leads to poor accuracy
in the best case (Shetty et al., 2024; Zhou et al., 2025), and exceeds context limits in the worst.

Communication of intent. Compositional and layered specifications can be easier and more intu-
itive for some translation tasks; for instance, one may want to define a specification about the inputs
to a specific function, or to limit the behavior of a specific datatype. We also hypothesize, based on
our experience, that breaking the translation task into smaller compositional tasks will enable more
accurate communication of intent to the LLM.

Importantly, we argue it is simply common sense to use compositional translation and verifica-
tion. The benefits of compositional translation are amply evident, even in code translation based on
more conventional, symbolic program synthesis applied to industrial code bases (e.g., (Ahmad et al.,
2019)). We see no reason for Al-based code translation to be different in this respect.

There are several challenges to adopting our compositional specification, translation, and verification
approach, some of which we outline and attempt to address by means of reference to the literature,
and some of which we outline as open challenges for the communities to discuss.

Firstly, defining correctness is the fundamental prerequisite for making progress on code translation.
Without an explicit and principled notion of correctness, it is impossible to tell whether improve-
ments on benchmarks reflect genuine advances in reliability or just better performance on selected
tests. Yet defining a compositional specification is non-trivial: what counts as a correct translation
can depend on language semantics, library behavior, and deployment context. For instance, correct-
ness may mean full semantic equivalence, preservation of safety properties, or adherence to specific
invariants depending on the application domain. Establishing such definitions is therefore not just a
technical detail but a necessary foundation for trustworthy evaluation and future research.

Once a definition of correctness is reached, the next question is how to enforce it. Automated formal
methods (FMs)—theorem provers, software verifiers, equivalence checkers—provide exactly this
machinery: they make correctness obligations explicit and machine checkable. Crucially, many of
them support compositional verification, allowing correctness guarantees for individual functions or
modules to be assembled into proofs of larger systems. Yet traditional automated formal methods
have struggled to scale this process to realistic codebases because of the need to synthesize proof
artifacts such as invariants, abstractions, interface specifications, etc. We argue that progress will
come from coupling Al and FM closely: using generative Al not only as a source of candidate
translations, but as a generator of proof artifacts that enables compositional reasoning at scale.

We summarize our proposals and arguments with the following:

1. Testing alone is insufficient for rigorous evaluation as it is unable to detect subtle but essential
correctness criteria. Correctness needs to be assured through formal verification.

2. Correctness should be defined as a hierarchy of obligations, encompassing top-level functional
equivalence, preservation of internal contracts and invariants, and the maintenance of desirable
properties such as safety, security, and resource guarantees.

3. Furthermore, we argue that specification, translation, and verification must be performed com-
positionally to enable scalability to realistic code bases.

2 CORRECTNESS: WHY IS IT SUCH A BIG DEAL?

As discussed in Section 1, the current standard for correctness for code translation and generation
benchmarks is testing. Benchmarks such as HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021), and SWE-bench (Verified) (Jimenez et al., 2024) evaluate models by whether generated or
modified code passes hidden or repository-level test suites, while translation benchmarks, including
TransCoder (Roziere et al., 2020), AVATAR (Ahmad et al., 2023), CodeTransOcean (Yan et al.,
2023), xCodeEval (Khan et al., 2024), RustRepoTrans (Ou et al., 2024), and TransLibEval (Xue
et al., 2025), similarly define success through executable test cases. Beyond evaluation, testing is
also being utilized to enhance model performance; self-debugging methods generate or leverage
tests to iteratively repair code (Chen et al., 2024), and translation frameworks such as TransCoder-

Under review as a conference paper at ICLR 2026

ST (Roziere et al., 2022) and UniTrans (Yang et al., 2024) regenerate or filter outputs until they pass
provided tests. Together, these efforts highlight that testing is considered by the community to be
not only the standard for evaluating correctness but also a de facto definition of correctness. We will
now explain why we believe this is insufficient.

2.1 WHEN AND WHY DOES TEST-BASED CORRECTNESS FAIL?

Reason 1: Testing cannot capture full equivalence. Even
simple translation tasks, such as Figure 1 (from Cheung et al. .
(2013) on verified code translation of web applications) illus- out =~ Ea table:

trates the flaws in a testing-only approach to correctness. if r.age > 21 and r.age < 65:
out.append(r)

source.py

The source program iterates over each record r and returns

adults under 65 years old, and the goal is to improve per- translation.py
formance by removing the explicit loop. The code translator oyt = table.filter(lambda r: r.
initially produced the incorrect translation out = [], which age > 21)

passes all the generated tests as the tests only enumerate ages
€ [0, 23]. On these test inputs, both the source and translated
programs return empty lists. Even after increasing the test
interval to [0, 2], the newly produced (incorrect) translation
(shown in translation.py) still passes all tests, as all test
ages are < 65.

Figure 1: Pitfalls of testing: source
input (top), and incorrect translation
(below). Translated code misses the
upper bound for the age filter.

Reason 2: Testing alone cannot capture adequate context, especially for deep specifications.
Almost all of the previously discussed prior work uses tests to capture top-level input-output equiva-
lence. Many correctness obligations, however, rely on deep specifications, i.e., behaviors of non-top-
level functions/APIs such as memory layouts, build configurations, or hardware protocols. In such
cases, a test-based input-output specification is fundamentally insufficient to both guide generation
(e.g., through in-context examples) and to evaluate it.

Example. Figure 2 contrasts the project-level ownership convention with translations generated
without that context. In the C code, init_consumer transfers ownership of the buffer to the callee,
so the caller must not free it, and shutdown_consumer later reclaims it. A naive Rust transla-
tion that only borrows the Vec<u8> leaves the global dangling once the caller drops it, making
shutdown_consumer impossible to implement without redesign.

consumer.c buf.rs
// buf.h // buf.rs (generated without seeing ownership
struct buf { uint8_t xdata; size_t cap; }; convention)
struct buf *alloc_buf(size_t cap); pub struct Buf<’a> { pub data: &’a mut Vec<u8
void free_buf(struct buf x*b); >
// consumer.c (snippet shown to translator) static mut G_BUF: Option<&’_ mut Vec<u8>> =
static struct buf xg_buf; None;
void init_consumer (struct buf xb) { pub fn init_consumer (buf: &mut Vec<u8>) {
g_buf = b; // takes ownership; caller unsafe { G_BUF = Some(buf); } // borrow
must not free ‘b‘ afterwards only
} }
shutdown_consumer.c shutdown_consumer.rs
// shutdown_consumer.c (translated later, // downstream translation now clashes with
relies on ownership transfer) the borrowed global
extern struct buf xg_buf; unsafe pub fn shutdown_consumer () {
void shutdown_consumer (void) { if let Some(buf) = G_BUF.take() {
free_buf (g_buf); free_buf (buf); // type error
g_buf = NULL; 3
} }

Figure 2: Ownership mismatch in C-to-Rust translation. C transfers ownership, but Rust only bor-
rows the buffer, leaving a dangling reference.

Reason 3: Tests alone cannot capture challenging semantic requirements. Even when the entire
source fragment is present in the prompt, an LLM can violate correctness because it lacks under-
standing of the semantics and/or the notion of correctness that needs to be captured. Limited unit
tests rarely expose these challenging notions of semantic correctness during testing or during train-
ing, resulting in poor performance by LLMs when evaluated against these requirements.

