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Abstract

Training deep neural networks to convergence is expensive and time-consuming, especially
when exploring new architectures or hardware setups. Prior work has focused on estimat-
ing per-iteration cost or total training time assuming a fixed step count, but has largely
ignored the critical challenge of predicting how many steps a model will take to converge.
We introduce CAPE (Convergence-Aware Prediction Engine), a lightweight, probing-based
system that accurately predicts the number of training steps required for convergence with-
out executing full training runs. CAPE probes models at initialization using a small batch
of data to extract both structural and dynamical features, including parameter count, gra-
dient norm, NTK trace, dataset size, and learning rate. Using these features, we build
a meta-dataset spanning a wide range of model types and train a meta-model to forecast
convergence steps. CAPE attains mean absolute errors of 3-9 optimization steps across
MLP, CNN, RNN, and Transformer models, consistently surpassing strong baselines. This
performance remains stable across a fourfold range in typical convergence horizons (15-60
steps), offering practical value for rapid model selection and budget planning. CAPE offers
a practical and generalizable solution for convergence forecasting, supporting faster model
selection, efficient scheduling, and resource-aware training.

1 Introduction

Deep neural networks (DNNs) require efficient training methods because their development depends on
ample computational resources and extended training periods. The current techniques (Bergstra & Bengio,
2012; |Li et al., 2018; [Parker-Holder et al., |2020) require extensive experimental testing to find optimal
hyperparameters and training schedules, which results in both time consuming delays and unnecessary
resource consumption. The Neural Tangent Kernel (NTK) theory stands out as a significant contribution to
understanding how deep neural networks converge in recent research (Arora et al., [2019; [Jacot et all |2018;
Lee et al.,2019; Wang et al.| 2022; |[Mu et al.|2020), which analyzes the training dynamics in high-dimensional
settings. However, both theoretical and empirical works highlight critical limitations: NTK validity depends
on tight rescaling conditions (Boix-Adsera & Littwin, 2023)), extensions with regularization are still confined
near initialization (Clerico & Guedjl [2024), and empirical scaling behaviours deviate significantly from NTK
predictions (Vyas et al.,|2023)). These gaps limit applicability to real-world scenarios. Furthermore, studies on
meta-learning (Ji et al.| [2020; |Ye et al.,|2021; |Chen et al.,|2020; |Guan et al.;, 2022; Harrison et al., [2022} |Zhou
et al., |2019; [Tack et al. [2022) aim to improve learning efficiency by leveraging knowledge from past tasks,
but cannot often predict training time for held-out configurations (i.e., new model-dataset—hyperparameter
tuples). Work on predicting computational cost (Justus et al. |2018; [Pourali et al.| 2025} (Geoffrey et al.l
2021) has shown promise, but often relies on linear models that fail to capture the inherent non-linearities of
DNN training. To address these limitations, we introduce CAPE (Convergence-Aware Prediction Engine),
a novel approach that combines probing-based feature extraction with meta-learning to predict the number
of training steps required for convergence accurately.

Our proposed system utilizes a probing-based feature extraction technique to capture the essential character-
istics of a DNN at initialization, eliminating the need for full training. This approach draws inspiration from
recent advances in understanding the relationship between training dynamics and generalization performance
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(Wang et al.,|2022; Ronen et al., 2019; Marion & Berthier} [2023]). By extracting features such as the number
of parameters, gradient norms, and a proxy for the NTK trace, we capture both structural and dynamic
aspects of the model. These features are then used to construct a meta-dataset, encompassing a wide range
of DNN architectures (MLPs, CNNs, RNNs, Transformers) and datasets. The meta-dataset is crucial for
training a meta-model, a regression model capable of learning the complex mapping between the extracted
features and the actual number of steps required for convergence. This meta-model is designed to generalize
to held-out datasets, providing a robust and efficient prediction mechanism. The use of a meta-learning
approach allows us to learn from the diverse training experiences captured in the meta-dataset, leading to
improved generalization capabilities compared to traditional linear regression models (Justus et al.; |2018;
Zancato et al., [2020).

The key advantage of our approach lies in its ability to predict the number of steps needed during the training
to reach convergence before initiating full training. This capability offers significant benefits for various
aspects of the deep learning workflow. Researchers and practitioners can leverage this predictive power to
make informed decisions regarding model selection, optimizing training schedules, and efficiently allocating
computational resources. By accurately estimating the training cost upfront, our system contributes to a
more efficient and effective deep learning pipeline, reducing the time and resources spent on experimentation
and optimization. The proposed system addresses the limitations of existing methods by combining the power
of probing-based feature extraction with the generalization capabilities of meta-learning, offering a practical
and scalable solution for predicting DNN training convergence. This work contributes to the broader goal of
making deep learning more accessible and efficient, enabling researchers and practitioners to focus on model
development and deployment rather than lengthy training processes.

To summarize, our contributions are the following:

(i) We introduce a probing-based convergence prediction system that estimates the number of training
steps required for deep neural networks (DNNs) to converge, without executing full training runs.

(ii) We extract both structural and dynamical features—including parameter count, gradient norms,
NTK trace proxy, dataset size, and learning rate—by probing the model at initialization using a
small batch of data.

(iii) We construct a meta-dataset that spans diverse architectures (MLPs, CNNs, RNNs, Transformers)
and datasets, capturing convergence behavior across a wide range of model configurations.

(iv) We develop a regression model based on gradient-boosted trees, trained on the meta-dataset to learn
the complex mapping between initialization-time features and the number of steps to convergence.
This meta-model generalizes to held-out datasets not used during meta-training.

