
Algorithmic Collective Action in Recommender
Systems: Promoting Songs by Reordering Playlists

Joachim Baumann∗

University of Zurich
baumann@ifi.uzh.ch

Celestine Mendler-Dünner
ELLIS Institute, Tübingen

MPI for Intelligent Systems, Tübingen
Tübingen AI Center

celestine@tue.ellis.eu

Abstract

We investigate algorithmic collective action in transformer-based recommender
systems. Our use case is a collective of fans aiming to promote the visibility of an
underrepresented artist by strategically placing one of their songs in the existing
playlists they control. We introduce two easily implementable strategies to select
the position at which to insert the song and boost recommendations at test time.
The strategies exploit statistical properties of the learner to leverage discontinuities
in the recommendations, and the long-tail nature of song distributions. We evaluate
the efficacy of our strategies using a publicly available recommender system model
released by a major music streaming platform. Our findings reveal that even
small collectives (controlling less than 0.01% of the training data) can achieve
up to 40× more test time recommendations than songs with similar training set
occurrences, on average. Focusing on the externalities of the strategy, we find that
the recommendations of other songs are largely preserved, and the newly gained
recommendations are distributed across various artists. Together, our findings
demonstrate how carefully designed collective action strategies can be effective
while not necessarily being adversarial.

1 Introduction

In the ever-evolving landscape of music discovery, the challenge of accessing and sifting through the
overwhelming number of tracks released daily has become increasingly difficult. This has resulted
in a strong dependence on platforms like Spotify, Deezer, and Apple Music, which distribute and
promote music through algorithmic song recommendations. These systems rely on historical data to
learn user preferences and predict future content consumption [21, 51, 34, 7, 6].

It has been widely documented that music recommendation systems suffer from popularity bias as
they tend to concentrate recommendation exposure on a limited fraction of artists, often overlooking
new and emerging talent [35, 4, 2, 15, 9, 28]. As the success and visibility of artists are deeply
influenced by the algorithms of these platforms, this can lead to a considerable imbalance in the
music industry [1, 41] and reinforce existing inequalities [50]. Thus, artists have started to fight
for more transparency and fairer payments from online streaming services. The “Justice at Spotify”
campaign, launched by the Union of Musicians and Allied Workers [54], has been signed by more
than 28,000 artists. At the same time, the International Society for Music Information Retrieval
has been arguing for promoting the discovery of less popular artists by recommending ‘long-tail’
items [3], as have other researchers [11, 53, 16, 40].

∗Work completed while at the Max-Planck Institute for Intelligent Systems, Tübingen.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Figure 1: By strategically choosing the position at which to insert the target song in a playlist,
collectives can achieve a disproportionally high recommendation frequency relative to training set
occurrences, compared to naturally occurring songs. Amplification of one corresponds to matching
frequencies in train and test.

In this work, we explore algorithmic collective action as an alternative means for emerging artists
to gain exposure in machine learning-powered recommender systems by mobilizing their fan base.
Algorithmic collective action [24] refers to the coordinated effort of a group of platform participants
who strategically report the part of the training data they control to influence prediction outcomes.
Our work is situated in an emerging literature that recognizes data as a powerful lever for users to
promote their interests on digital platforms [57, 24].

1.1 Our work

We study algorithmic collective action in transformer-based recommender systems. As a case study,
we consider the task of automatic playlist continuation (APC), which is at the heart of many music
streaming services. APC models take a seed playlist (an ordered list of unique songs) as input and
recommend songs to follow. They are trained on the universe of playlists stored on the platform. The
collective consists of platform users who can modify the subset of playlists they own. The goal of the
collective is to promote a less popular artist by increasing the recommendations of their songs at test
time. To this end, we consider collective action strategies where participants of the collective agree
on a target song s∗ to strategically place in their playlists.

We motivate and discuss two strategies to choose the position of s∗ within any given playlist. Both
strategies are derived from a statistical optimality assumption on the recommender and do not require
knowledge of the specifics of the model architecture or the model weights. Instead, they use that the
model is trained to fit sequential patterns in existing data and build on aggregate song statistics that are
feasible to gather from public information. We empirically test our strategies using an industry-scale
APC model that has been deployed to provide recommendations for millions of users on Deezer—one
of the biggest streaming platforms in the world. To train the model, we use the Spotify Million Playlist
Dataset, treating each playlist as a user and randomly sampling a fraction to compose the collective.

We find that by strategically choosing the position of the target song, collectives can achieve significant
over-representation at test time, see Figure 1 for a teaser. We experiment with collectives composed of
a random sample of users owning between 0.001% and 2% of the training data instances. Interestingly,
even tiny user collectives, controlling as few as 60 playlists, can achieve an amplification of up to
25×, referring to the song’s recommendation frequency relative to the training frequency. This is
40× more than an average song occurring at the same frequency in the training data. In contrast,
placing the song in a fixed position in every playlist is largely ineffective.

Our strategy satisfies a strict authenticity constraint and thus preserves user experience at training time
by design. Interestingly, we find that also at test time recommendations are largely preserved; not only
on aggregate but also for members of the collective. As a consequence, the strategies come with small
externalities for users, and at the same time, they also have a relatively small effect on model perfor-
mance. For large collectives controlling > 3% of the playlists, the effect corresponds to every target

2



song recommendation replacing an otherwise relevant song in less than 15% of the cases, leaving other
recommendations unaltered. Thus, in the hypothetical case where the promoted song is indeed rele-
vant, this could lead to an overall gain in more than 85% of the cases, even though the total number of
test-time recommendations is fixed. Lastly, we show that the newly gained recommendations are taken
from artists of diverse popularity without any indication that a specific artist suffers disproportionally.

Taken together, our work demonstrates a first example of collective action in sequential recommender
systems. We show how collective action goals can be achieved while largely preserving service
quality and user experience. The feasibility of such strategies raises many interesting questions,
challenges, and opportunities for future work.

1.2 Related work

The fairness of recommendation systems on online platforms remains a pressing issue for both content
consumers and producers [10, 32, 19, 26]—see Zehlike et al. [61] for a detailed overview. Several
recent works study individual strategic users attempting to influence their own recommendations [5,
25, 12, 13]. Other works consider adding antidote data to fight polarization and unfairness [42, 18].

Beyond recommender systems, a related line of work centers the users in the study of machine
learning systems. Vincent and Hecht [55] call for conscious data contribution, Vincent et al. [56]
discuss data strikes, and Vincent et al. [57] emphasize the potential of data levers as a means to gain
back power over platforms. Hardt et al. [24] introduce the framework of algorithmic collective action
for formally studying coordinated strategies of users against algorithmic systems. They empirically
demonstrate the effectiveness of collective action in correlating a signal function with a target label.
Sigg et al. [46] inspect collective action at inference time in combinatorial systems. Complementing
these findings, we demonstrate that collective action can be effective even without control over
samples at inference time. We highlight a so far understudied dimension of algorithmic collective
action by discussing and illuminating the externalities of algorithmic collective action strategies.

At a technical level, our findings most closely relate to shilling attacks, or more broadly, data
poisoning attacks [c.f., 49]. Shilling attacks are usually realized by injecting fake user profiles and
ratings in order to push the predictions of some targeted items [45, 47]. Due to the fraudulent nature of
these attacks, there are little design restrictions on the profiles, and they often come with considerable
negative effects for the firm [38, 20]. Data poisoning attacks in recommender systems predominantly
focus on collaborative filtering-based models, with a few exceptions; Zhang et al. [62] propose a
reinforcement learning-based framework to promote a target item, Yue et al. [58] provide a solution to
extract a black-box model’s weights through API queries to then generate fake users for promoting an
item, and Yue et al. [59] propose injecting fake items into seemingly real item sequences (at inference
time and without retraining) with a gradient-guided algorithm, requiring full access to the model
weights. Taking the perspective of collective action, we focus on easy-to-implement strategies that
require minimal knowledge of the model and operate under an authenticity constraint to preserve the
utility of altered playlists while seamlessly integrating into natural interaction with the platform.

