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Abstract

Deep learning models have shown incredible performance on
numerous image recognition, classification, and reconstruc-
tion tasks. Although very appealing and valuable due to their
predictive capabilities, one common threat remains challeng-
ing to resolve. A specifically trained attacker can introduce
malicious input perturbations to fool the network, thus caus-
ing potentially harmful mispredictions. Moreover, these at-
tacks can succeed when the adversary has full access to the
target model (white-box) and even when such access is lim-
ited (black-box setting). The ensemble of models can pro-
tect against such attacks but might be brittle under shared
vulnerabilities in its members (attack transferability). To that
end, this work proposes a novel diversity-promoting learn-
ing approach for the deep ensembles. The idea is to promote
saliency map diversity (SMD) on ensemble members to pre-
vent the attacker from targeting all ensemble members at once
by introducing an additional term in our learning objective.
During training, this helps us minimize the alignment be-
tween model saliencies to reduce shared member vulnerabil-
ities and, thus, increase ensemble robustness to adversaries.
We empirically show a reduced transferability between en-
semble members and improved performance compared to the
state-of-the-art ensemble defense against medium and high-
strength white-box attacks. In addition, we demonstrate that
our approach combined with existing methods outperforms
state-of-the-art ensemble algorithms for defense under white-
box and black-box attacks.

1 Introduction
Nowadays, deep learning models have shown incredible per-
formance on numerous image recognition, classification,
and reconstruction tasks (Krizhevsky, Sutskever, and Hin-
ton 2012; Lee et al. 2015; LeCun, Bengio, and Hinton 2015;
Chen et al. 2020). Due to their great predictive capabili-
ties, they have found widespread use across many domains
(Szegedy et al. 2016; Devlin et al. 2019; Deng, Hinton, and
Kingsbury 2013). Although deep learning models are very
appealing for many interesting tasks, their robustness to ad-
versarial attacks remains a challenging problem to solve. A
specifically trained attacker can introduce malicious input
perturbations to fool the network, thus causing potentially
harmful (Goodfellow, Shlens, and Szegedy 2015; Madry
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Figure 1: Left. An illustration of the proposed learning
scheme for saliency-based diversification of deep ensem-
ble consisting of 3 members. We use the cross-entropy
losses Lm(x),m ∈ {1, 2, 3} and regularization LSMD(x)
for saliency-based diversification. Right. An example of
saliency maps for members of naively learned ensemble and
learned ensemble with our approach. Red and blue pixels
represent positive and negative saliency values respectively.

et al. 2018) mispredictions. Moreover, these attacks can suc-
ceed when the adversary has full access to the target model
(white-box) (Athalye and Carlini 2018) and even when such
access is limited (black-box) (Papernot et al. 2017), posing
a hurdle in security- and trust-sensitive application domains.

The ensemble of deep models can offer protection against
such attacks (Strauss et al. 2018). Commonly, an ensemble
of models has proven to improve the robustness, reduce vari-
ance, increase prediction accuracy and enhance generaliza-
tion compared to the individual models (LeCun, Bengio, and
Hinton 2015). As such, ensembles were offered as a solution
in many areas, including weather prediction (Palmer 2019),
computer vision (Krizhevsky, Sutskever, and Hinton 2012),
robotics and autonomous driving (Kober, Bagnell, and Pe-
ters 2013) as well as others, such as (Ganaie et al. 2021).
However, ’naive’ ensemble models are brittle due to shared
vulnerabilities in their members (Szegedy et al. 2016). Thus
an adversary can exploit attack transferability (Madry et al.
2018) to affect all members and the ensemble as a whole.

In recent years, researchers tried to improve the adversar-
ial robustness of the ensemble by maximizing different no-



tions for diversity between individual networks (Pang et al.
2019; Kariyappa and Qureshi 2019; Yang et al. 2020). In this
way, adversarial attacks that fool one network are much less
likely to fool the ensemble as a whole (Chen et al. 2019b;
Sen, Ravindran, and Raghunathan 2019; Tramèr et al. 2018;
Zhang, Liu, and Yan 2020). The research focusing on en-
semble diversity aims to diversely train the neural networks
inside the ensemble model to withstand the deterioration
caused by adversarial attacks. The works (Pang et al. 2019;
Zhang, Liu, and Yan 2020; Kariyappa and Qureshi 2019)
proposed improving the diversity of the ensemble con-
stituents by training the model with diversity regularization
in addition to the main learning objective. (Kariyappa and
Qureshi 2019) showed that an ensemble of models with mis-
aligned loss gradients can be used as a defense against black-
box attacks and proposed uncorrelated loss functions for en-
semble learning. (Pang et al. 2019) proposed an adaptive di-
versity promoting (ADP) regularizer to encourage diversity
between non-maximal predictions. (Yang et al. 2020) mini-
mize vulnerability diversification objective in order to sup-
press shared ’week’ features across the ensemble members.
However, some of these approaches only focused on white-
box attacks (Pang et al. 2019), black-box attacks (Kariyappa
and Qureshi 2019) or were evaluated on a single dataset
(Yang et al. 2020).

In this paper, we propose a novel diversity-promoting
learning approach for deep ensembles. The idea is to pro-
mote Saliency Map Diversity (SMD) to prevent the attacker
from targeting all ensemble members at once.

Saliency maps (SM) (Gu and Tresp 2019) represent the
derivative of the network prediction for the actual true la-
bel with respect to the input image. They indicate the most
’sensitive’ content of the image for prediction. Intuitively,
we would like to learn an ensemble whose members have
different sensitivity across the image content while not sac-
rificing the ensemble predictive power. Therefore, we intro-
duce a saliency map diversity (SMD) regularization term in
our learning objective. Given image data and an ensemble
of models, we define the SMD using the inner products be-
tween all pairs of saliency maps (for one image data, one en-
semble member has one saliency map). Different from our
approach with SMD regularization, (Pang et al. 2019) de-
fined the diversity measure using the non-maximal predic-
tions of individual members, and as such might not be able
to capture the possible shared sensitivity with respect to the
image content related to the correct predictions.

We jointly learn our ensemble members using cross-
entropy losses (LeCun, Bengio, and Hinton 2015) for each
member and our shared SMD term. This helps us minimize
the alignment between model SMDs and enforces the en-
semble members to have misaligned and non-overlapping
sensitivity for the different image content. Thus with our ap-
proach, we try to minimize possible shared sensitivity across
the ensemble members that might be exploited as vulnerabil-
ity, which is in contrast to (Yang et al. 2020) who try to min-
imize shared ’week’ features across the ensemble members.
It is also important to note that our regularization differs
from (Kariyappa and Qureshi 2019), since it focuses on gra-
dients coming from the correct class predictions (saliencies),

which could also be seen as a loss agnostic approach. We il-
lustrate our learning scheme in Fig. 1, left. Whereas in Fig.
1 on the right, we visualize the saliency maps with respect
to one image sample for the members in naively trained en-
semble and an ensemble trained with our approach.

We perform an extensive numerical evaluation using
the MNIST (Lecun et al. 1998), Fashion-MNIST (F-
MNIST) (Xiao, Rasul, and Vollgraf 2017), and CIFAR-10
(Krizhevsky 2009) datasets to validate our approach. We use
two neural networks architectures and conduct experiments
for different known attacks and at different attack strengths.
Our results show a reduced transferability between ensem-
ble members and improved performance compared to the
state-of-the-art ensemble defense against medium and high-
strength white-box attacks. Since we minimize the shared
sensitivity which could also be seen as the attention of a
prediction important image content, we also suspected that
our approach could go well with other existing methods.
To that end, we show that our approach combined with the
(Yang et al. 2020) method outperforms state-of-the-art en-
semble algorithms for defense under adversarial attacks in
both white-box and black-box settings. We summarize our
main contributions in the following:

- We propose a diversity-promoting learning approach for
deep ensemble, where we introduce a saliency-based reg-
ularization that diversifies the sensitivity of ensemble
members with respect to the image content.