(v) We demonstrate that our system enables early estimation of training cost, allowing researchers and
practitioners to make informed decisions about model selection, resource budgeting, and training
schedules—improving overall efficiency in deep learning workflows.

2 Related Works

2.1 Convergence Prediction in Deep Learning

Recent works on convergence analysis (Allen-Zhu et al.|2019; |Zou et al.| 2020; |Ji et al., 2020} |Gao et al.l 2024}
Zancato et al.;[2020) in deep learning focus heavily on theoretical guarantees derived from over-parameterized
networks and NTK-based formulations. These methods show that gradient descent can converge globally
when networks are sufficiently wide and initialized under specific distributions, assuming either data separa-
bility or proximity to initialization. Beyond NTK, other lines of work establish convergence guarantees under
weaker conditions such as gradient domination (Weissmann et al. 2025)), logistic loss on two-layer networks
(Gopalani et al.l |2024)), small initialization regimes (Kumar & Haupt), 2025)), and optimizer-specific analyses
of RMSProp/Adam (Zhang et all [2025). For Transformers, convergence analysis has also considered im-
plicit bias and self-attention dynamics (Vasudeva et al., 2024). Some models reformulate training dynamics
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as stochastic differential equations in function space, enabling closed form predictions of time-to-accuracy
using the eigenvalues of the NTK (Zancato et al.l [2020; Wan et al.| 2021} Lee et all 2019). However, these
approaches are mostly confined to fine-tuning or pre-trained regimes, often requiring the network to remain
in a small perturbation region around initialization (Allen-Zhu et al., [2019; [Zancato et al., |2020). While
such works provide valuable theoretical insights, their reliance on restrictive assumptions limits computa-
tional practicality and precludes advance prediction of convergence before training begins—a gap our system
directly addresses.

2.2 Learning Curve Extrapolation and Training Time Estimation

Learning curve extrapolation is widely used to estimate final performance from early training signals, espe-
cially within AutoML and neural architecture search workflows. Traditional approaches use Bayesian curve
fitting, Gaussian processes, or ensemble-based estimators that require observing partial training trajectories
(Domhan et all [2015; Klein et al., [2017). More recent meta-learned models like LC-PFN (Adriaensen et al.,
2023)) reduce reliance on handcrafted priors and instead fit generalizable predictors over many tasks, enabling
one-shot extrapolation of loss or accuracy. However, such methods still depend on partial curve data and
are inapplicable when no training has occurred. Some frameworks like MOTE-NAS jointly predict resource
use and model quality but focus more on cost or latency than convergence (Zhang et al.,|2024b). Our work
differs by offering zero-shot convergence prediction—estimating the number of steps required for training
from scratch using initialization-only features, without relying on any part of the learning curve (Zela et al.,
2020; [Bahri et al., |2024). Complementary studies have shown how learning rate schedules, particularly
cooldown phases, critically shape convergence dynamics (Dremov et al., [2025), further motivating the need
for predictors that generalize beyond handcrafted training trajectories.

2.3 Meta-Learning and Probing-Based Estimation

Meta-learning has proven effective for transferring training knowledge across tasks and model types, espe-
cially when applied to optimizer adaptation, initialization heuristics, and performance modeling (Ye et al.,
2021} |[Zhang et al., 2024a; Guan et all |2022). Convergence in distributed and federated settings has also
been studied, where Local SGD exhibits accelerated rates for over-parameterized models (Qin et al., [2022)),
complementing meta-generalization perspectives. Some approaches use task-conditioned priors or learned
regularizers that adapt to optimization landscapes dynamically, often leading to improved generalization
across datasets and objectives (Tack et al., [2022; |Jiang et al., [2021; |Grant et all 2018). Probing-based
estimation complements this by extracting features like gradient norm, NTK trace proxies, and parameter
counts at initialization to guide predictions about training dynamics (Zhu et al.| [2022; |Xia et al., |2020)).
These methods often avoid full training by leveraging small-batch statistics and meta-trained regressors,
reducing computational overhead (Adriaensen et all |2023; Wang & Mal 2022)). Despite their strengths,
prior work typically focuses on few-shot learning or inner-loop optimization efficiency rather than directly
predicting full-model convergence from scratch, which our work uniquely addresses.

3 Predicting Convergence Without Training

In this section, we formalize the task of predicting the convergence steps of a deep neural network (DNN)
without executing full training. Rather than relying on learning curve extrapolation or empirical tuning,
CAPE approach estimates the number of gradient updates (i.e., steps) needed to reach a predefined conver-
gence threshold, using only features extracted at initialization.

Assumption 1 (Fixed Initialization). The model parameters 6 € R? are initialized using a fived, repro-
ducible scheme (e.g., Xavier or He initialization), and remain unchanged during probing.

Let fp : R? — R¥ denote a neural network with parameters 6, and let the dataset be D = {(z,y:)}¥ ;.
Define the empirical training loss after ¢ steps as L£:(6).
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Definition (Convergence Step Count). We define the convergence time T as the minimum number of
training steps required for the loss to drop below a fized fraction € € (0,1) of the initial loss:

T* =min{t € N| £,(0) < ¢ Lo(0)} (1)

Assumption 2 (Smooth Loss Decay). We assume the loss L£4(0) decays smoothly and monotonically
under standard optimizers (e.g., SGD or Adam), allowing the convergence condition to be well-defined.

