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Abstract
This paper studies the convergence of clipped
stochastic gradient descent (SGD) algorithms
with decision-dependent data distribution. Our
setting is motivated by privacy preserving opti-
mization algorithms that interact with performa-
tive data where the prediction models can influ-
ence future outcomes. This challenging setting in-
volves the non-smooth clipping operator and non-
gradient dynamics due to distribution shifts. We
make two contributions in pursuit for a performa-
tive stable solution using clipped SGD algorithms.
First, we characterize the clipping bias with pro-
jected clipped SGD (PCSGD) algorithm which
is caused by the clipping operator that prevents
PCSGD from reaching a stable solution. When
the loss function is strongly convex, we quantify
the lower and upper bounds for this clipping bias
and demonstrate a bias amplification phenomenon
with the sensitivity of data distribution. When the
loss function is non-convex, we bound the mag-
nitude of stationarity bias. Second, we propose
remedies to mitigate the bias either by utilizing
an optimal step size design for PCSGD, or to ap-
ply the recent DiceSGD algorithm (Zhang et al.,
2024). Our analysis is also extended to show that
the latter algorithm is free from clipping bias in
the performative setting. Numerical experiments
verify our findings.

1. Introduction
A recent line of research in statistical learning is to analyze
the behavior of stochastic gradient (SGD) type algorithms
in tackling stochastic optimization problems with decision-
dependent distributions. The latter can be motivated by
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the training of prediction models under distribution shifts
(Quiñonero-Candela et al., 2022) where the data may ‘react’
to the changing prediction models. A common applica-
tion scenario is that the training data involve human input
that responds strategically to the model (Hardt et al., 2016).
Distribution shifts affect the convergence of SGD-type al-
gorithms and their efficacy as the distributions of gradient
estimates vary gradually. The modeling of such behavior has
led to the performative prediction problem (Perdomo et al.,
2020); see the recent overview (Hardt & Mendler-Dünner,
2023).

For the performative prediction problem, there is a growing
literature on developing stochastic algorithms to find a fixed
point solution of the repeated risk minimization procedure,
also known as the performative stable (PS) solution(s). In
the absence of knowledge of the distribution shift, the latter
is the natural solution obtained by stochastic approxima-
tion algorithms. In particular, most prior works have only
focused on settings when the loss function is strongly con-
vex, e.g., (Mendler-Dünner et al., 2020; Drusvyatskiy &
Xiao, 2023; Brown et al., 2022; Li & Wai, 2022). When the
loss function is non-convex, the existing results are much
rarer. To list a few, (Mofakhami et al., 2023) assumes a
least-square like loss function; (Li & Wai, 2024) provided
guarantees for general non-convex performative prediction.
As an alternative, prior works also studied stochastic algo-
rithms for finding performative optimal solutions by an extra
step that estimates the form of distribution shifts (Izzo et al.,
2021; Miller et al., 2021; Narang et al., 2023).

However, most of the existing works in the performative pre-
diction literature have focused on analyzing SGD algorithms
admitting a smooth drift term. An open problem in the per-
formative prediction literature is to analyze the behavior of
clipped SGD algorithms which limit the magnitude of the
stochastic gradient at every update step; this in turn distorts
the considered distribution shift compared with the nominal
dynamics with no clipping. Gradient clipping is used to
deal with multiple obstacles in learning algorithms such as
the need for privacy preservation (Abadi et al., 2016), deal-
ing with gradient explosion in non-smooth learning (Shor,
2012) such as training neural networks (Mikolov et al., 2012;
Zhang et al., 2020a), solving quasi-convex problems (Hazan
et al., 2015), etc. Despite the difficulty with treating the non-
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smooth drift term with clipping, the clipped SGD algorithm
has been analyzed in a multitude of works in the standard
i.i.d. sampling setting with non-decision-dependent data.
In fact, (Mai & Johansson, 2021) studied the non-smooth
optimization setting, and (Gorbunov et al., 2020) analyzed
the convergence under heavy-tailed noise. On the other
hand, it was found in (Chen et al., 2020) that the clipped
SGD may exhibit an asymptotic bias, i.e., deviation from the
optimal/stationary solution, for asymmetric gradient distri-
bution, and later on (Koloskova et al., 2023) showed that the
bias can be unavoidable. This led to several recent works
which considered debiasing clipped SGD, e.g., (Khirirat
et al., 2023) studied bias-free clipped SGD for distributed
optimization, (Zhang et al., 2024) studied a differentially
private SGD algorithm using two clipping operators simul-
taneously.