Further, our work pertains to a broader scholarly literature interested in improving labor conditions
for gig workers on digital platforms [e.g., 29, 52], optimizing long-term social welfare in online
systems [33], and understanding dynamics in digital marketplaces [27]. The type of strategic data
modification we consider falls under the umbrella of adversarial feature feedback loops [39]. Taking
advantage of collective strategies to change model outcomes more broadly has been studied in tabular
data [17], computer vision [43], and recently in generative AI [44].

2 Preliminaries on automatic playlist continuation

We use automatic playlist continuation (APC) as a running example of a sequential recommendation
task. APC forms the backbone of major streaming platforms, such as Spotify and Deezer. To formally
define the recommendation task, let S = {s1, ..., sn} denote the universe of songs, where n ≥ 1
denotes the number of unique songs. A playlist p is composed of an ordered list of songs selected from
S without replacement. Given a seed playlist p, the firm’s goal is to predict follow-up songs that the
user likely listens to. We consider a top-K recommender system that outputs a personalized ordered
list of K ≥ 1 songs. We write RecK(p) for the set of K songs recommended for a seed playlist p.

3



0.0 0.2 0.4 0.6 0.8 1.0

Cumulative share of artists

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
sh

ar
e

of
re

co
m

m
en

d
at

io
n

s

Gini Coefficient: 0.87

Lorenz Curve of Recommendations

Line of Equality

0 10000 20000 30000 40000

Frequency in Spotify million playlist dataset

101

103

105

N
u

m
b

er
of

so
n

gs
(l

og
sc

al
e)

Figure 2: Imbalance in recommendation distribution. (left) The Lorenz curve shows that 80% of
all recommendations are concentrated among just 10% of artists. (right) The Spotify track frequency
distribution shows the long tail of song frequencies in user-generated playlists: close to 50% of tracks
in playlists occur only once.

2.1 Transformer-based recommender

Over the past years, most large platforms have shifted from relying on collaborative filtering-based
models for APC to building deep learning-based recommenders that account for sequential and
session-based information [21, 51, 34]. In this work, we focus on transformer-based recommender
systems that posit the following structure: Each song s is mapped to a song embedding vector
hs = ϕ(s), where ϕ denotes the embedding function. Each playlist p = [s1, s2, ..., sL] is mapped
to an embedding vector hp by aggregating the embeddings of the songs contained in the playlist as
hp = g(hs1 , hs2 , ..., hsL), where g is a sequence-aware attention function. We assume all playlists
have length L smaller than the attention window for the purpose of exposition. At inference time, the
recommendation of the next K songs for a given playlist p is determined by evaluating the similarity
between the playlist seed p and all potential follow up songs s ∈ S \ p as

SIM(s, p) := ⟨hs, hp⟩. (1)

Then, the K songs with the largest similarity value are recommended in descending order of similarity.
We denote the set of recommended songs as

RecK(p) = argmax
S′⊆S\p:|S′|=K

∑
s∈S′

SIM(s, p). (2)

The embeddings ϕ and the attention function g are parameterized by neural networks. They are trained
from existing user-generated playlists in a self-supervised manner by repeatedly splitting playlists
into a seed context and a target sequence and employing a contrastive loss function for training.

Statistical abstraction. We do not assume the collective has knowledge of the parameters of either
ϕ or g. Instead, the design of the strategy builds on the assumption that sequential, transformer-based
models are trained such that SIM(s, p) is large for songs s that frequently follow context p in the
training data, and small otherwise. This approximately is robust to nuances in hyperparameter
choices or architecture design and applies to any sufficiently expressive and well trained model.

2.2 Typical imbalances in recommendations

On today’s music streaming platforms, a small number of artists receive the vast majority of
recommendations, while the majority receive few or none. This imbalance is illustrated by the
Lorenz curve in Figure 2, which is based on recommendations derived from the Deezer model on
the Spotify MPD dataset (see Section 4). The Gini coefficient measuring inequality corresponds
to 0.87. Streaming and radio statistics reveal an even more severe imbalance: the top 1% of newly
released songs receive 99.99% of radio plays and 90% of streams go to just 1% of artists [9].

Considering Figure 1 we can also see that songs with high prevalence in the training data are
recommended disproportionately often at test time compared to their training set frequency (referring
to the slope of ∼1.8 of the blue point cloud). This gain in exposure through the recommender
comes at the expense of many low-frequency songs that receive no recommendations at test time,

4



further amplifying existing imbalances. Considering Spotify’s substantial power to influence song
consumption among platform users [1], withholding initial exposure for these songs limits their
potential to reach a broader audience, significantly impacting an artist’s career. In this work, we focus
on collective efforts to boost recommendations for one of these underrepresented songs.

3 Algorithmic collective action for promoting songs

We build on the framework of Hardt et al. [24] and consider collectives that are composed of a
fraction α ∈ (0, 1] of randomly sampled users on the platform. We assume each user controls a
single playlist. Members of the collective can strategically manipulate their playlists. We use µ(·) to
describe the strategy of mapping an original playlist to a modified playlist.

Success and amplification. Let P0 denote the distribution over playlists. The goal of the collective
is to increase the exposure of a target song s∗ for a randomly sampled playlist from P0 at test time.
We measure the success of collective action as

S(α) := Ep∼P0
1 [s∗ ∈ RecK(p)] . (3)

The recommender system RecK is trained on a partially manipulated training dataset D, composed
of N samples from P0, among which αN have been transformed under µ.

We are particularly interested in measuring the effectiveness of a strategy relative to the effort of
the collective. Therefore, we define amplification (Amp) as the fraction of newly gained target
recommendations at test time divided by the fraction of manipulated playlists in the training set:

Amp(α) =
1

α
(S(α)− S(0)) (4)

An amplification of 0 means that the strategy is ineffective, an amplification of 1 means that the
song frequency in the training set is proportionally represented in the model’s predictions, and an
amplification larger than 1 means that collective action achieves a disproportionate influence on the
recommender. In the following, we choose a song s∗ that does not currently appear in the training
data, hence S(0) = 0.

3.1 Authenticity constraint

Participants of the collective are users of the platform. We design collective action strategies under
the following authenticity constraint, not to compromise user experience:

Definition 1 (Authenticity constraint). We say a strategy µ : p→ p′ is authentic iff the Levenshtein
distance between p and p′ = µ(p) satisfies Lev(p, p′) ≤ 1 for any p.

The Levhenstein distance [30], also known as edit distance in information theory, counts the number
of operations needed to transform one sequence into another. The song insertion strategy we propose
in this work is one concrete instantiation of µ that satisfies this constraint. More specifically, our
strategy consists of inserting an agreed-upon target song s∗ at a specific position in every playlist
p. In contrast, existing adversarial strategies typically perform larger modifications to playlists and
would not satisfy this constraint [62, 58].

3.2 Algorithmic lever

The algorithmic lever of the collective is to strategically choose, for each playlist, the position i∗ at
which to insert the target song. Under our probabilistic assumption about the learner, strategically
placing s∗ after p means that the similarity between p and s∗ is increased. Thus, by choosing the
index i∗, the collective targets context p−i∗ referring to the sequence of songs sj in p up to index
j = i. Recall that the collective aims to be among the top K songs with high frequency over a
randomly sampled context p at test time. Our strategies exploit two different algorithmic levers
towards this goal: Indirectly targeting Clusters of similar contexts (InClust) or Directly targeting
Low-Frequency contexts (DirLoF). Pseudocode for the two strategies can be found in Figure 3.