To predict T* without training, we extract a feature vector z € R¥ from the model at initialization and a
small subset of training data:

Assumption 3 (Representative Probing Subset). A randomly sampled subset Dprope C D, where
[Dprovel < N, provides a sufficient approzimation of the model’s training dynamics.

z = ¢(f9aDprobe) (2)

where fp denotes the neural network parameterized by 6 and ¢(-) is the probing-based feature extractor
defined in Section [l

Probe-batch vs. full-dataset convergence Recall from Assumption 3 that we measure convergence on
a small probe subset Dprone C D of size B <« |D|. Concretely, we define

T* =min{t € N|Li() <eLo(0)}, L:i(0)= % >, Ufi@),y) (3)
(2,9)E€Dprobe

so that both our feature probes (e.g. log |V/|?, NTK-trace) and the threshold check L; < L use only this
one batch. By contrast, a “full-dataset” convergence measure would require

(g = - > UfH(x),y), T =min {t| LI(0) < =L§"(0)} (4)

Dl
(z,y)€D

which entails an entire-epoch pass over D per step. Our probe-batch approach is orders of magnitude
cheaper—yet, by aggregating M independent probe trials in the meta-dataset, the regressor learns to map
these “mini-batch” dynamics onto the true full-training behavior. We then aim to learn a regression function
g : R¥ — R that predicts convergence steps based on the probing features:

T = g(z) (5)

A meta-dataset M = {(z0), T*(9)) j‘il is constructed from different models and datasets, each labeled with

the actual convergence step count 7*(7) .

M

1 . i) 2
TEISM; (g(zm) _T (J)) (6)

Task Formalization: We consider a broad class of supervised learning tasks—ranging from scalar regres-
sion to multi-class classification to sequence modeling—each instantiated by a function

f@ZX—>y

and corresponding loss
0:YxY =R

Concretely:
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+ Scalar regression: Y = R, use an MLP with a single-unit head and £(g,y) = (9 — y)? (MSE).

o Multi-class classification: Y = {1,...,C}, use a C-way linear head and {(z,y) =
— log [softmax(2), | (cross-entropy).

e Sequence modeling & others: e.g. Transformer encoder—decoder with token-wise cross-entropy,
or multi-label heads with either binary-CE or MSE on one-hot vectors.

In all cases, we define convergence based on the same probe batch Dpyobe, using the definition of T previously
established in Eq. equation [d with the loss ¢ adjusted to the task type.

Assumption 4 (Meta-Generalization). The meta-regression model g trained on M generalizes to held-
out datasets drawn from a similar distribution.

To improve training stability and scale sensitivity, we minimize the squared error in log space:

M
1 _ N2
in — Gy — *(5)
min E (1og g(zV’) —logT ) (7)

Proposition 1 (Asymptotic Consistency). Assuming M is sufficiently diverse and G is a rich function

class (e.g., universal approxzimators), the predictor g converges in probability to the ground-truth mapping
¢(f9;Dp7'obe) — T as M — oo.

This formulation enables convergence step prediction without full training, relying solely on computational
signals extracted from initialization.

4 Probing-Based Feature Extraction and Meta-Learning

CAPE’s implementation consists of three key components: probing feature design, meta-dataset construction,
and meta-regressor training. We present the full implementation of our convergence prediction system,
beginning with the design of initialization-time probing features that characterize both model structure
and dynamics. We then describe how these features are used to construct a comprehensive meta-dataset
across architectures and training conditions. Finally, we outline the meta-regressor architecture and training
process, and assess its ability to generalize to held-out datasets.

4.1 Probing Feature Design

We extract a set of informative features from a randomly initialized model using a small probing batch from
the training dataset. As noted in Assumption 1, initialization is fixed and reproducible, and features are
computed without performing parameter updates, making the process efficient and architecture-agnostic.

Let fs be a DNN with parameters § € R, and let Dprobe C D be a randomly sampled subset with size
B <« |D], as assumed in Assumption 3. The feature extraction function is defined as:

Z:¢(f9approbeaanvN) (8)

where 7 is the learning rate, B is the batch size, and N is the total dataset size. Each of these values
contributes directly to the expected training dynamics. To capture key aspects of initialization-time behavior,
we compute the following features:

Parameter Count P. The total number of trainable parameters is used as a proxy for model capacity:
P =0lo (9)

This feature reflects architectural complexity—deeper or wider models typically have more parameters and
may take longer to converge due to greater representational capacity.
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Average Gradient Norm ¢2. This measures the sensitivity of the loss to parameter updates at initial-
ization: 1
2
P=5 D IVellfo(@).v)l (10)

(‘xvy)E’Dprobe

A large gradient norm indicates a steeper loss surface and possibly faster initial descent, whereas small gradi-
ents suggest slower convergence or vanishing gradients. These dynamics echo observations of early directional
convergence under small initializations in homogeneous networks (Kumar & Haupt| [2025)), underscoring the
importance of initialization in determining convergence speed.

NTK Trace Proxy 7. This curvature-sensitive measure approximates the trace of the neural tangent
kernel: 1
2
r== 3 Vo) (1)
£EDprobe
It captures the sensitivity of outputs to parameter perturbation, which relates to implicit regularization and
convergence rates.

Log-Transformed Feature Vector. To improve numerical stability and reduce variance across configu-
rations, we log-transform all features:

z = [log(P),log(g?),log(r),log(N), log(n), log(B)] (12)

These features can be extracted in under one second on modern hardware, making them suitable for real-time
or batch evaluation. For each dataset and architecture, we automatically instantiate the correct output head
(scalar, C-way, or sequence) and select the matching loss function

1is )2 .
0(@,y) = 2 -9) (regression)
— log [softmax(2),| (classification)

This same ¢ is used both for probe-batch feature extraction and for measuring the convergence step 1.