The current paper aims to study the convergence of clipped
SGD algorithms in the performative prediction setting. We
focus on the interplay between the distribution shift and the
non-smooth clipped updates. Our main contributions are:

• We show that PCSGD converges in expectation to a neigh-
borhood of the performative stable solution, a fixed point
studied by Perdomo et al. (2020). For strongly convex
losses, while the convergence rate is O(1/t) where t is
the iteration number, we show that the clipping opera-
tion induces an asymptotic clipping bias. For non-convex
losses, we show that in T iterations, the scheme converges
at the rate of O(1/

√
T ) towards a biased stationary per-

formative stable solution. In both cases, we show that
the magnitude of bias is proportional to the sensitivity of
distribution shift and clipping threshold.

• For the case of strongly convex losses, we further show
that there exists a matching lower bound for the asymp-
totic clipping bias upon specifying the class of performa-
tive risk optimization problem. Together with the derived
upper bound, we demonstrate a bias amplification effect
of PCSGD when subject to distribution shift in performa-
tive prediction.

• As a remedy to the bias effect of PCSGD, we study the re-
cently proposed DiceSGD algorithm (Zhang et al., 2024).
We show that with a doubly clipping mechanism on both
the gradient and clipping error, the algorithm can con-
verge exactly (nearly) to the PS solution under strongly
convex (non-convex) loss.

Further, we show that there exists a tradeoff between the
differential privacy guarantee and computation complexity
that affects the optimal step size selection. The paper is
organized as follows. §2 introduces the performative pre-
diction problem and the PCSGD algorithm. §3 presents the
theoretical analysis for PCSGD. §4 discusses the DiceSGD
algorithm and how it mitigates the clipping bias. Our analy-
sis includes both strongly convex and non-convex settings.

§5 presents the numerical experiments.

Notations. Let Rd be the d-dimensional Euclidean space
equipped with inner product ⟨· | ·⟩ and induced norm ∥x∥ =√

⟨x |x⟩. E[·] denotes taking expectation w.r.t all random-
ness, Et[·] := Et[·|Ft] means taking conditional expectation
on filtration Ft := σ({θ0,θ1, · · · ,θt}), where σ(·) is the
sigma-algebra generated by the random variables in the
operand.

2. Problem Setup
This section introduces the performative prediction problem
and a simple projected clipped SGD algorithm. Our goal
is to learn a prediction/classification model θ ∈ X via the
stochastic optimization problem:

minθ∈X EZ∼D(θ)[ℓ(θ;Z)], (1)

where X ⊆ Rd is a closed convex set and ℓ(·) is differen-
tiable w.r.t. θ.

An intriguing feature of (1) is that the optimization problem
is defined along with a decision-dependent distribution D(θ)
where the distribution of the sample Z ∼ D(θ) depends on
θ. For example, it may take the form of the best response
for a utility function parameterized by θ. This setup models
a scenario where the prediction model may influence the
outcomes it aims to predict, also known as the performative
prediction problem; see (Perdomo et al., 2020; Hardt &
Mendler-Dünner, 2023).

The challenge in tackling (1) lies in that the decision vari-
able θ appears in both the loss function ℓ(θ;Z) and the
distribution D(θ). As a result, (1) is in general non-convex
even if ℓ(·) is (strongly) convex. To this end, a remedy is
to study the fixed point solutions deduced from tackling
the partial optimization of minimizing EZ∼D(θ)[ℓ(θ;Z)]

w.r.t. θ when the distribution depends on a fixed θ.

When ℓ(·) is strongly convex in θ, a popular solution con-
cept is the performative stable (PS) solution (Perdomo et al.,
2020):
Definition 1. The solution θPS ∈ X is called a PS solution
to (1) if it satisfies

θPS = argminθ∈X EZ∼D(θPS)[ℓ(θ;Z)]. (2)

Note that θPS is unique and well-defined provided that (i)
the loss function is smooth, (ii) D(θ) is not overly sensitive
to shifts in θ; see §3.1 for details.