Under review as a conference paper at ICLR 2026

hash. java hash.c
int hash(bytel[]l s) { int hash(const uint8_t #*s, size_t n) {
int h = 0; int h = 0;
for (byte b : s) { for (size_t i = @0; i < n; i++) {
// May overflow, but defined wraparound // signed overflow is UB in C!
h =31 * h + (b & 0xff); h =31 x h + s[i];
} }
return h; return h;
} }

Figure 3: Integer overflow mismatch in Java-to-C translation. Naively using int in C violates Java’s
well-defined wraparound semantics, introducing undefined behavior.

verify.py verify.c

import hmac #include <string.h>
#include <stdbool.h>
def verify(token, secret):

constant time bool verify(const char *token, const char xsecret) {
return hmac.compare_digest(return strcmp(token, secret) == 0; // exits early
token, secret) 3

Figure 4: A key verification function in Python (left) translated to C (right). The translated code
introduces a side channel that will not be detected without an explicit constraint.

1. Language semantics. LLMs can violate top-level functional I/O or internal contract equivalence
due to semantic differences in language constructs such as type mapping, undefined behavior, or
operation semantics (Shetty et al., 2024; Zhou et al., 2025).

Example. Consider the Java to C translation in Figure 3. In Java, int arithmetic is defined
modulo 232; the naive C uses signed int, where overflow is undefined behavior. Compilers
may assume “no signed overflow”, leading to compilation succeeding, but a divergence in the
behavior of the hash function. A correct translation would implement explicit mod-23? arithmetic
(e.g., uint32_t or 64-bit + mask) and only reinterpret the low 32-bits at the end.

2. Broader safety, security, and resource properties. Real-world software often relies on properties
beyond pure input-output functional behavior, such as memory safety and resource usage (Gong
et al., 2025; Farrukh et al., 2025). Even with the entire source provided in-context, LLMs may
lack semantic understanding of such properties, resulting in the translated code not adhering to
the same requirements as the source.

Example. In Figure 4, Python’s standard library exposes hmac . compare_digest, which guaran-
tees data-independent timing. When asked to “translate this module to C” with only the function
body in view, an LLM-backed transpiler routinely emits code similar to the second code block
in Figure 4. This code is wrong because, whilst the C code is functionally equivalent, strcmp
short-circuits at the first differing byte, reintroducing an observable timing side channel. Source
projects often call high-level constant-time helpers like this, whose semantics are only described
in documentation.

Reason 4: Compositional translation with testing alone is prone to backtracking. Larger trans-
lation tasks aggravate all of the problems above. Syzygy (Shetty et al., 2024) performs an LLM-
driven translation of zopfli (Google, 2024). They perform a compositional (function-by-function)
translation of the codebase in dependency order. Even with a large number of tests (their verification
approach), they run into failure on a function later in dependency order due to a previous function
(zopfli_block_split_1z77) being incorrectly translated (ref. Shetty et al. (2024), Figure 8). While
they were able to perform a small, local (and manual) fix, such remediation approaches are not scal-
able. In general, in the context of compositional translation, late detection might require expensive
catastrophic backtracking, i.e., a global repair of several previously translated functions.

All of these failure modes are due to test-based specifications capturing an insufficient amount of
information. We can categorize these by considering the level of the information that is missing: is
it information about fop-level functional equivalence, i.e., whether the program produces the same
output for every input; or is it information about internal equivalence of specific components of
the code, for example, providing a loop invariant; or is the information missing something beyond
functional equivalence, such as resource usage.

Under review as a conference paper at ICLR 2026

2.2 WHY IS DEFINING CORRECTNESS HARD?

Even though tests suffer from the previously discussed inadequacies, we tend towards test-based
specifications because defining correctness is hard! The key issue is that correctness in code trans-
lation is never absolute: while anchored in the properties of the source program, it must still be
contextualized to the overall objective for which the translation is being performed.

Correctness is contextual. For example, in certain code translation contexts (e.g., educational/pro-
totyping tasks), ensuring only the top-level input/output (I/O) equivalence (that most test-based ap-
proaches aim to capture) is adequate. However, in other contexts, one might additionally desire more
aspects of s to be preserved in ¢ (e.g., API boundaries, OS interactions). In this sense, correctness
is a boundary-setting exercise, specifying which properties must be preserved and where deviations
are acceptable. Thus, defining correctness requires communicating intent between the translation
and downstream application development (more examples are in Table 2).

LLMs cannot embody an intrinsic notion of correctness. LLMs approach translation as condi-
tional generation of target program ¢ given the source program s and an (optional) prompt p, and
parameterized by 6: My(t|s, p). Translation intent can be provided in two places: first in the model
parameters 6 (during training) and second in the prompt p (at inference time). Both of these merely
strengthen statistical mappings between certain s and ¢ while weakening others. Thus, unlike clas-
sical PL-based techniques, e.g., rule-based translators, that have correctness explicitly noted via
formal notions', “correctness” for LLMs is implicit in these mappings derived from training exam-
ples. However, correctness cannot be specified, let alone guaranteed, by likelihood alone, making
an explicit formal definition imperative.

2.3 A LAYERED VIEW OF CORRECTNESS

Our position is that correctness is a spectrum of obligations, which must be formalized and then can
be checked at different levels of strength. We now provide a high-level overview of this spectrum,
based on the failure modes observed before?.

Top-level functional equivalence.

Top-level functional equivalence requires that, for any possible set of inputs z, the two pieces of
code produce the same output. That is, [s](x) = [¢](x), where [-] denotes program semantics,
including return values and externally visible side effects.

As discussed previously, testing, or input-output (I/O) equivalence, is the default correctness metric
used by the community. In top-level I/O equivalence, the list of possible inputs for which [s](z) =
[t](x) must be maintained is limited to a finite list of inputs (either selected randomly, or given by
the user). It is infeasible to guarantee full top-level functional equivalence (i.e., equivalence for any
value of x) with testing since this would require testing on a number of inputs so large as to be
practically infinite. Beyond testing, one can look to formal methods such as model checking (Clarke
et al., 2003) to prove full top-level functional equivalence, but the problem is undecidable. As a
result, full monolithic proofs are often infeasible without significant amounts of human effort.

Example. Consider the node.h and block.c example files given in Figure 5. If the
operate_on_data function is the top-level (user-facing) API exposed by this code, we would only
require that an 1/O specification of the form ¢(datas, result) be preserved on the target codebase,
permitting internals of the C code, e.g., the struct definition, to be modified/optimized.

Internal equivalence. Below top-level functional equivalence, there are many other forms of align-
ment between s and ¢ that we may wish to describe. For instance, at a function level, providing
function contracts in the style of Hoare logic (Hoare, 1969) allows us to provide logical predicates
about the behavior of the translated code (or functions within it) and assumptions under which those
predicates must hold. Formally, if the source program s satisfies a Hoare triple { P} s {Q}, then the

! Also known as “correct by construction.”

2Syntactic validity (e.g., producing compilable, well-typed code) is a generic prerequisite for code genera-
tion and has been addressed via rejection sampling (Dou et al., 2024), constrained decoding (Tromble & Eisner,
2006; Beurer-Kellner et al., 2024; Park et al., 2024), and hybrid symbolic search (Barke et al., 2024; Li et al.,
2024b; 2025); our focus is on richer correctness obligations beyond this baseline.