5



Strategies: (a) InClust and (b) DirLoF

Input: s∗, collectively owned playlists D∗ = {p1, p2, ..., pn} ⊆ D
1: Coordination step:
2: (a) rs ← for every s in D∗ pool information to count song frequencies in D∗.
3: (b) qs ← for every s in D∗ estimate training set song frequency by gathering side information.
4: for all playlists p ∈ D∗ do
5: Define anchor s0: find song s0 ∈ p such that (a) rs0 ≥ rs ∀s ∈ p or (b) qs0 ≤ qs ∀s ∈ p
6: Insert target song: insert s∗ (a) before s0 or (b) after s0
7: Store modified playlist
8: end for

!"
!∗

$%∗&'… …

)%∗&

$*…

)%∗+

(a) InClust

!"
!∗

… %&… %'∗()%'∗*+

,'∗* ,'∗(

(b) DirLoF

Figure 3: Song insertion strategies, pseudocode and illustration.

Concentrating effort. Inclusion in the set RecK(p) leads to a song’s recommendation for context
p at test time. In turn, being ranked in position K + 1 does not yield any recommendations. Instead,
the probability mass in the tails is reallocated to the top K songs at test time. This discontinuity can
be exploited by the members of the collective to target specific contexts in a coordinated fashion to
increase the likelihood of inclusion. Compared to random song placement, the collective can increase
the mass on a particular context by a factor of L. The InClust strategy implements a way for
selecting contexts to target, projecting this intuition from the non-parametric setting to the embedding
space of the recommender. Namely, it systematically places s∗ directly before each occurrence of
a popular song s0. In that way, it targets the region in the context embedding space around hs0 in
a coordinated fashion. To implement this strategy, the collective repeatedly determines the most
frequent song in their playlists, places s∗ before every occurrence of this song, and then repeats this
with the remaining playlists until all of them are used.

Strategically exploiting overrepresentation. An alternative lever the collective has available is
to strategically target contexts that are overrepresented among the playlists the collective controls.
Meaning that the frequency of the context among the playlists owned by the collective is larger than
the overall frequency in the training data due to finite sample artifacts. The DirLoF strategy aims to
identify such contexts by targeting infrequently occurring songs and exploiting the long-tail nature
of the overall song frequency distribution (see Figure 2). The core intuition is that if they manage
to target low-frequency contexts, a single song placement might be sufficient to overpower existing
signals. To identify low-frequency contexts, the collective uses the frequency of the last song as a
proxy. For each playlist, it selects the anchor songs s0 with the smallest overall song frequency and
places s∗ right after s0.

3.3 Obtaining song statistics

The InClust strategy targets high-frequency contexts, whereas the DirLoF strategy targets low-
frequency contexts. However, there is an important difference when implementing the strategies.
InClust can be implemented from only statistics obtained from the songs in playlists the collective
owns; all it requires is participants to set up infrastructure for pooling this information, either through
an app, an online service, or other means. In contrast, to effectively implement the DirLoF strategy,
the collective needs statistics about the full training data to identify the songs that are least popular
overall. However, they typically do not have direct access to this information. Instead, as a proxy,
they can leverage publicly available user-generated playlists, which are often accessible through
official APIs (e.g., Spotify). Additionally, scraping external data sources can provide supplementary
information. We evaluate the use of scraped song streams in Section 4.2.

6



10−5 10−4 10−3 10−2

α (log scale)

0

5

10

15

20

25

30

35

A
m

p
lifi

ca
ti

on

Collective Strategy
Hybrid (full information)

DirLoF (full information)

InClust

Random

AtTheEnd

Figure 4: Success of our collective action strategies. For tiny collectives DirLoF achieves an
amplification of up to 25×while uncoordinated strategies (Random, AtTheEnd) are mostly ineffective.
For larger collectives, InClust outperforms DirLoF. Amplification significantly exceeds 1, implying
a disproportional test-time effect due to targeted song placement.

4 Empirical evaluation

We evaluate our collective action strategies against a public version of Deezer’s transformers-based
APC solution that “has been deployed to all users” [7, p. 472]. To train the model, we use the Spotify
Million Playlist Dataset (MPD), which is currently the largest public dataset for APC [14]. It contains
one million playlists generated by US Spotify users between 2010 and 2017, with an average length
of 66.35 tracks from nearly 300,000 unique artists.

Model training and evaluation. We use the standard methodologies used in APC for model training
and testing.2 We start by randomly selecting 20,000 playlists to build a test and validation set of equal
sizes. The remaining 980,000 playlists are used for training the model. The collective intervenes
by strategically modifying an α fraction of the playlists composing the training and validation set.
We consider collectives of size α ∈ [0.00001, 0.02] which corresponds to 10 to 20000 playlists.
For evaluation on the test set, every playlist p is split into a seed context and a masked end. The
length of the seed context is chosen randomly in [1, 10] for each playlist and models are evaluated by
comparing the model’s recommendations based on the seed playlist to the masked ground truth. We
employ five-fold cross-validation, using different random seeds for sampling the playlists designated
for training, validation, and testing, as well as for selecting the subset controlled by the collective.
We use bootstrapped 95% confidence intervals (CI) over folds when reporting results.

Baselines. We consider four baseline strategies to compare with our collective strategies, each
performing the same number of target song insertions. The Random strategy inserts s∗ at a Random
position in the playlist, Insert@i inserts the song always at position i in every playlist, the AtTheEnd
strategy places s∗ as the last song of the playlist, and Random@i-j inserts s∗ at a random position
between indices i and j. Unlike our collective strategies, these baselines do not require coordination
among participants beyond the shared goal of promoting s∗.

4.1 Success of collective action

We start by evaluating the success of the proposed strategies, assuming full information about song
frequencies in the training set to illustrate the potential. In Figure 4, we plot the amplification for
different α. In particular, we observe that strategic song placement allows very small collectives
(α ≤ 0.1%) to be successful, whereas Random or fixed placement of s∗ is ineffective.

For α = 0.025%, the DirLoF strategy achieves amplification of up to 25. In contrast to an average
song that naturally occurs in 0.025% of the playlists, the number of recommendations is 40× larger,
as these low-frequency songs are typically ignored by the recommender. This suggests that collective
action could make a tremendous difference for these artists: suppose an artist’s song is streamed

2The code is available at https://github.com/joebaumann/recsys-collectiveaction.

7

https://github.com/joebaumann/recsys-collectiveaction


10−4 10−3 10−2

α (log scale)

0

25

50

75

100

A
m

p
in

%
of

A
m

p
w

it
h

fu
ll

in
fo

rm
at

io
n

Collective Strategy
Full information

10% train data

1% train data

scraped stream counts

Figure 5: Information bottleneck. The empirical amplification of the DirLoF strategy decreases
with worse song statistics but scraped song streaming counts can serve as a practical solution.

10,000 times, yielding a revenue of $40 at a royalty rate of $0.004 per stream [31]; an amplification
of 25 would hypothetically increase this revenue to $1, 000. While this example is purely illustrative
(as actual royalties depend on the platform and payment model used), it emphasizes the link between
recommendations and potential revenue.

For collective sizes of α ≥ 0.1% the InClust starts being effective, as it has enough mass to
effectively compete with existing signals associated with a cluster of similar context embeddings. As
the strategy can target several such clusters at the same time, amplification increases with α though
with diminishing returns, achieving Amp = 10 for α ≈ 2%. From Figure 1, we can see that in the
regime of 2% training data frequency, a typical song enjoys an amplification of 1.8.

We also observe that the success of the random strategy increases with the collective size. This implies
that even minimal coordination, in which members agree to all insert the same song s∗, independent
of the playlist they own, can already lead to significant amplification. Amplification values for the
other baselines inserting s∗ at a fixed position are all close to 0 (see Table 1 in Appendix C.4).