Alternatively, when ℓ(·) is non-convex in θ and X ≡ Rd, a
recent solution concept is the stationary PS (SPS) solution
(Li & Wai, 2024):
Definition 2. The solution θSPS ∈ X is called a stationary
PS solution to (1) if it satisfies

EZ∼D(θSPS)[∇ℓ(θSPS ;Z)] = 0. (3)
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Note that if ℓ(·) is strongly convex, (3) will recover the
definition of PS solution in (2).

It is clear that θPS , θSPS do not solve (1), nor are they
stationary solutions of (1). However, they remain reasonable
estimates to the solutions of (1). As shown in (Perdomo
et al., 2020, Theorem 4.3), the disparity between θPS and
the optimal solution to (1) is bounded by the sensitivity of
the decision-dependent distribution (cf. A5).

To search for θPS or θSPS , SGD-based schemes with
greedy deployment, i.e., the learner deploys the latest model
at the population after every SGD update, have been widely
deployed, see (Mendler-Dünner et al., 2020; Drusvyatskiy
& Xiao, 2023; Li & Wai, 2024).

Motivated by privacy preserving optimization (Abadi et al.,
2016) and improved stability in training deep neural net-
works (Zhang et al., 2020a), in this paper we are interested
in SGD algorithms which clip the stochastic gradient at
each update. With the greedy deployment scheme in mind,
our first objective is to study the projected clipped SGD
(PCSGD) algorithm for performative prediction:

Deploy: Zt+1 ∼ D(θt), (4)

Update: θt+1 = PX
(
θt − γt+1clipc(∇ℓ(θt;Zt+1))

)
, (5)

where PX (·) denotes the Euclidean projection operator onto
X , and clipc(·) is the clipping operator: for any g ∈ Rd,

clipc(g) : g ∈ Rd 7→ min {1, c/∥g∥2} g, (6)

such that c > 0 is a clipping parameter. Notice that if
c → ∞, (4) is reduced to the projected SGD algorithm for
performative prediction analyzed in (Mendler-Dünner et al.,
2020; Drusvyatskiy & Xiao, 2023). Additionally, when
D(θ) is independent of θ, i.e., D(θ) = D for all θ ∈ X , the
PCSGD algorithm does not exhibit a distribution shift and
coincides with a projected version of the standard clipped
SGD algorithm examined in (Koloskova et al., 2023). Thus,
our model and results extend both (Mendler-Dünner et al.,
2020; Drusvyatskiy & Xiao, 2023) and (Koloskova et al.,
2023).

For c < ∞ and especially when c < ∥∇ℓ(θt;Zt+1)∥, the
PCSGD recursion pertains to a non-gradient dynamics with
non-smooth drifts due to the clipping operator; see Sec. 3.
Prior analysis of PCSGD are no longer applicable in this
scenario.
Remark 1. Under the performative prediction setting,
(Drusvyatskiy & Xiao, 2023) considered an alternative clip-
ping model which approximates the loss function ℓ(θ; z) by
a linear model ℓθ′(θ; z) := ℓ(θ′; z) + ⟨∇ℓ(θ′; z) |θ − θ′⟩,
then updates θ by applying a proximal gradient method on
ℓθ(θ; z) within a bounded set. This clips the models under
training θ instead of clipping ∇ℓ(θ; z) as in (4). Such algo-
rithm belongs to the class of model based gradient methods
whose fixed point is θPS when ℓ(·) is strongly convex.

3. Main Results for PCSGD
In pursuit for a stochastic algorithm that finds θPS or θSPS ,
we first study the convergence properties of PCSGD. Ad-
ditionally, we examine the tradeoff between model efficacy
and privacy preservation of the algorithm.