Under review as a conference paper at ICLR 2026

node.h block.c
struct node { nodex create_block (data_t * datas) {
node * second; data_t * data; nodex fst = (node *) malloc(sizeof (node));
} node; nodex snd = (node *) malloc(sizeof (node));
snd->second = NULL;
fst->second = snd;
// ... populate data
anyblock.c return fst;
nodex create_block_by_size (3
data_t* datas, int cnt) {
nodex curr = (nodex) malloc(sizeof (node));
node* next = NULL; result_t operate_on_block (nodex block) {
for (int i=0; i < cnt; i++) { // ... some operation on a block
curr->second = next; 3
// ... populate data
next = curr; result_t operate_on_data(data_t* datas) {
curr = (node *) malloc(sizeof(node)); nodex block = create_block(datas);
} result_t result = operate_on_block(block);
return curr; return result;
3 3

Figure 5: Examples of top-level vs. internal equivalence. Preserving only I/O equivalence allows
structural optimizations, but future extensions (e.g., variable-length blocks) may break.

translated program ¢ must also satisfy { P} ¢ {@Q}. These contracts can be extended to reason about
concurrency properties (O’Hearn, 2004).

For programs with loops, we can also consider loop invariants. If s contains a loop, for which [is
a valid loop invariant (i.e., I holds on entry to the loop, and after every execution of the loop), then
we require that the translated loop preserves the same invariant.

Contracts and invariants are used to verify LLM-based formal model generation by Misu et al.
(2024), and in source code translation by Bhatia et al. (2024). LLMs are even used to provide the
function contracts in Sun et al. (2024), where they are auto-formalized from doc strings, and in Chen
et al. (2025), where LLM-provided contracts are used to enable verification of polyglot systems. A
natural bonus of using contract equivalence is that it enables us to break down a verification problem
into subproblems and deploy scalable compositional verification approaches.

Example. Referring back to Figure 5, if we only prescribed top-level functional equivalence, the
translation might leverage the fact that block. c only creates length 2 node-chains, and may choose
to flatten a chain of two nodes into a single two-data element node struct. However, one could
later add a create_block_by_size function that creates an arbitrary-length chain of blocks. A
migration of this function would not be supported by the earlier translation that only ensures top-
level I/O equivalence. A translation that preserves structs exactly would help in this.

Previous work takes ad-hoc approaches to navigate the boundary of internal equivalence. CRUST-
Bench (ref. Khatry et al. (2025), Figure 1) requires Rust struct impl signatures to be manually
specified, while Syzygy Shetty et al. (2024) requires the same for struct fields.

Beyond functional equivalence. We may also require that the translated program preserves equiv-
alence w.r.t. lower-level aspects of program execution, such as ABI conventions, time/space com-
plexity, memory accesses, and system calls performed. Prior work in program synthesis has incor-
porated runtime and memory footprints to guide search (Collie & O’Boyle, 2021; Hu et al., 2021),
while work on program repair has used security properties as correctness criteria (Tihanyi et al.,
2025). Such obligations remain underexplored in the context of LLM-based code translation.

Example. As an illustrative example, for Figure 5, one may require that the data layout of the
node struct be preserved between the source (C) and the translated programs. As a more realistic
example, Li et al. (2024a) discusses this challenge in the context of the Rust-for-Linux project: “The
major difficulty of writing safe drivers in Rust is to reconcile the inflexibility of Rust versus kernel
programming conventions ...” (ref. Li et al. (2024a), Sec. 3).

Under review as a conference paper at ICLR 2026

Takeaway. This list of correctness levels is not exhaustive, and many other possible specification
types exist (and those that do not exist in the literature yet, may do in the future). As a result of
these many levels, we believe correctness in translation is best viewed as an explicit, layered
constraint set that depends both on the migration goal and on the available verification budget; it
is not a byproduct of translation but the /ens through which translation quality must be defined and
enforced. This constraint set serves two roles: (i) it defines validity for a candidate translation,
and (ii) it provides the feedback signal for online (during generation) or offline (after generation)
compositional verification.

3 ACHIEVING CORRECTNESS: WHY LLMS ALONE FALL SHORT, AND
CANDIDATE ENFORCEMENT STRATEGIES

When Approach Top-level /O Internal Beyond Functional = Domain Representative Work
Grammar-constrained decoding Code Generation Yin & Neubig (2017)
Type- and scope-aware generation Code Generation Miindler et al. (2025)
Execution-based validation Code Generation Lavon et al. (2025)

During Intermediate contract/test checking 2 Code Translation Zhou et al. (2025)
Test generation and repair Code Translation Gu et al. (2024)

Program Synthesis Kalyan et al. (2018)
Program Synthesis Zhang et al. (2018)

Verifier-in-the-loop
Constraint-solver guided

00 0000 ~00
020 0020000
000 | ©e@00000

Learning-based execution filtering Code Generation Ni et al. (2023)
After End-to-end test filtering Code Translation Farrukh et al. (2025)
Verified transpilation ! Code Translation Bhatia et al. (2024)

! Assumes the property is explicitly modeled and compositionally enforced (incl. beyond-functional, e.g., constant-time,
information-flow); otherwise mark as ©.
2 If checks include contracts or properties that expose and validate internal invariants, interpret as ©.

Table 1: Coverage of verification mechanisms across correctness layers (top-level I/O, internal contracts,
beyond-functional), grouped by timing (During vs. After generation). @ means can guarantee; @ means
contributes useful evidence; O means not helpful.

As stated in Section 2.2, LLMs are powerful sequence models but not correctness engines. They
optimize local likelihood, not global semantics, and thus fail to guarantee the layered definitions
of correctness described in Section 2.3. For each layer, we outline the key shortcomings and the
enforcement strategy (that can occur during or after generation) that can compensate.

Top-level functional equivalence. Why LLMs fail? Passing finite I/O tests is within reach of
today’s models, but ensuring [s](z) = [¢](z) for all z is infeasible; LLMs generalize poorly beyond
observed inputs and default to surface similarity rather than semantic preservation. This explains
why testing dominates evaluation in practice (Ahmad et al., 2023; Khan et al., 2024; Xue et al.,
2025), despite its incompleteness.

Enforcement: Online checks such as grammar- and type-constrained decoding ensure every pre-
fix is syntactically and type valid (Yin & Neubig, 2017; Miindler et al., 2025), while offline ex-
ecution filters and large I/O test suites (Ni et al., 2023; Farrukh et al., 2025) increase behavioral
coverage. Formal verification of top-level functional equivalence, e.g., via model checking Clarke
et al. (2003), suffers from scalability issues, but bounded proofs of functional equivalence are fea-
sible (Brauckmann et al., 2023). Furthermore, LLMs themselves can be used to produce proof
artifacts to enable verification to scale, via compositional verification (Chen et al., 2025) and in-
variant generation (Pirzada et al., 2024). Verification outcomes can be recycled into reinforcement
learning loops (Jha et al., 2025), nudging models toward functional equivalence beyond finite test
sets.

Internal equivalence. Why LLMs fail? Models often “optimize away” internal structures that seem
redundant locally (e.g., simplifying structs or omitting invariants), thereby breaking contracts and
future extensibility while still passing top-level tests. Benchmarks such as CRUST-Bench (Khatry
et al., 2025) and systems like Syzygy (Shetty et al., 2024) and SACTOR (Zhou et al., 2025) illustrate
how brittle these internal interfaces are in practice.

