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Abstract001

Cross-domain Named Entity Recognition (CD-002
NER) aims to transfer the rich knowledge in003
the source domain to the target domain. Re-004
cent studies adopting decomposition or genera-005
tion paradigms have achieved significant perfor-006
mance improvements, demonstrating high accu-007
racy in entity span detection. However, during008
entity type classification, models severely suf-009
fer from entity type confusion, the erroneous010
tendency that models classify entities of one011
type in the text as another similar but incorrect012
type. To address this issue, we first propose013
a Multidimensional Confusion Quantification014
Model (MCQM) that quantifies a model’s con-015
fusion extent between entity types from three016
dimensions: source-target hierarchy analysis,017
semantic similarity analysis, and explicit data018
evaluation. Moreover, we propose the Progres-019
sive Bidirectional Reasoning Chain (PBRC).020
PBRC leverages the source-target hierarchy021
and confusion analysis from the MCQM to022
prompt the LLM to generate two-stage rea-023
soning information. The two-stage reasoning024
information is utilized to augment the knowl-025
edge of the model, significantly mitigating en-026
tity type confusion and improving the model’s027
generalization performance. Experimental re-028
sults demonstrate that our method achieves new029
state-of-the-art results on all domains of the030
CrossNER dataset. 1031

1 Introduction032

Named Entity Recognition (NER) is a core task in033

information extraction, which aims to identify spe-034

cific entities in texts that belong to predefined types,035

such as person, location, and organization (Li et al.,036

2022; Yadav and Bethard, 2018; Hu et al., 2024;037

Esmaail et al., 2024). NER plays a critical role in038

various tasks, including information retrieval (Long039

et al., 2024; Cong et al., 2023; Nguyen et al., 2024),040

knowledge graphs (Chen et al., 2024; Wang et al.,041
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song   album

Text：Among the most prominent of these were Slayer' s Reign in Blood , Anthrax' s Among the 
Living and Megadeth' s Peace Sells ... but Who 's Buying? beginning a search for his replacement.

Features of song Features of album

Fine-grained features of song Fine-grained features of album

Coarse-grained features of both

flan-t5-base: song:[Reign in Blood, Among the Living, Peace Sells ... but Who 's Buying?]   ✗                                                                                          
    ours:        album:[Reign in Blood, Among the Living, Peace Sells ... but Who 's Buying?]   √

Figure 1: song and album share similar contextual fea-
tures and entity forms, which can lead to confusion.

2020; Jin et al., 2022), and recommendation (Li 042

et al., 2024; Jacucci et al., 2021). With large-scale 043

annotated data, neural network-based methods have 044

performed remarkably in traditional NER (Shen 045

et al., 2022; Zhu and Li, 2022; Shen et al., 2023; 046

Yamada et al., 2020). However, in cross-domain 047

NER, several challenges persist, especially in low- 048

resource scenarios where model performance expe- 049

riences a significant decline. 050

Recent studies (Xu and Cai, 2023; Zhang et al., 051

2024a; Xu et al., 2024) decompose cross-domain 052

NER into subtasks to capture transferable patterns 053

across domains. These methods focus on iden- 054

tifying shared feature patterns between domains 055

through specialized components to strengthen 056

source-domain knowledge transfer. Besides, some 057

studies (Chen et al., 2023; Zhang et al., 2024b; 058

Nandi and Agrawal, 2024), based on pre-trained 059

language models designed for text generation, 060

transform the NER into a generation task, incorpo- 061

rating a task-specific prompt into the input. These 062

methods can effectively utilize large-scale knowl- 063

edge from pretraining and exhibit high flexibility. 064

Although both paradigms have demonstrated effec- 065

tiveness in improving cross-domain NER perfor- 066

mance, they remain susceptible to entity type con- 067

fusion, leading to significant performance degrada- 068

tion in entity type classification. 069
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We observe that cross-domain NER currently070

faces two major challenges. (1) Granularity differ-071

ences between coarse-grained entity types in the072

source domain and fine-grained entity types in the073

target domain. Entity types in the source domain074

are coarse-grained, such as PER and LOC, whereas075

entity types in the target domain are more specific076

and domain-specialized, such as scientist and coun-077

try. Compared to coarse-grained types, distinguish-078

ing fine-grained types often requires more detailed079

and nuanced features. Relying solely on the coarse-080

grained features learned from the source domain081

makes it difficult for the model to accurately clas-082

sify fine-grained types in the target domain, such083

as song and album (as shown in Figure 1). (2) The084

lack of contextual information in the text further085

limits the model’s ability to classify fine-grained086

entity types accurately. In the target domain, some087

samples lack the necessary contextual cues, mak-088

ing it difficult for the model to effectively learn and089

capture the required fine-grained features for type090

classification. As shown in Figure 1, we selected a091

sample from CrossNER (Liu et al., 2021), where092

the song and the album are two entity types that are093

difficult to distinguish. Entities of both types share094

similar forms and contextual environments. Due095

to insufficient information in the text, the model096

misclassifies these entities as the song. The lack097

of adequate contextual information prevents the098

model from effectively learning the feature differ-099

ences between similar fine-grained entity types,100

which reduces the precision of type classification.101

To address the challenges in cross-domain NER,102

we propose the Multidimensional Confusion Quan-103

tification Model (MCQM) and the Progressive Bidi-104

rectional Reasoning Chain (PBRC). (1) We propose105

the MCQM that quantifies the model’s confusion106

extent from three dimensions: source-target hier-107

archy analysis, semantic similarity analysis, and108

explicit data evaluation. MCQM enables in-depth109

analysis and quantification of the model’s confu-110

sion extent between fine-grained entity types in the111

target domain, providing a foundation for address-112

ing the entity type confusion. (2) Furthermore, we113

innovatively leverage the source-target hierarchy,114

along with the confusion analysis from the MCQM,115

to propose the PBRC, which employs a two-stage116

reasoning strategy. Specifically, PBRC first in-117

structs the LLM to perform initial reasoning based118

on contextual information using coarse-grained en-119

tity types from the source domain. Then, it instructs120

the LLM to perform bidirectional reasoning using121

fine-grained entity types from the target domain 122

and confusion analysis from the MCQM. Finally, 123

the LLM generates two-stage reasoning informa- 124

tion for knowledge augmentation. The two-stage 125

reasoning strengthens the fine-grained features and 126

alleviates the granularity gap between the source 127

and target domains, while external knowledge pro- 128

vided by the LLM solves the issue of insufficient 129

contextual information. Our method significantly 130

mitigates entity type confusion. Experimental re- 131

sults demonstrate that our method effectively im- 132

proves the model’s generalization ability, with the 133

average F1 score increasing by more than 10.00%. 134

In summary, our contributions are as follows: 135

• We systematically analyze the entity type con- 136

fusion in cross-domain NER. We propose a 137

Multidimensional Confusion Quantification 138

Model (MCQM), which can effectively quan- 139

tify the model’s confusion extent between fine- 140

grained entity types in the target domain. 141

• We propose the Progressive Bidirectional Rea- 142

soning Chain (PBRC) based on the source- 143

target hierarchy and confusion analysis from 144

the MCQM, which can leverage the LLM to 145

mitigate entity type confusion significantly. 146

• We conduct extensive experiments to evaluate 147

our method. The results show that our method 148

significantly improves the model’s general- 149

ization ability, with the average F1 score in- 150

creasing by more than 10.00%. Our method 151

achieves new state-of-the-art results on all do- 152

mains of the CrossNER dataset. 153

2 Related Work 154

Named Entity Recognition (NER). Traditional 155

methods mainly rely on handcrafted features or 156

rules combined with machine learning models like 157

CRF (Lafferty et al., 2001) for entity recognition, 158

which are labor-intensive and lack adaptability 159

to complex contexts. With the development of 160

deep learning, neural network-based methods, such 161

as LSTM (zhiheng huang et al., 2015) and trans- 162

former (Vaswani et al., 2017) models, have become 163

mainstream. Models (Raffel et al., 2020; Radford 164

et al., 2019; Devlin et al., 2019) based on these 165

architectures capture sequential relationships and 166

contextual dependencies, offering improved perfor- 167

mance and flexibility. However, existing methods 168

still face challenges in cross-domain NER due to 169

the variations across different domains. 170
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Cross-Domain NER. Current studies can171