3.1. Analysis of the PCSGD Algorithm

The analysis of (4) involves challenges that are unique to the
decision-dependent distributions. Curiously, the expectation
of the unclipped stochastic gradient ∇ℓ(θt;Zt+1) is not a
gradient. To see this, consider the special case of

ℓ(θ;Z) = (1/2)∥θ − Z∥2

and Z ∼ D(θ) ⇔ Z ∼ N (Aθ; I). Observe that
Et[∇ℓ(θt;Zt+1)] = (I − A)θt has a Jacobian of I − A
which is asymmetric whenever A is asymmetric. Analyzing
PCSGD requires studying a non-gradient dynamics with
non-smooth drifts induced by the clipping operator. In the
subsequent discussion, we analyze PCSGD through identi-
fying a suitable Lyapunov function depending on properties
of the loss function ℓ(·).
We define the shorthand notation:

f(θ1,θ2) := EZ∼D(θ2)[ℓ(θ1;Z)]. (7)

Unless otherwise specified, the vector ∇f(θ1;θ2) refers to
the gradient taken w.r.t. the first argument θ1. We begin
by stating a few assumptions pertaining to the performative
prediction problem (1):

A1. For any θ̄ ∈ X , the function f(θ; θ̄) is µ strongly
convex w.r.t. θ, i.e., for any θ′,θ ∈ X ,

f(θ′; θ̄) ≥ f(θ; θ̄) + ⟨∇f(θ; θ̄) |θ′ − θ⟩+ µ
2 ∥θ′ − θ∥2 .

A2. The gradient map ∇ℓ(·; ·) is L-Lipschitz, i.e., for any
θ1,θ2 ∈ X , z1, z2 ∈ Z,

∥∇ℓ(θ1; z1)−∇ℓ(θ2; z2)∥ ≤ L
(
∥θ1 − θ2∥+ ∥z1 − z2∥

)
Moreover, there exists a constant ℓ⋆ > −∞ such that
ℓ(θ; z) ≥ ℓ⋆ for any θ ∈ X .

The above assumptions are common in the literature, e.g.,
(Perdomo et al., 2020; Mendler-Dünner et al., 2020; Drusvy-
atskiy & Xiao, 2023). In addition, we require that

A 3. There exists a constant G ≥ 0 such that
supθ∈X ,z∈Z ∥∇ℓ(θ; z)∥ ≤ G.

This condition can be satisfied if X is compact; or for cases
such as the sigmoid loss functions. Notice that a similar
condition is used in (Zhang et al., 2020a). In some cases, we
will use the following standard variance condition to obtain
a tighter bound:
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A4. There exists constants σ0, σ1 ≥ 0 such that for any
θ1,θ2 ∈ X , it holds

EZ∼D(θ2)

[
∥∇ℓ(θ1;Z)−∇f(θ1;θ2)∥2

]
≤ σ2

0 + σ2
1 ∥∇f(θ1;θ2)∥2 .

Strongly Convex Loss We first discuss the convergence
of PCSGD towards θPS under A1. We provide both upper
and lower bounds for the asymptotic bias of PCSGD, and
demonstrate a bias amplification effect as the sensitivity
parameter of the distribution β increases (cf. A5). Our result
gives the first tight characterization of the bias phenomena
in the literature.

To establish the convergence of PCSGD in this case, we
will need the following additional assumptions:

A5. There exists β ≥ 0 such that

W1(D(θ),D(θ′)) ≤ β∥θ − θ′∥, ∀ θ,θ′ ∈ X .

Notice that

W1(·, ·) = inf
J∈J (·,·)

E(z,z′)∼J [∥z − z′∥1]

is the Wasserstein-1 distance, where J (D(θ),D (θ′)) is
the set of all joint distributions on Z × Z whose marginal
distributions are D(θ),D (θ′).

We emphasize that β in A5 quantifies the sensitivity of the
distribution against perturbation with respect to the decision
model θ. It will play an important role for the analysis below.
Notice that A1, 2, 5 imply that ∥θ⋆ − θPS∥ ≤ 2Lβ

µ where
θ⋆ ∈ Argminθ∈X EZ∼D(θ)[ℓ(θ;Z)] is an optimal solution
to the performative risk minimization problem (Perdomo
et al., 2020).