4.2 Meta-Dataset Construction

To train the predictor described in Section [3] we construct a meta-dataset:

. . M

M = {(Z(])7T*(J))} (13)
j=1

where each (z(j),T*(j)) pair represents the extracted features and the actual number of steps to reach

convergence threshold e. To support broad generalization, the meta-dataset is constructed from a diverse

range of architectures, datasets, and training conditions as discussed in Section

4.3 Meta-Regressor Architecture and Training

Given the meta-dataset, we learn a function g : R¥ — R such that:

A

T =g(z) (14)

where T approximates the true convergence steps T*. We use XGBoost (Chen & Guestrin, 2016|), a gradient-
boosted decision tree model, as our meta-regressor. Owing to its superior predictive performance compared
to alternative models, we adopt XGBoost for the main analysis. A detailed description of all evaluated
regression models and their configurations is provided in Appendix [AZ4] It is trained on log-transformed
features and convergence steps, with early stopping and regularization to prevent overfitting. The XGBoost
model is trained using log-transformed targets to minimize scale sensitivity. Regularization includes dropout
(for MLPs), depth pruning (for trees), and early stopping. Model selection is performed via 3-fold cross-
validation on the training meta-set.
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5 Experiments

We evaluate our framework across four model families of MLPs, CNNs, RNNs, and Transformers, each
instantiated with randomized yet controlled architectural configurations to capture a broad spectrum of
convergence behaviors.

Model families and training protocol. MLPs are constructed using 2—4 fully connected layers with
hidden sizes sampled from {128,256,512,1024}, combined with BatchNorm, dropout, and either GELU or
ReLU activations. These configurations mirror compact feedforward backbones often used in classification
benchmarks and tabular modeling tasks.

CNNs are instantiated from three reduced-scale families derived from widely used architectures: variants of
VGG (Simonyan & Zisserman, 2014])) (sequential 3x 3 convolutional stacks with optional pooling), ResNet (He
et al.|[2016) (post-activation residual blocks with projection downsampling), and MobileNetV2 (Sandler et al.
2018) (inverted residual blocks with width multipliers in {0.5,0.75}). These compact versions preserve the
design principles of their full-scale counterparts while remaining computationally lightweight.

RNNs employ either GRU (Cho et al., [2014) or LSTM (Hochreiter & Schmidhuber} 1997) cells with 1—
3 stacked layers, hidden sizes from {128, 256,512}, and optional bidirectionality. Inputs are processed as
sequences of image rows, reflecting how recurrent architectures are often applied to sequential or time-series
data. Transformers are instantiated from compact vision architectures introduced in recent research: Vision
Transformer (ViT) (Dosovitskiy et al., [2020), Compact Convolutional Transformer (CCT) (Hassani et al.,
2021), and Pooling-based Vision Transformer (PiT) (Heo et all 2021). These models incorporate patch
embeddings, convolutional tokenizers, or hierarchical pooling to adapt Transformer designs to small-scale
vision tasks.

For training, we use consistent optimization protocols across families. All model classes adopt learning rates
LR € {5x107%, 1073, 2x1073} and batch sizes B € {32,64, 128}, applied uniformly across architectures.
Convergence thresholds are defined relative to the initial batch loss Ly: we use € € {0.1,0.15,0.2} for all
model families, reflecting fast-to-moderate convergence under our adaptive training protocol. Training is
capped at 5000 steps with plateau-based early stopping; if convergence is not reached, we record T = 5000.

To construct the meta-dataset used for training the convergence predictor, we utilized a workstation equipped
with an Nvidia RTX 4000 Ada Generation GPU, an Intel Core i9-14900K processor, and 64 GB of RAM.
The total time required to generate the full meta-dataset—spanning MLPs, CNNs, RNNs, and Transformers
was approximately 40 hours.

Meta-Feature Extraction. To estimate convergence steps T* from initialization, we extract six compu-
tational features from a probing batch—parameter count (log P), batch size (log B), squared gradient norm
(log G?), NTK trace proxy (log), learning rate (log LR), and dataset size (log N)—and record them for
each configuration in a meta-dataset. We then train a gradient-boosted decision tree (XGBoost; 200 trees,
maximum depth 4, learning rate 0.05, row subsampling 0.9, column subsampling by tree 0.9, ;1 =0, l3 =1,
seed 42) to regress log T™* on this meta-dataset, exponentiating predictions to obtain 7*. At evaluation time,
we compute the same features on a small probing batch for the target setting and apply the trained regressor.
As discussed in Appendix [A74] we choose XGBoost for its strong performance on tabular data, fast training
speed, and low sensitivity to feature scaling—properties that align well with the needs of our convergence
prediction task.

Datasets. All model families are evaluated on the meta-training corpus—MNIST (Deng} [2012), Fash-
ionMNIST (Xiao et all [2017), and CIFAR-10/100 (Krizhevsky et al., [2009)—and we assess cross-dataset
generalization on held-out datasets SVHN (Netzer et al) |2011) and IMDB (Maas et al |2011)), which are
excluded from meta-training and reserved for evaluation. Dataset-specific normalization follows established
practice; grayscale datasets (MNIST, FashionMNIST) are resized to 32x32 and replicated to three channels
for Convolutional/Transformer models. SVHN is used at native 32x32 RGB. For IMDB (text), we form
a fixed 3,072-dimensional hashed representation and reshape it to 3x32x32 for Convolutional/Transformer
models (vector form is used directly for MLP/RNN). All evaluations share the same hyperparameter grids;
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in-corpus results use a stratified cross-fold protocol, and held-out results apply the same protocol with
evaluation sets disjoint from the meta-training corpus.