Robustness to hyperparameters. Our strategies are designed based on a statistical intuition
of sequential generation and should not be sensitive to specifics of the model architecture. We
demonstrate the robustness with additional experiments where we vary the hyperparameters of the
model (see Table 2 in Appendix C.5). However, the design of our strategies relies on the assumption
that the model approximates the conditional probabilities in the training data sufficiently well.
Accordingly, the effectiveness of the strategy decreases if model training is stopped early (see Table 3).

Hybrid strategy. Building on these observations, we construct a hybrid strategy that interleaves the
two approaches by first using InClust to target indirect anchors that appear at least λ times in the
collective and then deviates to DirLoF for playlists where no such anchor is present (we use λ = 10).
This corresponds to the dashed line in Figure 4. We come back to this strategy in Section 4.3.

4.2 DirLoF strategy with approximate song statistics

The DirLoF strategy critically relies on training data song frequency estimates to determine the
low-frequency anchor songs. We investigate the strategy’s success with partially available song
information in Figure 5. We find that if a collective of size α = 1% has access to 1% of the remaining
training data they do not control, they can already achieve ≈ 30% of the amplification in the full
information setting, with 10% of the data, it is > 50% of the achievable amplification.

By default, user-generated playlists on streaming platforms are often publicly accessible, enabling
researchers to gather song frequency data through API calls. However, the amount of training data
that can be aggregated is limited by the platform’s API rate limits. Alternatively, proxy statistics can
be used to increase the fraction of songs for which estimates are available. To illustrate the feasibility
of this approach, we implemented a scraper to obtain current stream counts from Spotify. Although
these counts are visible in the Spotify browser version, they are not accessible through the Spotify
API. The scraped data reflects song popularity as of 2024, which is not ideal given our experiment
relies on the much older Spotify MPD dataset (collected between 2010 and 2017). Nonetheless, these
counts serve as effective proxies, as Figure 5 impressively shows.

8



0.00 0.01 0.02 0.03

α

−0.01

0.00

0.01

P
er

fo
rm

an
ce

lo
ss

NDCG

0.00 0.01 0.02 0.03

α

−0.005

0.000

0.005

R-precision

0.00 0.01 0.02 0.03

α

−1

0

#C

Random

Hybrid

Random (s∗ relevant)

Hybrid (s∗ relevant)

Conservative adversarial baseline (Random)

Conservative adversarial baseline (Hybrid)

Figure 6: Effect of algorithmic collective action on recommendation performance. Performance loss
relative to training on clean data for the hybrid / random strategies (solid lines), a conservative adver-
sarial baseline (dashed lines), and an optimistic scenario where s∗ is treated as relevant (dotted lines).

Despite the temporal gap, a collective of size α = 1% can achieve over 85% of the amplification
achievable in a full-information setting simply by using 2024 stream data to approximate past
popularity levels. Even a smaller collective of α = 0.1% can reach about 50% of the amplification
seen in the full-information scenario. In practice, scraped stream counts are likely to be more accurate
proxies, as models are typically trained on more recent data. However, within the scope of our study,
it remains impossible to access historical stream counts that would reflect popularity as of the time
the playlists were originally generated. Thus our proof of concept should be seen as a lower bound.

4.3 Internalities and externalities of algorithmic collective action

We now inspect the effect of our strategies on other participants in the system, including the firm,
other artists, and the members of the collective. For this investigation, we focus on the hybrid strategy.

First, we gauge the impact of collective action on the firm. This helps us understand the overall
quality degradation of the service and the incentives of the firm to protect against collective action.
We compare the performance under a recommender trained on the clean data and a recommender
trained on the manipulated data. Figure 6 shows the corresponding loss in performance due to
collective action for three different evaluation metrics. We find that our strategy (solid lines) only
affects the recommender’s performance marginally. We also show a conservative adversarial baseline
(dashed lines), which simulates a scenario where successful collective action results in the first
relevant item in playlist recommendations being replaced by the target song while leaving other
recommendations unaltered. The considerably larger performance loss of this baseline indicates
that our strategy only rarely affects relevant songs. Finally, as a thought experiment, consider s∗
as a relevant recommendation (dotted lines). Then, collective action even enhances the system’s
performance. This reference is meant to illustrate an optimistic scenario where collective action helps
the recommender detect underrepresented but emerging and popular artists.

Second, we inspect the effect of collective action on other artists. To this end, Figure 7 depicts
the change in recommendations for individual songs of different popularity. Songs are binned by
frequency and the bars indicate variation across songs. The star shows the target song s∗, and the
corresponding increase in recommendations. We see that recommendations replaced by the target
song seem to span songs of all popularity levels. In particular, our strategy does not harm specific
songs or artists disproportionally and, as intended, has by far the largest effect on the targeted song s∗.

Finally, we focus on the experience for participants who listen to the playlists. At training time
our strategies are designed to only ask for minimal modifications with the goal to preserve user
experience for members of the collective. We envision this to be an important factor for incentivizing
participation in practice. Non-participating individuals are not affected at this stage. At test time, we
find that user recommendations are largely preserved for both participating and non-participating
individuals. More precisely, participating in collective action does not deteriorate the fraction of
relevant songs participants get recommended, i.e., performance remains equivalent across all three
recommendation quality metrics (see Figure 13 in Appendix C.6).

9



0.0 α 0.02 0.03 0.04

Song frequency in train

−200

0

200

400

600

∆
R

Collectively promoted (Hybrid)

Other songs

Figure 7: Impact of collective action on other songs. We use α = 1% to obtain an upper bound on
the effect. ∆R denotes the change in the number of recommendations for a song due to collective
action. Songs are sorted by their training set frequency and aggregated into 50 evenly spaced bins,
whose means are represented by the blue dots with 95% CI.

5 Conclusion

This work studies how collective action strategies can empower participants to exert a targeted
influence on platform-deployed algorithms. By experimenting with an industry-scale transformer-
based APC model, we demonstrate how strategically inserting a single song within randomly sampled
playlists in the training data, can effectively increase recommendations of that song. Intriguingly, we
find that the strategy only minimally interferes with service quality, and the recommendations for
other users on the platform are largely preserved.

The proposed concept of participating in collective action to steer recommender system outcomes is
grounded in the idea that users on online platforms should leave their digital traces more consciously.
Thereby, their consumption behavior functions as a lever to reclaim some control over the data that
platforms use to predict and recommend future content. Our emphasis on authenticity stands in
clear contrast to adversarial machine learning techniques, which are often artificially designed and
sometimes malicious in intent.

While altering a single playlist alone has little impact, the true power of algorithmic collective action
lies in mobilizing a sufficiently large number of participants around a shared objective. This allows
underrepresented artists to gain visibility through coordination. In our case, coordination corresponds
to agreeing on a target song and an insertion procedure. The actual implementation of the strategy
is possible with very limited technical skills and knowledge of the algorithm. We demonstrate how
information for setting the parameters of the strategy can effectively be gathered using web scraping
techniques. What we leave for future work is the actual implementation of an app to orchestrate
collective action and share all the relevant information with the participants.

Our work suggests a widely unexplored design space for effective collective action strategies that
differ from typical adversarial data poisoning attacks [c.f. 49, 62, 58, 59]. They can offer a powerful
data lever to counter existing power imbalances [56, 57], and a community-centric approach to partic-
ipatory AI [8]. Thus, understanding the role of economic power [23, 22], formalizing incentives [37],
as well as quantifying long-term payoffs, dynamics, and equilibria, under collective action promises
to be a fruitful direction for future work.

6 Limitations and potential for misuse

Grounding algorithmic collective action means identifying both its opportunities and challenges. The
power that arises from gaining control over the learning algorithm through collective action can also
be abused by individuals controlling a substantial number of playlists. Instead of collective goals,
these individuals could leverage similar methods to pursue individualistic goals, creating a different
incentive structure and potentially posing a risk to the system. Similarly, popular artists could use
our strategy to gain additional exposure and reinforce inequalities among artists. Thus, incentive
structures will crucially determine the desirability of the resulting market outcome. Designing
larger-scale collective action strategies that promote fairness and equity on online platforms as well
as mechanisms that disincentivize malicious use remains a crucial open question.

