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Abstract

Training deep neural networks to convergence is expensive and time-consuming, especially
when exploring new architectures or hardware configurations. Prior work has primarily
estimated per-iteration or per-epoch cost under fixed training schedules, overlooking the
critical challenge of predicting how long a model will take to converge. We present CAPFE
(Convergence-Aware Prediction Engine), a lightweight and probing-based framework that
predicts the number of epochs required for convergence before any full training occurs.
CAPE performs a brief probe at initialization using a small batch of data to extract analyt-
ical and dynamical features, including parameter count, dataset size, learning rate, batch
size, gradient norm, Neural Tangent Kernel (NTK) trace, and initial loss. These features
jointly characterize the model’s optimization landscape and serve as input to a meta-model
trained to forecast convergence horizons under a validation-based early-stopping criterion.
CAPE achieves strong predictive correspondence to true convergence epochs, with a Pear-
son correlation of 0.89 across diverse architectures and datasets, demonstrating accurate
and consistent convergence prediction across model families. By enabling zero-shot predic-
tion of full-dataset convergence behaviour, CAPE provides a practical tool for rapid model
selection, hyperparameter exploration, and resource-aware training planning.

1 Introduction

Deep neural networks (DNNs) require efficient training methods because their development depends on
ample computational resources and extended training periods. The current techniques (Bergstra & Bengio,
2012; |Li et al., 2018; [Parker-Holder et al., |2020) require extensive experimental testing to find optimal
hyperparameters and training schedules, which results in both time consuming delays and unnecessary
resource consumption. The Neural Tangent Kernel (NTK) theory stands out as a significant contribution to
understanding how deep neural networks converge in recent research (Arora et al., [2019; [Jacot et all 2018
Lee et al., 20195 Wang et al.| 2022; [Mu et al.|2020), which analyzes the training dynamics in high-dimensional
settings. However, both theoretical and empirical works highlight critical limitations: NTK validity depends
on tight rescaling conditions (Boix-Adsera & Littwin, 2023)), extensions with regularization are still confined
near initialization (Clerico & Guedjl [2024), and empirical scaling behaviours deviate significantly from NTK
predictions (Vyas et al.,|2023)). These gaps limit applicability to real-world scenarios. Furthermore, studies on
meta-learning (Ji et al.| [2020; |Ye et al.,|2021; |Chen et al.,|2020; |Guan et al., 2022; Harrison et al., [2022} |Zhou
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et al., |2019; [Tack et al.| [2022) aim to improve learning efficiency by leveraging knowledge from past tasks,
but cannot often predict training time for held-out configurations (i.e., new model-dataset—hyperparameter
tuples). Work on predicting computational cost (Justus et al. |2018; [Pourali et al.| 2025, (Geoffrey et al.l
2021)) has shown promise, but often relies on linear models that fail to capture the inherent non-linearities of
DNN training. To address these limitations, we introduce CAPE (Convergence-Aware Prediction Engine),
a novel framework that combines analytical descriptors with probing-based feature extraction to accurately
predict the number of epochs required for convergence under a validation-based early-stopping criterion.

Our proposed framework employs a lightweight, probing-based feature extraction method to characterize a
DNN at initialization, eliminating the need for full training runs. This design draws inspiration from recent
advances in linking initialization dynamics to optimization and generalization behavior (Wang et al.l |2022;
Ronen et all 2019; [Marion & Berthier}, |2023). By extracting analytical and dynamical features such as the
number of parameters, dataset size, learning rate, batch size, gradient norm, initial loss, and a proxy for the
Neural Tangent Kernel (NTK) trace, CAPE captures both the structural complexity and early optimization
smoothness of the model. These features form a meta-dataset that spans diverse neural architectures (MLPs,
CNNs, RNNs, and Transformers) and datasets. The meta-dataset is then used to train a regression-based
meta-model that learns the mapping between the extracted features and the number of epochs required
for convergence, as determined by a validation-based early-stopping criterion. This meta-learning approach
enables CAPE to generalize effectively to unseen architectures and datasets, providing accurate and efficient
convergence predictions that surpass traditional analytical and linear regression baselines (Zancato et al.,
2020; [Kaplan et al, 2020; [Hoffmann et al., |2022]).

The key advantage of our approach lies in its ability to predict the number of epochs required for a model
to reach convergence before initiating full training. This capability provides substantial benefits throughout
the deep learning workflow. Researchers and practitioners can leverage these predictions to make informed
choices regarding model selection, hyperparameter tuning, and the design of efficient training schedules. By
accurately forecasting convergence behavior in advance, CAPE enables more effective allocation of compu-
tational resources and reduces the time spent on trial-and-error experimentation. The proposed framework
overcomes the limitations of existing methods by combining probing-based feature extraction with the gen-
eralization capabilities of meta-learning, offering a practical and scalable solution for convergence prediction
in deep neural networks. Ultimately, this work contributes to the broader goal of improving the efficiency
and accessibility of deep learning research by allowing practitioners to focus on model design and evaluation
rather than exhaustive training cycles.

To summarize, our contributions are the following:

(i) We introduce a probing-based convergence prediction framework that estimates the number of epochs
required for deep neural networks (DNNs) to reach convergence, without executing full training runs.

(ii) We extract both structural and dynamical features, including parameter count, dataset size, batch
size, learning rate, gradient norm, initial loss, and a proxy for the Neural Tangent Kernel (NTK)
trace by probing the model at initialization using a small batch of data.

(iii) We construct a meta-dataset that spans diverse architectures (MLPs, CNNs, RNNs, Transformers)
and datasets, capturing convergence behavior across a wide range of model configurations.

(iv) We develop a regression-based meta-model using a Random Forest ensemble, trained on the con-
structed meta-dataset to learn the complex mapping between initialization-time features and the
number of epochs required for convergence under a validation-based early-stopping criterion. This
meta-model generalizes effectively to held-out architectures and datasets not seen during meta-
training.