be broadly categorized into two paradigms:172

decomposition-based and generation-based.173

Decomposition-based methods (Xu and Cai,174

2023; Xu et al., 2024; Zhang et al., 2024a, 2022)175

reformulate cross-domain NER into multiple176

subtasks. These methods improve knowledge177

transfer by learning shared cross-domain patterns178

through specialized subtask modules. Generation-179

based methods (Bao and Yang, 2024; Chen et al.,180

2023; Zhang et al., 2024b; Nandi and Agrawal,181

2024) transform the NER into a generation task.182

These methods employ prompts containing task183

descriptions and auxiliary information, achieving184

robust performance through instruction fine-tuning.185

Although both paradigms effectively improve186

cross-domain performance, particularly in entity187

span detection, they still suffer from significant188

accuracy degradation in entity type classification.189

LLMs for NER. With the emergence of LLMs,190

their reasoning capabilities have been leveraged to191

improve NER performance. Recent studies (Ashok192

and Lipton, 2023; Wang et al., 2023; Zhu et al.,193

2024; Ji, 2023) employ prompt learning for NER,194

where task-specific templates are augmented with195

demonstration examples and knowledge. LLMs196

are also used for cross-domain NER. Nandi and197

Agrawal (Nandi and Agrawal, 2024) perform in-198

struction fine-tuning of LLMs by retrieving and199

leveraging similar examples. Zhang et al. (Zhang200

et al., 2024b) utilize the LLM to generate task-201

oriented knowledge, used to conduct additional202

task-oriented pre-training of the backbone model203

for domain adaptation. These methods demonstrate204

strong few-shot performance.205

In this paper, we focus on entity type confu-206

sion and adopt the generation-based paradigm. We207

leverage the reasoning information generated by208

LLMs as input to a smaller text-to-text backbone209

model, which is fine-tuned through supervised210

learning to optimize the task. Compared to fine-211

tuning LLMs (Nandi and Agrawal, 2024) and ad-212

ditional pre-training corpora (Zhang et al., 2024b),213

our method reduces training time for domain adap-214

tation. Experiments demonstrate our method sig-215

nificantly mitigates entity type confusion.216

3 Methodology217

3.1 Task Description218

Given a sentence X = {x1, x2, . . . , xN}, where219

wi represents the i-th token in the sentence and N220

is the sentence length, the goal of NER is to iden- 221

tify all entities E within the sentence and classify 222

each entity into a specific type. The set of entity 223

types is denoted as L. Each entity ei ∈ E can be 224

represented as ei = (y, xl:r), where y ∈ L indi- 225

cates the entity type, and l and r represent the start 226

and end boundary indexes of the entity within the 227

sentence, respectively. In the cross-domain NER, 228

two distinct datasets are considered: the source do- 229

main dataset Dsrc and the target domain dataset 230

Dtgt. The set of entity types in the source domain 231

is denoted as Ls = {s1, s2, . . . , sn}, and the set 232

of entity types in the target domain is denoted as 233

Lt = {t1, t2, . . . , tm}. The goal is to leverage the 234

knowledge learned from Dsrc to improve recogni- 235

tion performance on Dtgt. Specifically, we focus 236

on low-resource scenarios, where the training data 237

in the target domain is significantly smaller than 238

that in the source domain, i.e., |Dtgt| ≪ |Dsrc|. 239

3.2 Multidimensional Confusion 240

Quantification Model 241

In this section, we introduce the MCQM. Entities 242

of the same type share certain common features, 243

referred to as entity type features, and entity types 244

with similar features are more prone to confusion. 245

Based on this, we quantify entity type confusion 246

from the following dimensions. For implicit fac- 247

tors: (1) In 3.2.1, we analyze confusion arising 248

from the source-target hierarchy, proposing our cor- 249

responding quantification method (Figure 2 (a)); 250

(2) In 3.2.2, we analyze confusion arising from 251

the semantic similarity, proposing our correspond- 252

ing quantification method (Figure 2 (b)). For ex- 253

plicit data evaluation: (3) In 3.2.4, we evaluate the 254

fine-tuned model on the target domain to explicitly 255

analyze the confusion extent (Figure 2 (c)). 256

3.2.1 Source-Target Hierarchy Analysis 257

Entity types in the source domain are conceptu- 258

ally coarse-grained, whereas those in the target 259

domain are fine-grained. In the feature space, the 260

fine-grained entity types in the target domain can 261

be viewed as extensions of the entity types in the 262

source domain. For example, PER in the source do- 263

main can be expanded into fine-grained entity types 264

in the target domain, such as politician and scien- 265

tist. The expanded entity types retain the coarse- 266

grained features in the source domain. Therefore, 267

fine-grained entity types derived from the same 268

entity type in the source domain exhibit similar 269

features, meaning closer in the feature space and 270
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(b)semantic similarity analysis

 PER LOC ORG MISC

(a)source-target hierarchy analysis
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Text: They mostly engage in 
confronting the police during 
demonstrations and riots in countries 
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  Matrix

Similarity 
Matrix

   A nation
 with its own 
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target domain type

WordNet
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LLM

A nation or territory 
defined by political 
sovereignty, cultural 
identity, geographical 
boundaries, and gov-
erned under a unified 
administration.
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Similarity

� ∈ ℝ�×�

+

Confusion Analysis 
Matrix

PBRC
Step5: A→B indicates that the most 
easily confused type for A is B.

Input Text : They mostly engage in 
confronting the police during 
demonstrations and riots in countries 
like Canada ,Mexico or Greece.

politician→person
person→politician

…

LLM
Flan-T5

Source 
Dataset

Flan-T5-src

Reasoning Information
Canada, Mexico, and Greece：
Ini reasoning: These entities are introduced 
with "in," a preposition commonly used for 
locations, and the sentence structure implies a 
spatial context, as demonstrations and riots often 
occur in specific places. So, they are LOC.
Bid reasoning: The sentence refers to 
"demonstrations and riots," which are typically 
linked to national policies. Additionally, the text 
explicitly mentions "countries like," indicating they 
are specific countries. These terms are not "broad 
locations" because they lack the specificity of 
identifiable places like cities or landmarks.The 
sentence also lacks spatial markers (e.g., "near" or 
"within") and does not reflect the broad 
characteristics of location.

Train

Target 
Dataset

Flan-T5-src

country: [Canada,Mexico,Greece]

Target 
Train Set

Flan-T5-PBRC

Input Text

(c)explicit data evalutaionLOC→country

weight

  finetune

predict

(d)Template (e)Two-stag reasoning information

Sample:  Some  manually designed 
reasoning samples to prompt the LLM 
for in-context learning and task 
comprehension. 

Figure 2: Overview of our proposed method, including MCQM and PBRC. MCQM consists of three components:
(a) shows source-target domain hierarchy analysis; (b) shows semantic similarity analysis; (c) shows explicit data
evaluation. (d) shows the template, which includes PBRC, some manually designed reasoning samples for in-context
learning, and the input text to be reasoned by the LLM. The specific contents of PBRC are shown in Figure 3.

more prone to confusion among these entity types.271

To quantify the model’s confusion arising from272

the source-target hierarchy between the source and273

target domains, inspired by (Bao and Yang, 2024),274

we propose a reliable quantification method. For275

each entity in the target domain, its feature vector276

He can be considered as a combination of coarse-277

grained and fine-grained features. Therefore, it can278

be represented as follows:279

He = ψ (Hcoarse,Hfine) (1)280

where Hcoarse is the coarse-grained features, and281

Hfine is the fine-grained features unique to the282

target domain entity type. ψ(·) denotes the feature283

fusion.284

We utilize the model Msrc, trained on Dsrc, to285

extract the coarse-grained features Hcoarse of enti-286

ties in the target domain and perform predictions287

based on the source domain type set Ls. We cal-288

culate the proportion of entities corresponding to289

each fine-grained entity type ti in the target domain290

Dtgt that are classified as the coarse-grained entity291

type sj in the source domain Dsrc:292

RH (ti → sj) =
P (ltgt = ti ∧ lpred = sj)

P (ltgt = ti)
(2)293

where P (ltgt = ti) is the proportion of entities in294

Dtgt that belong to type ti, P (ltgt = ti∧lpred = sj)295

is the proportion of entities in Dtgt that belong to296

type ti and are classified as sj , and the proportion 297

of entities of type ti classified as sj is denoted as 298

RH(ti → sj). 299

We use the source domain entity type lsrc with 300

the highest proportion as the prefix for the target 301

domain entity type ltgt, denoted as lsrc → ltgt. The 302

target domain entity type ltgt is considered a fine- 303

grained extension of the source domain entity type 304

lsrc: 305

prefix (ti) = argmax
j∈{1,2,...,n}

(RH (ti → sj)) (3) 306

where prefix(ti) is the prefix of ti, and n is the 307

number of entity types in the source domain. 308

RH(ti → sj) measures how much of the coarse- 309

grained features of sj are contained in ti. The more 310

entities corresponding to ti are classified as sj , the 311

more coarse-grained features of sj are contained 312

in ti. Therefore, for two fine-grained entity types, 313

ta and tb, if they share the same prefix, it implies 314

that ta and tb exhibit a significant overlap in their 315

coarse-grained features, which originate from the 316

same source domain entity type. This overlap in- 317

creases the likelihood of confusion between ta and 318

tb. We quantify the confusion arising from the 319

source-target hierarchy using RH(ti → sj), based 320

on the prefixes of fine-grained entity types: 321

u
(ti,tj)
hie = δhie ·RH (ti → prefix (tj)) (4) 322

where u(ti,tj)hie is the extent of hierarchical confusion 323
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from the fine-grained entity type ti to tj , and δhie324

is the scaling factor. This method quantifies the325

model’s confusion arising from the source-target326

hierarchy, serving as an important metric in the327

MCQM for quantifying entity type confusion.328

3.2.2 Semantic Similarity Analysis329

The semantics of entity types reflect the common330

features of their entities. When the model maps331

the embedding vectors of semantics of two entity332

types to closer positions in the semantic space, the333

model considers the entity features of the two types334

as more similar, which increases the probability of335

confusing the two types in classification.336

Since entity type labels are short words, they337

cannot sufficiently reflect the features of the en-338

tity types. To enrich the semantics of each target339

domain entity type ttgt ∈ Lt, we utilize the Word-340

Net (Fellbaum, 2010) to obtain a brief description341

Cs of ttgt. Then, we leverage the LLM to enhance342

the semantics of Cs, obtaining a final description343

Ce of ttgt:344

Cs = FWordNet (ttgt)