10



Acknowledgements

We would like to thank Moritz Hardt for many insightful and formative discussions throughout the
course of this work. We would also like to thank Mila Gorecki, Ricardo Dominguez-Olmedo, Ana-
Andreea Stoica and André Cruz for invaluable feedback on the manuscript, and Olawale Salaudeen,
Florian Dorner, Stefania Ionescu and Tijana Zrnic for helpful feedback on earlier versions of this
work. Celestine Mendler-Dünner acknowledges financial support from the Hector foundation.

References
[1] L. Aguiar and J. Waldfogel. Platforms, power, and promotion: Evidence from spotify playlists.

The Journal of Industrial Economics, 69(3):653–691, 2021.

[2] C. Bauer. Allowing for equal opportunities for artists in music recommendation. In Proceedings
of the 1st Workshop on Human-Centric Music Information Research Systems, pages 16–18,
2019.

[3] C. Bauer. Report on the ISMIR 2020 special session: how do we help artists? ACM SIGIR
Forum, 54(2), 2020.

[4] C. Bauer, M. Kholodylo, and C. Strauss. Music recommender systems: challenges and opportu-
nities for non-superstar artists. In 30th Bled eConference, pages 21–32, 2017.

[5] O. Ben-Porat and M. Tennenholtz. A game-theoretic approach to recommendation systems with
strategic content providers. In Advances in Neural Information Processing Systems, volume 31,
2018.

[6] W. Bendada, T. Bontempelli, M. Morlon, B. Chapus, T. Cador, T. Bouabça, and G. Salha-Galvan.
Track Mix Generation on Music Streaming Services Using Transformers. In Proceedings of the
17th ACM Conference on Recommender Systems, pages 112–115, 2023.

[7] W. Bendada, G. Salha-Galvan, T. Bouabça, and T. Cazenave. A Scalable Framework for
Automatic Playlist Continuation on Music Streaming Services. In International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 464–474, 2023.

[8] A. Birhane, W. Isaac, V. Prabhakaran, M. Diaz, M. C. Elish, I. Gabriel, and S. Mohamed. Power
to the people? opportunities and challenges for participatory ai. In ACM Conference on Equity
and Access in Algorithms, Mechanisms, and Optimization, 2022.

[9] E. Blake. Data shows 90 percent of streams go to the top 1 percent of artists, 2020. https:
//www.rollingstone.com/pro/news/top-1-percent-streaming-1055005.

[10] R. Burke. Multisided fairness for recommendation. ArXiv preprint arXiv:1707.00093, 2017.

[11] Ò. Celma. Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in
the Digital Music Space. Springer Berlin, Heidelberg, 2010.

[12] S. H. Cen, A. Ilyas, J. Allen, H. Li, D. Rand, and A. Madry. Measuring strategization in recom-
mendation: Users adapt their behavior to shape future content. Arxiv preprint arXiv:2405.05596,
2023.

[13] S. H. Cen, A. Ilyas, and A. Madry. User strategization and trustworthy algorithms. ArXiv
preprint arXiv:2312.17666, 2023.

[14] C.-W. Chen, P. Lamere, M. Schedl, and H. Zamani. Recsys Challenge 2018: Automatic Music
Playlist Continuation. In ACM Conference on Recommender Systems, pages 527–528, 2018.

[15] M. P. Coelho and J. Z. Mendes. Digital music and the “death of the long tail”. Journal of
Business Research, 101:454–460, 2019.

[16] S. Craw, B. Horsburgh, and S. Massie. Music recommendation: Audio neighbourhoods to
discover music in the long tail. In Case-Based Reasoning Research and Development, pages
73–87. Springer International Publishing, 2015.

11

https://www.rollingstone.com/pro/news/top-1-percent-streaming-1055005
https://www.rollingstone.com/pro/news/top-1-percent-streaming-1055005


[17] E. Creager and R. Zemel. Online algorithmic recourse by collective action. ICML Workshop on
Algorithmic Recourse, 2023.

[18] M. Fang, J. Liu, M. Momma, and Y. Sun. Fairroad: Achieving fairness for recommender
systems with optimized antidote data. In ACM Symposium on Access Control Models and
Technologies, page 173–184, 2022.

[19] A. Ferraro, X. Serra, and C. Bauer. What is fair? exploring the artists’ perspective on the
fairness of music streaming platforms. In Human-Computer Interaction, volume 12933, pages
562–584, 2021.

[20] I. Gunes, C. Kaleli, A. Bilge, and H. Polat. Shilling attacks against recommender systems: a
comprehensive survey. Artificial Intelligence Review, 42:767–799, 2014.

[21] C. Hansen, C. Hansen, L. Maystre, R. Mehrotra, B. Brost, F. Tomasi, and M. Lalmas. Contextual
and sequential user embeddings for large-scale music recommendation. In ACM Conference on
Recommender Systems, page 53–62, 2020.

[22] M. Hardt and C. Mendler-Dünner. Performative prediction: Past and future. ArXiv preprint
arXiv:2310.16608, 2023.

[23] M. Hardt, M. Jagadeesan, and C. Mendler-Dünner. Performative Power. In Advances in Neural
Information Processing Systems, 2022.

[24] M. Hardt, E. Mazumdar, C. Mendler-Dünner, and T. Zrnic. Algorithmic Collective Action
in Machine Learning. In International Conference on Machine Learning, volume 202, pages
12570–12586, 2023.

[25] A. Haupt, D. Hadfield-Menell, and C. Podimata. Recommending to strategic users. ArXiv
preprint arXiv:2302.06559, 2023.

[26] S. Ionescu, A. Hannak, and N. Pagan. Group fairness for content creators: the role of human
and algorithmic biases under popularity-based recommendations. In ACM Conference on
Recommender Systems, page 863–870, 2023.

[27] M. Jagadeesan, M. I. Jordan, and N. Haghtalab. Competition, alignment, and equilibria in
digital marketplaces. AAAI Conference on Artificial Intelligence, 37(5):5689–5696, 2023.

[28] D. Jannach, L. Lerche, F. Gedikli, and G. Bonnin. What recommenders recommend – an
analysis of accuracy, popularity, and sales diversity effects. In User Modeling, Adaptation, and
Personalization, pages 25–37. Springer Berlin Heidelberg, 2013.

[29] M. H. Jarrahi and W. Sutherland. Algorithmic management and algorithmic competencies:
Understanding and appropriating algorithms in gig work. In Information in Contemporary
Society, pages 578–589, 2019.

[30] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet
Physics Doklady, 10:707, 1966.

[31] L. Marshall. ‘let’s keep music special. f—spotify’: on-demand streaming and the controversy
over artist royalties. Creative Industries Journal, 8(2):177–189, 2015.

[32] R. Mehrotra, J. McInerney, H. Bouchard, M. Lalmas, and F. Diaz. Towards a fair market-
place: Counterfactual evaluation of the trade-off between relevance, fairness & satisfaction in
recommendation systems. In ACM International Conference on Information and Knowledge
Management, page 2243–2251, 2018.

[33] M. Mladenov, E. Creager, O. Ben-Porat, K. Swersky, R. Zemel, and C. Boutilier. Optimizing
long-term social welfare in recommender systems: a constrained matching approach. In
International Conference on Machine Learning, 2020.

[34] D. Moor, Y. Yuan, R. Mehrotra, Z. Dai, and M. Lalmas. Exploiting sequential music preferences
via optimisation-based sequencing. In ACM International Conference on Information and
Knowledge Management, page 4759–4765, 2023.