(v) We demonstrate that our system enables early estimation of training cost, allowing researchers and
practitioners to make informed decisions about model selection, resource budgeting, and training
schedules, improving overall efficiency in deep learning workflows.
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2 Related Works

2.1 Convergence Prediction in Deep Learning

Recent works on convergence analysis (Allen-Zhu et al.,2019; Zou et al., 2020 |[Ji et al.,|2020; |Gao et al.| [2024}
[Zancato et al.}[2020)) in deep learning focus heavily on theoretical guarantees derived from over-parameterized
networks and NTK-based formulations. These methods show that gradient descent can converge globally
when networks are sufficiently wide and initialized under specific distributions, assuming either data separa-
bility or proximity to initialization. Beyond NTK, other lines of work establish convergence guarantees under
weaker conditions such as gradient domination (Weissmann et al.l 2025)), logistic loss on two-layer networks
(Gopalani et al.,[2024)), small initialization regimes (Kumar & Haupt, [2025)), and optimizer-specific analyses
of RMSProp/Adam (Zhang et all 2025)). For Transformers, convergence analysis has also considered im-
plicit bias and self-attention dynamics (Vasudeva et al., 2024)). Some models reformulate training dynamics
as stochastic differential equations in function space, enabling closed form predictions of time-to-accuracy
using the eigenvalues of the NTK (Zancato et al) [2020; [Wan et al [2021} [Lee et all [2019). However, these
approaches are mostly confined to fine-tuning or pre-trained regimes, often requiring the network to remain
in a small perturbation region around initialization (Allen-Zhu et all 2019; [Zancato et all |2020). While
such works provide valuable theoretical insights, their reliance on restrictive assumptions limits computa-
tional practicality and precludes advanced prediction of convergence before training begins, a gap our system
directly addresses.

2.2 Learning Curve Extrapolation and Training Time Estimation

Learning curve extrapolation is widely used to estimate final performance from early training signals, espe-
cially within AutoML and neural architecture search workflows. Traditional approaches use Bayesian curve
fitting, Gaussian processes, or ensemble-based estimators that require observing partial training trajectories
(Dombhan et all 2015} Klein et al., 2017). More recent meta-learned models like LC-PFN (Adriaensen et al.)
reduce reliance on handcrafted priors and instead fit generalizable predictors over many tasks, enabling
one-shot extrapolation of loss or accuracy. However, such methods still depend on partial curve data and
are inapplicable when no training has occurred. Some frameworks like MOTE-NAS jointly predict resource
use and model quality but focus more on cost or latency than convergence (Zhang et al., 2024b)). Our work
differs by offering zero-shot convergence prediction, estimating the number of epochs required for training
to converge using initialization-only features, without relying on any portion of the learning curve
let al., 2020; Bahri et al., [2024). Complementary studies have demonstrated that learning rate schedules,
particularly cooldown phases, play a critical role in shaping convergence dynamics (Dremov et al., 2025),
further motivating the need for predictors that generalize beyond handcrafted or schedule-dependent training
trajectories.

2.3 Meta-Learning and Probing-Based Estimation

Meta-learning has proven effective for transferring training knowledge across tasks and model types, espe-
cially when applied to optimizer adaptation, initialization heuristics, and performance modeling
[2021} Zhang et al., |2024a; (Guan et al. 2022). Convergence in distributed and federated settings has also
been studied, where Local SGD exhibits accelerated rates for over-parameterized models ,
complementing meta-generalization perspectives. Some approaches use task-conditioned priors or learned
regularizers that adapt to optimization landscapes dynamically, often leading to improved generalization
across datasets and objectives (Tack et al., 2022, [Jiang et al [2021} |Grant et al. [2018)). Probing-based
estimation complements this by extracting features like gradient norm, NTK trace proxies, and parameter
counts at initialization to guide predictions about training dynamics (Zhu et al. 2022; Xia et al., |2020)).
These methods often avoid full training by leveraging small-batch statistics and meta-trained regressors,
reducing computational overhead (Adriaensen et all 2023; Wang & Mal, 2022). Despite their strengths,
prior work typically focuses on few-shot learning or inner-loop optimization efficiency rather than directly
predicting full-model convergence from scratch, which our work uniquely addresses.
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3 Predicting Convergence Without Training

In this section, we formalize the task of predicting the convergence epochs of a deep neural network (DNN)
without executing full training. Rather than relying on learning—curve extrapolation or empirical tuning,
CAPE estimates the number of epochs required to reach a predefined convergence threshold, as determined
by a validation-based early-stopping criterion. This estimation uses only analytical and dynamical features
extracted at initialization, enabling zero-shot convergence prediction across architectures and datasets.

Assumption 1 (Fixed and Reproducible Initialization). Model parameters 6 € R? are initialized with
a deterministic scheme (e.g., Xavier or He) and a fived random seed. All probing features are computed at
this initialization point Oy; parameters remain unchanged during probing.

Let X and Y denote the input and output spaces, respectively, and let the dataset be D = {(z;,v:)}Y; C
X x ). We write the network as

fg X =), 0 € RP.
Given a task-appropriate loss £ : ) x J — R>(, we define the empirical training and validation losses at
epoch t by

Lirain(t) ! Z U for (),y), Lyar(t) = ! Z U forr (),9),

= D ] D
‘ traln‘ (IJ/)E’Dtrain | Val| (w,y)EDval

where Dirain U Dyal = D is a fixed split and 0(Y) are the parameters after ¢ training epochs (used only to
define the ground-truth label; CAPE does not execute these epochs at inference time).

Definition (Convergence Epoch Count). The convergence epoch count Teony is defined as the smallest
epoch at which the validation loss Lya1(t) fails to improve by more than a tolerance 6 for p consecutive epochs:

Teony = min{t € N | Lyai(t — p') — Leal(t) <6, Vp' < p} (1)

This criterion aligns with standard early-stopping practice in deep learning, replacing fixed loss ratios with
a validation-based stopping rule.