Ce = FLLM (Cs, φ0)
(5)345

where φ0 is a prompt used to guide the LLM to346

enhance the semantics.347

Ce is fed into the encoder of the model, from348

which the hidden layer feature sequence H =349

[h1,h2, . . . ,hZ ] ∈ RZ×d can be extracted:350

H = Encoder (Ce) (6)351

where hi denotes the feature vector from the final352

hidden layer for the i-th token, Z is the number of353

tokens, and d represents the dimension of the final354

hidden layer of the encoder.355

This study (Reimers and Gurevych, 2019)356

demonstrates that Mean Pooling outperforms both357

[CLS] token and Max Pooling strategies in seman-358

tic textual similarity tasks. Therefore, we use Mean359

Pooling to calculate the global feature vector H ,360

which better integrates the semantic information361

of all tokens and provides a more comprehensive362

representation of the entity type features:363

H =

∑Z
i=1mi · hi∑Z

i=1mi

(7)364

where mi is the mask value of the i-th token, used365

to ignore the influence of padding.366

In high-dimensional space, the features of en-367

tity types are amplified, and the mapping rules for368

similar features are also similar. Therefore, we cal- 369

culate the semantic similarity between entity types 370

using H . We quantify the confusion arising from 371

the semantic similarity by computing the cosine 372

similarity between the global feature vectors H of 373

entity types: 374

u
(ti,tj)
sim =

H i ·Hj∥∥H i

∥∥ ·
∥∥Hj

∥∥ (8) 375

where u(ti,tj)sim is the extent of semantic confusion 376

from the fine-grained entity type ti to tj . This 377

method effectively quantifies the model’s confusion 378

arising from the semantic similarity between entity 379

types, serving as an important metric in the MCQM 380

for quantifying entity type confusion. 381

3.2.3 Fusion of Implicit Confusion Factors 382

The quantification of confusion arising from the 383

source-target hierarchy and the semantic similarity 384

of entity types is considered implicit confusion 385

analysis. We use two fixed mixing ratios, α and β, 386

to balance the weights of these two factors: 387

u
(ti,tj)
iml = α · u(ti,tj)hie + β · u(ti,tj)sim

(9) 388

Then, we use the softmax function to model the 389

implicit confusion and define the implicit confusion 390

distribution among fine-grained entity types in the 391

target domain: 392

viml(ti → tj) =
exp(w0 · u

(ti,tj)
iml )

m∑
k=1
k ̸=i

exp(w0 · u(ti,tk)iml )

(10) 393

where w0 ∈ R+ is a temperature coefficient. 394

3.2.4 Explicit Data Evaluation 395

We denote the model obtained by fine-tuning Msrc 396

on the target domain dataset as Mtgt. We use the 397

dev set of the target domain to perform a statistical 398

analysis of the misclassification proportions for all 399

entity types. Evaluating Mtgt reflects the model’s 400

ability to distinguish between different fine-grained 401

entity types and explicitly reveals the model’s con- 402

fusion extent between entity types: 403

R
(ti,tj)
M =

P (ltrue = ti ∧ lpred = tj)

P (ltrue = ti)
(11) 404

where P (ltrue = ti) is the proportion of entities 405

that truly belong to type ti, P (ltrue = ti ∧ lpred = 406

tj) is the proportion of entities that truly belong 407
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to type ti but are misclassified as tj , and the pro-408

portion of entities of type ti misclassified as tj is409

denoted as R(ti,tj)
M .410

The value of R
(ti,tj)
M explicitly reflects the411

model’s learning effectiveness in distinguishing the412

fine-grained features of ti and tj . A larger value413

indicates that ti and tj are more prone to confu-414

sion. We use R(ti,tj)
M as an important metric for415

confusion analysis in the MCQM. Then, we use the416

softmax function to model explicit confusion and417

define the explicit confusion distribution among418

fine-grained entity types in the target domain:419

vexl(ti → tj) =
exp(w0 ·R

(ti,tj)
M )

m∑
k=1
k ̸=i

exp(w0 ·R(ti,tk)
M )

(12)420

where w0 ∈ R+ is a temperature coefficient.421

3.2.5 Confusion Analysis Results422

We integrate the implicit and explicit evaluations423

to obtain the final confusion analysis results for424

fine-grained entity types in the target domain:425

vconf (ti → tj) = viml(ti → tj)

+ vexl(ti → tj)
(13)426

where vconf (ti → tj) is the model’s confusion427

extent from ti to tj . For each entity type ti, we428

select the entity type with the highest confusion429

extent as its most easily confused entity type:430

T
(ti)
conf = argmax

j∈{1,2,...,m},j ̸=i
(vconf (ti → tj)) (14)431

where T (ti)
conf is the most easily confused entity type432

for the entity type ti. MCQM provides a compre-433

hensive analysis of the model’s confusion extent434

between fine-grained entity types, playing a critical435

role in the bidirectional reasoning of PBRC.436

3.3 Progressive Bidirectional Reasoning437

Chain438

3.3.1 Contents of PBRC439

We propose PBRC based on the source-target hi-440

erarchy and the confusion analysis from MCQM.441

As shown in Figure 2, PBRC prompts the LLM to442

output two-stage reasoning information. Figure 3443

presents the contents of PBRC, and Figure 8, 9,444

10, and 11 provide some specific examples.445

Step1: Identifying Named Entities. This step446

instructs the LLM to identify all potential named447

Step1：Identify all potential named entities from the text.

Step2：For each named entity, analyze the contextual information and classify it using the 
following coarse-grained types.
1.PER：Refers to individuals, including their full names, nicknames, titles, or any personal identifiers.
2.LOC：Refers to geographical locations such as cities, countries, landmarks, or any specific places.
3............................

Step3：For each named entity，based on external knowledge and contextual information of the 
entity, explains why the entity is classified as the corresponding coarse-grained type.

Step4：For each named entity, based on its coarse-grained type，further classify it using 
following fine-grained entity types.
1.PER→scientist：Refers to an individual engaged in scientific research or experimentation, often working in 
fields to advance knowledge and contribute to discoveries.
2.LOC→country：Refers to a geographic and political entity with sovereignty, defined borders, and a governing 
body.
3............................

Step5：Below is the table confusion mapping table, A→B indicates that the most easily confused 
type for A is B. For each named entity, based on external knowledge and contextual information 
of the entity, explain why the entity is classified as type A rather than type B.
1.person→scientist
2.chemicalelement→chemicalpound
3.enzyme→protein

Last，You only need to output the analysis for Step3 and Step5, without including the final 
classification results.

Figure 3: Contents of PBRC.

entities in the text. With pre-trained multi-domain 448

knowledge and contextual understanding, the LLM 449

is capable of recognizing potential entities in texts 450

across various domains. 451

Step2 and Step3: Coarse-grained Classifica- 452

tion and Initial Reasoning. We provide all source 453

domain coarse-grained entity types and explana- 454

tions. For each entity in Step1, we instruct the 455

LLM to perform coarse-grained classification and 456

make explanations based on the LLM’s rich exter- 457

nal knowledge and the initial analysis of contextual 458

information. This step unifies entity types across 459

different domains, serving as an initial classifica- 460

tion and reasoning process for the entities. 461

Step4 and Step5: Fine-grained Classification 462

and Bidirectional Reasoning. We provide all fine- 463

grained entity types of the target domain along with 464

their corresponding source domain prefixes and ex- 465

planations. For each entity, we instruct the LLM to 466

perform fine-grained classification based on the ini- 467

tial classification and reasoning information from 468

Step2 and Step3, and then conduct bidirectional 469

reasoning through a deep analysis of contextual 470

information and the LLM’s rich external knowl- 471

edge. As shown in Step5 of Figure 3, we present 472

the confusion analysis result of the MCQM, where 473

A → B indicates that A’s most easily confused 474

type is B. Bidirectional reasoning consists of two 475

parts: (1) forward reasoning, which infers that 476

the entity type is A; and (2) backward reasoning, 477

which infers that the entity type is not B. 478

Two-stage Reasoning Information. The LLM 479

only needs to output the initial reasoning from 480

Step3 and the bidirectional reasoning from Step5, 481

without including the final fine-grained classifica- 482

tion results for entities. The two-stage reasoning in- 483
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CoNLL2003 Twitter
Method sci. pol. mus. lit. AI Avg. sci. pol. mus. lit. AI Avg.
BiLSTM-CRF [NAACL2016] 49.97 56.60 44.79 43.03 43.56 47.59 47.33 53.64 48.85 45.23 44.08 47.83
BERT-JF [AAAI2021] 65.03 68.85 67.59 62.57 58.57 64.52 64.51 67.52 67.74 61.38 57.05 63.34
LST-NER [ACL2022] 70.07 73.25 76.83 70.76 63.28 70.84 - - - - - -
MTD [SIGIR2022] 72.35 76.70 76.10 69.22 68.93 72.66 71.37 74.62 74.41 69.67 64.55 70.92
CP-NER [IJCAI2023] 75.82 74.25 79.10 72.17 67.95 73.86 - - - - - -
MTD-MoCL [ACL2023] - - - - - - 72.83 75.13 77.15 70.71 67.87 72.74
DH-GAT [SIGIR2023] 74.21 77.06 78.77 72.51 69.30 74.37 74.55 76.46 77.33 71.52 67.65 73.50
GPDA [ACL2023] 75.55 75.95 80.16 72.34 70.05 74.81 - - - - - -
PromptNER [arXiv2023] 72.59 78.61 84.26 74.44 64.83 74.95 - - - - - -
Dual-CL [INFORM SYST2024] 74.17 77.56 78.57 72.43 69.49 74.44 74.07 77.53 77.21 71.72 68.71 73.85
DT-MPrompt [INFORM SYST2024] 73.06 80.54 79.54 73.51 70.13 75.36 73.18 79.86 77.93 72.74 69.13 74.57
IF-WRANER-7B [EMNLP2024] 75.31 79.8 85.43 75.52 68.81 76.97 - - - - - -
TOPT [EMNLP2024] 80.16 81.55 82.03 77.85 72.34 78.78 - - - - - -
Flan-T5-base-250M(ours) 81.43 83.53 83.69 79.03 74.29 80.39 80.32 82.43 81.93 77.62 73.97 79.25
Flan-T5-large-780M(ours) 82.34 85.03 85.62 79.96 75.99 81.79 81.62 84.64 84.02 78.61 75.50 80.88
Improve ↑2.18 ↑3.48 ↑0.19 ↑2.11 ↑3.65 ↑3.01 ↑7.07 ↑4.78 ↑6.09 ↑5.87 ↑6.37 ↑6.31