- We show improved performance compared to the state-
of-the-art ensemble defense against medium and high
strength white-box attacks as well as show on-pair per-
formance for the black-box attacks.

- We demonstrate that our approach combined with the
(Yang et al. 2020) method outperforms state-of-the-art
ensemble defense algorithms in white-box and black-box
attacks.

2 Related Work
In this section, we overview the recent related work.

2.1 Common Defense Strategies
In the following, we describe the common defense strategies
against adversarial attacks groping them into four categories.

Adversarial Detection. These methods aim to detect the
adversarial examples or to restore the adversarial input to
be closer to the original image space. Adversarial Detec-
tion methods (Bhambri et al. 2020) include MagNet, Feature
Squeezing, and Convex Adversarial Polytope. The MagNet
(Meng and Chen 2017) method consists of two parts: de-
tector and reformer. Detector aims to recognize and reject
adversarial images. Reformer aims to reconstruct the image
as closely as possible to the original image using an auto-
encoder. The Feature Squeezing (Xu, Evans, and Qi 2018)
utilizes feature transformation techniques such as squeezing
color bits and spatial smoothing. These methods might be
prone to reject clean examples and might have to severely
modify the input to the model. This could reduce the perfor-
mance on the clean data.



Gradient Masking and Randomization Defenses. Gra-
dient masking represents manipulation techniques that try to
hide the gradient of the network model to robustify against
attacks made with gradient direction techniques and in-
cludes distillation, obfuscation, shattering, use of stochas-
tic and vanishing or exploding gradients (Papernot et al.
2017; Athalye, Carlini, and Wagner 2018; Carlini and Wag-
ner 2017). The authors in (Papernot et al. 2016b) introduced
a method based on distillation. It uses an additional neural
network to ’distill’ labels for the original neural network in
order to reduce the perturbations due to adversarial samples.
(Xie et al. 2018) used a randomization method during train-
ing that consists of random resizing and random padding for
the training image data. Another example of such random-
ization can be noise addition at different levels of the system
(You et al. 2019), injection of different types of randomiza-
tion like, for example, random image resizing or padding
(Xie et al. 2018) or randomized lossy compression (Das
et al. 2018), etc. As a disadvantage, these approaches can re-
duce the accuracy since they may reduce useful information,
which might also introduce instabilities during learning. As
such, it was shown that often they can be easily bypassed
by the adversary via expectation over transformation tech-
niques (Athalye and Carlini 2018).

Secrecy-based Defenses. The third group generalizes the
defense mechanisms, which include randomization explic-
itly based on a secret key that is shared between training
and testing stages. Notable examples are random projections
(Vinh et al. 2016), random feature sampling (Chen et al.
2019a) and the key-based transformation (Taran, Rezaeifar,
and Voloshynovskiy 2018), etc. As an example in (Taran
et al. 2019) introduces randomized diversification in a spe-
cial transform domain based on a secret key, which creates
an information advantage to the defender. Nevertheless, the
main disadvantage of the known methods in this group con-
sists of the loss of performance due to the reduction of useful
data that should be compensated by a proper diversification
and corresponding aggregation with the required secret key.

Adversarial Training (AT). (Goodfellow, Shlens, and
Szegedy 2015; Madry et al. 2018) proposed one of the most
common approaches to improve adversarial robustness. The
main idea is to train neural networks on both clean and ad-
versarial samples and force them to correctly classify such
examples. The disadvantage of this approach is that it can
significantly increase the training time and can reduce the
model accuracy on the unaltered data (Tsipras et al. 2018).

2.2 Diversifying Ensemble Training Strategies
Even naively learned ensemble could add improvement
towards adversarial robustness. Unfortunately, ensemble
members may share a large portion of vulnerabilities
(Dauphin et al. 2014) and do not provide any guarantees to
adversarial robustness (Tramèr et al. 2018).

(Tramèr et al. 2018) proposed Ensemble Adversarial
Training (EAT) procedure. The main idea of EAT is to min-
imize the classification error against an adversary that maxi-
mizes the error (which also represents a min-max optimiza-
tion problem (Madry et al. 2018)). However, this approach

is very computationally expensive and according to the orig-
inal author may be vulnerable to white-box attacks.

Recently, diversifying the models inside an ensemble
gained attention. Such approaches include a mechanism in
the learning procedure that tries to minimize the adversar-
ial subspace by making the ensemble members diverse and
making the members less prone to shared weakness.

(Pang et al. 2019) introduced ADP regularizer to diver-
sify training of the ensemble model to increase adversarial
robustness. To do so, they defined first an Ensemble Di-
versity ED = Vol2(||f\y

m (x)||2), where f
\y
m (x) is the or-

der preserving prediction of m-th ensemble member on x
without y-th (maximal) element and Vol(·) is a total vol-
ume of vectors span. The ADP regularizer is calculated as
ADPα,β(x, y) = α · H(F) + β · log(ED), where H(F) =
−
∑

i fi(x)log(fi(x)) is a Shannon entropy and α, β > 0.
The ADP regularizer is then subtracted from the original loss
during training.

The GAL regularizer (Kariyappa and Qureshi 2019)
was intended to diversify the adversarial subspaces and
reduce the overlap between the networks inside ensem-
ble model. GAL is calculated using the cosine similar-
ity (CS) between the gradients of two different models as
CS(∇xJa,∇xJb)a ̸=b = <∇xJa,∇xJb>

|∇xJa|·|∇xJb| , where ∇xJm is
the gradient of the loss of m-th member with respect to
x. During training, the authors added the term GAL =

log
(∑

1≤a<b≤N exp(CS(∇xJa,∇xJb))
)

to the learning
objective.

With DVERGE (Yang et al. 2020), the authors aimed to
maximize the vulnerability diversity together with the origi-
nal loss. They defined a vulnerability diversity between pairs
of ensemble members fa(x) and fb(x) using data consisting
of the original data sample and its feature distilled version.
In other words, they deploy an ensemble learning procedure
where each ensemble member fa(x) is trained using adver-
sarial samples generated by other members fb(x), a ̸= b.

2.3 Adversarial Attacks
The goal of the adversary is to craft an image x′ that is very
close to the original x and would be correctly classified by
humans but would fool the target model. Commonly, attack-
ers can act as adversaries in white-box and black-box modes,
depending on the gained access level over the target model.

White-box and Black-box Attacks. In the white-box sce-
nario, the attacker is fully aware of the target model’s archi-
tecture and parameters and has access to the model’s gra-
dients. White-box attacks are very effective against the tar-
get model but they are bound to the extent of knowing the
model. In the Black-box scenario, the adversary does not
have access to the model parameters and may only know the
training dataset and the architecture of the model (in grey-
box setting). The attacks are crafted on a surrogate model but
still work to some extent on the target due to transferability
(Papernot et al. 2016a).

An adversary can build a white-box or black-box attack
using different approaches. In the following text, we briefly



describe the methods commonly used for adversarial at-
tacks.

Fast Gradient Sign Method (FGSM). (Goodfellow,
Shlens, and Szegedy 2015) generated adversarial attack x′

by adding the sign of the gradient sign(∇xJ (x, y)) as per-
turbation with ϵ strength, i.e., x′ = x+ ϵ · sign(∇xJ (x, y)).