5.1 Evaluation Metrics

Our evaluation methodology is inspired by the framework introduced in (Zancato et al., [2020)). For each
configuration, we compute the predicted number of steps Tjredicted anid compare it to the actual number of
steps Treal Tequired to reach convergence. We use the absolute prediction error |Tpredicted — Tactual| as our
primary evaluation metric. Each configuration is repeated for 100 randomized trials to account for variance
due to initialization and data sampling. To assess the predictive performance of the meta-regressors, we
employ the following evaluation metrics:

e Mean Absolute Error (MAE). The MAE quantifies the average absolute difference between the
predicted convergence time (Tpreq) and the actual convergence time (T,c;) where lower MAE values
indicate better predictive accuracy:

1 n
MAE = E leTprcd,i - Tact,i

¢ Root Mean Squared Error (RMSE). Computed in steps to emphasize larger deviations:

RMSE = (Tprea,i — Tact,i)2~

1

n

Sl

o Median Absolute Error (MedianAE). A robust absolute deviation in steps:
MedianAE = mediani<ij<n |Tpred,i — Tact,i|-

o Coefficient of Determination (R?). Explained variance of predictions relative to the variance of
ground-truth steps:

Z:L:l (Tact,i - Tact)Z n =1 ’

o Bounded Relative Accuracy (AvgAccuracy). Per-configuration accuracy in steps, defined as one
minus the relative absolute error (truncated to [0, 1]) and averaged:

vgAccuracy = — ) miny 1, max, 0, max(Toesr 1) J S
i=1 "

5.2 Evaluation Setup and Baselines for Convergence Prediction

Goal. We evaluate CAPE’s probe-based meta-regressor for predicting the number of optimization steps
required to reach a target loss ratio e (denoted T*). Ground truth 7% is computed with AdamW on the same
probe batch used for feature extraction, with a soft cap of 5,000 steps and plateau early-exit (patience = 200,
min-delta = 10~%). We sweep learning rate LR € {5x107%, 1073, 2x1073}, batch size B € {32, 64, 128},
and convergence targets € € {0.10, 0.15, 0.20} across the datasets. We report MAE, RMSE, median absolute
error, and R? on step counts; for presentation, we additionally apply a simple epoch-space linear calibration
fitted on a 10% hold-out and used uniformly for all predictors.

Baselines. To our knowledge, there is no prior work that zero-shot predicts the number of optimization
steps T* required to reach a target loss ratio € for a new (architecture, dataset, hyperparameter) instance
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Architecture Method MAE RMSE MedianAE R2 AvgAccuracy

NTKL 5.18 6.96 4.23 0.07 0.52

MLP SL 4.80 6.03 4.13 0.30 0.53
LCE 4.73 6.64 3.57 0.15 0.58

CAPE 3.79 4.72 3.32 0.57 0.64

NTKL 15.51 20.68 12.94 0.02 0.52

RNN SL 7.03 10.01 5.23 0.77 0.77
LCE 22.67 28.72 17.93 -0.9 0.44

CAPE 4.21 6.16 2.88 0.91 0.88

NTKL 9.13 12.40 7.25 0.23 0.57

CNN SL 4.46 6.13 3.29 0.81 0.78
LCE 3.14 4.23 2.40 0.91 0.81

CAPE 2.86 4.06 2.00 0.92 0.87

NTKL 16.38 20.77 14.69 0.03 0.48

Transformer SL 16.33 20.69 14.66 0.04 0.48
LCE 16.85 21.90 13.88 -0.07 0.5

CAPE 9.03 12.89 6.19 0.63 0.68

Table 1: Convergence-step prediction (T*) across architecture families

using only single-batch probes together with a learned regressor. The closest effort is (Zancato et al., [2020)),
which also predicts steps without training but relies on a linearization of the network (NTK-style dynamics)
and analytic approximations, rather than learned cross-architecture mappings from cheap probe features.
Learning-curve extrapolation methods (Domhan et all 2015) require a short warm-up and are therefore not
zero-shot. Runtime/iteration-time predictors such as (Geofirey et al., |2021)) and (Pourali et al., [2025) target
throughput or per-iteration time, not steps-to-e.

o NTK linearization (NTKL). On a fresh mini-batch we form the gradient Gram matrix; its spectrum
serves as a rate proxy, which we map to steps via T = log(1/€)/k, mirroring the zero-cost linearization
spirit of (Zancato et al.,|2020|) while matching our probe-batch protocol.

o Static linear (SL). A linear regressor on static features [log P,log B,log LR,log N]—in the spirit of
iteration/runtime predictors (Geoflrey et all|2021; [Pourali et al., 2025)—is repurposed to predict log T*;
no dynamic probes are used.

o Learning-curve extrapolation (LCE). We run a short warm-up (e.g., 60 steps) on the probe batch,
fit a simple model in log-loss space, and extrapolate the step at which the loss reaches eLg, following
(Domhan et al., |2015]).

We compare CAPE with low/zero-shot baselines—NTKL (NTK linearized), SL (Static-Linear), and LCE
(short-run loss-curve extrapolation)—on MLP, RNN, CNN, and Transformer models. Columns report MAE,
RMSE, MedianAE, R? and AvgAccuracy. The bolded cells indicates the best value within each architecture
block. Results aggregate over datasets, learning rates {5 x 107%,1073,2 x 1073}, batch sizes {32, 64,128},
thresholds e € {0.10,0.15,0.20}, and 100 trials per setting.