Table 1: F1 scores on CrossNER: CoNLL2003 and Twitter as source domains, respectively. Bold marks the highest,
and blue marks the absolute increase compared with prior SOTA.

formation is fed into the model for knowledge aug-484

mentation: the initial reasoning guides the model485

to leverage the knowledge from the source domain,486

strengthening knowledge transfer; the bidirectional487

reasoning guides the model to differentiate easily488

confused entity types, mitigating the entity type489

confusion. Besides, external knowledge mitigates490

the insufficiency of contextual information.491

3.3.2 Knowledge Augmentation492

The two-stage reasoning information generated by493

the LLM is utilized for knowledge augmentation in494

the backbone model, which learns to leverage rea-495

soning information through supervised fine-tuning.496

• Input: Find all entities of types {politician,497

person, country ...} in {text}.498

Reasoning information: {...}.499

Output format: {"type 1": ["entity 1", "entity500

2"], "type 2": ["entity 3"], ...}.501

• Gold Sequence: {"country": ["Afghanistan"],502

”politician": ["Barack Obama"], ...}.503

More details are provided in Appendix A.504

4 Experiments505

4.1 Experimental Setup506

We evaluate on three datasets: two source domains507

(CoNLL2003 (Tjong Kim Sang and De Meulder,508

2003), Twitter (Lu et al., 2018)) and one target509

domain (CrossNER (Liu et al., 2021) with five510

sub-domains: politics, science, music, literature,511

and AI). We employ Flan-T5-base and Flan-T5-512

large (Chung et al., 2024) as backbone models. we513

compare our method with prior SOTA baselines.514

More details, including datasets, implementation,515

and baselines, are provided in Appendix B.516

4.2 Main Results 517

The main results are shown in Table 1. 518

CoNLL2003 as the Source Domain. It is ob- 519

served that the F1 score improves as the parame- 520

ter scale of the model increases. On average, our 521

method achieves consistent F1 score improvements 522

of +1.61% (Flan-T5-base) and +3.01% (Flan-T5- 523

large). Our method surpasses prior SOTA results 524

in science, politics, literature, and AI domains (ef- 525

fective for both Flan-T5-base and Flan-T5-large), 526

achieving improvements exceeding 2.10% in these 527

domains. These results demonstrate the strong ef- 528

fectiveness of two-stage information generated by 529

the LLM in cross-domain NER. We observe that 530

IF-WARNER-7B (85.43%), which employs a fine- 531

tuned 7B LLaMA, and PromptNER (84.26%), 532

which utilizes GPT-4, both achieve significantly 533

higher F1 scores in the music domain compared to 534

other baselines using smaller models. This proves 535

the advantage of LLMs in the music domain, en- 536

suring the quality of our two-stage information 537

generated by the LLM. However, Flan-T5-large 538

achieves only a marginal improvement of 0.19% 539

over prior SOTA in the music domain, while Flan- 540

T5-base fails to surpass the prior SOTA. Through 541

careful analysis, we have identified the following 542

key factors: 543

• The high overlap between the entity knowl- 544

edge of the LLM and Flan-T5 in the music do- 545

main diminished their complementary effects, 546

resulting in limited benefits from two-stage 547

reasoning (as shown in Table 2). 548

• Although the two-stage information signifi- 549

cantly improves F1 scores for certain entity 550

types, such as musicalinstrument (Table 6), 551
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Method science politics music literature AI Avg.
w/o all 69.96 70.28 75.32 67.87 63.56 69.40
w/o initial and backward reasoning 76.58 78.26 80.09 74.77 70.03 75.95
w/o backward reasoning 78.06 79.47 81.44 76.12 71.42 77.30
w/o initial reasoning 80.62 82.76 82.49 78.06 73.52 79.49
Flan-T5-base-250M(ours) 81.43 83.53 83.69 79.03 74.29 80.39
Improve ↑11.47 ↑13.25 ↑8.37 ↑11.16 ↑10.73 ↑10.99

Table 2: Ablation study (F1 scores). Blue marks the absolute increase.

their limited entity count results in a negligi-552

ble impact on the overall F1 metric.553

Twitter as the Source Domain. When Twitter is554

used as the source domain, our method consistently555

achieves significant improvements across all five556

target domains, with an average F1 score increase557

of 6.31%. Since TOPT is not tested with Twitter as558

the source domain, we cannot compare with it di-559

rectly. Compared to CoNLL2003, the performance560

of both the Flan-T5-base and Flan-T5-large shows561

a slight decline. We attribute this to the smaller562

dataset size of Twitter, which limits the model’s563

ability to fully learn the coarse-grained features of564

entities. This highlights the importance of learn-565

ing coarse-grained features of entities and further566

demonstrates the capability of our method to effec-567

tively transfer knowledge from the source domain568

to the target domain.569

4.3 Ablation Study570

To evaluate the effectiveness of each component in571

our proposed method, we conduct ablation studies,572

as shown in Table 2. Our ablation study incorpo-573

rates the following configurations: (1) w/o initial574

reasoning: remove Step2 and Step3 in PBRC. (2)575

w/o backward reasoning: remove the confusion576

analysis results from MCQM at Step5 in PBRC.577

(3) w/o initial and backward reasoning: only the578

forward reasoning at Step5. (4) w/o all: remove all579

components. Through additive ablation analysis,580

we can obtain the following results:581

The contribution of forward reasoning. Based582

on w/o all (69.40%) and w/o initial and backward583

reasoning (75.95%), we observe a +6.55% absolute584

improvement. This demonstrates that the reasoning585

information provided by the LLM can effectively586

support the backbone model in performing NER.587

The contribution of initial reasoning. Based588

on w/o initial and backward reasoning (75.95%)589

and w/o backward reasoning (77.30%), we observe590

a +1.35% absolute improvement, demonstrating591

that the two-stage reasoning from source to target 592

domain can enhance the backbone model’s cross- 593

domain transferability. 594

The contribution of backward reasoning. 595

Based on w/o initial and backward reasoning 596

(75.95%) and w/o initial reasoning (79.49%), we 597

observe a +3.54% absolute improvement. This in- 598

dicates that MCQM effectively analyzes and quan- 599

tifies the model’s confusion among entity types, 600

while backward reasoning helps alleviate entity 601

type confusion and improves the model’s general- 602

ization ability. 603

The collective contribution of all components. 604

Based on w/o all (69.40%) and ours (80.39%), we 605

observe a +10.99% absolute improvement, demon- 606

strating that the two-stage reasoning information 607

generated by the LLM significantly mitigates the 608

model’s entity type confusion and improves the 609

model’s generalization ability. 610

In the music domain, all components contribute 611

smaller improvements than in other domains. The 612

reasons have been analyzed in Section 4.2. To fur- 613

ther evaluate our method, additional experiments 614

are provided in Appendix C. 615

5 Conclusion and Future Work 616

In this paper, we propose the MCQM, which ef- 617

fectively quantifies the model’s confusion extent 618

among fine-grained entity types from three dimen- 619

sions: source-target hierarchy analysis, semantic 620

similarity analysis, and explicit data evaluation. 621

Furthermore, we propose the PBRC based on the 622

source-target hierarchy and the MCQM, which can 623

significantly mitigate entity type confusion and 624

improve the model’s generalization ability. Our 625

method achieves SOTA results on all domains of 626

the CrossNER dataset. Future research can focus 627

on fully utilizing the MCQM. Confusion analy- 628

sis of the MCQM can help optimize data labeling 629

strategies and guide data augmentation. We antici- 630

pate that these findings will inspire further research. 631
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Limitations632

Although our method achieves new state-of-the-art633

performance, there are two major limitations.634

Visualizations on MCQM show that some entity635

types do not have a single, clearly most confused636

entity type. Through experiments, we find that637

for these entity types, the improvement brought by638

the backward reasoning in the two-stage reason-639

ing information generated by the LLM is limited.640

Moreover, PBRC does not fully leverage MCQM’s641

confusion analysis results, which restricts MCQM642

from reaching its full potential. In the future, we643

need to explore the more effective utilization of644

MCQM further.645

Our method adopts an LLM with frozen param-646

eters combined with a fine-tuned domain-specific647

small model. The experimental results demonstrate648

that our method outperforms the individual use of649

the LLM or the fine-tuned small model. For a new650

domain, our method only requires a small amount651

of labeled data to fine-tune the small model, achiev-652

ing strong performance while significantly reduc-653

ing training time and cost. However, the model’s654

performance is influenced by the quality of the in-655

formation generated by the LLM. Besides, during656

inference, the model still relies on the LLM to gen-657

erate two-stage reasoning information, which slows658

down inference speed.659

Ethics Statement660

Our study does not involve human subjects, per-661

sonal data, or sensitive content. All experiments662

use publicly available datasets in compliance with663

their licenses. We employ language models such as664

GPT (OpenAI API) and Flan-T5, following their665

respective usage policies. These models are used666

in controlled settings and do not produce harmful667

or biased content in the context of our study.668
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A Knowledge Augmentation for963