Random Step-FGSM (R-FGSM). The method proposed
in (Tramèr et al. 2018) is an extension of FGSM where a sin-
gle random step is taken before FGSM due to the assumed
non-smooth loss function in the neighborhood of data points.

Projected Gradient Descent (PGD). (Madry et al. 2018)
presented a similar attack to BIM, with the difference that
they randomly selected the initialization of x′

0 in a neigh-
borhood U̇(x, ϵ).

Basic Iterative Method (BIM). (Kurakin, Goodfellow,
and Bengio 2017) proposed iterative computations of attack
gradient for each smaller step. Thus, generating an attacks as
x′
i = clipx,ϵ(x

′
i−1+

ϵ
r ·sign(gi−1)), where gi = ∇xJ (x′

i, y),
x′
0 = x and r is the number of iterations.

Momentum Iterative Method (MIM). (Dong et al. 2018)
proposed extenuation of BIM. It proposes to update gradient
with the momentum µ to ensure best local minima. Holding
the momentum helps to avoid small holes and poor local
minimum solution, gi = µgi−1 +

∇xJ (x′
i−1,y)

||∇xJ (x′
i−1,y)||1

.

3 Saliency Diversified Ensemble Learning
In this section, we present our diversity-promoting learning
approach for deep ensembles. In the first subsection, we in-
troduce the saliency-based regularizer, while in the second
subsection we describe our learning objective.

3.1 Saliency Diversification Measure
Saliency Map. In (Etmann et al. 2019), the authors inves-
tigated the connection between a neural network’s robust-
ness to adversarial attacks and the interpretability of the re-
sulting saliency maps. They hypothesized that the increase
in interpretability could be due to a higher alignment be-
tween the image and its saliency map. Moreover, they ar-
rived at the conclusion that the strength of this connection is
strongly linked to how locally similar the network is to a lin-
ear model. In (Mangla, Singh, and Balasubramanian 2020)
authors showed that using weak saliency maps suffices to
improve adversarial robustness with no additional effort to
generate the perturbations themselves.

We build our approach on prior work about saliency maps
and adversarial robustness but in the context of deep ensem-
ble models. In (Mangla, Singh, and Balasubramanian 2020)
the authors try to decrease the sensitivity of the prediction
with respect to the saliency map by using special augmenta-
tion during training. We also try to decrease the sensitivity
of the prediction with respect to the saliency maps but for
the ensemble. We do so by enforcing misalignment between
the saliency maps for the ensemble members.

We consider a saliency map for model fm with respect to
data x conditioned on the true class label y. We calculate it

as the first order derivative of the model output for the true
class label with respect to the input, i.e.,

sm =
∂fm(x)[y]

∂x
, (1)

where fm(x)[y] is the y element from the predictions fm(x).

Shared Sensitivity Across Ensemble Members. Given
image data x and an ensemble of M models fm, we define
our SMD measure as:

LSMD(x) = log

[∑
m

∑
l>m

exp

(
sTmsl

∥sm∥2∥sl∥2

)]
, (2)

where sm = ∂fm(x)[y]
∂x is the saliency map for ensemble

model fm with respect to the image data x. A high value
of LSMD(x) means alignment and similarity between the
saliency maps sm of the models fm(x) with respect to the
image data x. Thus SMD (2) indicates a possible shared sen-
sitivity area in the particular image content common for all
the ensemble members. A pronounced sensitivity across the
ensemble members points to a vulnerability that might be
targeted and exploited by an adversarial attack. To prevent
this, we would like LSMD(x) to be as small as possible,
which means different image content is of different impor-
tance to the ensemble members.

3.2 Saliency Diversification Objective
We jointly learn our ensemble members using a common
cross-entropy loss per member and our saliency based sensi-
tivity measure described in the subsection above. We define
our learning objective in the following:

L =
∑
x

∑
m

Lm(x) + λ
∑
x

LSMD(x), (3)

where Lm(x) is the cross-entropy loss for ensemble member
m, LSMD(x) is our SMD measure for an image data x and
an ensemble of M models fm, and λ > 0 is a Lagrangian pa-
rameter. By minimizing our learning objective that includes
a saliency-based sensitivity measure, we enforce the ensem-
ble members to have misaligned and non-overlapping sensi-
tivity for the different image content. Our regularization en-
ables us to strongly penalize small misalignments sTmsl be-
tween the saliency maps sm and sl. While at the same time
it ensures that a large misalignment is not discarded. Addi-
tionally, since LSMD(x) is a logSumExp function it has
good numerical properties (Kariyappa and Qureshi 2019).
Thus, our approach offers to effectively minimize possible
shared sensitivity across the ensemble members that might
be exploited as vulnerability. In contrast to GAL regularizer
(Kariyappa and Qureshi 2019) SMD is loss agnostic (can be
used with loss functions other than cross-entropy) and does
not focus on incorrect-class prediction (which are irrelevant
for accuracy). Additionally it has a clear link to work in in-
terpretability (Etmann et al. 2019) and produces diverse but
meaningful saliency maps (see Fig. 1).

Assuming unit one norm saliencies, the gradient based up-
date for one data sample x with respect to the parameters



θfm of a particular ensemble member can be written as:

θfm= θfm − α(
∂Lm(x)

∂θfm
+λ

∂LSMD(x)

∂θfm
)=

= θfm − α
∂Lm(x)

∂θfm
− αλ

∂fm(x)[y]

∂x∂θfm

∑
j ̸=m

βj
∂fj(x)[y]

∂x
,

(4)

where α is the learning rate and βj =
exp(sTmsj)∑

m

∑
k>m exp(sTmsk)

.
The third term enforces the learning of the ensemble mem-
bers to be on optimization paths where the gradient of their
saliency maps ∂fm(x)[y]

∂x∂θfm
with respect to θfm is misaligned

with the weighted average of the remaining saliency maps∑
j ̸=m βj

∂fj(x)[y]
∂x . Also, (4) reveals that by our approach

the ensemble members can be learned in parallel provided
that the saliency maps are shared between the models (we
leave this direction for future work).

4 Empirical Evaluation
This section is devoted to empirical evaluation and perfor-
mance comparison with state-of-the-art ensemble methods.

4.1 Data Sets and Baselines
We performed the evaluation using 3 classical computer
vision data sets (MNIST (Lecun et al. 1998), FASHION-
MNIST (Xiao, Rasul, and Vollgraf 2017) and CIFAR-10
(Krizhevsky 2009)) and include 4 baselines (naive ensem-
ble, (Pang et al. 2019), (Kariyappa and Qureshi 2019), (Yang
et al. 2020)) in our comparison.

Datasets. The MNIST dataset (Lecun et al. 1998) consists
of 70000 gray-scale images of handwritten digits with di-
mensions of 28x28 pixels. F-MNIST dataset (Xiao, Rasul,
and Vollgraf 2017) is similar to MNIST dataset, has the same
number of images and classes. Each image is in grayscale
and has a size of 28x28. It is widely used as an alternative
to MNIST in evaluating machine learning models. CIFAR10
dataset (Krizhevsky 2009) contains 60000 color images with
3 channels. It includes 10 real-life classes. Each of the 3
color channels has a dimension of 32x32.

Baselines. As the simplest baseline we compare against
the performance of a naive ensemble, i.e., one trained with-
out any defense mechanism against adversarial attacks. Ad-
ditionally, we also consider state-of-the-art methods as base-
lines. We compare the performance of our approach with
the following ones: Adaptive Diversity Promoting (ADP)
method (Pang et al. 2019), Gradient Alignment Loss (GAL)
method (Kariyappa and Qureshi 2019), and a Diversifying
Vulnerabilities for Enhanced Robust Generation of Ensem-
bles (DVERGE) or (DV.) method (Yang et al. 2020).