Observations. As discussed in Table[l] CAPE is the most accurate and stable predictor across all archi-
tecture families. For MLPs, CAPE attains MAE 3.79, RMSE 4.72, and MedianAE 3.32, with R? = 0.57
and average accuracy of 64%. The margin widens for RNNs—MAE 4.21, RMSE 6.16, MedianAE 2.88,
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Figure 1: Overall average MAE (steps) across architectures and hyperparameters; CAPE yields the lowest
error among all compared baselines. MAFE increases with learning rate and decreases with batch size for all
methods.

R? = 0.91 and average accuracy of 88%. CNNs show the strongest overall agreement: MAE 2.86, RMSE
4.06, and MedianAE 2.00, paired with the top R? = 0.92 and average accuracy of 87%. Transformers follow
the same trend (MAE 9.03, RMSE 12.89, MedianAE 6.19, R? = 0.63, average accuracy of 68%), clearly
surpassing all baselines whose errors cluster in the mid-teens to low—twenties with weak or near-zero ex-
plained variance. As observed in Figure [1} CAPE achieves the lowest average MAE (in steps) across all
architectures when compared with NTKL, SL, and LCE under the matched evaluation protocol. The results
are aggregated over datasets and full sweeps of learning rates {5 x 1074, 1073, 2 x 1073} and batch sizes
{32, 64, 128}, indicating robustness across hyperparameters rather than a narrow-setting effect. The com-
parison spans zero-/low-shot baselines (NTKL, SL, LCE) and CAPE within a unified protocol targeting the
same ground-truth 7™, reinforcing that the improvement reflects a genuine predictive gain rather than any
evaluation setup artifact. Across all methods we observe a consistent directional trend: as the learning rate
increases, prediction error rises, while larger batch sizes reduce error (Zancato et al., [2020)). This behavior
is expected—higher learning rates move trajectories away from the local geometry captured by small-step
analyses (degrading CAPE/NTKL/LCE), whereas larger batches reduce gradient noise and stabilize both
probes and short-horizon fits.

Why certain architectures have higher MAEs? Mean Absolute Error (MAE) is measured in absolute
steps, so families with larger typical ground-truth 7 naturally show larger absolute errors for the same
relative miss. In our runs, the typical 7™ scale increases with architectural complexity—approximately 15
for MLPs, 32 for CNNs, 50 for RNNs, and 60 for Transformers, making higher MAEs for Transformers
expected even when fit quality is solid. Consistent with this scale effect and with greater early-step non-
stationarity in attention normalization dynamics, Transformers exhibit higher MAE (9.03) than MLPs (3.79)
and CNNs (2.86), while maintaining competitive R? and AvgAccuracy; conversely, CNNs and MLPs, which
operate at lower T and exhibit more stationary early dynamics, achieve smaller MAEs and strong agreement.
All families are evaluated under the same unified protocol and baselines such as LCE are afforded a 60-step
warm-up whereas CAPE uses a single probe step, so the observed differences track intrinsic architectural
dynamics rather than evaluation artifacts.

Baselines and cost. The NTK linearization proxy (NTKL) is consistently weak across families. The static
linear model (SL) is occasionally competitive but generally trails CAPE. Learning-curve extrapolation
(LCE) is unstable—most visibly on RNNs and Transformers, where R? is near zero or negative—despite
being afforded a favorable budget: we execute 60 optimization steps per configuration to enable extrapolation.
In contrast, CAPE relies on a single one—mini-batch probe (roughly one step of work). Thus, even when LCE
is allowed 60 warm-up steps, CAPE delivers lower error and higher explained variance at markedly lower
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computational cost—i.e., better results for less budget—underscoring its practicality for rapid, resource-
constrained convergence-step prediction. To ensure reproducibility, we have provided the code and data that
we used for our experimental evaluation in an anonymous GitHub repositoryﬂ

5.3 Feature Ablation: Contribution of CAPE Components

As indicated in using the complete feature set yields the lowest MAE on every dataset; removing
any individual feature degrades accuracy. The largest degradations arise when excluding log LR and log N
(typically +3-5 MAE points), underscoring the centrality of optimization scale and data regime. Dropping
log P produces the next-largest increase (~+2-3.5), while log B has a smaller but consistent effect (~+1-
2.5). The probe-derived terms, log G? and log 7, contribute incremental yet reliable improvements (omission
costs ~+0.1-0.9), suggesting they act as calibrators that refine predictions. Overall, the components are
complementary, with log LR and log N emerging as the dominant factors.

Model CIFAR10 CIFAR100 FashionMNIST MNIST
CAPE 2.24 2.65 3.99 4.14
— w/o log B 4.44 5.13 5.7 5.17
— w/o log G? 2.43 2.73 4.16 4.26
— w/o log LR 5.13 7.62 7.64 8.15
— w/o log N 5.79 7.38 7.81 8.75
— w/o log P 4.72 5.86 6.75 7.53
— w/o logT 2.36 3.51 4.12 4.48

Table 2: Feature ablation of CAPE across MLP, CNN, RNN, and Transformer. Entries are per-dataset mean
MAE (steps), averaged over learning rates, batch sizes, and e targets.

5.4 Cross-Dataset Generalization on Held-Out Datasets

Dataset Method Average MAE Average Accuracy

NTKL 35.59 0.46

SL 30.76 0.53

IMDB LCE 40.83 0.48
CAPE 25.63 0.68

NTKL 36.76 0.49

SL 52.93 0.35

SVHN LCE 77.63 0.33
CAPE 31.64 0.51

Table 3: Convergence-step prediction (7) on held-out datasets (cross-dataset generalization).