Language Models964

As shown in Figure 2 (d), we design a template965

τ(·), which consists of three parts: some manually966

designed examples S, PBRC P, and the text to be967

reasoned X ∈ Dtgt. The examples help the LLM968

perform in-context learning, while PBRC includes969

the confusion analysis results from MCQM, which970

are transformed into a mapping table Tmap (Step5).971

By feeding the template τ(·) into the LLM, we972

obtain the two-stage reasoning information IR of973

the text:974

IR = FLLM(τ(P [Tmap], S,X)) (15)975

The original text X = {x1, x2, . . . , xN} is con-976

catenated with the two-stage reasoning informa-977

tion IR = {i1, i2, . . . , iM} to form [X, IR] =978

{x1, x2, . . . , xN , i1, i2, . . . , iM}. [X, IR] is fed979

into the model’s encoder, resulting in the fea-980

ture sequence of the final hidden layer H =981

[h1,h2, ...,hN+M ] ∈ R(N+M)×d:982

H = Encoder([X, IR]) (16)983

where d is the dimension of the encoder’s final984

hidden layer. The model’s encoder dynamically985

attends to the reasoning information through the986

attention mechanism, thereby enriching the orig-987

inal text representations and achieving effective988

knowledge augmentation.989

The output sequence generated by the model be-990

fore the timestep t is Y1:t−1 = {y1, y2, . . . , yt−1}991

and its feature sequence is HY [1:t−1] ∈ R(t−1)×d.992

The decoder of the model calculates the hidden993

state zt at the timestep t based on H and HY [1:t−1]:994

zt = f(H,HY [1:t−1]) (17)995

The two-stage reasoning information further in-996

fluences the calculation of the hidden state zt.997

Then, the decoder uses the softmax to calculate998

the probability distribution over the vocabulary999

V = {v1, v2, . . . , vK}:1000

p(V |H,HY [1:t−1]) = softmax(Wzt + b) (18)1001

where the size of the vocabulary is K, W ∈ RK×d1002

and b ∈ RK are the output projection parameters.1003

The decoder selects the token with the highest1004

probability as the output at the timestep t:1005

yt = argmax
i∈{1,2,...,K}

(
p(vi|H,HY [1:t−1])

)
(19)1006

Domain Dataset Category Train Dev Test

Source CoNLL2003 4 14987 - -
Twitter 4 4290 - -

Target

politics 9 200 541 651
science 17 200 450 543
music 13 100 380 465

literature 12 100 400 416
AI 14 100 350 431

Table 3: The statistics of all datasets.

where K is the size of the vocabulary. 1007

Thus, after T time steps, the language model 1008

generates the final result. The two-stage reason- 1009

ing information can effectively guide the language 1010

model to recognize named entities. We use the 1011

cross-entropy loss function to optimize the lan- 1012

guage model. Since our gold sequence is deter- 1013

ministic (i.e., the output token at each timestep is 1014

unique), we derive the simplified form: 1015

Lcross =−
T∑
t=1

K∑
i=1

P (yt = vi)

· log p(yt = vi | H,HY [1:t−1])

=−
T∑
t=1

log p(y∗t | H,HY [1:t−1])

(20) 1016

where y∗t is the ground-truth token at timestep t. 1017

B Experimental Setup 1018

B.1 Datasets & Evaluation Metrics 1019

We conduct extensive experiments on classic 1020

datasets, including two source domain datasets, 1021

CoNLL2003 (Tjong Kim Sang and De Meulder, 1022

2003) and Twitter (Lu et al., 2018), and one tar- 1023

get domain dataset, CrossNER (Liu et al., 2021), 1024

including five domains: politics, science, music, lit- 1025

erature, and AI. Table 3 shows the statistics of these 1026

datasets. We adhere to the official split, ensuring 1027

consistency with baselines. Specifically, the en- 1028

tity types in the source domains are coarse-grained, 1029

while the entity types in the target domains are fine- 1030

grained, indicating that the cross-domain setting 1031

is more challenging and closer to the real world. 1032

Besides, the training set in the target domain is 1033

smaller in scale. 1034

We use the F1-score (F) as the primary metric to 1035

evaluate the performance of our method. An entity 1036

is considered correct only if both its span and type 1037

are correct. Moreover, we use precision (P) and 1038

recall (R) for a more detailed analysis. 1039
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B.2 Implementation Details1040

We conduct our experiments on a single NVIDIA1041

A6000 GPU with 48GB, using the PyTorch frame-1042

work. We employ Flan-T5-base (250M) and Flan-1043

T5-large (780M) (Chung et al., 2024) as backbone1044

models2. Flan-T5 has undergone instruction fine-1045

tuning across multiple NLP tasks, enabling it to bet-1046

ter follow instructions, generate outputs in specified1047

formats, and demonstrate improved cross-domain1048

adaptation and few-shot learning capabilities. We1049

employ GPT-4o-mini (API)3 as the LLM.1050

We utilize the AdamW optimizer with a learning1051

rate of 1×10−5 and a batch size of 10. For MCQM,1052

the mixing ratios α and β are both set to 0.5 to1053

balance the weights of the two implicit factors. The1054

temperature coefficient w0 of the Softmax function1055

is set to 2.5. The scaling factor δhie is set to 1 by1056

default. For PBRC, the number of samples in the1057

template for context learning is set to 10.1058

Following prior studies, we first train the model1059

in the source domain and fine-tune it in the target1060

domain training set.1061

B.3 Baselines1062

To evaluate the performance of our proposed1063

method, we compare it with the following SOTA1064

baselines:1065

• BiLSTM-CRF (Yamada et al., 2020): Com-1066

bines BiLSTM and CRF to train the model.1067

• BERT-JF (Liu et al., 2021): Jointly fine-tunes1068

BERT in source and target domains.1069

• LST-NER (Zheng et al., 2022): Adopts1070

graph matching to address cross-domain data1071

scarcity and label mismatches.1072

• MTD (Zhang et al., 2022): A modular1073

learning-based method that decomposes NER1074

into span detection and type classification.1075

• CP-NER (Chen et al., 2023): Transforms1076

NER as text-to-text task and introduces col-1077

laborative domain-prefix tuning based T5 as1078

well.1079

• MTD-MoCL (Xu et al., 2023): Use con-1080

trastive learning to refine representations, gen-1081

erate positive and negative samples, and opti-1082

2https://huggingface.co/docs/transformers/
main/en/model_doc/flan-t5

3https://platform.openai.com/docs/models/
gpt-4o-mini#gpt-4o-mini

mize their distances to enhance distinguisha- 1083

bility. 1084

• DH-GAT (Xu and Cai, 2023): Applies Graph 1085

Attention Networks to encode syntactic and 1086

semantic information while embedding words 1087

into hyperbolic space. 1088

• GPDA (Cai et al., 2023): constructs a text 1089

similarity graph between labeled data and un- 1090

labeled text and propagates entity annotations 1091

from labeled data to unlabeled text through 1092

graph propagation. 1093

• PromptNER (Ashok and Lipton, 2023): Uses 1094

GPT4 for NER through prompt templates. 1095

• Dual-CL (Xu et al., 2024): Uses dual con- 1096

trastive learning to refine ambiguous represen- 1097

tations and learn generalizable features. 1098

• DT-MPrompt (Zhang et al., 2024a): Splits 1099

the cross-domain NER task into subtasks and 1100

uses separate functional modules for learning 1101

and knowledge transfer. 1102

• IF-WRANER (Nandi and Agrawal, 2024): 1103

Fine-tunes 7B LLaMA with instruction fine- 1104

tuning and employs word embeddings to re- 1105

trieve examples for in-context learning. 1106

• TOPT (Zhang et al., 2024b): Utilizes LLaMA 1107

to generate task-oriented knowledge for flan- 1108

T5 and adopts task-oriented pre-training for 1109

domain adaptation (SOTA). 1110

To evaluate the performance of our method in 1111

low-resource scenarios, we follow the study (Zheng 1112

et al., 2022) and conduct few-shot experiments, 1113

comparing our method with the following base- 1114

lines: 1115

• BiLSTM-CRF (Yamada et al., 2020): Com- 1116

bines BiLSTM and CRF to train the model. 1117

• Coach (Liu et al., 2020): Initially learns a 1118

general slot-entity pattern, then predicts spe- 1119

cific types, and enhances adaptability and ro- 1120

bustness through the integration of template 1121

regularization. 1122

• Multi-Cell LSTM (Jia and Zhang, 2020): A 1123

multi-task learning framework using LSTMs, 1124

where separate cell states are utilized to model 1125

each entity type. 1126
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20-shot 50-shot
Method science politics music litera. AI science politics music litera. AI
BiLSTM-CRF 42.54 41.75 37.96 35.78 37.59 48.89 53.46 43.65 41.54 44.73
BiLSTM-CRF-joint † 44.91 44.62 42.28 39.54 41.23 49.68 55.17 44.58 43.14 46.35
Coach † 48.71 46.15 43.37 41.64 41.55 52.03 60.97 51.56 48.73 51.15
Multi-Cell LSTM † 60.55 59.58 67.12 63.92 55.39 65.78 68.21 70.47 66.85 58.67
BERT-tagger 60.34 61.01 64.73 61.79 53.78 63.93 66.13 68.41 63.44 58.93
BERT-tagger-joint † 60.58 61.61 64.16 60.36 53.18 64.04 66.30 67.71 62.58 58.52
NNShot 60.67 60.93 64.21 61.64 54.27 63.78 66.33 67.94 63.19 59.17
StructShot 62.95 63.31 67.27 63.48 55.16 64.52 67.16 70.21 65.33 59.73
TemplateNER 62.64 63.39 62.00 61.84 56.34 62.84 65.23 64.57 64.49 56.58
LST-NER 64.03 64.06 68.83 64.94 57.78 66.48 68.51 72.04 66.73 60.69
Flan-T5-base(ours) 75.97 77.93 76.86 72.35 69.20 77.43 80.34 78.91 74.55 72.36
Flan-T5-large(ours) 77.57 79.31 78.82 74.09 70.97 79.29 82.20 80.94 75.87 73.48

Table 4: The results (F1 score) in few-shot settings (CoNLL2003 as the source domain). Bold marks the highest. †
indicates both source and target labeled samples are used when training.