Enforcement: Online strategies such as contract or test checking (Zhou et al., 2025; Shetty et al.,
2024), and verifier-in-the-loop pruning with symbolic execution or SMT solvers (Kalyan et al.,
2018), prevent partial outputs from violating local specifications. Offline compositional veri-

Under review as a conference paper at ICLR 2026

fiers (Bhatia et al., 2024) then certify function- or module-level contracts, assembling scalable global
proofs from locally validated pieces.

Beyond functional equivalence. Why LLMs fail? Non-functional and security obligations, such
as ABI compatibility, resource bounds,and memory safety are rarely captured in training corpora
and have no proxy in next-token likelihood. As a result, LLMs may silently introduce regressions
in efficiency or safety. This is especially visible in safety-critical domains such as drivers, where
reconciling Rust’s safety model with Linux kernel conventions remains a major blocker (Li et al.,
2024a).

Enforcement: Constraint-guided decoding (Zhang et al., 2018), type- and scope-aware prun-
ing (Miindler et al., 2025), or lightweight static analyzers can act online to prevent unsafe con-
tinuations. Similarly, static analyzers have been used to detect security flaws and guide LLMs to
repair said flaws in their own code (Tihanyi et al., 2025). Offline analyzers and monitors (Collie &
O’Boyle, 2021; Hu et al., 2021) have been used in enumerative program synthesis to certify global
properties such as timing budgets, resource usage, but are still relatively under-explored in the world
of LLM-generated code.

Note: Details about each of these enforcement approaches can be found in Table 1 and Appendix B.

Takeaway. LLMs alone cannot satisfy layered correctness definitions: they overfit to surface
plausibility, overlook internal structure, and ignore non-functional obligations. Achieving trust-
worthy translation requires a hybrid verification loop. Online verification prunes infeasible pre-
fixes and enforces local obligations at the level of syntax, types, and function contracts, ensuring
that components are correct before composition. Offline verification then certifies global invari-
ants and discharges whole-program obligations, completing the compositional proof. Recycling
both forms of feedback into training is essential: without this hybrid, correctness breaks down
into brittle heuristics rather than principled guarantees.

4 OPEN PROBLEMS

We now describe a number of research challenges inspired by our vision. A recurring theme across
these challenges is a fundamental tension: are the bottlenecks due to the absence of sufficiently ex-
pressive specifications, or due to the limitations of current verification techniques in enforcing them?
In practice, both obstacles arise: sometimes the difficulty lies in articulating correctness properties
(e.g., idiomaticity, timing security), and sometimes in scaling verification across languages, partial
programs, or semi-structured standards. Understanding where the barrier lies is itself a research
problem, and it shapes how progress can be made toward correctness-aware translation.

Porting Verification to Code Translation. Verification-guided generation has shown promise in
program synthesis and code generation tasks, but adapting these techniques to the code translation
setting remains an open problem. Unlike synthesis, where the goal is to produce any program sat-
isfying a specification, translation requires preserving the semantics of a specific source program
across languages. This raises unique difficulties: (i) partial prefixes in the target may not admit
a verifier interface until a large unit (e.g., a function or module) is complete, limiting the granu-
larity of online checks; (ii) semantic preservation often involves global invariants (memory safety,
resource usage, security properties) that do not decompose cleanly into local contracts; and (iii)
formal equivalence checking requires reasoning about the semantics of both source and target lan-
guages, as well as bridging across type systems and memory models. Existing verifiers and test
suites are almost always tied to a single language, making cross-language correctness harder to
establish. Thus, the bottleneck is twofold: we lack sufficiently expressive specifications of seman-
tic preservation across languages, and we also lack scalable verification techniques to check these
properties compositionally during and after translation. Designing modular equivalence checkers
that can span heterogeneous toolchains is therefore a central open challenge.

Checking Security Properties Beyond Semantic Equivalence. Some critical applications require
correctness criteria that go beyond functional equivalence, especially in domains like cryptogra-
phy and systems security. For example, constant-time execution is essential for preventing timing
side-channel leaks in cryptographic libraries, yet this property is not implied by functional correct-
ness. A translation may preserve input—output semantics but inadvertently introduce data-dependent

Under review as a conference paper at ICLR 2026

branches or memory accesses, violating security requirements. Prior work has shown how properties
such as constant-time execution, non-interference, and controlled information flow can be formally
specified (Kozyri et al., 2022; Lee et al., 2022), but the challenge is twofold: (i) specifications are
often highly domain-specific, requiring specialized logics or refinement types; and (ii) verification
tools for these properties are typically language-specific and do not port across source and target.
Thus, the open problem is not just to verify security properties, but also to determine whether they
can be integrated into a general correctness specification for translation, one that can be stated once,
and checked across diverse languages and compiler toolchains.

Translation for Code Modernization and Maintenance. Beyond correctness, practical translation
often serves a modernization goal: making legacy code more maintainable, extensible, and acces-
sible to new developers. For instance, the fish shell project recently migrated from C++ to Rust to
improve ergonomics and lower the barrier for contributions®. If LLMs assist such efforts, semantic
preservation is necessary but not sufficient: the translated code must also be idiomatic in the target
language, leveraging its abstractions, patterns, and ecosystem. Otherwise, the result may be correct
but unreadable, brittle, or “foreign” to the target community. This raises a specification challenge
(how do we formally describe what makes code idiomatic or maintainable?) and a verification chal-
lenge (how do we check that LLM outputs meet such “soft” criteria?). Here, correctness must be
expanded to include human-centered notions of quality, suggesting a hybrid verification regime that
mixes formal contracts with automated style, idiomaticity, and maintainability checks.

Specifications Given in Semi-Structured Form. In many domains, the only available specifi-
cations are in semi-structured natural language or standards documents, rather than in machine-
checkable logics. For example, the IETF publishes protocol specifications in semi-formal text, such
as the one accompanying Google’s recent open-source zero-knowledge proof library in C++*. Trans-
lating this code into Rust or another language while maintaining compliance with the IETF standard
requires bridging between the semi-structured specification and a formal logic suitable for verifi-
cation. This raises both a specification and verification gap: extracting precise logical obligations
from semi-structured text, and then developing verifiers that can check them in the target code. Au-
tomating this pipeline, perhaps by leveraging LLMs to synthesize formal contracts from standards
documents, remains an open and underexplored challenge.

Verification of Partially Translated Codebases. Real-world translation rarely happens all at once;
instead, codebases are often partially translated, yielding polyglot systems where components in
different languages must interoperate. This complicates verification: most state-of-the-art tools are
specialized for a single language and cannot reason across boundaries. Preliminary work by Chen
et al. (2025) shows how LLMs can synthesize interface contracts to connect different verifiers, en-
abling compositional reasoning across languages. Yet several challenges remain: (i) ensuring that
cross-language contracts are both sound and precise enough for verification; (ii) scaling composi-
tional reasoning to large, evolving codebases; and (iii) integrating heterogeneous toolchains with
different logics and proof obligations. Here, the bottleneck is primarily verification, but specifica-
tion plays a role too: we need principled ways to describe cross-language invariants, not just within
each isolated component.

5 CONCLUSION

LLMs can translate syntax, but they do not preserve semantics. Treating surface similarity as success
risks brittle systems that fail when correctness truly matters. In this position paper, we argue that the
future of code translation is not in building larger models validated by test sets but in establishing
formal notions of correctness as the governing principle. We show how formal methods can be used
as a means to define correctness, and propose different mechanisms to utilize formal methods in
code translation. We then discuss how compositionality can scale code translations, and discuss
emergent challenges where we envision similar techniques can be applied.