12



[35] P. M. Napoli. Requiem for the long tail: Towards a political economy of content aggregation
and fragmentation. International Journal of Media & Cultural Politics, 12(3):341–356, 2016.

[36] S. Oh, B. Ustun, J. McAuley, and S. Kumar. Rank list sensitivity of recommender systems
to interaction perturbations. In ACM International Conference on Information & Knowledge
Management, page 1584–1594, 2022.

[37] M. Olson. The logic of collective action: public goods and the theory of groups. Harvard
University Press, 1965.

[38] M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre. Collaborative recommendation: A
robustness analysis. ACM Trans. Internet Technol., 4(4):344–377, 2004.

[39] N. Pagan, J. Baumann, E. Elokda, G. De Pasquale, S. Bolognani, and A. Hannák. A classification
of feedback loops and their relation to biases in automated decision-making systems. In ACM
Conference on Equity and Access in Algorithms, Mechanisms, and Optimization, 2023.

[40] L. Porcaro, E. Gómez, and C. Castillo. Assessing the impact of music recommendation diversity
on listeners: A longitudinal study. ACM Trans. Recomm. Syst., 2(1), 2024.

[41] R. Prey, M. Esteve Del Valle, and L. Zwerwer. Platform pop: disentangling spotify’s inter-
mediary role in the music industry. Information, Communication & Society, 25(1):74–92,
2022.

[42] B. Rastegarpanah, K. P. Gummadi, and M. Crovella. Fighting fire with fire: Using antidote
data to improve polarization and fairness of recommender systems. In ACM International
Conference on Web Search and Data Mining, page 231–239, 2019.

[43] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and T. Goldstein. Poison
frogs! targeted clean-label poisoning attacks on neural networks. In Advances in Neural
Information Processing Systems, volume 31, 2018.

[44] S. Shan, J. Cryan, E. Wenger, H. Zheng, R. Hanocka, and B. Y. Zhao. Glaze: Protecting artists
from style mimicry by Text-to-Image models. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 2187–2204, 2023.

[45] M. Si and Q. Li. Shilling attacks against collaborative recommender systems: a review. Artificial
Intelligence Review, 53:291–319, 2020.

[46] D. Sigg, M. Hardt, and C. Mendler-Dünner. Decline now: A combinatorial model for algorithmic
collective action. ArXiv preprint arXiv:2410.12633, 2024.

[47] A. P. Sundar, F. Li, X. Zou, T. Gao, and E. D. Russomanno. Understanding shilling attacks and
their detection traits: A comprehensive survey. IEEE Access, 8:171703–171715, 2020.

[48] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the condor
experience. Concurrency and Computation: Practice and Experience, 17(2-4):323–356, 2005.

[49] Z. Tian, L. Cui, J. Liang, and S. Yu. A comprehensive survey on poisoning attacks and
countermeasures in machine learning. ACM Comput. Surv., 55(8), 2022.

[50] T. Tofalvy and J. Koltai. “Splendid Isolation”: The reproduction of music industry inequalities
in Spotify’s recommendation system. New Media & Society, 25(7):1580–1604, 2023.

[51] F. Tomasi, J. Cauteruccio, S. Kanoria, K. Ciosek, M. Rinaldi, and Z. Dai. Automatic music
playlist generation via simulation-based reinforcement learning. In ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, page 4948–4957, 2023.

[52] C. Toxtli and S. Savage. Designing AI Tools to Address Power Imbalances in Digital Labor
Platforms, pages 121–137. Springer International Publishing, 2023.

[53] D. Turnbull, L. Barrington, and G. Lanckriet. Five approaches to collecting tags for music. In
ISMIR, 2008.

13



[54] Union of Musicians and Allied Workers. Justice at Spotify, mar 2021. URL https://
weareumaw.org/justice-at-spotify.

[55] N. Vincent and B. Hecht. Can "Conscious Data Contribution" Help Users to Exert "Data
Leverage" Against Technology Companies? Proc. ACM Hum.-Comput. Interact., 5, 2021.

[56] N. Vincent, B. Hecht, and S. Sen. “Data Strikes”: Evaluating the Effectiveness of a New Form
of Collective Action Against Technology Companies. In The World Wide Web Conference,
pages 1931–1943, 2019.

[57] N. Vincent, H. Li, N. Tilly, S. Chancellor, and B. Hecht. Data Leverage: A Framework for
Empowering the Public in Its Relationship with Technology Companies. In ACM Conference
on Fairness, Accountability, and Transparency, pages 215–227, 2021.

[58] Z. Yue, Z. He, H. Zeng, and J. McAuley. Black-box attacks on sequential recommenders via
data-free model extraction. In ACM Conference on Recommender Systems, page 44–54, 2021.

[59] Z. Yue, H. Zeng, Z. Kou, L. Shang, and D. Wang. Defending substitution-based profile pollution
attacks on sequential recommenders. In ACM Conference on Recommender Systems, page
59–70, 2022.

[60] H. Zamani, M. Schedl, P. Lamere, and C.-W. Chen. An Analysis of Approaches Taken in the
ACM RecSys Challenge 2018 for Automatic Music Playlist Continuation. ACM Trans. Intell.
Syst. Technol., 10(5), 2019.

[61] M. Zehlike, K. Yang, and J. Stoyanovich. Fairness in ranking, part II: Learning-to-rank and
recommender systems. ACM Comput. Surv., 55(6), 2022.

[62] H. Zhang, Y. Li, B. Ding, and J. Gao. Practical data poisoning attack against next-item
recommendation. In The Web Conference 2020, page 2458–2464, 2020.

14

https://weareumaw.org/justice-at-spotify
https://weareumaw.org/justice-at-spotify


A Song recommendation inequality

Figure 8 visualizes the track-level distribution of algorithmic exposure with the cumulative share of
recommendations (y-axis) plotted against the percentiles of tracks (x-axis). The recommendations
are derived from the Deezer model [7] on the Spotify MPD dataset [14]. More precisely, they are
based on the outputs generated for a random selection of 10,000 seed playlists for testing, produced
by a model that has been trained on the remainder of the dataset, without any collective action—see
Section 4 for more details. Similar to the artist-based Lorenz curve in Figure 2, we observe a very
high level of inequality with a Gini coefficient of 0.8 (measuring the gap between the line of equality
and the Lorenz curve).

0.00 0.25 0.50 0.75 1.00

Cumulative share of tracks

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
sh

ar
e

of
re

co
m

m
en

d
at

io
n

s
Gini Coefficient: 0.80

Lorenz Curve of Recommendations

Line of Equality

Figure 8: The Lorenz curve shows the unequal distribution of recommendations across tracks: 80%
of all recommendations are concentrated among just 15% of tracks.

B Experimental details

All experiments were run as jobs submitted to a centralized cluster, using the open-source HTCondor
job scheduler [48]. All jobs utilized the same computing resources: For data preprocessing and
performing the data modifications as per a strategic collective action, 1 CPU was used with an
allocated 100GB of RAM. In a subsequent step, transformer models were trained using a single
NVIDIA A100-SXM4-80GB GPU. For each job, data preprocessing takes roughly 1-2 hours to
complete (with coordinated strategies taking longer than uncoordinated ones). Models are trained for
18 epochs, using the optimal hyperparameters provided by Bendada et al. [7], which takes roughly 6
hours.

A total of 1195 experiments were run: We investigated 10 strategies (including 6 DirLoF strategies
with varying levels of song statistics knowledge and 8 simple baselines, as well as 6 different
hyperparameter configurations), across 12 collective sizes (α), and an additional baseline without
collective action (α = 0) as a reference for the main experiments. For the ablation study, 6
strategies were tested over 13 α values. Each experiment was conducted with five folds using
different random seeds. This resulted in approximately 2390 CPU hours and 7170 GPU hours
of total compute usage. The complete code is available at https://github.com/joebaumann/
recsys-collectiveaction.