• BERT-tagger (Devlin et al., 2019): Fine-1127

tunes the BERT-based model with a label clas-1128

sifier.1129

• NNShot and StructShot (Yang and Katiyar,1130

2020): Two metric-based few-shot learning1131

methods for NER.1132

• TemplateNER (Cui et al., 2021): A template-1133

based prompt method through a generative1134

pre-trained LM.1135

• LST-NER (Zheng et al., 2022): Adopts1136

graph matching to address cross-domain data1137

scarcity and label mismatches.1138

C Additional Experiments1139

C.1 Low-Resource Study1140

C.1.1 Few-shot Study1141

To evaluate the performance of our method in few-1142

shot settings, we conduct 20-shot and 50-shot ex-1143

periments using the CoNLL2003 as the source do-1144

main, with results presented in Table 4. Our method1145

significantly outperforms the baselines. When the1146

target domain data size decreases from 50-shot to1147

20-shot, the average F1 score of the Flan-T5-base1148

across the five domains drops by only 2.26%, while1149

the Flan-T5-large drops by 2.20%. Compared to1150

other baselines, our method demonstrates greater1151

robustness in few-shot settings. In particular, in the1152

AI domain, Flan-T5-base achieves an F1 score of1153

72.36% under the 50-shot setting. From Table 1,1154

we observe that the prior SOTA method, TOPT,1155

achieves an F1 score of 72.34% in the standard1156

setting. In other domains, our method under few-1157

shot settings surpasses the performance of many1158

69.86
71.89

73.02

25

35

45

55

65

75

85

10 20 30 40 50 70 100

Flan-T5-base(without source data) Flan-T5-base(ours)
Flan-T5-base(w/o backward reasoning) Flan-T5-base(w/o all)

Figure 4: The effect of AI domain sample size on F1
score in four different settings. CoNLL2003 as the
source domain.

baselines under their standard settings. These re- 1159

sults indicate that our method can deliver strong 1160

performance even with limited data. By leveraging 1161

the external knowledge and reasoning capabilities 1162

of the LLM, our method effectively enhances the 1163

model’s generalization ability in few-shot settings. 1164

C.1.2 Impact of Sample Size on Performance 1165

To further analyze the performance of our method 1166

in low-resource settings, we conduct more detailed 1167

experiments in the AI domain using the Flan-T5- 1168

base (250M). As shown in Figure 4, We compare 1169

our method (Flan-T5-base (ours)) with several base- 1170

lines: one that removes both MCQM and PBRC 1171

(w/o all), one that removes the MCQM (w/o back- 1172

ward reasoning), and one that evaluates our method 1173

without utilizing source domain training data (with- 1174

out source data). The results demonstrate that our 1175

method significantly improves F1 scores, and the 1176

improvement becomes more evident as the sample 1177

size decreases. Specifically, under the setting of 1178

50 samples, our method achieves an F1 score of 1179

71.89%, which is nearly equivalent to the perfor- 1180

mance of TOPT (Table 1) that uses Flan-T5-base 1181
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Domain Flan-T5-base (w/o all) Flan-T5-base (ours)

Precision Recall F1 score Precision Recall F1 score

science 71.31 (83.11) 68.66 (81.10) 69.96 (82.09) 83.05 (88.12) 79.88 (84.49) 81.43 (86.27)

politics 71.30 (87.45) 69.29 (86.99) 70.28 (87.22) 84.62 (91.15) 82.47 (88.01) 83.53 (89.55)

music 77.07 (88.46) 73.65 (82.99) 75.32 (85.64) 85.34 (89.45) 82.10 (87.85) 83.69 (88.64)

literature 68.28 (83.67) 67.47 (83.98) 67.87 (83.82) 80.48 (87.67) 77.64 (84.12) 79.03 (85.86)

AI 63.42 (81.15) 63.70 (81.64) 63.56 (81.39) 75.74 (86.07) 72.90 (83.01) 74.29 (84.51)

Table 5: Type classification performance comparison. CoNLL2003 as the source domain.

as a backbone under the setting of 100 samples.1182

Besides, when we remove the backward reason-1183

ing, the model shows more evident reductions in1184

F1-score as the sample size decreases. We believe1185

that limited samples make it challenging for the1186

model to learn the feature differences among sim-1187

ilar fine-grained entity types, exacerbating entity1188

type confusion. The backward reasoning helps the1189

model differentiate between easily confused entity1190

types during type classification, highlighting the1191

significant advantage of the confusion analysis of1192

MCQM in low-resource scenarios. Additionally,1193

we observe that the gap in F1 scores between train-1194

ing with and without the source domain increases1195

as the sample size decreases. This indicates that in1196

low-resource settings, our method effectively en-1197

ables the model to leverage coarse-grained features1198

learned from the source domain, thereby enhancing1199

the model’s transferability of knowledge from the1200

source domain.1201

C.2 Entity Type Classification Performance1202

To verify that the model’s performance improve-1203

ment is attributed to enhanced entity type classifi-1204

cation capabilities, we evaluate its performance in1205

both entity span detection and overall performance1206

using precision, recall, and F1 score. The results1207

are shown in Table 5, where the values in parenthe-1208

ses indicate the performance on entity span detec-1209

tion. We observe that our method improves the F11210

score for entity span detection by 2%–4% across1211

the five domains, with slight improvements also1212

observed in precision and recall. More notably, the1213

overall performance increases by over 10% on av-1214

erage. These results demonstrate that our method1215

significantly enhances the model’s ability in en-1216

tity type classification and effectively mitigates the1217

model’s entity type confusion.1218

Figure 5: Visualization of confusion analysis. For A->B,
source entity type A is a prefix of target entity type B.

C.3 Visualization Analysis 1219

We utilize a heatmap to visualize the confu- 1220

sion analysis results of MCQM for Flan-T5-large 1221

(780M) under the CoNLL2003 → politics setting, 1222

with each target domain entity type labeled with its 1223

corresponding source domain prefix. As shown in 1224

Figure 5, we observe that target domain entity types 1225

sharing the same prefix tend to exhibit higher con- 1226

fusion extent, which demonstrates the effectiveness 1227

of employing the two-stage progressive reasoning 1228

strategy in PBRC. For certain entity types (e.g., 1229

person, country), their most easily confused en- 1230

tity type is distinctly identifiable. For instance, the 1231

confusion extent between person and politician is 1232

substantially higher than that between person and 1233

other types. Our experiments show that the bidirec- 1234

tional reasoning in PBRC brings more significant 1235

improvements for such types. In contrast, for other 1236

entity types (e.g., event, misc), these types are as- 1237

sociated with multiple entities that show similar 1238

confusion extent. We find that these entity types 1239

often involve more diverse entity forms and contex- 1240

tual scenarios in the real world, making it challeng- 1241

ing to pinpoint their most easily confused entity 1242

types. Overall, our MCQM effectively quantifies 1243

the model’s confusion extent between fine-grained 1244
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Domain Entity Type Method precision recall F1 score

science

scientist w/o all 83.51 95.73 89.20
Flan-T5-large (ours) 94.93 ↑11.42 96.95 ↑1.22 95.93 ↑6.73

person w/o all 85.85 59.48 70.27
Flan-T5-large (ours) 83.22 ↓2.63 81.05 ↑21.57 82.12 ↑11.85

chemicalcompound w/o all 75.80 61.66 68.00
Flan-T5-large (ours) 81.52 ↑5.72 77.72 ↑16.06 79.50 ↑11.50

chemicalelement w/o all 28.57 26.09 27.27
Flan-T5-large (ours) 88.24 ↑59.67 65.22 ↑39.13 75.00 ↑47.73

politics

politician w/o w/o all 56.99 92.21 70.45
Flan-T5-large (ours) 91.19 ↑34.20 93.19 ↑0.98 92.18 ↑21.73

person w/o all 95.52 22.38 36.26
Flan-T5-large (ours) 93.61 ↓1.91 87.06 ↑64.68 90.22 ↑53.96

organisation w/o all 74.01 64.73 69.06
Flan-T5-large (ours) 82.31 ↑8.30 84.22 ↑19.49 83.26 ↑14.20

politicalparty w/o all 85.96 86.61 86.28
Flan-T5-large (ours) 91.63 ↑5.67 87.37 ↑0.76 89.45 ↑3.17

music

song w/o all 89.76 83.71 86.63
Flan-T5-large (ours) 93.18 ↑3.42 92.13 ↑8.42 92.66 ↑6.03

album w/o all 80.68 84.40 82.50
Flan-T5-large (ours) 93.09 ↑12.41 90.78 ↑6.38 91.92 ↑9.42

musicalinstrument w/o all 22.22 4.76 7.84
Flan-T5-large (ours) 84.38 ↑62.16 64.29 ↑59.53 72.97 ↑65.13

misc w/o all 27.59 25.81 26.67
Flan-T5-large (ours) 43.48 ↑15.89 32.26 ↑6.45 37.04 ↑10.37

Table 6: Some easily confused entity types (CoNLL2003 as the source domain). Use precision, recall, and F1 for
analysis. Blue marks the absolute increase.