4.2 Training and Testing Setup
Used Neural Networks. To evaluate our approach, we
use two neural networks LeNet-5 (Lecun et al. 1998) and
ResNet-20 (He et al. 2016). LeNet-5 is a classical small
neural network for vision tasks, while ResNet-20 is another
widely used architecture in this domain.

Training Setup. We run our training algorithm for 50
epochs on MNIST and F-MNIST and 200 epochs on
CIFAR-10, using the Adam optimizer (Kingma and Ba
2015), a learning rate of 0.001, weight decay of 0.0001, and
batch-sizes of 128. We use no data augmentation on MNIST
and F-MNIST and use normalization, random cropping, and
flipping on CIFAR-10. In all of our experiments, we use 86%
of the data for training and 14% for testing.In the imple-
mented regularizers from prior work, we used the λ that was
suggested by the respective authors. While we found out that
the strength of the SMD regularizer (also λ) in the range
[0.5, 2] gives good results. Thus in all of our experiments,
we take λ = 1. We report all the results as an average over
5 independent trials (we include the standard deviations in
the Appendix A). We report results for the ensembles of 3
members in the main paper, and for 5 and 8 in the Appendix
C.

We used the LeNet-5 neural network for MNIST and F-
MNIST datasets and ResNet-20 for CIFAR-10. To have a
fair comparison, we also train ADP (Pang et al. 2019), GAL
(Kariyappa and Qureshi 2019) and DVERGE (Yang et al.
2020), under a similar training setup as described above. We
made sure that the setup is consistent with the one given
by the original authors with exception of using Adam op-
timizer for training DVERGE. We also used our approach
and added it as a regularizer to the DVERGE algorithm. We
named this combination SMD+ and ran it under the setup
as described above. All models are implemented in PyTorch
(Paszke et al. 2017). We use AdverTorch (Ding, Wang, and
Jin 2019) library for adversarial attacks.

In the setting of adversarial training, we follow the EAT
approach (Tramèr et al. 2018) by creating adversarial exam-
ples on 3 holdout pre-trained ensembles with the same size
and architecture as the baseline ensemble. The examples are
created via PGD-L∞ attack with 10 steps and ϵ = 0.1.

Adversarial Attacks. To evaluate our proposed approach
and compare its performance to baselines, we use a set of ad-
versarial attacks described in Section 2.3 in both black-box
and white-box settings. We construct adversarial examples
from the images in the test dataset by modifying them using
the respective attack method. We probe with white-box at-
tacks on the ensemble as a whole (not on the individual mod-
els). We generate black-box attacks targeting our ensemble
model by creating white-box adversarial attacks on a surro-
gate ensemble model (with the same architecture), trained
on the same dataset with the same training routine. We use
the following parameters for the attacks: for (FGSM , PGD,
R-F., BIM, MIM) we use ϵ in range [0; 0.3] in 0.05 steps,
which covers the range used in our baselines; we use 10 it-
erations with a step size equal to ϵ/10 for PGD, BIM and
MIM; we use L∞ variant of PGD attack; for R-F. we use
random-step α = ϵ/2.

Computing Infrastructure and Run Time. As comput-
ing hardware, we use half of the available resources from
NVIDIA DGX2 station with 3.3GHz CPU and 1.5TB RAM
memory, which has a total of 16 1.75GHz GPUs, each with
32GB memory. One experiment takes around 4 minutes
to train the baseline ensemble of 3 LeNet-5 members on
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Figure 2: Accuracy vs. attacks strength for white-box PGD attacks on an ensemble of 3 LeNet-5 models for MNIST and F-
MNIST and on an ensemble of 3 ReNets-20 for CIFAR-10 dataset.

MNIST

Clean Fgsm R-F. PGD BIM MIM

Naive 99.3 20.3 73.5 2.9 4.2 5.5

ADP 98.8 43.8 89.6 10.4 19.6 14.8
GAL 99.3 72.7 89.0 14.4 28.2 38.9
DV. 99.4 44.2 85.5 10.6 16.0 20.6

SMD 99.3 70.7 91.3 21.4 34.3 43.8
SMD+ 99.4 83.4 93.8 54.7 68.0 71.0

F-MNIST

Clean Fgsm R-F. PGD BIM MIM

91.9 15.7 33.6 5.5 7.2 6.6

91.4 18.3 34.8 5.8 8.8 7.5
91.4 35.8 51.2 7.4 10.8 12.2
91.8 27.3 44.6 7.3 10.7 9.9

91.1 38.2 52.0 11.0 14.9 16.4
91.6 42.9 51.9 13.3 20.5 20.5

CIFAR-10

Clean Fgsm R-F. PGD BIM MIM

91.4 10.5 2.8 1.0 3.2 2.9

91.7 11.4 3.7 0.8 3.6 3.4
91.4 11.2 9.7 1.0 1.8 2.8
91.0 11.2 6.3 1.1 5.5 4.4

90.1 12.0 12.0 2.3 3.2 3.9
90.5 12.1 5.8 1.2 5.9 5.2

Table 1: White-box attacks of the magnitude ϵ = 0.3 on an ensemble of 3 LeNet-5 models for MNIST and F-MNIST and on
an ensemble of 3 ReNets-20 for CIFAR-10 dataset. Columns are attacks and rows are defenses employed.

MNIST without any regularizer. Whereas it takes around 18
minutes to train the same ensemble under the SMD regular-
izer, 37 minutes under DVERGE regularize, and 48 minutes
under their combination. To evaluate the same ensemble un-
der all of the adversarial attacks takes approximately 1 hour.
It takes approximately 3 days when ResNet-20 members are
used on CIFAR-10 for the same experiment.

4.3 Results
Robustness to White-Box Adversarial Attacks. In Ta-
ble 1, we show the results for ensemble robustness under
white-box adversarial attacks with ϵ = 0.3. We highlight in
bold, the methods with the highest accuracy. In Figure 2, we
depict the results for PGD attack at different attack strengths
(ϵ). It can be observed that the accuracy on normal im-
ages (without adversarial attacks) slightly decreases for all
regularizers, which is consistent with a robustness-accuracy
trade-off (Tsipras et al. 2018; Zhang et al. 2019). The pro-
posed SMD and SMD+ outperform the comparing baselines
methods on all attack configurations and datasets. This result
shows that the proposed saliency diversification approach
helps to increase the adversarial robustness.

Robustness to Black-Box Adversarial Attacks. In Ta-
ble 2, we see the results for ensemble robustness under
black-box adversarial attacks with an attack strength ϵ =
0.3. In Figure 3 we also depict the results for PGD attack
at different strengths (ϵ). We can see that SMD+ is on par
with DVERGE (DV.) on MNIST and consistently outper-

forms other methods. On F-MNIST SMD+ has a significant
gap in performance compared to the baselines, with this ef-
fect being even more pronounced on the CIFAR-10 dataset.
Also, it is interesting to note that standalone SMD comes
second in performance and it is very close to the highest ac-
curacy on multiple attack configurations under ϵ = 0.3.