Assumption 2 (Expected Monotonic Decay). While stochastic optimizers such as SGD or Adam
introduce noise in the loss trajectory, we assume that the expected validation loss E[Ly.(t)] decreases mono-
tonically in expectation, ensuring that Eq.|l| yields a well-defined Teony -

To predict T.ony without performing training, we extract a feature vector z € R? from the model at initial-
ization and from a small subset of the training data.

Assumption 3 (Representative Probing Subset). A randomly sampled subset Dprope C D, with
|Dprovel < N, provides a sufficient approzimation of the model’s early-layer dynamics and curvature statis-
tics, allowing the probing features z (defined in Section to capture convergence-relevant behavior.

Probe-batch vs. full-dataset convergence. All analytical and dynamical features (e.g., log || V/||?, NTK
trace, initial loss) are computed using the small subset Dpyone. However, the ground-truth convergence label
Teonv is measured on the full training dataset using the validation-based criterion in Eq. [I} This distinction
enables CAPFE to remain zero-shot at inference time while grounding its labels in realistic full-dataset
behavior.

We then train a regression function g : R — R that maps the probing features to a predicted conver-
gence epoch count Teony. A meta-dataset M = {(z(j ), Tc(g,)w) ;”il is constructed from diverse architectures,
datasets, and training configurations. The meta-regressor is trained by minimizing the mean squared error
in log space:
1 < 2
i 4y _ (9)
min - ; (log g(z") —log Tconv) (2)
Assumption 4 (Meta-Generalization). The meta-regressor g trained on M generalizes to held-out
architecture—dataset pairs drawn from the same underlying distribution.
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Proposition 1 (Asymptotic Consistency). If the meta-dataset M is sufficiently diverse and the hy-
pothesis class G is a rich function family (e.g., universal approximators), then as M — oo, the predictor g
converges in probability to the true mapping ¢(foy, Dprove, M, B, N, a) = Teony-

This formulation enables convergence prediction in the early-stopping sense without performing full training,
relying solely on computational and structural signals extracted at initialization.

4 Probing-Based Feature Extraction and Meta-Learning

CAPE’s implementation comprises three stages: (1) designing initialization-time probing features that cap-
ture both structural and dynamical properties of a model; (2) constructing a diverse meta-dataset from
multiple architectures and datasets; and (3) training a meta-regressor to predict convergence epochs from
these features. This section details each stage of the system.

4.1 Probing Feature Design

We extract a compact set of features from a randomly initialized model using a small probe subset of the
training data. As stated in Assumption 1, initialization is fixed and reproducible, and no parameter updates
are performed, making the procedure efficient and architecture-agnostic.

Let fp, denote the neural network at initialization with parameters 0y € R, and let Dpyrone C D be a
randomly sampled subset with size B < |D|, as described in Assumption 3. The probing function is defined
as

Z = (b(feo?DprObeaanva CL), (3)

where 7 is the learning rate, B is the batch size, N is the total dataset size, and a is an architecture identifier
(e.g., MLP, CNN, RNN, Transformer). Each element influences the expected optimization dynamics. The
following initialization-time features are computed:

Parameter Count P. Measures the representational complexity of the model, reflecting its total number
of learnable parameters:

P = bo. (4)

Initial Loss £y. Quantifies the model’s empirical loss at random initialization, reflecting how well un-
trained features align with the target distribution:

Lo=p Y {u@)). 5)
(z,Y)€Dprobe

It reflects the alignment between random features and target distributions.

Average Gradient Norm G?. Sensitivity of the loss to parameter updates at initialization:

F=r Y Vel @ o)l

(,9)EDprobe

(6)

Larger values typically indicate a steeper loss surface and faster initial descent, whereas smaller values suggest
flat or ill-conditioned regions.

NTK Trace Proxy 7. A curvature-sensitive quantity capturing how model outputs vary with parameter
perturbations:

r=2 Y Vadu@" ™)

E€Dprobe
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Log-Transformed Feature Vector. To reduce scale variance and improve numerical stability, all scalar
quantities are log-transformed before regression:

z = [log(P),log(Lo), log(G?), log(7),log(N), log(n), log(B), a]. (8)

All features can be computed within a second on modern hardware, allowing large-scale or real-time evalu-
ation.

4.2 Meta-Dataset Construction

For each model-dataset configuration, we pair the extracted features z) with the ground-truth convergence
epoch count TC(CJ,][)Iv defined by Eq. The resulting meta-dataset is
M= {9, TY) )}M (9)

conv/ [ j=1’

spanning diverse architectures, datasets, and training conditions to promote generalization.

4.3 Meta-Regressor Training

Given M, we train a regression model g : R? — R that maps probing features to predicted convergence epochs.
We employ a Random Forest regressor (Breiman| 2001)) due to its robustness to feature scale, interpretability,
and strong empirical performance on heterogeneous feature sets. The model is trained on log-transformed
inputs and targets to reduce scale sensitivity and stabilize variance across configurations, minimizing the
objective in Eq. [2] Regularization is implicitly achieved through bootstrap aggregation and random feature
sampling, while model selection and hyperparameter tuning are performed via k-fold cross-validation on the
training meta-set.

5 Experiments

We evaluate CAPE across four architecture families such as MLPs, CNNs, RNNs, and Transformers, each
instantiated using compact yet representative models to capture diverse convergence behaviors. All experi-
ments follow a unified probing and validation-based convergence framework, ensuring comparability across
architectures.

Model families and training protocol. Each model family is represented by widely used architectures
scaled for efficient convergence measurement. MLP-based models include MLP-Mizer (Tolstikhin et al.
2021), ResMLP (Touvron et al.,|2022)), and AS-MLP (Lian et all 2021). CNNs are represented by ResNet-
50 (He et al., 2016), DenseNet-121 (Huang et al.; 2017), and MobileNetV2 (Sandler et al.,|2018). RNNs in-
clude LSTM (Hochreiter & Schmidhuber} (1997), GRU (Cho et al.,[2014), and BiLSTM (Huang et al., 2015),
while Transformers cover DeiT-Tiny (Touvron et al., [2021) and DistiilBERT (Sanh et al., [2019). All mod-
els are trained under a consistent hyperparameter grid with learning rates LR € {5x10~%, 1073, 2x1073},
batch sizes B € {8,16,32,64,128,256}, and optimizers Adam, Adafactor, AdamW and SGD.