3https ://fishshell.com/blog/rustport/
*https://github.com/google/longfellow-zk

https://fishshell.com/blog/rustport/
https://github.com/google/longfellow-zk

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper does not introduce new datasets, models, or systems; instead, it presents a position and
research agenda. All examples and case studies are drawn from publicly available sources or prior
work, with appropriate citations. No sensitive or personally identifiable information is used. Our
arguments highlight the importance of correctness and assurance in code translation, especially for
high-consequence domains, precisely to mitigate downstream ethical risks of deploying unreliable
translations.

Human Oversight and Accountability. The authors accept full responsibility for every scientific
claim and for the correctness of all results presented in the paper. No proprietary or confidential data
were provided to external services during the preparation of this work.

REPRODUCIBILITY STATEMENT

For reproducibility, we have provided all conceptual taxonomies, definitions, and comparisons in a
way that is self-contained and directly tied to prior literature. Where we discuss benchmarks, tools,
or verification protocols, we reference publicly available resources to enable others to trace and
replicate the reasoning. Future empirical work following this agenda should adhere to principles of
transparency, dataset documentation, and open release of code and evaluation frameworks to foster
cumulative progress. We present no new code or experiments for this paper.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil. Automatically
translating image processing libraries to halide. ACM Trans. Graph., 38(6):204:1-204:13, 2019.

Wasi Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei Chang. Avatar: A paral-
lel corpus for java-python program translation. In Findings of the Association for Computational
Linguistics: ACL 2023, pp. 2268-2281, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Shraddha Barke, Emmanuel Anaya Gonzalez, Saketh Ram Kasibatla, Taylor Berg-Kirkpatrick, and
Nadia Polikarpova. HYSYNTH: context-free LLM approximation for guiding program synthesis.
In NeurIPS, 2024.

Luca Beurer-Kellner, Marc Fischer, and Martin T. Vechev. Guiding LLMs The Right Way: Fast,
Non-Invasive Constrained Generation. In /CML. OpenReview.net, 2024.

Sahil Bhatia, Jie Qiu, Niranjan Hasabnis, Sanjit A Seshia, and Alvin Cheung. Verified code tran-
spilation with LLMs. Advances in Neural Information Processing Systems, 37:41394-41424,
2024.

Alexander Brauckmann, Elizabeth Polgreen, Tobias Grosser, and Michael FP O’Boyle. mlirsynth:
Automatic, retargetable program raising in multi-level ir using program synthesis. In 2023 32nd
International Conference on Parallel Architectures and Compilation Techniques (PACT), pp. 39—
50. IEEE, 2023.

Luwei Cai, Fu Song, and Taolue Chen. Towards efficient verification of constant-time cryptographic
implementations. Proceedings of the ACM on Software Engineering, 1(FSE):1019-1042, 2024.

Hailong Chang, Guozhu Meng, Shuhui Xiao, Kai Chen, Kun Sun, and Yilin Li. When code
crosses borders: A security-centric evaluation of llm-based code translation. arXiv preprint
arXiv:2509.06504, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Pei-Wei Chen, Shaokai Lin, Adwait Godbole, Ramneet Singh, Elizabeth Polgreen, Edward A. Lee,
and Sanjit A. Seshia. Polyver: A compositional approach for polyglot system modeling and
verification. CoRR, abs/2503.03207, 2025.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=KuPixIgPiq.

Yanju Chen, Chenglong Wang, Osbert Bastani, Isil Dillig, and Yu Feng. Program synthesis us-
ing deduction-guided reinforcement learning. In International Conference on Computer Aided
Verification, pp. 587-610. Springer, 2020.

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Optimizing database-backed applica-
tions with query synthesis. In Hans-Juergen Boehm and Cormac Flanagan (eds.), ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA,
June 16-19, 2013, pp. 3-14. ACM, 2013.

Edmund M. Clarke, Daniel Kroening, and Karen Yorav. Behavioral consistency of C and verilog
programs using bounded model checking. In DAC, pp. 368-371. ACM, 2003.

Bruce Collie and Michael F. P. O’Boyle. Program lifting using gray-box behavior. In PACT, pp.
60-74. IEEE, 2021.

11

https://openreview.net/forum?id=KuPixIqPiq

Under review as a conference paper at ICLR 2026

David Dalrymple, Joar Skalse, Yoshua Bengio, Stuart Russell, Max Tegmark, Sanjit Seshia, Steve
Omohundro, Christian Szegedy, Ben Goldhaber, Nora Ammann, Alessandro Abate, Joe Halpern,
Clark W. Barrett, Ding Zhao, Tan Zhi-Xuan, Jeannette Wing, and Joshua B. Tenenbaum. To-
wards guaranteed safe Al: A framework for ensuring robust and reliable Al systems. CoRR,
abs/2405.06624, 2024.

Shihan Dou, Haoxiang Jia, Shenxi Wu, Huiyuan Zheng, Weikang Zhou, Muling Wu, Mingxu Chai,
Jessica Fan, Caishuang Huang, Yunbo Tao, Yan Liu, Enyu Zhou, Ming Zhang, Yuhao Zhou,
Yueming Wu, Rui Zheng, Ming Wen, Rongxiang Weng, Jingang Wang, Xunliang Cai, Tao Gui,
Xipeng Qiu, Qi Zhang, and Xuanjing Huang. What’s wrong with your code generated by large
language models? an extensive study. CoRR, abs/2407.06153, 2024.

Muhammad Farrukh, Smeet Shah, Baris Coskun, and Michalis Polychronakis. Safetrans: Llm-
assisted transpilation from c to rust. arXiv preprint arXiv:2505.10708, 2025.

Zhihao Gong, Zeyu Sun, Dong Huang, Qingyuan Liang, Jie M Zhang, and Dan Hao. Tracy: Bench-
marking execution efficiency of 1lm-based code translation. arXiv preprint arXiv:2508.11468,
2025.

Google. google/zopfli. Online, 2024. URL https://github.com/google/zopfli/.

Sigi Gu, Quanjun Zhang, Kecheng Li, Chunrong Fang, Fangyuan Tian, Liuchuan Zhu, Jianyi Zhou,
and Zhenyu Chen. Testart: Improving llm-based unit testing via co-evolution of automated gen-
eration and repair iteration. arXiv preprint arXiv:2408.03095, 2024.

Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576-580, 1969.

Qinheping Hu, John Cyphert, Loris D’ Antoni, and Thomas W. Reps. Synthesis with asymptotic
resource bounds. In CAV (1), volume 12759 of Lecture Notes in Computer Science, pp. 783-807.
Springer, 2021.

Yaojie Hu, Qiang Zhou, Qihong Chen, Xiaopeng Li, Linbo Liu, Dejiao Zhang, Amit Kachroo, Talha
Oz, and Omer Tripp. Qualityflow: An agentic workflow for program synthesis controlled by llm
quality checks. arXiv preprint arXiv:2501.17167, 2025.

Prithwish Jana, Piyush Jha, Haoyang Ju, Gautham Kishore, Aryan Mahajan, and Vijay Ganesh.
Cotran: An llm-based code translator using reinforcement learning with feedback from compiler
and symbolic execution. arXiv preprint arXiv:2306.06755, 2023.