Transferability. In this subsection, we investigate the
transferability of the attacks between the ensemble mem-
bers, which measures how likely the crafted white-box at-
tack for one ensemble member succeeds on another. In Fig-
ure 5, we present results for F-MNIST and PGD attacks (re-
sults for different datasets and other attacks are in the Ap-
pendix B). The Y-axis represents the member from which
the adversary crafts the attack (i.e. source), and the X-axis
- the member on which the adversary transfers the attack
(i.e. target). The on diagonal values depict the accuracy of a
particular ensemble member under a white-box attack. The
other (off-diagonal) values show the accuracy of the tar-
get members under transferred (black-box) attacks from the
source member. In Figure 5, we see that SMD and SMD+
have high ensemble resilience. It seems that both SMD and
SMD+ reduce the common attack vector between the mem-
bers. Compared to the naive ensemble and the DV. method,
we see improved performance, showing that our approach
increases the robustness to transfer attacks.

Robustness Under Adversarial Training. We also
present the performance of our method and the comparing
methods under AT. We follow the approach of Tramèr et al.
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Figure 3: Accuracy vs. attacks strength for black-box PGD attacks on an ensemble of 3 LeNet-5 models for MNIST and F-
MNIST and on an ensemble of 3 ReNets-20 for CIFAR-10 dataset.

MNIST

Clean Fgsm R-F. PGD BIM MIM

Naive 99.3 32.2 84.2 21.7 20.7 14.5

ADP 98.8 26.6 70.9 27.3 26.5 19.4
GAL 99.3 38.5 85.2 32.7 31.2 22.3
DV. 99.4 42.2 89.1 34.5 32.2 22.0

SMD 99.3 38.6 85.8 33.4 31.6 22.6
SMD+ 99.4 42.0 89.1 36.3 34.7 24.3

F-MNIST

Clean Fgsm R-F. PGD BIM MIM

91.9 23.8 47.5 33.1 31.5 15.2

91.4 22.3 49.5 33.0 33.2 16.3
91.4 29.8 55.5 44.0 41.4 21.9
91.8 30.7 55.7 44.7 42.3 21.4

91.1 31.0 56.8 45.4 42.4 23.2
91.6 31.9 57.7 47.1 44.4 23.3

CIFAR-10

Clean Fgsm R-F. PGD BIM MIM

91.4 10.6 5.8 1.3 3.7 3.3

91.7 11.6 5.5 1.2 3.8 3.4
91.4 11.0 8.3 4.2 3.8 4.4
91.0 10.1 8.4 6.8 5.8 4.0

90.1 10.4 7.8 3.9 3.8 3.5
90.5 9.9 8.7 7.8 8.6 4.1

Table 2: Black-box attacks of the magnitude ϵ = 0.3 on an ensemble of 3 LeNet-5 models for MNIST and F-MNIST and on an
ensemble of 3 ReNets-20 for CIFAR-10 dataset. Columns are attacks and rows are defenses employed.
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Figure 4: Accuracy vs. Attacks Strength for PGD Attacks on
MNIST under adversarial training.

as described in Section 4.1. In Figure 4, we show the results
for the PGD attack on MNIST dataset. In the white-box at-
tack setting, we see major improvement for all regularizers
where SMD and SMD+ consistently outperforming others.
This is consistent with results from (Tramèr et al. 2018),
which showed EAT to perform rather poorly in the white-
box setting. In the Appendix D, we also show the results for
black-box attacks.
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Figure 5: Transferability of PGD attacks on F-MNIST. At-
tacks are crafted on Y-axis members and tested on X-axis
members. Higher values indicate better performance.

5 Conclusion
In this paper, we proposed a novel diversity-promoting
learning approach for the adversarial robustness of deep en-



sembles. We introduced saliency diversification measure and
presented a saliency diversification learning objective. With
our learning approach, we aimed at minimizing possible
shared sensitivity across the ensemble members to decrease
its vulnerability to adversarial attacks. Our empirical results
showed a reduced transferability between ensemble mem-
bers and improved performance compared to other ensemble
defense methods. We also demonstrated that our approach
combined with existing methods outperforms state-of-the-
art ensemble algorithms in adversarial robustness.
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Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.;
Boneh, D.; and McDaniel, P. 2018. Ensemble Adversarial
Training: Attacks and Defenses. In International Confer-
ence on Learning Representations.
Tsipras, D.; Santurkar, S.; Engstrom, L.; Turner, A.; and
Madry, A. 2018. Robustness May Be at Odds with Accuracy.
In International Conference on Learning Representations.

Vinh, N.; Erfani, S.; Paisitkriangkrai, S.; Bailey, J.; Leckie,
C.; and Ramamohanarao, K. 2016. Training Robust Models
Using Random Projection. In 23rd International Conference
on Pattern Recognition (ICPR), 531–536.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
A Novel Image Dataset for Benchmarking Machine Learn-
ing Algorithms. arXiv:1708.07747 [cs, stat].
Xie, C.; Wang, J.; Zhang, Z.; Ren, Z.; and Yuille, A. 2018.
Mitigating Adversarial Effects Through Randomization. In
International Conference on Learning Representations.
Xu, W.; Evans, D.; and Qi, Y. 2018. Feature Squeezing: De-
tecting Adversarial Examples in Deep Neural Networks. In
25th Annual Network and Distributed System Security Sym-
posium, NDSS 2018, San Diego, California, USA, February
18-21, 2018. The Internet Society.
Yang, H.; Zhang, J.; Dong, H.; Inkawhich, N.; Gardner,
A.; Touchet, A.; Wilkes, W.; Berry, H.; and Li, H. 2020.
DVERGE: Diversifying Vulnerabilities for Enhanced Ro-
bust Generation of Ensembles. In Advances in Neural Infor-
mation Processing Systems, volume 33, 5505–5515. Curran
Associates, Inc.
You, Z.; Ye, J.; Li, K.; Xu, Z.; and Wang, P. 2019. Adver-
sarial Noise Layer: Regularize Neural Network by Adding
Noise. In IEEE International Conference on Image Process-
ing (ICIP), 909–913.
Zhang, H.; Yu, Y.; Jiao, J.; Xing, E.; Ghaoui, L.; and Jor-
dan, M. I. 2019. Theoretically Principled Trade-off between
Robustness and Accuracy. In ICML.
Zhang, S.; Liu, M.; and Yan, J. 2020. The Diversified En-
semble Neural Network. Advances in Neural Information
Processing Systems, 33.



A. Additional Result-Supporting Metrics
In this section, we report the standard deviation of the results from the main paper based on 5 independent trials.

In Fig. 6 and 7, and Tab. 3 and 4, we show the results for standard deviations. As we can see from the results, SMD has higher
variance than SMD+. Nonetheless, we point out that even under such variation SMD has significant gain other the comparing
state-of-the-art algorithms for an attacks with high strength. In is also important to note that for the results on the MNIST and
F-MNIST dataset the DVERGE method also has high variance and it is lower but comparable to the SMD. On the other hand
it seems that the combination SMD+ has relatively low variance, and interestingly, in the majority of the results it is lower than
both SMD and DVERGE.

We show average over 5 independent trials (as in the main paper) and the standard deviation for the transferability of the
attacks between the ensemble members, which measures how likely the crafted white-box attack for one ensemble member
succeeds on another. In all of the results the Y-axis represents the member from which the adversary crafts the attack (i.e.
source), and the X-axis - the member on which the adversary transfers the attack (i.e. target).

The on diagonal values depict the accuracy of a particular ensemble member under a white-box attack. We see that both
SMD and SMD+ models have high ensemble resilience. It appears that at some of the ensemble members the variance in the
estimate for SMD is high. Interestingly, we found out that this is due to the fact that in the prediction of the SMD ensemble over
5 independent runs, we have one prediction which is quite high and thus causes this deviation. This suggest that an additional
tuning of the hyperparameters for the SMD approach might lead to even better performance, which we leave it as future work.