Datasets. We evaluate each model on the datasets that align with its standard benchmark usage to ensure
architectural relevance and consistent convergence characteristics:

e MLPs: AS-MLP and MLP-Mixer are evaluated using TinyImageNet (Deng et all [2009) and
STL10 (Coates et al., [2011); ResMLP is evaluated using CIFAR-100 (Wei et al., 2021) and Tinylma-
geNet.

e« CNNSs: ResNet-50 is evaluated using TinyImageNet and CIFAR-10 (Wei et al.l 2021)); DenseNet-121 on
CIFAR-100 and TinyImageNet; and MobileNetV2 on CIFAR-10 and STL10.

e RNNs: GRU and LSTM are evaluated using IMDB (Maas et al.l |2011) and AG NEWS (Gulli, |2005));
BIiLSTM on SST?2 (Socher et all 2013) and IMDB.
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o Transformers: DistilBERT is evaluated using SST2 and IMDB; DeiT-Tiny on CIFAR-100 and TinyIm-
ageNet.

All datasets are preprocessed following standard normalization and tokenization protocols. Image datasets
are resized to their canonical benchmark resolutions consistent with prior work (e.g., CIFAR and Tiny-
ImageNet), while text datasets use subword or whitespace tokenization with vocabularies capped at 30k
tokens.

Meta-feature extraction. To estimate the convergence epoch Teo,, from initialization, we extract six
probing features from a single training batch per model-dataset pair: parameter count (log P), learning rate
(log LR), batch size (log B), squared gradient norm (log G?), NTK trace proxy (log 7), and initial loss (log Lo).
For each configuration, the ground-truth label Tt is defined as the first epoch at which the validation
loss fails to improve by at least the chosen tolerance threshold (5 x 10~%) for five consecutive epochs. This
tolerance level aligns with widely used early-stopping practices in modern deep learning, where improvements
below the order of 1072 to 10~* are typically treated as numerically insignificant and attributed to routine
stochastic variation. All probing features were computed from a single mini-batch corresponding to the
smallest batch size defined for each model-dataset configuration. Although this represents a minimal subset
of the training data, CAPE consistently achieved accurate convergence predictions across architectures and
datasets, underscoring the robustness of its initialization-time feature extraction.

We train a Random Forest regressor to predict log Tiony from these features, using 200 estimators, maximum
depth of 8, bootstrap sampling, and mean squared error as the split criterion. Predictions are exponentiated
to recover Teony in epoch units. We choose Random Forest for its robustness to noisy features, low sensitivity
to scaling, and strong performance on heterogeneous tabular datasets.

Hardware and runtime. All experiments were conducted on a workstation equipped with an NVIDIA
RTX 4000 Ada GPU, an Intel Core i9-14900K CPU, and 64 GB of RAM. The full meta-dataset generation,
covering all model families (MLPs, CNNs, RNNs, and Transformers), multiple datasets, and exhaustive
sweeps over learning rates, batch sizes, optimizers, required over 400 GPU hours of compute time.

Evaluation protocol. We evaluate CAPE under three out-of-sample regimes that mirror realistic deploy-
ment: (i) 5-fold cross validation (CV) with shuffled folds; (ii) Leave-One-Dataset-Out (LODO), where each
dataset is held out in turn; and (iii) Leave-One-Model-Out (LOMO), where each model family is held out in
turn. For every regime, we generate strictly out-of-fold predictions: in CV, a standard 5-fold cross-validation
procedure is applied, whereas in LODO and LOMO, a Leave-One-Group-Out splitter grouped by dataset
or model is used. To ensure reproducibility, the code and datasets used in our experimental evaluation are
publicly available in our GitHub repositoryﬂ

Baselines. To the best of our knowledge, no prior work has demonstrated zero-shot prediction of the
number of training epochs Ty, required for convergence under a validation-based early-stopping criterion,
for a novel combination of architecture, dataset, and hyperparameters, using only single batch probing
features and a learned regressor. An ablation of alternative regressors for CAPE and baseline models is
reported in Appendix [A.3] We compare against three representative baselines, both parametric and non-
parametric, each evaluated under the same out-of-sample protocol:

(1) CAPE (probe-only) trains an identical Random Forest but only on the two probe features log G* and
log 7.

(2) Learning-Curve Extrapolation (LCE) (Domhan et al., [2015)) predicts Teony from an exponential fit to
the validation loss prefix; the decay/offset hyperparameters are learned within each training fold and the
amplitude is calibrated on the test prefix before applying the early-stopping rule.

(3) Scaling-Law uses a ridge regressor on {log P,log N} only.

Thttps://github.com/pacslab/CAPE
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Table 1: CAPE vs. baselines across evaluation protocols. Lower MAE/RMSE and higher PearsonR indicate
better performance.

Method Evaluation protocol MAE RMSE PearsonR
CAPE (full feature set)

CAPE Cross-fold (5-fold) 4.63 8.10 0.89
CAPE Leave-one-dataset-out  6.85 10.57 0.81
CAPE Leave-one-model-out 7.27 11.04 0.79
Baselines

Probe-only (log G2, log 7) Cross-fold (5-fold) 13.10  21.33 0.05
Probe-only (log G?,log T) Leave-one-dataset-out  13.90  21.69 —0.09
Probe-only (log G2, log 7) Leave-one-model-out 15.12 23.12 —0.16
Learning-curve extrapolation — Cross-fold (5-fold) 13.53  29.22 0.64
Learning-curve extrapolation Leave-one-dataset-out 16.09 33.68 0.65
Learning-curve extrapolation Leave-one-model-out 14.43 31.08 0.66
Scaling-law (log P,log N) Cross-fold (5-fold) 11.87  17.23 0.28
Scaling-law (log P,log N) Leave-one-dataset-out  11.81 17.29 0.27
Scaling-law (log P,log N) Leave-one-model-out 12.34 17.82 0.18