entity types. In Figure 7, we present the visualiza-1245

tion results for Flan-T5-large from CoNLL2003 to1246

five domains.1247

C.4 Case Study1248

C.4.1 Confusion Type1249

To further analyze the effectiveness of our method,1250

we select several entity types from different target1251

domains based on MCQM, as shown in Table 6,1252

including unidirectional confusion relationships,1253

where type A’s most easily confused type is B, but1254

B’s most easily confused type is not A (A→ B),1255

and bidirectional confusion relationships, where1256

A and B are the most easily confused types with1257

each other (A ↔ B). Based on the analysis of1258

MCQM (Figure 7), the relationships are as follows:1259

chemicalelement → chemicalpound, musicalinstru-1260

ment → misc, song ↔ album, politician ↔ person,1261

organization ↔ politicalparty, scientist ↔ person.1262

Comparisons are made using three metrics: preci-1263

sion (P ), recall (R), and F1 score.1264

Bidirectional Confusion. In Table 6, we ob-1265

serve that our method significantly improves the1266

precision, recall, and F1 score for entity types. In1267

the case of politician and person, under the w/o set-1268

ting, the precision of politician (56.99%) is much1269

lower than the recall (92.21%), and the recall of1270

person (22.38%) is much lower than its precision1271

(95.52%). According to the formulas for precision1272

and recall, this can be attributed to many entities 1273

of person being misclassified as politician, which 1274

is consistent with the confusion analysis result of 1275

MCQM (Figure 5). After incorporating PBRC, 1276

the precision of politician (91.19%) increases by 1277

34.20%, and the recall of person (87.06%) im- 1278

proves by 64.68%, with F1 scores for both types in- 1279

creasing by 21.73% and 64.68%, respectively. Sim- 1280

ilarly, for scientist and person, as well as for album 1281

and song, similar results are observed. PBRC, in- 1282

formed by the confusion analysis of MCQM, incor- 1283

porates bidirectional reasoning to guide the model 1284

to capture fine-grained entity features, effectively 1285

mitigating entity type confusion. 1286

Unidirectional Confusion. After employing our 1287

method, chemicalelement shows improvements of 1288

over 40% in precision (88.24%), recall (65.22%), 1289

and F1 (75.00%), with improvements observed 1290

for chemicalpound. Musical instrument shows a 1291

62.16% increase in precision (84.38%), a 59.53% 1292

increase in recall (64.29%), and a 65.13% increase 1293

in F1 (72.97%). Specifically, although the preci- 1294

sion, recall, and F1 scores for misc also show im- 1295

provement, the overall performance remains subop- 1296

timal, a trend also observed in other domains. Upon 1297

analysis, we attribute this to the inherent complex- 1298

ity of the misc type, which can be summarized by 1299

the following two factors: (1) misc consists of a 1300

more diverse set of entities, meaning its features 1301
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(a) literature (b) AI

Figure 6: Error analysis on entity types under three different settings.

are more varied and complex, making it difficult1302

for the model to learn effectively with limited sam-1303

ples; (2) the diversity of misc causes challenges in1304

confusion analysis, making it difficult to pinpoint1305

its most easily confused entity type.1306

C.4.2 Error Analysis on Entity Types1307

To evaluate the impact of our method on specific1308

entity types, we report the total error proportion1309

(including both missed entities and misclassified1310

entities) and the type classification error proportion1311

for each entity type under three settings: w/o all,1312

w/o backward reasoning, and ours, as shown in1313

Figure 6. We use Flan-T5-large as the backbone1314

model and CoNLL2003 as the source domain. We1315

observe that under the w/o backward reasoning1316

setting, both domains show a significant decrease1317

in the total error proportion and entity type clas-1318

sification error proportion for most entity types.1319

Moreover, for some entity types, the ratio of en-1320

tity type classification errors to total errors also1321

drops considerably. This indicates that the reason-1322

ing information provided by the LLM effectively1323

mitigates entity type confusion and improves the1324

model’s generalization ability in the entity type1325

classification. When backward reasoning is further1326

incorporated, the entity type classification error1327

proportion continues to decrease for most entity1328

types, confirming the effectiveness of the confu-1329

sion analysis of MCQM. However, the event in the1330

literature domain and the misc and algorithm in the1331

AI domain do not show such improvements. Based1332

on the confusion analysis of MCQM (Figure 7),1333

we believe the absence of clear confusion types for1334

these entity types causes this. In addition, the liter-1335

arygenre in the literature domain does not exhibit1336

notable reductions under either setting. We observe1337

that the LLM performs poorly in entity span detec-1338

Method sci. pol. mus. lit. AI

base(w/o all) 70.0 70.3 75.3 67.9 63.6
large(w/o all) 71.8 73.2 78.6 69.7 65.4
GPT-4o-mini 74.2 77.9 81.8 73.2 68.5
base(ours) 81.4 83.5 83.7 79.0 74.3
large(ours) 82.3 85.0 85.6 80.0 76.0

Table 7: Model performance (F1 score) comparison.

tion for this entity type, resulting in a large number 1339

of missed entities. Similarly, the backbone model 1340

also exhibits weak performance on this entity type, 1341

and no significant complementary advantage is ob- 1342

served between the two. 1343

C.5 Individual vs. Combined Model 1344

To evaluate the advantages of our approach, we 1345

present the results in Table 7, which compares 1346

the performance of fine-tuning the Flan-T5 model 1347

alone (w/o all), using the LLM for NER, and our 1348

method. We use CoNLL2003 as the source domain. 1349

For the LLM, we apply the same template (Fig- 1350

ure 2) and provide 10 in-context learning examples, 1351

enabling it to generate NER results in the specified 1352

format. Experimental results show that, regardless 1353

of whether the backbone model is Flan-T5-base 1354

or Flan-T5-large, our method outperforms both 1355

the fine-tuned Flan-T5 and the method only based 1356

on the LLM in terms of F1 score. This demon- 1357

strates that our method effectively combines the 1358

advantages of fine-tuning the backbone model and 1359

the general-purpose LLM. General-purpose LLMs 1360

have advantages in parameter scale and knowledge 1361

breadth, as they are pretrained on a wide range of 1362

domain-specific corpora and possess some reason- 1363

ing ability, which makes them particularly effective 1364

for low-resource entities. However, due to the hal- 1365

lucination phenomenon (Huang et al., 2025; Zhang 1366
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et al., 2023), the LLM may introduce errors during1367

the reasoning process. Although the reasoning path1368

is often logically sound, the final output may still be1369

incorrect, leading to degraded performance. On the1370

other hand, Flan-T5, fine-tuned on the NER task,1371

optimizes entity recognition by learning domain-1372

specific context patterns through task-specific train-1373

ing data, and thus exhibits stronger performance on1374

entity types with abundant training samples. How-1375

ever, when the training samples for certain entity1376

types are scarce, the performance of Flan-T5 drops1377

significantly.1378

Our method combines the broad knowledge of1379

the LLM with the precise recognition capabilities1380

of the fine-tuned T5 model, using the reasoning in-1381

formation generated by the LLM as supplementary1382

features to significantly improve performance. The1383

semantic cues and external knowledge provided by1384

the LLM help the model better understand the con-1385

text, especially for complex and low-resource en-1386

tities. Meanwhile, through supervised fine-tuning,1387

Flan-T5 learns how to effectively leverage the rea-1388

soning information generated by the LLM, miti-1389

gating the negative impact of hallucinations and1390

incorrect reasoning information.1391

We provide several concrete examples: In Fig-1392

ure 8, the LLM supplies external knowledge1393

about "Liberal International," enabling the Flan-T51394

model to correctly classify this entity. In Figure 9,1395

the LLM mistakenly identifies "Results of Astro-1396

nomical Observations" as an entity, but the Flan-T51397

model is not misled. In Figure 10, the LLM misses1398

the entity "kernel methods," while Flan-T5 success-1399

fully recognizes it. In Figure 11, the LLM incor-1400

rectly classifies the entities as "location." However,1401

since Flan-T5 is fine-tuned on the training dataset,1402

it correctly classifies them as "country" based on1403

the keyword "Empire". These cases demonstrate1404

that our method effectively leverages the comple-1405

mentary strengths of LLMs and fine-tuned smaller1406

models.1407
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(a) CoNLL2003 / science (b) CoNLL2003 / politics

(c) CoNLL2003 / music (d) CoNLL2003 / literature

(e) CoNLL2003 / AI

Figure 7: Visualization of the confusion analysis results of MCQM for Flan-T5-large (CoNLL2003 as the source
domain). For A→B, source type A is a prefix of target type B.
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Text
The Freedom Party was subsequently expelled from the Liberal International , and the remaining

liberals seceded to found the Liberal Forum ( Liberales Forum , member Liberal International ,

Alliance of Liberals and Democrats for Europe Party ) in 1993 .

Gold Label
"organisation": ["Liberal International", "Liberal International"], "politicalparty": ["Freedom

Party", "Liberal Forum", "Liberales Forum", "Alliance of Liberals and Democrats for Europe

Party"]

Two-stage
Reasoning

Initial Reasoning: The phrase "was subsequently expelled from" suggests that "Liberal

International" has a formal membership system, reinforcing its classification as an ORG. Similarly,

"Freedom Party," "Liberales Forum," and "Alliance of Liberals and Democrats for Europe Party"

are described as entities that were either expelled, seceded, or founded, implying they are

organized groups. The phrase "the remaining liberals seceded to found" suggests an internal

division within an existing organization, further indicating that these entities operate in a

structured manner. Externally, these names are recognized as political groups, reinforcing their

classification as ORG.

Bidirectional Reasoning: Liberal International is classified as an organisation rather than a

political party because it functions as an overarching entity that encompasses multiple political

parties. The sentence describes Liberal International as being "expelled from," indicating it is an

organized structure that other political parties can belong to, rather than a single political party

itself. The absence of the term "Party" in its name and its role in representing multiple political

parties also points to its classification as an organisation. Externally, Liberal International is

recognized as a global federation of political parties, further confirming its classification as an

organisation. The Freedom Party, Liberales Forum, and Alliance of Liberals and Democrats for

Europe Party are classified as political parties rather than organisations because the sentence

explicitly describes them as entities that were "founded" after seceding. This suggests they are

newly established, independent political groups created to pursue political goals. The use of the

term "Party" in their names further indicates their classification as political parties. The focus on

political action and division from another group suggests they are political entities, rather than

broader, non-political organisations.