We evaluate cross-dataset generalization by applying our predictors to held-out datasets of Street View
House Numbers (SVHN) (Netzer et al., [2011]) and IMDB (Maas et al.|[2011)) that were not used to construct
the meta-dataset. We compare CAPE against three non-learning baselines—NTKL, SL, LCE and report
Average MAE and Average Accuracy aggregated over learning-rate and batch-size grids (Table [3)).

CAPE delivers the best accuracy—error trade-off on both datasets. On IMDB, CAPE reduces error to 25.63
MAE, a 28% — 37% reduction relative to NTKL and LCE and 17% relative to SL, while increasing Average
Accuracy to 68% compared to the best baseline (SL) with 53% average accuracy. On SVHN, CAPE attains
31.64 MAE, 14%, 40%, and 59% lower than NTKL, SL, and LCE, respectively—with an accuracy of 51 %
compared to the best baseline (NTKL) of 49%. These improvements persist despite pronounced distribution

Thttps://github.com/genericgitrepos/CAPE
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shift—including a cross-modality case for IMDB—suggesting that CAPE’s short, batch-local probes capture
optimization geometry that transfers beyond the datasets used to fit the meta-regressor.

Compared to the in distribution corpora used to train the meta-regressor (MNIST, Fashion-MNIST, CIFAR-
10/100), SVHN and IMDB introduce substantial distribution shift. SVHN is drawn from street-view imagery
and IMDB constitutes a cross-modality case, so the ground-truth convergence counts T tend to occupy a
larger (160 steps) and more variable scale. Because MAE is measured in steps, this scale inflation naturally
yields larger absolute errors even when relative fit remains competitive. Despite this harder setting, CAPE
still delivers the best accuracy error trade-off on both datasets, outperforming NTKL, SL, and LCE under
the same evaluation protocol. This suggests that CAPE’s short, batch-local probes capture optimization
geometry that transfers beyond the datasets used to fit the meta-regressor. A practical limitation is cover-
age: expanding the meta-dataset to include more heterogeneous domains should further reduce error under
larger shifts. Our in-distribution study in the previous section—where the meta-dataset spans multiple
datasets—already indicates strong performance when CAPE is trained once on a diverse corpus. This points
to a practical path forward: expand meta-dataset diversity to strengthen out-of-distribution robustness while
retaining CAPE’s low-cost, short-probe workflow.

6 Conclusion and Limitation

In this paper, we presented CAPE, a lightweight predictive framework that estimates the number of training
steps required for deep neural networks to reach a target accuracy without full training. Under stratified cross-
fold evaluation, CAPE maintains single-digit absolute error (3-9 steps) across architectures and datasets
using only a single mini-batch probe at initialization. The stability of the error across true horizons from
15 to 60 steps demonstrates a reliable, architecture-agnostic predictor for advance scheduling and cost-
aware planning. Across all settings, CAPE delivers consistent improvements over competitive baselines,
reinforcing its utility for selecting models and allocating compute without warm-up training. The approach
generalizes across MLP, CNN, RNN, and Transformer families and maintains its advantage on held-out
datasets, indicating that the probe captures transferable optimization signals. By integrating structural and
dynamical cues—such as gradient-norm statistics, NTK-trace proxies, and dataset-level parameters—CAPE
enables practical, ez-ante convergence estimation for model selection, resource budgeting, and scheduling in
real-world workflows.

Hardware and Runtime Generalization. While CAPE is designed to be hardware-agnostic by focusing
on step count rather than wall-clock time, practical deployment still requires mapping predicted steps to
compute cost. Exploring runtime estimation or integrating hardware-aware features could help bridge this
gap for end-to-end cost prediction.

Coverage of the meta-dataset. CAPE’s accuracy depends on the diversity of the meta-training corpus.
While it generalizes to held-out datasets, broader coverage—e.g., additional modalities, long-sequence tasks,
and more aggressive augmentations—should further reduce error under larger shifts.
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A Appendix

A.1 Proof of Proposition 1: Asymptotic Consistency
Proposition 1 (Asymptotic Consistency). Assume that:

o The probing feature extractor ¢(fp, Dprobe) Produces bounded feature vectors z € RF,
o The ground-truth mapping h*(z) := T is measurable,

e The hypothesis class G contains a sequence of functions that can approximate h* arbitrarily well
(i.e., G is dense in L?(Pyz)),

o The training examples (z7), T*)) are i.i.d. samples from a fixed distribution D .

Then, the empirical risk minimizer
1 & ) T\ 2
gm € arg I;lelg i ; <logg(z(1)) —log T*(J))
satisfies
lim E, e [(log gm(z) — log T*)z] = guelg E(z,7+) [(log 9(z) — log T*)?

M—o0
That is, gps is a consistent estimator of the log-step predictor.
Proof. Let Z = R* x R+, where each sample (z,T*) ~ D. Define the per-example loss function as
L(g;2,T*) = (log g(2) — log T*)*
assuming ¢(z) > 0 to ensure the logarithm is well-defined.

Define the population risk:
R(9) = E@1)~pr [L(9;2,T7)]
and the empirical risk over M samples:

M
~ 1 . (i
Ralg) = 57 D Llg:2?, T°9)
j=1

Let gar € argmingeg R (g). We aim to show that
R(gn) — ing R(g) as M —
ge

Step 1: Uniform Convergence. If the loss class Lg = {(z,T*) — L(g;2,7*) | ¢ € G} has finite
pseudo-dimension or bounded covering number, then by the uniform law of large numbers:

A~

sup |Rar(g) — R(g) 550 as M = o
geg

This holds if g is Lipschitz (e.g., MLPs with bounded weights), and both logT* and log ¢g(z) are bounded,
e.g., via clipping or regularization.