Metrics. We report three complementary metrics for CAPE: Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE) and Pearson correlation coefficient (r). For the baselines we report MAE, RMSE,
and 7. All metrics are computed on the out-of-fold predictions produced by the corresponding regime.

e Mean Absolute Error (MAE). Measures the average absolute difference between the predicted and
actual convergence epochs:

1 n
MAE = ﬁ 2|Tpred,i - Tact,i‘-

e Root Mean Squared Error (RMSE). Emphasizes larger prediction deviations by squaring the resid-
uals before averaging:

n

1
RMSE = - Z(Tpred,i = Thct,i)?-

i=1

o Pearson Correlation Coefficient (r). Quantifies the linear correlation between predicted and actual
convergence epochs:

r= Z?:l (Tpred,i - Tpred)(Tact,i - Tact)
\/Z?:l (Tpred,i - Tpred)Q Z’?:l (Tact,i - Tact)Q

5.1 Comparison with Baselines

Evaluation and comparison. Across all protocols, CAPE attains substantially lower absolute errors and
markedly higher correlation than the baselines (Table . In cross-fold evaluation, CAPE achieves MAE 4.63
and RMSE 8.10 with Pearson correlation 0.89. When holding out entire datasets or models, CAPE maintains
strong accuracy (MAE 6.85/7.27; RMSE 10.57/11.04) and robust rank correlation (PearsonR 0.81/0.79).
The probe-only variant, which removes all static/context features, shows large errors and near-zero (or
negative) correlations, indicating that probe signals alone are insufficient. Learning-curve extrapolation,
despite consuming early validation prefixes, underperforms CAPE on both error and correlation, highlighting
the advantage of CAPE’s initialization-time features coupled with meta-regression. The simple scaling-law
baseline captures coarse trends from {log P,log N} but lacks the fidelity to match CAPE’s accuracy or
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correlation. Collectively, these results demonstrate that CAPE’s integrated feature design and training
protocol provide reliable, generalizable convergence-epoch predictions under diverse evaluation regimes.

Relation to neural scaling laws. Neural scaling laws posit approximate power-law relationships between
model/dataset scale and performance or compute (Kaplan et al., 2020; Hoffmann et al.l [2022). Our scaling-
law baseline follows this spirit by regressing convergence epochs on {log P,log N}. While such macroscopic
laws capture broad monotone trends, they deliberately abstract away optimization specifics (e.g., learning
rate, batch size, curvature/gradient geometry). By contrast, CAPE augments static scale with initialization-
time probes (log G2,log 7) and training-context features, enabling it to account for short-horizon dynamics
that materially affect when early stopping is triggered. Empirically, this yields substantially tighter fit
(lower MAE/RMSE) and stronger correspondence with ground truth than scale-only predictors, indicating
that convergence timing is not solely a function of (P, N) but also of local geometry and optimizer scale.

Scaling-law versus Probe-based predictors. Scaling-law estimators are most effective in the pre-
training design phase, where only coarse descriptors, such as model parameter count and dataset size are
known. They provide inexpensive and interpretable approximations of asymptotic behavior, allowing prac-
titioners to forecast compute requirements or performance trends under fixed training protocols. However,
because these estimators assume a stationary training regime and abstract away optimization dynamics, they
often fail to capture non-scaling effects introduced by changes in hyperparameters, architectural inductive
biases, or data distributions. In contrast, CAPE operates at the initialization and probing level, integrat-
ing both structural and early-dynamic signals (e.g., gradient norm, NTK trace, optimizer configuration) to
model short-horizon convergence behavior. This makes CAPE particularly suitable when the training setup
deviates from canonical scaling assumptions, for instance, when adjusting batch size or learning rate, em-
ploying adaptive optimizers, or applying early stopping criteria. In such regimes, CAPE consistently achieves
lower prediction error and higher agreement with realized convergence compared to scale-only baselines, of-
fering a more robust and context-aware characterization of training dynamics while maintaining lightweight
computational overhead.

Comparison with learning-curve extrapolation. Our LCE baseline fits an exponential model L(t) =
ae~b + ¢ to the initial portion of each run’s validation-loss trajectory. The decay and asymptote parameters
(b, ¢) are estimated from the training data and applied to held-out runs, after which the fitted curve is ex-
trapolated to the full training horizon and an early-stopping rule is simulated using each run’s patience and
tolerance parameters. Both CAPE and LCE predict the same convergence target and are evaluated under
identical experimental protocols with shared metrics. Across all settings, CAPE achieves substantially lower
MAE and RMSE and higher correlation than LCE (Table . This result suggests that early validation
trajectories, though informative in principle, are often noisy and sensitive to optimization hyperparame-
ters, whereas CAPE’s initialization-time geometric probes and contextual features yield more stable and
generalizable convergence predictions.

5.2 Cross-Architecture and Cross-Dataset Convergence Prediction

Evaluation Protocol. As shown in Table [2, we report per-model performance of CAPE under three
evaluation regimes: 5-fold cross-validation (CV), Leave-One-Dataset-Out (LODO), and Leave-One-Model-
Out (LOMO). Each entry summarizes mean absolute error (MAE) and root mean squared error (RMSE) in
epochs.

Observations. CAPE maintains low prediction error (typically 2-8 epochs) across most architectures
and evaluation regimes. Recurrent families (BiLSTM, GRU, LSTM) and several CNN/MLP variants
(DenseNet121, ResMLP, Mixer) show stable performance, indicating that the probe-based features gen-
eralize well beyond the specific training domains. Interestingly, CAPE occasionally performs better under
cross-domain regimes than in standard cross-validation. For example, DeiT-Tiny and DistilBERT achieve
lower MAE and RMSE under LODO, indicating that dataset-level generalization can benefit Transformers
whose convergence dynamics are relatively stable across datasets with similar optimization profiles. Like-
wise, the LSTM model attains slightly lower error under LOMO, suggesting that recurrent architectures
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Table 2: Per-model convergence prediction for CAPE across evaluation regimes. Lower is better for
MAE/RMSE (epochs).