The other (off-diagonal) values show the accuracy of the target members under transferred (black-box) attacks from the
source member, here we see that the variance is on levels comparable with the baseline methods.
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Figure 6: Accuracy vs. attacks strength for white-box PGD attacks on an ensemble of 3 LeNet-5 models for MNIST and F-
MNIST and on an ensemble of 3 ReNets-20 for CIFAR-10 dataset.
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Figure 7: Accuracy vs. attacks strength for black-box PGD attacks on an ensemble of 3 LeNet-5 models for MNIST and F-
MNIST and on an ensemble of 3 ReNets-20 for CIFAR-10 dataset.



MNIST

Clean Fgsm R-F. PGD BIM MIM

Naive 0.0 3.5 1.8 0.7 0.9 1.4

ADP 0.1 8.8 4.3 2.2 5.6 4.7
GAL 0.1 4.4 1.5 10.9 9.4 9.3
DV. 0.0 3.6 0.9 1.0 1.6 2.3

SMD 0.1 9.3 1.2 14.0 17.4 16.6
SMD+ 0.0 1.3 1.1 7.9 3.7 2.2

F-MNIST

Clean Fgsm R-F. PGD BIM MIM

0.1 2.2 1.7 0.4 0.9 0.7

0.3 2.6 3.5 1.5 2.1 1.6
0.4 5.5 2.9 2.5 3.7 4.3
0.1 1.8 1.6 0.2 0.5 0.7

0.4 6.4 3.2 4.7 6.1 6.1
0.2 2.6 2.1 3.6 4.5 4.2

CIFAR-10

Clean Fgsm R-F. PGD BIM MIM

0.4 0.6 0.7 0.3 0.6 0.5

0.1 0.6 0.8 0.0 0.0 0.1
0.4 1.2 1.7 0.6 0.9 1.9
0.1 0.3 1.4 0.1 0.1 0.3

0.6 1.1 1.0 1.3 0.9 1.4
0.3 0.4 2.2 0.2 0.3 0.2

Table 3: Standard deviations for white-box attacks of the magnitude ϵ = 0.3 on an ensemble of 3 LeNet-5 models for MNIST
and F-MNIST and on an ensemble of 3 ReNets-20 for CIFAR-10 dataset. Columns are attacks and rows are defenses employed.

MNIST

Clean Fgsm R-F. PGD BIM MIM

Naive 0.0 1.9 0.8 1.5 1.3 0.9

ADP 0.1 6.0 5.8 5.4 5.4 4.7
GAL 0.1 1.0 1.7 1.9 2.3 2.1
DV. 0.0 0.7 0.5 1.6 1.2 0.5

SMD 0.1 3.1 2.4 4.1 4.0 2.6
SMD+ 0.0 3.6 1.5 4.9 4.2 2.6

F-MNIST

Clean Fgsm R-F. PGD BIM MIM

0.1 2.4 2.6 4.7 3.4 1.8

0.3 3.5 4.4 6.2 4.5 2.7
0.4 4.0 3.9 4.9 3.8 3.1
0.1 0.9 1.1 0.8 0.5 0.7

0.4 4.2 4.0 4.5 3.8 3.1
0.2 2.2 1.8 2.1 1.2 1.5

CIFAR-10

Clean Fgsm R-F. PGD BIM MIM

0.4 0.5 1.3 0.2 0.1 0.1

0.1 0.8 0.6 0.0 0.0 0.2
0.4 0.4 0.4 0.4 0.1 1.2
0.1 0.4 1.1 1.5 0.3 0.3

0.6 0.3 0.5 0.6 0.1 0.2
0.3 0.2 1.7 2.2 2.0 0.3

Table 4: Standard deviations for black-box attacks of the magnitude ϵ = 0.3 on an ensemble of 3 LeNet-5 models for MNIST
and F-MNIST and on an ensemble of 3 ReNets-20 for CIFAR-10 dataset. Columns are attacks and rows are defenses employed.
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Figure 8: Transferability of PGD attacks on F-MNIST. Attacks are crafted on Y-axis members and tested on X-axis members.
Higher values indicate better performance. Standard deviations are in parenthesis.



B. Results for Additional Attacks
In this section, we show results for additional attacks in with-box and black-box setting. Namely, in addition to PGD attacks
shown in the main text we present FGSM, R-FGMS, MIM and BIM attacks here.

In Fig. 9, 10, 11, 12, 13, 14, 15, 16, we show the results. Similarly as in the main paper, we can see gains in performance for
our SMD approach compared to the existing methods. The results appear to be consistent with those presented in the main text
with SMD and SMD+ methods outperforming the baselines in most cases.
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Figure 9: Accuracy vs. attacks strength for white-box FGSM attacks on an ensemble of 3 LeNet-5 models for MNIST and
F-MNIST and on an ensemble of 3 ReNets-20 for CIFAR-10 dataset.
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Figure 10: Accuracy vs. attacks strength for black-box FGSM attacks on an ensemble of 3 LeNet-5 models for MNIST and
F-MNIST and on an ensemble of 3 ReNets-20 for CIFAR-10 dataset.
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Figure 11: Accuracy vs. attacks strength for white-box R-FGSM attacks on an ensemble of 3 LeNet-5 models for MNIST and
F-MNIST and on an ensemble of 3 ReNets-20 for CIFAR-10 dataset.
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Figure 12: Accuracy vs. attacks strength for black-box R-FGSM attacks on an ensemble of 3 LeNet-5 models for MNIST and
F-MNIST and on an ensemble of 3 ReNets-20 for CIFAR-10 dataset.
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Figure 13: Accuracy vs. attacks strength for white-box MIM attacks on an ensemble of 3 LeNet-5 models for MNIST and
F-MNIST and on an ensemble of 3 ReNets-20 for CIFAR-10 dataset.
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Figure 14: Accuracy vs. attacks strength for black-box MIM attacks on an ensemble of 3 LeNet-5 models for MNIST and
F-MNIST and on an ensemble of 3 ReNets-20 for CIFAR-10 dataset.
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Figure 15: Accuracy vs. attacks strength for white-box BIM attacks on an ensemble of 3 LeNet-5 models for MNIST and
F-MNIST and on an ensemble of 3 ReNets-20 for CIFAR-10 dataset.
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Figure 16: Accuracy vs. attacks strength for black-box BIM attacks on an ensemble of 3 LeNet-5 models for MNIST and F-
MNIST and on an ensemble of 3 ReNets-20 for CIFAR-10 dataset.
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Figure 17: Transferability of FGSM attacks on F-MNIST. Attacks are crafted on Y-axis members and tested on X-axis members.
Higher values indicate better performance. Standard deviations are in parenthesis.
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Figure 18: Transferability of R-FGSM attacks on F-MNIST. Attacks are crafted on Y-axis members and tested on X-axis
members. Higher values indicate better performance. Standard deviations are in parenthesis.