Manvi Jha, Lily Jiaxin Wan, Huan Zhang, and Deming Chen. PREFACE - A reinforcement learning
framework for code verification via LLM prompt repair. In ACM Great Lakes Symposium on
VLSI, pp. 547-553. ACM, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In ICLR, 2024.

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gul-
wani. Neural-guided deductive search for real-time program synthesis from examples. arXiv
preprint arXiv:1804.01186, 2018.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
Parvez, and Shafiq Joty. Xcodeeval: An execution-based large scale multilingual multitask bench-
mark for code understanding, generation, translation and retrieval. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
6766-6805, 2024.

Anirudh Khatry, Robert Zhang, Jia Pan, Ziteng Wang, Qiaochu Chen, Greg Durrett, and Isil Dillig.
Crust-bench: A comprehensive benchmark for c-to-safe-rust transpilation, 2025. URL https:
//arxiv.org/abs/2504.15254.

Elisavet Kozyri, Stephen Chong, and Andrew C. Myers. Expressing information flow properties.
Found. Trends Priv. Secur., 3(1):1-102, 2022.

12

https://github.com/google/zopfli/
https://arxiv.org/abs/2504.15254
https://arxiv.org/abs/2504.15254

Under review as a conference paper at ICLR 2026

Boaz Lavon, Shahar Katz, and Lior Wolf. Execution guided line-by-line code generation. arXiv
preprint arXiv:2506.10948, 2025.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314-21328, 2022.

Dayeol Lee, Kevin Cheang, Alexander Thomas, Catherine Lu, Pranav Gaddamadugu, Anjo
Vahldiek-Oberwagner, Mona Vij, Dawn Song, Sanjit A. Seshia, and Krste Asanovic. Cerberus:
A formal approach to secure and efficient enclave memory sharing. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, CCS *22, pp. 1871-1885,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450394505. doi:
10.1145/3548606.3560595. URL https://doi.org/10.1145/3548606.3560595.

Hongyu Li, Liwei Guo, Yexuan Yang, Shangguang Wang, and Mengwei Xu. An empirical study of
Rust-for-Linux: The success, dissatisfaction, and compromise. In 2024 USENIX Annual Techni-
cal Conference (USENIX ATC 24), pp. 425443, Santa Clara, CA, July 2024a. USENIX As-
sociation. ISBN 978-1-939133-41-0. URL https://www.usenix.org/conference/atc24/
presentation/li-hongyu.

Yixuan Li, Julian Parsert, and Elizabeth Polgreen. Guiding enumerative program synthesis with
large language models. In CAV (2), volume 14682 of Lecture Notes in Computer Science, pp.
280-301. Springer, 2024b.

Yixuan Li, José Wesley de Souza Magalhdes, Alexander Brauckmann, Michael F. P. O’Boyle, and
Elizabeth Polgreen. Guided tensor lifting. Proc. ACM Program. Lang., 9(PLDI):1984-2006,
2025.

Kenneth L McMillan. Circular compositional reasoning about liveness. In Advanced Research Work-
ing Conference on Correct Hardware Design and Verification Methods, pp. 342-346. Springer,
1999.

Md Rakib Hossain Misu, Cristina V. Lopes, Iris Ma, and James Noble. Towards ai-assisted synthesis
of verified dafny methods. Proc. ACM Softw. Eng., 1(FSE):812-835, 2024.

Niels Miindler, Jingxuan He, Hao Wang, Koushik Sen, Dawn Song, and Martin Vechev. Type-
constrained code generation with language models. Proceedings of the ACM on Programming
Languages, 9(PLDI):601-626, 2025.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih, Sida Wang, and Xi Victoria
Lin. Lever: Learning to verify language-to-code generation with execution. In Infernational
Conference on Machine Learning, pp. 26106-26128. PMLR, 2023.

Peter W. O’Hearn. Resources, concurrency and local reasoning. In CONCUR, volume 3170 of
Lecture Notes in Computer Science, pp. 49—-67. Springer, 2004.

Guangsheng Ou, Mingwei Liu, Yuxuan Chen, Xin Peng, and Zibin Zheng. Repository-level code
translation benchmark targeting rust. arXiv preprint arXiv:2411.13990, 2024.

Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick, Nadia Polikarpova, and Loris D’Antoni.
Grammar-aligned decoding. In NeurIPS, 2024.

Muhammad AA Pirzada, Giles Reger, Ahmed Bhayat, and Lucas C Cordeiro. LIm-generated invari-
ants for bounded model checking without loop unrolling. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, pp. 1395-1407, 2024.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis.
arXiv preprint arXiv:2009.10297, 2020.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsupervised
translation of programming languages. Advances in neural information processing systems, 33:
20601-20611, 2020.

13

https://doi.org/10.1145/3548606.3560595
https://www.usenix.org/conference/atc24/presentation/li-hongyu
https://www.usenix.org/conference/atc24/presentation/li-hongyu

Under review as a conference paper at ICLR 2026

Baptiste Roziere, Jie Zhang, Francois Charton, Mark Harman, Gabriel Synnaeve, and Guillaume
Lample. Leveraging automated unit tests for unsupervised code translation. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=
cmt-6KtR4c4.

Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of using large
language models for automated unit test generation. IEEE Transactions on Software Engineering,
50(1):85-105, 2023.

Manish Shetty, Naman Jain, Adwait Godbole, Sanjit A Seshia, and Koushik Sen. Syzygy:
Dual code-test ¢ to (safe) rust translation using llms and dynamic analysis. arXiv preprint
arXiv:2412.14234, 2024.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code
generation using deep reinforcement learning. arXiv preprint arXiv:2301.13816, 2023.

Chuyue Sun, Ying Sheng, Oded Padon, and Clark W. Barrett. Clover: Closed-loop verifiable code
generation. In SAIV, volume 14846 of Lecture Notes in Computer Science, pp. 134—155. Springer,
2024.

Norbert Tihanyi, Yiannis Charalambous, Ridhi Jain, Mohamed Amine Ferrag, and Lucas C.
Cordeiro. A new era in software security: Towards self-healing software via large language
models and formal verification. In AST@ICSE, pp. 136-147. IEEE, 2025.

Roy W. Tromble and Jason Eisner. A fast finite-state relaxation method for enforcing global con-
straints on sequence decoding. In HLT-NAACL. The Association for Computational Linguistics,
2006.

Pengyu Xue, Kunwu Zheng, Zhen Yang, Yifei Pei, Linhao Wu, Jiahui Dong, Xiapu Luo, Yan Xiao,
Fei Liu, Yuxuan Zhang, et al. A new benchmark for evaluating code translation with third-party
libraries. arXiv preprint arXiv:2509.12087, 2025.

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and Wen Wang. Codetransocean: A compre-
hensive multilingual benchmark for code translation. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pp. 5067-5089, 2023.

Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan Hong, Xiaoxue Ma,
Zhi Jin, and Ge Li. Exploring and unleashing the power of large language models in automated
code translation. Proceedings of the ACM on Software Engineering, 1(FSE):1585-1608, 2024.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code gener-
ation. In Proceedings of the 55th Annual Meeting of the Association for Computational Lin-
guistics (ACL), pp. 440-450. Association for Computational Linguistics, 2017. URL https:
//aclanthology.org/P17-1041/.

Lisa Zhang, Gregory Rosenblatt, Ethan Fetaya, Renjie Liao, William Byrd, Matthew Might, Raquel
Urtasun, and Richard Zemel. Neural guided constraint logic programming for program synthesis.
Advances in Neural Information Processing Systems, 31, 2018.