M | CV (5-fold) | LODO | LOMO
odel

| MAE RMSE | MAE RMSE | MAE RMSE
DeiT-Tiny 442 572 384  499| 490  6.28
DistilBERT 234 337 | 179  255| 295  3.84
AS-MLP 12.63  16.23 | 14.46  18.64 | 19.30  23.05
BiLSTM 521 959 | 6.84 1298 | 574  10.65
DenseNet121 | 220  3.50 | 4.25 494 | 358 431
GRU 2.67 440 | 722 1015 | 528 745
LSTM 519 920 | 889 13.13 | 4.86  8.63
MLP-Mixer 525 1118 | 599  11.37 | 6.51  10.07
MobileNetV2 | 4.94  6.14 | 11.23  12.01 | 981  12.11
ResMLP 356 5.67 | 449  7.12| 499  8.29
ResNet-50 253 328 | 631  7.56 | 12.07  13.29

share transferable temporal-gradient statistics that help CAPE interpolate across unseen sequence models.
In contrast, convolutional and MLP-based families (DenseNet121, ResNet-50, ResMLP, Mixer) depend more
strongly on dataset-specific features such as input resolution, normalization depth, and augmentation scheme,
causing CV to remain their most favorable regime. Finally, AS-MLP exhibits the largest MAE/RMSE due to
its broad convergence range (2667 epochs), where proportionally similar relative errors translate into large
absolute deviations in epoch counts. Moreover, LOMO remains the most challenging regime overall, as it
requires extrapolation to unseen architectures; nevertheless, CAPE maintains competitive MAE (often <10
epochs) across most model families, demonstrating its ability to capture transferable convergence signatures
across both datasets and architectures.

5.3 Cross-Dataset Behavior under Batch-Size Variation

We evaluate CAPE under the Leave-One-Dataset-Out (LODO) protocol while systematically sweeping key
hyperparameters, batch size, learning rate, and optimizer type, to examine its robustness to training config-
uration shifts. For each model, training is performed on all available datasets except one, which is reserved
for evaluation. Specifically, DeiT-Tiny, ResNet-50, DenseNet-121, MLP-Mixer, and ResMLP are tested on
TinylmageNet, DistilBERT and GRU on IMDB, and BiLSTM on SST-2 as the unseen datasets. Figure [I]
summarizes CAPE’s Leave-One-Dataset-Out performance across varying batch sizes for all model fami-
lies. Overall, predicted convergence epochs remain closely aligned with the actual values, indicating that
the meta-regressor generalizes well across unseen datasets. For recurrent models (BiLSTM, GRU), CAPE
slightly overestimates convergence at smaller training batch sizes but achieves stable agreement as batch size
increases, reflecting that probe-derived features computed using the smallest batch size per model-dataset
configuration, captures optimization dynamics robustly despite changes in batch-dependent gradient noise
during training. Transformer-based architectures (DeiT-Tiny, DistilBERT) show consistently accurate pre-
dictions with only mild variability as batch size grows, suggesting that probe statistics such as gradient norm
and NTK trace effectively encode convergence behavior largely independent of mini-batch scale. Among con-
volutional and MLP-based architectures (DenseNet-121, MLP-Mixer, ResMLP, ResNet-50), predicted values
closely track actual convergence trends, with minor underestimation observed for ResMLP and ResNet-50
at intermediate batch sizes. These deviations likely arise from dataset-specific optimization effects on Tiny-
ImageNet, where higher input variability and feature diversity slightly delay convergence relative to the
probe-based expectation.
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Figure 1: LODO evaluation across batch-size variations. Predicted versus actual convergence epochs are
shown for each model, with relative errors (%) indicated above each configuration.

5.4 Cross-Dataset Behavior under Learning-Rate Variation

Figure [2] presents CAPE’s Leave-One-Dataset-Out evaluation across different learning rates, illustrating the
model’s robustness to optimization-scale variation. Overall, the predicted and actual convergence epochs
remain closely aligned, with most relative errors below 15%, confirming that CAPE effectively models con-
vergence dynamics across a broad range of learning rates. For recurrent architectures (BiLSTM, GRU),
prediction accuracy slightly degrades at intermediate learning rates, likely due to increased gradient oscilla-
tion that perturbs early probe statistics. Transformer models (DeiT-Tiny, DistilBERT) exhibit highly stable
predictions at lower and moderate rates, with minor overestimation appearing only at the highest setting,
indicating that probe-derived features generalize well across smooth optimization regimes. Convolutional
and MLP-based models (DenseNet-121, MLP-Mixer, ResMLP, ResNet-50) maintain strong agreement over-
all, with mild over-prediction observed at elevated learning rates, particularly for ResMLP and ResNet-50,
where faster initial loss decay leads to slightly premature predicted convergence. These results demonstrate
that CAPE generalizes reliably to unseen datasets under varying learning-rate scales, preserving accurate
convergence estimation across diverse model families.

50

35 BN Actual (epochs) BN Actual (epochs)
_ W Predicted (epochs) o W Predicted (epochs)

30 2
5 41% 9.1% 540 19.9%
225 2
5) 14.2% 3)
= 4% 26.7% 22.1% =30
820 14.5% " 61% 9 13.6%
e 12.6% £
& & % 15.4%
5" 520 4% 23.6%
Z 10 1.0% 5 gy, 22.7% Z
o o
S S1o

5

Se4 le-3 2e-3 Sed le3 23 Sed4 le-3 23 Sed led 23 Se-d4 le-3 23 Sed le3 23 Se-d le-3 23 Sed4 le-3 2e-3
BIiLSTM DeiT-Tiny DistilBERT GRU DenseNet-121 MLP-Mixer ResMLP ResNet-50

Figure 2: LODO evaluation across learning-rate variations. Configurations correspond to typical values such
as 5 x 1074, 1073, and 2 x 1073, with predicted versus actual convergence epochs compared for each model.