1 2 3

1
2

3

6.8%
(0.4%)

24.5%
(1.5%)

23.7%
(1.2%)

25.6%
(3.0%)

6.7%
(0.2%)

24.6%
(2.4%)

26.3%
(3.5%)

25.1%
(3.6%)

6.7%
(0.2%)

Naive

1 2 3

1
2

3
7.1%

(0.4%)
48.6%
(9.7%)

52.9%
(6.8%)

47.7%
(12.8%)

7.1%
(0.4%)

55.1%
(7.9%)

50.1%
(12.5%)

56.7%
(6.1%)

7.1%
(0.2%)

GAL

1 2 3

1
2

3

7.2%
(0.3%)

48.4%
(7.1%)

58.5%
(7.9%)

50.4%
(11.6%)

15.5%
(16.3%)

57.3%
(9.6%)

56.3%
(10.8%)

56.4%
(8.8%)

7.4%
(0.1%)

SMD

1 2 3

1
2

3

7.3%
(1.2%)

29.7%
(5.3%)

29.3%
(2.2%)

27.2%
(4.7%)

6.9%
(1.1%)

22.9%
(3.9%)

27.2%
(5.7%)

24.1%
(6.3%)

6.7%
(0.3%)

ADP

1 2 3

1
2

3

6.6%
(0.1%)

39.9%
(2.1%)

41.0%
(1.2%)

39.5%
(1.4%)

6.7%
(0.1%)

41.1%
(2.6%)

40.7%
(0.8%)

41.5%
(3.4%)

6.7%
(0.2%)

DVERGE

1 2 3

1
2

3
6.9%

(0.4%)
53.7%
(3.7%)

55.3%
(5.1%)

52.9%
(6.5%)

7.6%
(1.7%)

54.0%
(4.6%)

55.8%
(4.4%)

57.7%
(4.7%)

18.1%
(9.2%)

SMD+

Figure 19: Transferability of MIM attacks on F-MNIST. Attacks are crafted on Y-axis members and tested on X-axis members.
Higher values indicate better performance. Standard deviations are in parenthesis.



1 2 3

1
2

3

6.8%
(0.4%)

36.6%
(1.3%)

36.9%
(1.0%)

38.8%
(4.9%)

6.7%
(0.2%)

37.6%
(2.2%)

38.9%
(3.3%)

37.6%
(2.7%)

6.7%
(0.2%)

Naive

1 2 3

1
2

3
7.1%

(0.3%)
57.0%
(7.7%)

61.5%
(6.1%)

57.9%
(11.2%)

7.1%
(0.4%)

62.9%
(6.3%)

57.2%
(11.7%)

62.3%
(5.5%)

7.1%
(0.2%)

GAL

1 2 3

1
2

3

7.2%
(0.2%)

56.7%
(7.3%)

66.3%
(4.4%)

60.1%
(9.3%)

15.6%
(16.7%)

64.6%
(7.0%)

64.0%
(8.5%)

64.6%
(6.9%)

7.4%
(0.1%)

SMD

1 2 3

1
2

3

7.5%
(1.5%)

46.2%
(6.5%)

46.7%
(2.7%)

43.8%
(8.0%)

7.1%
(1.4%)

39.6%
(5.2%)

44.8%
(6.2%)

40.4%
(6.0%)

6.8%
(0.3%)

ADP

1 2 3

1
2

3

6.6%
(0.1%)

55.3%
(3.0%)

56.8%
(1.5%)

54.8%
(1.5%)

6.7%
(0.1%)

56.8%
(2.0%)

55.1%
(1.4%)

55.5%
(3.5%)

6.8%
(0.2%)

DVERGE

1 2 3

1
2

3
7.1%

(0.4%)
64.8%
(5.1%)

66.2%
(4.7%)

65.5%
(6.0%)

7.7%
(1.7%)

66.8%
(2.7%)

65.4%
(3.4%)

66.7%
(5.4%)

17.4%
(8.6%)

SMD+

Figure 20: Transferability of BIM attacks on F-MNIST. Attacks are crafted on Y-axis members and tested on X-axis members.
Higher values indicate better performance. Standard deviations are in parenthesis.



C. Impact of the Number of Ensemble Members
In this section, we show the results for ensembles of 5 and 8 members using the MNIST, F-MNIST and CIFAR-10 datasets
under withe-box and black-box attacks. For MNIST and F-MNIST we use 5 seeds for the evaluation, while we use 3 seed for
CIFAR-10 due to ResNet-20 being much slower to train.

In Fig. 21 and 22, and Tab. 5 and 6, we can see that when we use an ensemble of 5 members, we sill have high accuracy in the
black-box and white-box attack setting. Moreover in the black-box setting, we have better results for most of the attacks, while
in the black-box settings we have still have better results for almost all of the attacks compared to the state-of-the-art methods.

The results for 8-member ensembles are shown in In Fig. 23 and 24, and Tab. 7 and 8. These results are also consistent in
terms of the performance gains for the SMD and SMD+ methods compared with the results for the 3 and 5-member ensembles.
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Figure 21: Accuracy vs. attacks strength for white-box PGD attacks on an ensemble of 5 LeNet-5 models for MNIST and
F-MNIST and on an ensemble of 5 ReNets-20 for CIFAR-10 dataset.
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Figure 22: Accuracy vs. attacks strength for black-box PGD attacks on an ensemble of 5 LeNet-5 models for MNIST and
F-MNIST and on an ensemble of 5 ReNets-20 for CIFAR-10 dataset.

MNIST

Clean Fgsm R-F. PGD BIM MIM

Naive 99.4 24.7 79.1 5.6 7.8 8.5

ADP 99.2 46.2 89.0 13.2 24.0 18.7
GAL 99.4 81.7 91.0 20.4 47.1 54.6
DV. 99.4 48.2 88.5 18.9 27.8 28.2

SMD 99.4 75.2 91.8 24.8 41.9 49.3
SMD+ 99.4 67.6 92.3 27.4 43.6 46.0

F-MNIST

Clean Fgsm R-F. PGD BIM MIM

92.4 18.0 37.5 6.0 8.5 7.6

91.9 19.3 37.4 7.2 11.4 9.1
92.3 37.8 50.8 6.9 12.8 12.7
92.1 26.8 47.1 8.3 13.6 12.3

92.2 37.5 51.2 8.4 15.4 15.1
92.0 32.4 50.7 9.2 16.4 14.4

CIFAR-10

Clean Fgsm R-F. PGD BIM MIM

92.3 10.7 2.5 1.0 3.1 2.7

92.2 11.5 4.1 0.9 3.2 2.8
92.4 10.1 9.1 0.7 1.0 1.6
91.1 12.3 5.1 1.1 5.6 5.0

92.4 10.7 6.9 0.9 1.3 0.8
90.6 11.2 4.4 1.5 6.1 5.7

Table 5: White-box attacks of the magnitude ϵ = 0.3 on an ensemble of 5 LeNet-5 models for MNIST and F-MNIST and on
an ensemble of 5 ReNets-20 for CIFAR-10 dataset. Columns are attacks and rows are defenses employed.