Tianyang Zhou, Haowen Lin, Somesh Jha, Mihai Christodorescu, Kirill Levchenko, and Varun
Chandrasekaran. Llm-driven multi-step translation from c to rust using static analysis. arXiv
preprint arXiv:2503.12511, 2025.

14

https://openreview.net/forum?id=cmt-6KtR4c4
https://openreview.net/forum?id=cmt-6KtR4c4
https://aclanthology.org/P17-1041/
https://aclanthology.org/P17-1041/

Under review as a conference paper at ICLR 2026

A APPLICATION DOMAINS

Application Domain Top-level /O Internal Beyond Functional Representative Benchmark

Educational / prototyping
Enterprise code migration

API migration

C — Rust memory safety
Safety-critical systems
Cryptographic implementations

Chen et al. (2021)
Jimenez et al. (2024)
Xue et al. (2025)
Khatry et al. (2025)
Chang et al. (2025)
Cai et al. (2024)

00000
000220
002000

Table 2: Correctness notions emphasized across different application domains. Some of
the representative benchmarks come from code generation area, but they share the same
notion of correctness. @ means required guarantee; © means typical evidence but short
of a guarantee; O means usually unnecessary.

B ACHIEVING CORRECTNESS: ONLINE & OFFLINE APPROACHES

Given a sufficient layered correctness specification, the question is how can we enforce this? In
this section, we examine how existing verification levers can be arranged to support compositional
translation with a layered spectrum of specifications. We analyze the verification machinery through
the lens of compositional translation, asking how each mechanism supports breaking the task into
smaller, spec-annotated fragments whose local guarantees compose. In practice there are two com-
plementary paradigms for enforcing correctness specifications C(s): constraining or guiding gener-
ation during decoding (Shetty et al., 2024; Miindler et al., 2025; Zhou et al., 2025), or certifying
candidates after they are produced (Ni et al., 2023; Bhatia et al., 2024; Farrukh et al., 2025). We in-
terpret these paradigms as design points for injecting formal signals that keep the translation process
compositional, and we compare them in terms of how effectively they preserve and exploit modular
structure.

B.1 ONLINE VERIFICATION: VERIFICATION DURING GENERATION

Verification during generation integrates correctness checks directly into the decoding process.
Rather than treating generation and verification as separate stages, the model is guided at inter-
mediate steps toward outputs that remain consistent with C(s). The central idea is that correctness
can act as a search prior: pruning infeasible partial hypotheses and allocating resources only to
viable continuations while maintaining the compositional scaffold introduced in Section 1. Local
checks on prefixes or completed subprograms operationalize the idea that each component should
carry its own specification.

Formally, translation can be viewed as a sequential decision process t = (aq, ..., a,), where each
a; denotes an atomic generation decision (e.g., emitting a token or expanding a grammar production
like a function, an expression, etc.). For any prefix a;.;, we ask whether it admits a correct extension:
there must exist some completion ¢’ = (af, ..., a}) with a} = a; for all ¢ < k such that ¢’ satisfies
C(s). We encode this requirement with a viability predicate

1 if 3t |= C(s) with prefix ay.x
Vel(ar. = "
clavk, s) {0 otherwise.
Only prefixes with V¢ (a;.x,s) = 1 remain in the search frontier, ensuring that partial hypotheses
keep the potential to assemble into a specification-respecting translation.

How to Enforce It. In practice, the predicate can be approximated by layering increasingly strong
checks (syntax, types, contracts, property tests, security rules) as computational resources permit.
Several strategies have been explored for embedding correctness checks directly into decoding.
While most prior work applies these techniques in program synthesis or code generation, rather
than in translation, they illustrate the design space of mechanisms that could transfer to the transla-
tion setting. They vary in strength of equivalence guarantees, as summarized in Table 3.

1. Grammar-constrained decoding. Decoding can be restricted so that every prefix forms a valid
AST or parse tree (Yin & Neubig, 2017). This ensures syntactic well-formedness but does not

15

Under review as a conference paper at ICLR 2026

capture semantic behavior. More formally: V¢ (a1.k,s) = 1 iff the prefix parses to a valid AST
fragment.

2. Type- and scope-aware generation. Lightweight type checkers can prune partial outputs that vi-
olate typing rules or variable scope (Miindler et al., 2025). This enforces local well-formedness;
full semantic equivalence is not guaranteed. More formally: V¢ (ay.x,s) = 1 iff no type or scope
violations are present in the partial AST.

3. Execution-based validation. During generation, partial snippets (e.g., the current line, block,
or function) are executed to steer decoding; candidates that violate expected behavior are
pruned (Lavon et al., 2025). More formally: for a completed subprogram v C ¢ (or a runnable
prefix with a harness), Ve (u,s) = 1 iff executing v under its local harness does not crash and
satisfies the local semantic checks attached to u.

4. Intermediate contract or test checking. Once a function or module is complete, it can be validated
against unit tests or pre/post-conditions (Zhou et al., 2025; Shetty et al., 2024). Passing such checks
implies behavioral equivalence with respect to the chosen test suite, though completeness depends
on specification coverage. More formally: for a completed component® u C ¢, Ve (u, s) = 1iff u
satisfies the specification (contracts or tests) associated with s.

5. Test generation and repair. Rather than relying on a fixed suite, additional tests can be gener-
ated or existing ones repaired to expand behavioral coverage and expose corner cases that would
otherwise remain untested (Gu et al., 2024; Schifer et al., 2023; Hu et al., 2025). More formally:
us(lter)

Ve(t,s) = 1iff ¢ passes the adaptively grown suite Z/{s(iter), where
or repaired tests until convergence.

includes newly generated

6. Verifier-in-the-loop. Symbolic execution, SMT solving, or interpreters can be invoked mid-
generation to prune infeasible continuations (Kalyan et al., 2018). This offers stronger local seman-
tic guarantees than tests alone, but remains constrained by verifier scalability (e.g., path explosion,
solver timeouts). More formally: V¢ (a1.;, s) = 1 iff the verifier does not refute feasibility of a;.x.

7. Constraint-solver guided. Here, a formal method such as a constraint logic programming system
(e.g., miniKanren) defines the search space itself, while the neural model guides exploration (Zhang
et al., 2018). Unlike verifier-in-the-loop pruning, correctness constraints are always enforced, yield-
ing provably consistent completions when constraints are satisfiable. More formally: the feasible set
is Te(s) ={t € T : t EC(s)}, and generation is restricted so that at every step k, Ve (a1.x,8) = 1
iff there exists some ¢ € T¢(s) with prefix a;..

Approach Top-level /O Internal Beyond Functional Domain Representative Work

Grammar-constrained decoding
Type- and scope-aware generation
Execution-based validation
Intermediate contract/test checking
Test generation and repair
Verifier-in-the-loop
Constraint-solver guided

Code Generation Yin & Neubig (2017)
Code Generation Miindler et al. (2025)
Code Generation Lavon et al. (2025)
Code Translation Zhou et al. (2025)
Code Translation Gu et al. (2024)
Program Synthesis Kalyan et al. (2018)
Program Synthesis Zhang et al. (2018)

1

0000200
0020000
e O00O00OO0

! Assume the property is explicitly modeled and compositionally enforced (incl. beyond-functional, e.g.,
constant-time, information-flow); otherwise mark as ©.
2 If the checks include contracts or properties that expose and validate internal invariants, interpret as ©.