C Additional experiments

C.1 Ablation study for InClust strategy

We perform an additional empirical investigation to provide insights into the inner workings of
the strategy. In particular, the effect of strategic positioning using indirect anchors on the attention
function. Recall that the recommender is trained such that SIM(s, p) = ⟨hs0 , g (p)⟩ is large for
songs s that frequently follow context p in the training data, and small otherwise. The embedding
function ϕ (described in Section 2.1) is insensitive to the song ordering within playlists, and strategic
positioning will only surface on the attention function g.

15

https://github.com/joebaumann/recsys-collectiveaction
https://github.com/joebaumann/recsys-collectiveaction


〈s0, p−s0〉 〈s1, p−s1〉 〈s2, p−s2〉

0

5

10

15

S
im

ila
ri

ty
sc

or
e

〈s0, p−s0〉 〈s1, p−s1〉 〈s2, p−s2〉 〈s∗, p−s0〉 〈s∗, p−s1〉 〈s∗, p−s2〉

Top 50 recommendations

Collective Action:

No Yes (Random) Yes (InClust) Top 50 recommendations

Figure 9: Similarities of context embeddings for indirect anchor songs (s0, s1, and s2) and the target
song (s∗) for α = 1.1%. Dashed purple lines represent average thresholds to be among the top 50
most similar songs.

For illustration, we use three indirect anchors corresponding to the three songs that occur most
frequently in the playlists of the collective, denoted s0, s1, and s2. We compare InClust, where
we insert the target song s∗ before these songs, with Random, where we add s∗ in the same playlists
but at random positions. This ensures we have the same pretrained song embeddings across the two
strategies. Playlists that do not contain any of those three songs are not manipulated. We use ps−i

to
denote the context targeted by using si as an indirect anchor.

In Figure 9, we visualize the similarity scores of the songs (s∗, s0, s1, and s2) with the three context
clusters that have been targeted. More specifically, for every anchor song si, we use all seed contexts
ps−i

that have been targeted in the training data and compare the similarity score of these contexts
with (yes) and without (no) collective action. This results in a distribution over scores, as visualized
by the violin plot. The left and the middle panel show that the similarity scores of the anchor songs
and their associated contexts are not altered for either of the two strategies (Random and InClust).
Furthermore, as can be seen in the right panel, the InCLust strategy is very effective in getting the
target song to be among the top 50 most similar tracks for the targeted contexts (corresponding to the
probability mass above the purple threshold). In contrast, for the random placement that does not
specifically target these contexts, s∗ generally fails to achieve a ranking in the top 50.

Targetting multiple context clusters. The InCLust strategy is effective on all three distinct
context clusters that are targeted simultaneously with a single target song s∗. We confirm the
effectiveness of this strategy by assessing its success with respect to a test set, which contains
a randomly drawn set of playlists (each split into a seed context and a ground truth) that
have not been seen during training. Figure 10 shows that for any number of indirect anchors,
the InClust strategy significantly outperforms the Random placement strategy. Furthermore,
it also clearly shows that it is possible to effectively target multiple context clusters using the
same target song. In conclusion, it is possible to compete with several context clusters simultaneously.

Overall, this ablation indicates that inserting a single song in a subset of playlists can be
effective in associating s∗ with specific contexts while preserving recommendations for songs S\s∗.

C.2 Information bottleneck

Figure 11 displays the 100 targeted direct anchors for α = 0.01% under different levels of knowledge
about the song frequencies in the training set. Less information results in the selection of more
frequent songs, as the gap between the estimated probability (relative occurrences of songs in the
known fraction of the dataset or estimated using external information) and the true probability (relative
occurrences of songs in the entire training data) widens. This difference provides insight into the
reduced amplification observed in Figure 5 for a specific value of α.

16



0.00 0.02 0.04 0.06 0.08 0.10

α

0.0

0.1

0.2

0.3

0.4

0.5

S
u

cc
es

s

Collective Strategy

1 IA (InClust)

2 IA (InClust)

3 IA (InClust)

1 IA (Random)

2 IA (Random)

3 IA (Random)

Linear fit

Figure 10: Success with respect to the number of used indirect anchors (IA), in random or coordinated
fashion. Each dot or triangle corresponds to a separate training run.

0 20 40 60 80 100
Targeted direct anchors

0

1

2

3

4

5

Pr
ob

ab
ilit

y

×10 5 full information

0 20 40 60 80 100
Targeted direct anchors

0

1

2

3

4

5
×10 5 10% of train

0 20 40 60 80 100
Targeted direct anchors

0

1

2

3

4

5 ×10 5 1% of train

0 20 40 60 80 100
Targeted direct anchors

0

2

4

6 ×10 5 0.1% of train

0 20 40 60 80 100
Targeted direct anchors

0.0

0.5

1.0

1.5

2.0

2.5
×10 4 scraped stream counts

Estimated Probability True Probability

Figure 11: Estimated and true probabilities of targeted direct anchors with limited information about
training set frequencies (α = 0.01%).

C.3 Songs targeted by different strategies

Figure 12 illustrates the anchor song selection for three distinct strategies. The InClust strategy
identifies anchors based on their prevalence within the collective, targeting songs frequently listened
to by its members. Highlighted in red in the left panel of Figure 12, this method repeatedly employs
indirect anchors, relying solely on internal playlist statistics without needing broader song frequency
insights. Conversely, the DirLoF strategy targets a specific cluster of direct anchors (resulting in the
red-colored cluster of anchors in the bottom left corner of the middle panel in Figure 12) targeting
each only once. This method requires external data to ensure the disproportionately represented
anchors in the collective match those less prevalent in the training data, as shown on the x-axis. The
Hybrid strategy, illustrated in the right panel of Figure 12, combines these approaches, targeting

Figure 12: Songs in playlists controlled by a collective composed of 0.07% of the training data. Blue
dots are songs that are not targeted. Red integers indicate a used anchor song and the number of
times it is targeted.

17



Table 1: Mean Amplification (Std Dev) for additional baseline strategies that do not require coordina-
tion. Insert@i denotes the insertion of s∗ at index i and Random@i-j denotes the insertion of s∗ at a
random index between i and j. The best and second-best performing strategies are highlighted in
bold and underlined, respectively.

α

Strategy 0.0002 0.001 0.002

Insert@0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Insert@1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Insert@3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Insert@5 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Insert@7 0.00 (0.00) 0.02 (0.04) 0.07 (0.08)
Random@1-10 0.00 (0.00) 0.00 (0.00) 0.03 (0.03)
Random 0.00 (0.00) 3.36 (4.45) 4.32 (2.90)
DirLoF 22.82 (6.21) 16.38 (7.37) 10.73 (2.66)

Table 2: Mean Amplification (Std Dev) under different hp configurations (α = 0.001). hp∗ denotes
the optimal set of hp reported by Bendada et al. [7] with 8 attention heads (n_heads), a learning rate
(lr) of 1.0, a dropout rate (drop_p) of 0.13, a weight decay (wd) of 1.53e-05, and 18 epochs. We
experiment with five alternative hp configurations that are equivalent to hp∗ except for the following
changes: hp1 sets n_heads=4, hp2 sets lr=0.5, hp3 sets drop_p=0.2, hp4 sets wd=5e-05, and hp5
makes all four of these changes. The highest amplification values among hp configurations are
highlighted in bold.

Hyperparameter configuration

Strategy hp∗ hp1 hp2 hp3 hp4 hp5

Random 3.36 (4.45) 1.12 (2.15) 0.23 (0.52) 2.63 (5.67) 2.69 (2.96) 2.69 (3.41)
DirLoF 16.38 (7.37) 18.47 (9.03) 21.77 (1.67) 16.13 (10.07) 26.32 (4.38) 27.92 (5.53)

both frequently occurring songs within the collective and low-frequency anchors. The parameter λ
governs the fraction of the collective targeting indirect anchors (as in the left panel) versus targeting
direct anchors (as in the middle panel). Larger λ values result in a larger share of direct anchors being
targeted, and smaller values result in keeping more of the frequently targeted indirect anchors, i.e.,
the large red integers visualized toward the top of the left panel. Note that all strategies target several
anchors, ensuring all playlists can be used effectively.