Step 2: Approximation Error. By assumption, there exists ¢* € G such that R(g*) = infyeg R(g).
Therefore, G can approximate the Bayes optimal predictor arbitrarily closely.

Step 3: Conclude Consistency. From uniform convergence and richness of G, we have:
lim R =inf R
i R(gar) = inf R(g)
which implies consistency of the meta-regressor:

M—o00

lim E, 7+ |(loggn(z) —logT*)?| = lrelg R(9)
9
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A.2 Supporting Lemma: Generalization of Empirical Risk Minimization

Lemma 1 (ERM Convergence). Let G be a hypothesis class of real-valued functions mapping from R*
to Rsq, and assume that:

« The per-sample loss is given by L(g:z,T*) = (log g(z) — log T*)?,
o The examples (z,T*) are i.i.d. from a fixed distribution D4,

e The function class G has finite VC-dimension or bounded Rademacher complexity,

log g(z) and log T™* are uniformly bounded almost surely.

Then, the empirical risk minimizer

M
1 ) o\ 2
on = arg iy 37 Z (108 9(29)) ~ log 7))

satisfies with high probability:
ElL(ania )] - nf B L(gi. 7] < ()
ge

where (M) — 0 as M — oo.

Proof. This follows from standard learning theory results. Since the loss is bounded and Lipschitz in
log g(z), and G has finite capacity, uniform convergence holds over Lg = {L(g;-,*) : g € G}:

A~

sup |[Ram(g9) —R(g)] =0 as M — oo
9€g
Then, by consistency of ERM under uniform convergence, the excess risk of gp; over the best-in-class predictor

vanishes:

R(gnm) — ;25 R(g) =0

A.3 Justification of Probing Features

Our feature set z is constructed to reflect known factors that influence convergence dynamics in neural
networks. Below, we justify the inclusion of each feature:

e Parameter Count P: Determines model capacity. Larger networks typically have longer optimiza-
tion paths unless regularized or trained with adaptive learning rates.

« Gradient Norm ¢?: Related to the sharpness of the loss surface. Steeper gradients at initialization
suggest faster early learning, as shown in gradient descent convergence bounds (see e.g., [Du et al.

(2019)).

e NTK Trace Proxy 7: Serves as a computationally efficient proxy for the Neural Tangent Kernel
trace. The NTK governs the linearized training dynamics of overparameterized networks and has
been shown to correlate with convergence rates in theory (Jacot et al., 2018)).

o Dataset Size N: Influences generalization and total gradient noise. Larger datasets generally
increase the number of steps required to reach a loss threshold.

o Learning Rate 7 and Batch Size B: These hyperparameters directly affect the effective step
size and noise scale in stochastic optimization. Their effects are theoretically characterized in SGD
convergence analysis.

Thus, our probing feature vector is both computationally lightweight and theoretically grounded in opti-
mization and generalization theory.
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A.4 Meta-Model Training and Evaluation Details

In this work, we trained several machine learning regressors on the CAPE-derived meta-dataset, with the ob-
jective of predicting the convergence time (T*) from the feature set {log P,log B, log G?,1og 7, log LR,log N'}.
To ensure a comprehensive comparison, we employed models spanning linear, kernel-based, tree-based, boost-
ing, and neural network families. The configurations used are summarized below.

e Linear Regression. A standard least-squares regressor that assumes a linear mapping between
features and target. Used as the baseline model without regularization.

o Ridge Regression. A linear regressor with Lo regularization to mitigate overfitting. We set the
regularization strength to o = 1.0.

e Random Forest Regressor. An ensemble of decision trees trained via bootstrap aggregation.
We used 300 estimators with maximum depth set to 12. Random seed was fixed to 42 and parallel
training was enabled.

o Support Vector Regression (SVR). We used the radial basis function (RBF) kernel with pa-
rameters C' = 10.0, € = 0.1, and v = scale. This allows capturing smooth non-linear dependencies
in the meta-features.

o Extreme Gradient Boosting (XGBoost). Gradient boosted regression trees were configured
with 500 estimators, maximum depth of 6, learning rate n = 0.05, subsample ratio 0.9, and column
sampling ratio 0.9.

o Multilayer Perceptron Regressor (MLPRegressor). A feed-forward neural network with two
hidden layers of sizes (256,128), ReLU activations, the Adam optimizer, Lo penalty o = 1074,
adaptive learning rate scheduling with initial learning rate 1073, and a maximum of 500 iterations.
Early stopping was enabled to avoid overfitting.

Each model was trained on the same meta-dataset extracted from four benchmark datasets (MNIST, Fashion-
MNIST, CIFAR-10, CIFAR-100). Evaluation was performed across grids of learning rates, batch sizes, and
tolerance values (¢). For each combination, ten trials with fresh data batches were executed to reduce
stochastic variance. Results were aggregated at multiple levels (overall, per-dataset, per-learning rate, and
per-batch size) and the corresponding outcomes are reported in the Table

Meta-regressor MLP | CNN | RNN | Transformer
Extreme Gradient Boosting (XGBoost) 1.98 2.89 3.79 8.71
Random Forest Regressor 2.27 3.04 3.99 9.08
Multilayer Perceptron Regressor (MLPRegressor) — 3.42 4.05 5.69 10.47
Support Vector Regression (SVR) 3.68 7.45 7.48 12.66
Ridge Regression 3.72 8.31 7.98 10.77
Linear Regression 3.82 8.30 7.90 11.12

Table 4: Overall Meta-Regressor Performance across architectures
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