Table 3: Coverage of verification-during-generation mechanisms across three correctness layers (top-
level I/0, internal contracts, beyond-functional). @ means can guarantee; © means contributes useful
evidence; O means not helpful.

B.2 OFFLINE VERIFICATION: VERIFICATION AFTER GENERATION

Verification after generation treats correctness as a filter over completed candidates. The model
proposes a set of translations, and verification then selects the subset satisfying C(s). This generate-
and-verify approach is conceptually simpler, requiring no modification of decoding, but shifts all
validation costs to the end. It is worth noting that verification after generation can be directly in-

SA completed component v C t is a syntactically closed subprogram (e.g., a function, class, or module)
generated during translation, such that v admits standalone semantic checks (contracts, unit tests, or type rules).

16

Under review as a conference paper at ICLR 2026

tegrated into training via a reinforcement learning loop, turning post-hoc checks into optimization
signals (Jha et al., 2025). Concretely, the model samples &k candidates ACLINN My(- | s); a verifier
executes tests or invokes formal checks to obtain pass/fail (or graded) feedback; these outcomes are
mapped to rewards r(t(“, s) that drive policy-gradient or actor-critic updates of My. This “gener-
ate — verify — reinforce” loop increases probability mass on specification-satisfying candidates
and downweights failure modes. In code region, unit-test/compilation signals have been used as
rewards in actor-critic/PPO fine-tuning, improving functional correctness (Le et al., 2022; Shojaee
et al., 2023). Beyond tests, deduction and counterexample-guided verification provide richer re-
ward shaping for program synthesis (Chen et al., 2020). Although many examples come from code
generation, the same principle applies to translation. For example, CoTran fine-tunes a translator
using compiler and symbolic-execution feedback as rewards to improve compilation and semantic
equivalence (Jana et al., 2023).

Although conceptually simpler than online verification, offline verification plays a crucial compo-
sitional closing role: it aggregates the guarantees established during generation and certifies that
the fully assembled program satisfies the remaining whole-program obligations (e.g., integration in-
variants, security policies, performance budgets). This stage is what turns a set of locally verified
components into a single, trustworthy system.

Mathematically, given a finite candidate set Tx(s) = {t(),... t(*)} sampled from My(- | s),
verification acts as a projection defined by a verifier Vo : T x S — {0,1}:

T(s) = {t € Til(s) : Ve(t,s) = 1}.

How to Enforce It. Offline verification is implemented by running checkers over fully generated
candidates and retaining only those that satisfy C(s). Existing work provides several mechanisms for
such post-hoc validation, ranging from learned execution filters to formal proofs and end-to-end test
suites. Some prior work on post-hoc verification arises in program synthesis and code generation,
rather than translation, but the same mechanisms are transferable:

8. Learning-Based Execution Filtering Learned verifiers rerank or filter based on program execution

outcomes (Ni et al., 2023). More formally: V¢ (t,s) = 1 iff the learned verifier, given s, ¢, and its
execution result R(t), classifies ¢ as satisfying C/(s).

9. End-to-end test filtering. Generated programs are executed against system- or repository-level test
suites that exercise the entire program behavior, filtering or repairing candidates based on global

pass/fail outcomes (Farrukh et al., 2025). More formally: V¢ (t,s) = 1 iff ¢ passes all tests in the

full-suite L{s(e%) , which covers cross-module and integration behaviors.

10. Verified transpilation. LLM-based translation can be paired with formal methods used to pro-
duce formal equivalence proofs, ensuring semantic preservation when proofs succeed (Bhatia et al.,
2024). A key challenge is the scalability of these solvers. For large code bases, it is likely that com-
positional verification will be required in order for post-hoc verification of global equivalence to be
proved, and LLMs may be required to produce artifacts for these proofs to be used in compositional
reasoning in addition to the translated code.

Approach Top-level /O Internal Beyond Functional = Domain Representative Work
Learning-based execution filtering © @] O Code Generation Ni et al. (2023)
End-to-end test filtering [] © O Code Translation Farrukh et al. (2025)
Verified transpilation [) (] o' Code Translation Bhatia et al. (2024)

! Assume the property is explicitly modeled and compositionally enforced (incl. beyond-functional, e.g.,
constant-time, information-flow); otherwise mark as ©.

Table 4: Coverage of verification-during-generation mechanisms across three correctness layers (top-

level I/0, internal contracts, beyond-functional). @ means can guarantee; © means contributes useful
evidence; O means not helpful.

B.3 COMPARATIVE IMPLICATIONS OF ONLINE VS. OFFLINE VERIFICATION

Our position is that any verification strategy must keep the translation+verification loop composi-
tional: local obligations must accumulate into whole-program guarantees. We therefore compare

17

Under review as a conference paper at ICLR 2026

online and offline verification primarily through this lens, showing how they occupy different points

on a spectrum of correctness-aware search, with distinct trade-offs in efficiency, flexibility, compo-

sitionality, alignment, and assurance.

« Efficiency. Online verification discards invalid prefixes early, pruning the search space before
components are composed. This keeps the translation workflow incremental: modules that fail
their local checks never pollute downstream reasoning. Offline verification defers filtering until
the end, which can waste effort on invalid aggregates and forces coarse-grained rollback when a
global check fails.

Flexibility. Offline verification can mix and match verifiers (cheap first, expensive later), but

without explicit decomposition it still evaluates monolithic artifacts. Online verification couples

decoding with the verifier, reducing tool flexibility yet giving the verifier precise hooks at sub-
component boundaries where local specs live.

* Compositionality. Online verification naturally enforces local correctness—syntax, typing,
contracts—before assembly, preventing cascading errors and enabling modular proofs to accu-
mulate. Offline verification must inspect whole programs unless the verifier itself is decomposed
(e.g., assume-guarantee reasoning); otherwise it loses the very granularity compositional transla-
tion requires.

* Alignment. Embedding checks during generation steers the model toward producing spec-
adherent pieces, reinforcing the habit of emitting components with explicit obligations. Offline
verification is a pure filter; it cannot teach the model to respect compositional structure unless its
signals are recycled into training.

» Assurance. Offline methods excel at heavyweight global obligations (symbolic execution, full-
language equivalence) once the compositional scaffold is assembled. Online methods stay
lightweight to preserve decoding throughput, but they guarantee that the artifacts handed to offline
verifiers already satisfy the local contracts they rely on.

USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models were used only for two purposes: (i) to polish writing and improve the
readability of the manuscript, and (ii) to assist with the retrieval and discovery of related work (e.g.,
helping to locate relevant papers). All conceptual ideas, experimental design, algorithm develop-
ment, mathematical derivations, and data analysis were conceived, implemented, and verified by the
authors. LLMs were not used to generate novel research content. Any automated assistance was
carefully reviewed and edited by the authors to ensure accuracy and originality, in accordance with
the ICLR 2026 guidelines on responsible LLM use.

18

	Introduction
	Correctness: Why is it such a big deal?
	When and Why does Test-Based Correctness Fail?
	Why is Defining Correctness Hard?
	A layered view of correctness

	Achieving Correctness: Why LLMs Alone Fall Short, and Candidate Enforcement Strategies
	Open Problems
	Conclusion
	Application Domains
	Achieving Correctness: Online & Offline Approaches
	Online Verification: Verification During Generation
	Offline Verification: Verification After Generation
	Comparative Implications of Online vs. Offline Verification