MNIST

Clean Fgsm R-F. PGD BIM MIM

Naive 99.4 31.1 84.0 16.7 17.2 12.6

ADP 99.2 27.3 78.3 19.7 19.6 14.4
GAL 99.4 35.9 84.6 21.2 21.5 16.7
DV. 99.4 39.1 88.2 26.6 26.2 18.3

SMD 99.4 35.5 84.9 22.5 23.2 17.9
SMD+ 99.4 41.2 88.4 27.8 27.5 20.0

F-MNIST

Clean Fgsm R-F. PGD BIM MIM

92.4 23.5 46.7 27.6 27.1 13.0

91.9 22.9 46.2 27.7 28.1 14.1
92.3 26.7 50.6 33.6 32.8 15.6
92.1 28.4 54.2 37.6 36.8 17.3

92.2 28.0 51.3 34.4 34.3 17.3
92.0 29.7 55.1 39.0 38.4 18.7

CIFAR-10

Clean Fgsm R-F. PGD BIM MIM

92.3 10.9 5.6 0.5 2.7 2.2

92.2 11.3 5.7 0.6 2.7 2.3
92.4 10.7 9.5 7.3 2.7 3.1
91.1 10.3 7.1 5.6 6.2 2.4

92.4 11.4 8.6 3.9 2.7 2.1
90.6 10.1 5.4 5.3 10.7 2.3

Table 6: Black-box attacks of the magnitude ϵ = 0.3 on an ensemble of 5 LeNet-5 models for MNIST and F-MNIST and on an
ensemble of 5 ReNets-20 for CIFAR-10 dataset. Columns are attacks and rows are defenses employed.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Attack strength ( )

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

MNIST

Naive
ADP
GAL
DVERGE
SMD
SMD+

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Attack strength ( )

20

40

60

80

F-MNIST

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Attack strength ( )

0

20

40

60

80

CIFAR-10

Figure 23: Accuracy vs. attacks strength for white-box PGD attacks on an ensemble of 8 LeNet-5 models for MNIST and
F-MNIST and on an ensemble of 8 ReNets-20 for CIFAR-10 dataset.
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Figure 24: Accuracy vs. attacks strength for black-box PGD attacks on an ensemble of 8 LeNet-5 models for MNIST and
F-MNIST and on an ensemble of 8 ReNets-20 for CIFAR-10 dataset.

MNIST

Clean Fgsm R-F. PGD BIM MIM

Naive 99.4 22.8 78.9 5.7 8.1 8.1

ADP 99.3 38.3 83.8 11.0 18.1 15.4
GAL 99.4 59.4 90.1 18.1 28.9 31.3
DV. 99.4 54.7 90.5 27.5 37.8 34.7

SMD 99.4 73.1 91.5 21.9 40.4 43.8
SMD+ 99.5 60.3 91.8 31.4 43.2 40.2

F-MNIST

Clean Fgsm R-F. PGD BIM MIM

92.7 16.8 39.0 6.3 8.8 7.2

92.3 15.9 37.4 8.2 11.7 7.3
92.7 32.0 50.5 8.5 14.6 12.0
92.3 28.6 47.4 11.2 18.4 14.9

92.6 37.4 52.3 9.4 18.2 15.7
92.4 29.5 48.5 10.6 17.9 14.6

CIFAR-10

Clean Fgsm R-F. PGD BIM MIM

92.8 10.8 1.5 0.8 2.8 2.5

92.7 11.3 2.4 0.8 3.2 2.8
92.9 10.0 7.8 0.7 1.6 0.5
90.8 11.9 3.2 1.4 5.7 5.4

93.2 9.8 8.4 0.6 1.2 0.5
90.1 11.9 4.9 1.7 6.2 5.9

Table 7: White-box attacks of the magnitude ϵ = 0.3 on an ensemble of 8 LeNet-5 models for MNIST and F-MNIST and on
an ensemble of 8 ReNets-20 for CIFAR-10 dataset. Columns are attacks and rows are defenses employed.



MNIST

Clean Fgsm R-F. PGD BIM MIM

Naive 99.4 26.4 82.0 10.5 11.5 9.5

ADP 99.3 27.9 81.2 13.2 13.8 11.7
GAL 99.4 33.2 83.9 13.8 14.8 13.1
DV. 99.4 36.9 87.9 19.6 20.0 16.2

SMD 99.4 33.8 83.8 15.0 16.0 14.1
SMD+ 99.5 37.8 87.3 19.9 20.2 16.6

F-MNIST

Clean Fgsm R-F. PGD BIM MIM

92.7 22.5 43.7 20.4 21.2 10.8

92.3 21.3 43.5 20.8 22.4 11.4
92.7 25.8 47.5 24.7 25.2 13.2
92.3 28.6 51.0 30.0 30.7 15.3

92.6 26.1 47.9 25.1 25.8 13.5
92.4 28.6 51.0 30.0 30.5 15.0

CIFAR-10

Clean Fgsm R-F. PGD BIM MIM

92.8 10.9 2.5 1.1 3.1 2.5

92.7 11.4 2.7 1.1 3.2 2.6
92.9 10.2 8.1 3.4 3.1 2.6
90.8 11.0 4.7 4.6 9.0 2.6

93.2 10.1 7.8 2.7 3.0 2.5
90.1 10.5 6.8 7.0 12.4 2.7

Table 8: Black-box attacks of the magnitude ϵ = 0.3 on an ensemble of 8 LeNet-5 models for MNIST and F-MNIST and on an
ensemble of 8 ReNets-20 for CIFAR-10 dataset. Columns are attacks and rows are defenses employed.



D. Additional Adversarial Training Results
In this section, we also present an additional results where we complement the results in our paper with the results about the
variance. In addition, we also show results for adversarial training and black-box attacks. We also show results for the F-MNIST
data set in black-box and white-box setting.

In the white-box attack setting for the two datasets, we see major improvement for all regularizers where SMD and SMD+
consistently outperforming others. Considering the results for in the black-box setting we do not have gains. Again this is
consistent with results from (Tramèr et al. 2018).
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Figure 25: Accuracy vs. attacks strength for white-box PGD attacks on an ensemble of 3 LeNet-5 models with adversarial
training for MNIST and F-MNIST datasets.
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Figure 26: Accuracy vs. attacks strength for black-box PGD attacks on an ensemble of 3 LeNet-5 models with adversarial
training for MNIST and F-MNIST datasets.

MNIST

Clean Fgsm R-F. PGD BIM MIM

Naive 99.2 32.9 76.5 3.4 4.9 6.0

ADP 99.2 50.8 84.3 12.6 20.7 19.7
GAL 99.3 80.1 91.9 19.2 38.2 44.8
DV. 99.3 65.2 90.0 15.2 26.2 31.7

SMD 99.3 81.7 91.4 44.6 60.5 63.6
SMD+ 99.3 85.1 94.3 48.1 64.3 66.3

F-MNIST

Clean Fgsm R-F. PGD BIM MIM

90.7 13.2 26.2 6.2 7.6 7.2

90.8 16.2 29.3 5.9 8.4 7.4
90.5 39.5 41.0 7.4 10.9 13.0
91.0 26.6 44.2 7.5 11.2 10.5

90.4 38.7 44.7 9.3 13.4 15.3
91.1 39.1 46.4 10.7 17.8 17.4

Table 9: White-box attacks of the magnitude ϵ = 0.3 on an ensemble of 3 LeNet-5 models with adversarial training for MNIST
and F-MNIST datasets. Columns are attacks and rows are defenses employed.



MNIST

Clean Fgsm R-F. PGD BIM MIM

Naive 99.2 85.4 97.6 92.1 90.9 84.4

ADP 99.2 71.3 95.3 80.7 79.4 66.7
GAL 99.3 81.4 96.9 88.1 87.4 78.2
DV. 99.3 76.9 96.2 82.4 79.4 68.2

SMD 99.3 78.9 96.7 85.5 84.3 74.4
SMD+ 99.3 73.4 96.1 78.2 76.1 63.1

F-MNIST

Clean Fgsm R-F. PGD BIM MIM

90.7 62.3 77.7 80.9 84.0 69.5

90.8 57.0 75.9 76.3 82.1 63.7
90.5 63.1 78.4 81.6 85.0 70.8
91.0 52.8 74.2 73.3 74.8 52.2

90.4 63.9 78.6 81.6 84.9 71.1
91.1 51.0 72.6 72.4 75.2 52.7

Table 10: Black-box attacks of the magnitude ϵ = 0.3 on an ensemble of 3 LeNet-5 models with adversarial training for MNIST
and F-MNIST datasets. Columns are attacks and rows are defenses employed.