5.5 Cross-Dataset Behavior under Optimizer Variation

Figure [3] illustrates CAPE’s Leave-One-Dataset-Out results across optimizer variations, evaluating the sys-
tem’s robustness to optimization dynamics. Across all architectures, predicted convergence epochs remain
closely aligned with actual values, confirming CAPE’s ability to generalize across distinct update rules. Re-
current models (BiLSTM, GRU) show stable predictions with deviations typically under 10% when switching
between AdamW and SGD, while Transformer architectures (DeiT-Tiny, DistiiIBERT) maintain low error
across Adam, AdamW, and Adafactor, indicating that probe features effectively encode optimizer-invariant
characteristics of early training dynamics. Across all models, CAPE accurately reflects the longer convergence
trajectories characteristic of SGD compared to adaptive optimizers such as AdamW. This behavior demon-
strates that CAPE not only generalizes across optimizers but also faithfully captures optimizer-dependent
convergence patterns across diverse architectures.
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Figure 3: LODO evaluation across optimizer variations. Each model family is tested with two optimizers
(e.g., AdamW and SGD for CNNs/MLPs, Adam and AdamW for Transformers, Adafactor and AdamW for
sequence models), comparing predicted and actual convergence epochs.

6 Conclusion and Limitation

We introduced CAPE, a lightweight, probing-based framework that predicts the epochs to convergence
without full training. By combining structural descriptors (e.g., parameter and dataset scale, batch size,
learning rate) with initialization-time probes (gradient-norm statistics, NTK-trace proxy, initial loss), CAPE
learns a meta-regressor that generalizes across architectures and datasets under a validation-based early-
stopping rule. Empirically, CAPE achieves low absolute error and strong linear correspondence to ground
truth, with Pearson correlation of 0.89 in cross-fold evaluation and remaining robust under LODO and
LOMO protocols. Across MLPs, CNNs, RNNs, and Transformers, CAPE consistently outperforms static
scale-only, prefix-based (LCE), and probe-only variants, enabling practical exz-ante convergence estimation
for model selection, hyperparameter exploration, and compute planning.

Hardware and runtime mapping. While CAPE is hardware-agnostic by predicting epochs rather than
wall-clock time, deployment often requires translating epochs into runtime or cost. Augmenting the feature
set with hardware factors (e.g., GPU architecture/memory bandwidth, vCPU count, RAM, storage) would
enable end-to-end time and cost prediction.

Meta-dataset coverage. Accuracy depends on the diversity of meta-training data. Broader cov-
erage—additional modalities, longer sequences, larger image resolutions, and stronger augmentation
regimes—should further improve robustness under distribution shift.

Scope of probes and criteria. Probes are computed at initialization and labels follow a specific early-
stopping criterion. Extending to schedule-aware settings (e.g., cosine/step decay, cooldown phases) and
alternative stopping rules could increase fidelity in scenarios with non-monotone trajectories.

Extrapolation limits. Although CAPE generalizes well to unseen datasets and model families, extreme
regimes (very large/small learning rates or batch sizes, unusual optimizers) may require targeted meta-data
or mild task-specific calibration.

Modality-dependent convergence behavior. The current early-stopping rule applies a patience of five
consecutive epochs, which aligns well with the training dynamics of the vision datasets included in our
meta-dataset. However, the notion of an “epoch” varies across modalities: text datasets often contain
fewer samples, exhibit tokenization and sequence length dependent variability, and may complete an epoch
with substantially fewer effective parameter update cycles than vision tasks. Developing a modality aware
convergence definition, potentially adjusting patience thresholds or stabilization criteria to reflect dataset
granularity would require redefining the convergence unit, regenerating the meta-dataset, and recalibrating
all evaluation metrics to preserve architectural consistency. We leave this to future work, as exploring
modality specific convergence signals, particularly for NLP workloads, represents a promising direction for
expanding the generality of CAPE.
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A Appendix

A.1 Proof of Proposition 1: Asymptotic Consistency
Proposition 1 (Asymptotic Consistency). Assume that:

o+ The probing feature extractor ¢(fg,, Dprobe) Produces bounded feature vectors z € R¢,

o The ground-truth mapping h*(z) := T/, is measurable,

conv

e The hypothesis class G contains a sequence of functions that can approximate h* arbitrarily well
(i.e., G is dense in L?(Pyz)),

e The training examples (z(j ), T&(ﬂ\),) are i.i.d. samples from a fixed distribution D 4.

Then, the empirical risk minimizer
| M 9
in — Gy *(5)
gn € argmin - > (log (")) —log Tconv)

satisfies

Jim By,

) [(log ga1(2) ~ Tog T)*] = J A CR ) [(10g g(2) —log T2,

That is, gps is a consistent estimator of the log-space convergence predictor.

Proof. Let Z = R? x R+, where each sample (z,T% ) ~ Day. Define the per-example loss function as
L(9:2, Tiony) = (log g(2) —log Tfyn,)?,

assuming ¢(z) > 0 to ensure the logarithm is well-defined.

Define the population risk:

R(9) = E(a,15, )~Dus [L(95 2, Teony)]

conv

and the empirical risk over M samples:

A 1 . .
o § : (1) ()
RM(g) T M < L(g,Z / 7Tcorjlv)’
Jj=1
Let gar € argmingeg Rm (g). We aim to show that

R(gnm) — inf R(g) as M — oo.
geG

> av) | g € G} has finite
pseudo-dimension or bounded covering number, then by the uniform law of large numbers:

Step 1: Uniform Convergence. If the loss class Lg = {(z,T,,) — L(g;2, T}

sup |Ram(9) — R(g) 250 as M — .
geyg

This holds if g is Lipschitz (e.g., tree or neural regressors with bounded weights), and both log T . and
log g(z) are bounded, e.g., via clipping or regularization.

Step 2: Approximation Error. By assumption, there exists ¢* € G such that R(g*) = infyeg R(g).
Therefore, G can approximate the Bayes-optimal predictor arbitrarily closely.