C.4 Additional baselines

Table 1 demonstrates that simple baselines, which insert s∗ at a fixed position, are much less effective
than a random insertion. Additionally, inserting s∗ at random within the first 10 positions of any
playlist is much worse than a random insertion at any position.

C.5 Robustness of collective strategies

Table 2 shows that the DirLoF strategy is robust against hyperparameter (hp) changes. It consistently
outperforms the Random strategy across all configurations. Finally, Table 3 illustrates the effectiveness
of DirLoF and Random across different numbers of training epochs for the recommender. Notice that
the effectiveness of the DirLoF strategy decreases if model training is stopped early.

C.6 Internalities and externalities of algorithmic collective action

Here we provide more details on the results presented in Section 4.3.

Metrics for model accuracy. To assess the quality of recommendations we follow Chen et al.
[14] and Bendada et al. [7] in using the following three popular performance metrics: R-precision
measures the fraction of recommended items present in the masked ground truth, augmented by

18



Table 3: Mean Amplification (Std Dev) for relative to trained epochs (α = 0.001). The best-
performing strategies are highlighted in bold.

Strategy

# of epochs DirLoF Random

1 0.02 (0.04) 4.10 (9.17)
2 7.97 (5.86) 0.08 (0.17)
4 9.88 (16.10) 2.17 (1.81)
8 19.45 (12.82) 2.51 (4.82)
12 25.79 (10.30) 4.23 (3.13)
16 14.95 (6.00) 3.07 (4.85)
18 16.38 (7.37) 3.36 (4.45)

Table 4: Mean (± 95% CI) recommendations without collective action (R0), total gained recommen-
dations (∆R), and gained recommendations in % of R0 (considering songs that are recommended at
least once without collective action) for direct anchors, indirect anchors and others over five folds.

Metric Direct anchors Indirect anchors Other songs

R0 0.09 ± 0.02 360.94 ± 11.29 0.29 ± 0.00
∆R -0.00 ± 0.01 2.68 ± 3.74 -0.00 ± 0.00
∆R in % of R0 -0.00 ± 0.00 0.02 ± 0.01 -0.00 ± 0.00
Song counts (per fold) 2784 157 2246756

artist matches. The Normalized Discounted Cumulative Gain (NDCG) measures the ranking quality
by rewarding relevant tracks placed higher in the recommendation list. The number of clicks (#C)
quantifies how many batches of ten song recommendations (starting with top candidates) are needed
to find one relevant track. The Deezer model trained on the unmanipulated data achieves comparable
results to the winning solutions of the RecSys 2018 APC challenge along these metrics [60].

Impact on other artists. Unlike the partially aligned interests of the firm and the collective, the
dynamics among artists differ, since boosting recommendations for one artist inevitably reduces
the visibility of others. We are interested in understanding who is affected by our strategy. For the
purpose of this analysis, we hold the total number of recommendations at inference time constant,
making it a zero-sum game.

To complement Figure 7, in Table 4, we show the effect of collective action (hybrid strategy with
α = 1%) on other songs. In line with the result presented in Section 4.3 (showing bins of songs with
similar frequencies for just one fold), we do not find any evidence that any other songs experience a
systematic change in exposure due to collective action, not even the targeted (in)direct anchor songs.

User experience of collective participants Collective participants are platform users who continue
consuming content on the platform during and after performing strategic actions. To understand the
price of collective action, we investigate the downstream effect on their own user experience. After
all, users are likely to engage in collective action only if it does not result in significant detriment to
their own content consumption experience. While a perfect measure of user satisfaction is outside
the scope of this work, we utilize participant’s known preferences as a basis for the experienced
quality of recommendations. More precisely, for any collective participant that manipulated their
playlist with h(p) = (p−i∗ , s

∗, p+i∗), we use the targeted context (p−i∗) as a seed for the recommender
and evaluate the output recommendations using the user-generated continuation of the playlist (p+i∗)
as the ground truth.

We revisit the collective strategy outlined in the ablation study (Section C.1) to scrutinize the inter-
nalities of collective action. We find that the recommendations for collective participants are stable
and robust under authentic strategic playlist manipulations. Figure 13 illustrates the precision score—
measuring the similarity of recommendations for different strategies—across attacked contexts. It is
around 80% on average, with little variation across strategies. This is likely attributed to inherent
instabilities in the top K recommendations rather than the specifics of the strategies [36].

19



0 20 40 60 80 100

Precision score (in %) for top 50 recommendations

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
ty

Compared strategies:

None vs. InClust

None vs. Random

InClust vs. Random

Figure 13: Variation in top 50 song predictions for attacked contexts: Predictions are stable under
different collective action strategies.

Table 5: Average model performance: Predictions are robust under different collective action
strategies.

Strategies NDCG R-precision #C

None 0.35 ± 0.0 0.28 ± 0.0 1.43 ± 0.1
Random 0.34 ± 0.0 0.28 ± 0.0 1.50 ± 0.1
Inclust 0.35 ± 0.0 0.28 ± 0.0 1.42 ± 0.1

Furthermore, by participating in collective action, users do not affect the variety of songs they get
recommended. This stability of model predictions despite the coordinated collective action is shown
in Table 5: Inserting s∗ between p−i∗ and p+i∗ does not significantly distort the recommenders ability
to predict p+i∗ from p−i∗ . Interestingly, random placement of songs reduces the performance slightly
more (especially for #C), as in this case, s∗ can be inserted within the context p−i∗ by pure chance.

20



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and in the introduction are shown in detail
in Section 4. The scope outlined in the abstract and in the introduction corresponds to the
framework described in Section 3. Furthermore, Section 1.1 accurately reflects the paper’s
contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

21



Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental methodology is clearly described in Section 4 and all steps
of the experiments are clearly outlined, ensuring the reproducibility of the presented results.
Furthermore, the experimental setup is described in detail in Section B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to the code here: https://github.com/
joebaumann/recsys-collectiveaction. The data used for the experiments is pub-
licly available and referenced in the paper. Furthermore, the hardware setup and the detailed
experimental setup are described in Section B.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the training and test details (e.g., data splits, hyperparameters, etc.) are
described in Sections 4 and B as well as in the open access code repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experiments were run several times with different seeds and we report
error bars (where appropriate) along with a description throughout the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

23

https://github.com/joebaumann/recsys-collectiveaction
https://github.com/joebaumann/recsys-collectiveaction
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information on the used computer resources in Section B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The underlying goal of this research is a positive societal impact as clearly
described in the introduction as well as in Sections 2.2 and 3. Broader impacts (such as
unintended uses) are additionally discussed in Section 6.

Guidelines:

24

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used for this research are properly credited and the licenses are
respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

25



• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

26

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27


	Introduction
	Our work
	Related work

	Preliminaries on automatic playlist continuation
	Transformer-based recommender
	Typical imbalances in recommendations

	Algorithmic collective action for promoting songs
	Authenticity constraint
	Algorithmic lever
	Obtaining song statistics

	Empirical evaluation
	Success of collective action
	DirLoF strategy with approximate song statistics
	Internalities and externalities of algorithmic collective action

	Conclusion
	Limitations and potential for misuse
	Song recommendation inequality
	Experimental details
	Additional experiments
	Ablation study for InClust strategy
	Information bottleneck
	Songs targeted by different strategies
	Additional baselines
	Robustness of collective strategies
	Internalities and externalities of algorithmic collective action