Prediction

1.Flan-t5-base(w/o):

"politicalparty": ["Freedom Party", "Liberal International", "Liberal Forum", "Liberales Forum",

"Liberal International", "Alliance of Liberals and Democrats for Europe Party"] ×

2.Flan-t5-base(ours):

"organisation": ["Liberal International", "Liberal International"], "politicalparty": ["Freedom

Party", "Liberal Forum", "Liberales Forum", "Alliance of Liberals and Democrats for Europe

Party"] √

3.Flan-t5-large(w/o):

"politicalparty": ["Freedom Party", "Liberal International", "Liberal Forum", "Liberales Forum",

"Liberal International", "Alliance of Liberals and Democrats for Europe Party"] ×

4.Flan-t5-large(ours):

"organisation": ["Liberal International", "Liberal International"], "politicalparty": ["Freedom

Party", "Liberal Forum", "Liberales Forum", "Alliance of Liberals and Democrats for Europe

Party"] √

Figure 8: A specific example in the politics domain.
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Text
The name was suggested by John Herschel ( son of William Herschel , discoverer of Mimas and

Enceladus ) in his 1847 publication Results of Astronomical Observations made at the Cape of Good

Hope , in which he advocated naming the moons of Saturn after the Titans , brothers and sisters of

the Titan Cronus ( whom the Romans equated with their god Saturn ) .

Gold Label
"scientist": ["John Herschel", "William Herschel"], "person": ["Titan Cronus"], "location": ["Cape of

Good Hope"], "astronomicalobject": ["Mimas", "Enceladus", "Saturn", "Titans", "Saturn"], "misc":

["Romans"]

Two-stage
Reasoning

Initial Reasoning: John and William Herschel are astronomers, as mentioned in the context, and

Titan Cronus is a mythological figure associated with Saturn, so all are classified as PER. The LOC

includes the Cape of Good Hope, where John Herschel conducted observations, as stated in the text,

making it a geographical location. Results of Astronomical Observations is a publication by John

Herschel, classified as MISC. Romans refers to a cultural group. Mimas, Enceladus, Saturn and Titans

are celestial objects mentioned in the context, so they are MISC.

Bidirectional Reasoning: John Herschel and William Herschel are classified as scientists rather than

persons because they are explicitly mentioned as astronomers in the context, with a connection to

scientific research. John Herschel proposed naming Saturn's moons after the Titans, and William

Herschel is mentioned as the discoverer of Mimas and Enceladus. Titan Cronus is classified as a

person rather than a scientist because he is a figure from Greek mythology. In the text, Titan Cronus

is referred to as a mythological character with no direct connection to astronomy or scientific

activities. Cape of Good Hope is classified as a location rather than a country because it is a specific

geographical site where John Herschel conducted astronomical observations. A country typically

refers to a political entity, whereas Cape of Good Hope refers to a unique geographic location, so it is

categorized as location. Mimas, Enceladus, Saturn, and Titans are classified as astronomical objects

rather than miscellaneous because these entities are clearly defined astronomical objects. Results of

Astronomical Observations because it refer to is a publication by John Herschel. Romans are

classified as miscellaneous rather than protein because it refer to a cultural and ethnic group, while

protein usually refers to biological molecules, which are unrelated to the subject of this text.

Prediction

1.Flan-t5-base(w/o):

"scientist": ["John Herschel", "William Herschel"], "location": ["Cape of Good Hope"],

"astronomicalobject": ["Mimas", "Enceladus"], "misc": [ "Saturn", "Titans", "Saturn"]

Unrecognized Entities: ("Romans", "Titan Cronus") ×

2.Flan-t5-base(ours):

"scientist": ["John Herschel", "William Herschel"], "person": ["Titan Cronus"], "location": ["Cape of

Good Hope"], "astronomicalobject": ["Mimas", "Enceladus", "Saturn", "Titans", "Saturn"], "misc":

["Romans"] √

3.Flan-t5-large(w/o):

"scientist": ["John Herschel", "William Herschel", "Titan Cronus"], "location": ["Cape of Good Hope"],

"astronomicalobject": ["Mimas", "Enceladus"], "misc": ["Saturn", "Titans", "Saturn", "Romans"] ×

4.Flan-t5-large(ours):

"scientist": ["John Herschel", "William Herschel"], "person": ["Titan Cronus"], "location": ["Cape of

Good Hope"], "astronomicalobject": ["Mimas", "Enceladus", "Saturn", "Titans", "Saturn"], "misc":

["Romans"] √

Figure 9: A specific example in the science domain.
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Text
Application areas of kernel methods are diverse and include geostatistics , kriging , inverse distance

weighting , 3D reconstruction , bioinformatics , chemoinformatics , information extraction and

handwriting recognition .

Gold Label
"field": ["geostatistics", "bioinformatics", "chemoinformatics"], "task": ["3D reconstruction",

"information extraction", "handwriting recognition"], "algorithm": ["kernel methods", "kriging",

"inverse distance weighting"]

Two-stage
Reasoning

Initial Reasoning: The terms "geostatistics," "kriging," "inverse distance weighting," "3D

reconstruction," "bioinformatics," "chemoinformatics," "information extraction," and "handwriting

recognition" are classified as MISC because, within the context of the sentence, they represent

specific methods, tasks, or specialized areas of study. The phrase "application areas of kernel

methods are diverse" signals that the listed terms are various areas and techniques that are applied

in different domains, reinforcing their classification as MISC.

Bidirectional Reasoning: Geostatistics, 3D reconstruction, bioinformatics, and chemoinformatics are

classified as fields rather than tasks because they represent broad academic disciplines or research

areas that involve a range of methods, techniques, and applications. These are not specific tasks, but

rather comprehensive fields encompassing various activities and approaches. information extraction

and handwriting recognition are classified as tasks because they focus on specific, well-defined

operations within broader domains. Information extraction refers to the task of identifying and

extracting structured data from unstructured text, and handwriting recognition is the task of

converting handwritten text into a machine-readable format. These are not fields because they do

not represent broad areas of research or study. Instead, they are narrow, specific processes within

the larger fields of natural language processing and pattern recognition, respectively. They are

targeted actions with clearly defined objectives, which distinguishes them from fields that are more

expansive in scope. Kriging and inverse distance weighting are classified as algorithms rather than

misc because they are defined computational methods used to solve specific problems, particularly

in the field of geostatistics. These techniques are structured, precise methods, distinguishing them

from miscellaneous items, which typically lack a clear, specialized purpose.

Prediction

1.Flan-t5-base(w/o):

"field": ["geostatistics", "kriging", "inverse distance weighting", "3D reconstruction",

"bioinformatics", "chemoinformatics", "information extraction", "handwriting recognition"],

"algorithm": ["kernel methods"] ×

2.Flan-t5-base(ours):

"field": ["geostatistics", "3D reconstruction", "handwriting recognition", "bioinformatics",

"chemoinformatics"], "task":["information extraction"], "algorithm": ["kernel methods", "kriging",

"inverse distance weighting"] ×

3.Flan-t5-large(w/o):

"field": ["geostatistics", "kriging", "inverse distance weighting", "3D reconstruction",

"bioinformatics","chemoinformatics"], "task":["information extraction", "handwriting recognition"],

"algorithm": ["kernel methods"] ×

4.Flan-t5-large(ours):

"field": ["geostatistics", "bioinformatics", "chemoinformatics"], "task": ["3D reconstruction",

"information extraction", "handwriting recognition"], "algorithm": ["kernel methods", "kriging",

"inverse distance weighting"] √

Figure 10: A specific example in the AI domain.
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Text
Assyria ( This vast span of time is divided in Early Period ( 2500 BCE-2025 BCE ) , Old Assyrian Empire

( 2025 BCE - 1378 BCE ) , Middle Assyrian Empire ( 1392 BCE - 934 BCE ) and Neo-Assyrian Empire

( 911 BCE - 609 BCE ).

Gold Label "country": ["Assyria", "Old Assyrian Empire", "Middle Assyrian Empire", "Neo-Assyrian Empire"]

Two-stage
Reasoning

Initial Reasoning: The four entities— "Assyrian", "Old Assyrian Empire", "Middle Assyrian Empire",

and "Neo-Assyrian Empire"—should uniformly be classified as LOC within the PER/MISC/ORG/LOC

typology. These terms collectively describe the geographic, cultural, and political continuum of

ancient Mesopotamia, with "Assyrian" serving as the overarching ethnocultural identifier and the

three empire phases representing distinct territorial-political configurations across time.

Bidirectional Reasoning: The terms "Assyrian", "Old Assyrian Empire", "Middle Assyrian Empire",

and "Neo-Assyrian Empire" are best classified as location rather than country for two fundamental

reasons. First, as historical-geographic entities tied to ancient Mesopotamia, they represent a spatial

continuum of cultural and political influence (centered around the Tigris River) that transcends

modern notions of fixed borders - the empires' territories fluctuated dramatically through conquest

(e.g., Neo-Assyria's expansion from Anatolia to Egypt), making "location" better suited to capture this

fluidity. Second, they fail to meet the criteria of a country: unlike modern nation-states, these

Bronze/Iron Age polities lacked sovereign recognition, permanent bureaucratic institutions, or

continuous existence (having collapsed by 609 BCE), and were instead characterized by transient

imperial structures and city-state networks. The "Assyrian" identity itself refers primarily to a

civilization rooted in a geographic heartland (Assur/Nineveh), not a political entity comparable to

contemporary countries.

Prediction

1.Flan-t5-base(w/o):

"country": ["Assyria", "Old Assyrian Empire", "Middle Assyrian Empire", "Neo-Assyrian Empire"] √

2.Flan-t5-base(ours):

"country": ["Assyria", "Old Assyrian Empire", "Middle Assyrian Empire", "Neo-Assyrian Empire"] √

3.Flan-t5-large(w/o):

"country": ["Assyria", "Old Assyrian Empire", "Middle Assyrian Empire", "Neo-Assyrian Empire"] √

4.Flan-t5-large(ours):

"country": ["Assyria", "Old Assyrian Empire", "Middle Assyrian Empire", "Neo-Assyrian Empire"] √

Figure 11: A specific example in the politics domain.
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