Step 3: Conclude Consistency. From uniform convergence and richness of G, we have:
lim R = inf R(g),
]\/[l—r>noo (gM) QHEI,C/ (g)
which implies the consistency of the meta-regressor:

lim E 7 )[(bggM(Z) —log T%,,,)°| = inf R(g)-

M —00 conv g€g
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A.2 Supporting Lemma: Generalization of Empirical Risk Minimization

Lemma 1 (ERM Convergence). Let G be a hypothesis class of real-valued functions mapping from R?
to R+q, and assume that:

o The per-sample loss is L(g;z,17%,,) = (logg(z) — log T ),

? - conv

o The examples (z,T ) are i.i.d. from a fixed distribution D,

The function class G has finite VC-dimension or bounded Rademacher complexity,

o logg(z) and log T ., are uniformly bounded almost surely.

Then, the empirical risk minimizer

M
1 , N2
gy = argmin - jEil (log g(z")) —log Tc*cfﬁi)

satisfies, with high probability,

- conv conv —

L a2, Ton)] ~ 1o B{L(3: 2, T )| < 01,

where (M) — 0 as M — oo.

Proof. This follows from standard learning theory results. Since the loss is bounded and Lipschitz in
log g(z), and G has finite capacity, uniform convergence holds over Lg = {L(g;-,") : g € G}:

A

sup |[Ray(g9) — R(g)] = 0 as M — oo.
geSG

Then, by consistency of ERM under uniform convergence, the excess risk of ga; over the best-in-class predictor
vanishes:

R(gam) — glle}g R(g) — 0.

A.3 Ablation Study on Regressor Choices

To justify the regression models used for CAPE and the baselines, we present a comprehensive ablation over
three regression families of Ridge, Random Forest, and Gradient Boosting. Table [3| summarizes performance
across 5-fold CV, LODO, and LOMO regimes using MAE, RMSE, and Pearson correlation.

Regressor choice for CAPE. For CAPE, which incorporates both structural descriptors and probing-
based features, non-linear tree-based regressors (Random Forest and Gradient Boosting) consistently out-
perform Ridge across all regimes: they reduce MAE by 35-45% in cross-fold CV and by 25-40% in LODO,
while also yielding substantially higher Pearson correlations. A similar pattern holds for the CAPE (probe-
only) variant: although it operates solely on log G? and log 7, tree-based models still achieve lower prediction
error than Ridge, indicating that even the probe features exhibit non-linear relationships with the conver-
gence horizon. These results collectively show that the mapping from initialization-time statistics to Ttony
is strongly non-linear, making ensemble regressors a more suitable choice. Accordingly, the main CAPE
model uses a Random Forest regressor.
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Table 3: Ablation of regressor choices for CAPE, CAPE (probe-only), and the scaling-law baseline. Lower
MAE/RMSE and higher PearsonR indicate better performance.

Method Evaluation protocol MAE RMSE PearsonR
CAPE (full feature set)

CAPE-Random Forest Cross-fold (5-fold) 4.63 8.10 0.89
CAPE-Random Forest Leave-one-dataset-out 6.85 10.57 0.81
CAPE-Random Forest Leave-one-model-out 7.27 11.04 0.79
CAPE-Gradient Boosting Cross-fold (5-fold) 4.96 8.10 0.89
CAPE-Gradient Boosting Leave-one-dataset-out 7.08 10.73 0.80
CAPE-Gradient Boosting Leave-one-model-out 9.04 12.86 0.71
CAPE-Ridge Cross-fold (5-fold) 839 11.84 0.75
CAPE-Ridge Leave-one-dataset-out 9.99 13.86 0.66
CAPE-Ridge Leave-one-model-out 15.22 19.58 0.38
CAPE (probe-only: log G2, logT)

Probe-only-Random Forest Cross-fold (5-fold) 13.10 21.33 0.05
Probe-only-Random Forest Leave-one-dataset-out 13.90 21.69 -0.09
Probe-only-Random Forest Leave-one-model-out 15.12 23.12 -0.16
Probe-only-Gradient Boosting  Cross-fold (5-fold) 13.31  21.03 —0.01
Probe-only—Gradient Boosting Leave-one-dataset-out  13.44 20.92 —0.13
Probe-only—Gradient Boosting Leave-one-model-out 13.94 21.71 —0.18
Probe-only—Ridge Cross-fold (5-fold) 13.30  21.01 —0.08
Probe-only—Ridge Leave-one-dataset-out  13.54 21.26 —-0.27
Probe-only—Ridge Leave-one-model-out 13.16 18.66 —0.31
Scaling-law baseline (log P,log N)

Scaling-law—Ridge Cross-fold (5-fold) 11.87 17.23 0.28
Scaling-law—Ridge Leave-one-dataset-out 11.81 17.29 0.27
Scaling-law—Ridge Leave-one-model-out 12.34 17.82 0.18
Scaling-law—Random Forest Cross-fold (5-fold) 10.56  16.09 0.45
Scaling-law—Random Forest Leave-one-dataset-out  11.74 16.98 0.35
Scaling-law—Random Forest Leave-one-model-out 14.22 20.01 0.07
Scaling-law—Gradient Boosting Cross-fold (5-fold) 10.55  16.10 0.45
Scaling-law—Gradient Boosting Leave-one-dataset-out — 11.73 16.96 0.35
Scaling-law—Gradient Boosting Leave-one-model-out 14.18 19.96 0.07

Regressor choice for the scaling-law baseline. The scaling-law baseline uses only two static features,
{log P,log N'}, which induce a nearly linear relationship with convergence steps. While tree-based regressors
sometimes achieve slightly better performance in CV/LODO, the LOMO regime whose goal is to assess
cross-model generalization—shows that Ridge achieves: (i) the lowest RMSE, (ii) the highest Pearson corre-
lation, and (iii) the most stable behavior across architectures. Because the scaling-law baseline is meant to
represent a structurally simple, parametric predictor, ridge regression is the most faithful and robust choice
for this baseline, consistent with prior scaling-law literature and supported empirically by its superior LOMO
performance.
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