The first result upper bounds the squared norm of the error
θ̂t := θt−θPS at the tth iteration of PCSGD in expectation:

Theorem 3. (Upper bound) Under A1, 2, 3, 5. Suppose
that β < µ

L , the step sizes {γt}t≥1 are non-increasing and
satisfy i) γt−1

γt
≤ 1 + µ−Lβ

2 γt, and ii) γt ≤ 2
µ−Lβ . Then,

for any t ≥ 1, the expected squared distance between θt
and the performative stable solution θPS satisfies

E∥θ̂t+1∥2 ≤
t+1∏
i=1

(1− µ̃γi)∥θ̂0∥2 +
2c1
µ̃

γt+1 +
8C1
µ̃2

, (8)

where c1 := 2(c2 + G2), C1 := (max{G − c, 0})2, and
µ̃ := µ− Lβ.

The proof is relegated to §B. We remark that A3 assumes
that the stochastic gradient is uniformly bounded, where G
also accounts for the variance of stochastic gradient. If the
additional assumption such as A4 holds, it can be proven

that (8) holds with c1 = O(c2 + σ2
0). Our bound highlights

the dependence on t and the distribution shift parameter β.

From (8), as t → ∞, with a properly tuned step size, the
first term decays sub-exponentially to zero, the second term
also converges to zero if γt = O(1/t). Regardless of the
step size choice, the last term never vanish. It indicates an
asymptotic clipping bias of PCSGD and coincides with the
observation in (Koloskova et al., 2023) for non-decision-
dependent distribution.

As t → ∞, the bound in (8) converges to a non-vanishing
clipping bias term that reads

Bias = 8C1/µ̃2 = O(1/(µ− Lβ)2). (9)

Even when β = 0, this bias term is improved over (Zhang
et al., 2020a) which obtained an O(1/c) scaling. It turns out
that the above characterization of the bias is tight w.r.t. µ−
Lβ. We observe:
Theorem 4. (Lower bound) For any clipping thresh-
old c ∈ (0, G), there exists a function ℓ(θ;Z) and a
decision-dependent distribution D(θ) satisfying A1, 2, 3,
5, such that for all fixed-points of PCSGD θ∞ satisfying
EZ∼D(θ∞)[clipc(∇ℓ(θ∞;Z))] = 0, it holds that

∥θ∞ − θPS∥2 = Ω
(
1/(µ− Lβ)2

)
. (10)

The proof is relegated to §C.

Provided that β < µ
L , Theorems 3 and 4 show that PCSGD

admits a clipping bias1 of Θ(1/(µ − Lβ)2). It illustrates
a bias amplification effect where as the sensitivity level of
distribution β increases, the bias will increase as β ↑ µ

L .
This is a unique phenomenon to performative prediction
where in addition to the clipping level, the data distribution
contributes to the bias.

Non-convex Loss Next, we discuss the convergence of
PCSGD when the loss function is smooth but possibly non-
convex, i.e., without A1.

Our study concentrates on the case where X ≡ Rd such that
the projection operator is equivalent to an identity operator.
We consider the following condition:
A6. There exists β ≥ 0 such that

dTV (D(θ),D(θ′)) ≤ β∥θ − θ′∥, ∀ θ,θ′ ∈ X .

where dTV (D(θ),D(θ′)) denotes the total variation (TV)
distance between the distributions D(θ),D(θ′).

The interpretation of β is similar to that of A5. Notice that
as dTV(µ, υ) ≥ W1(µ, υ), A6 yields a stronger requirement
on the sensitivity of the distribution shift than A5 in general.
Moreover, we require that

1The lower bound in Theorem 4 holds for any β ≥ 0. When
β ≥ µ

L
, PCSGD may not converge.

4



Clipped SGD Algorithms for Performative Prediction: Tight Bounds for Clipping Bias and Remedies

A 7. There exists a constant ℓmax ≥ 0 such that
supθ∈Rd,z∈Z |ℓ(θ; z)| ≤ ℓmax.

The above condition can be satisfied in practical scenarios
where (1) involves the training of nonlinear models such as
neural networks with bounded outputs.

Under the above conditions, we observe the following upper
bound on the SPS measure in Definition 2 for the clipped
SGD algorithm:

Theorem 5. Under A2, 3, 4, 6, 7. Let the step sizes satisfy
supt≥1 γt ≤ 1

2(1+σ2
1)

. Then, for any T ≥ 1, the iterates
{θt}t≥0 generates by (4) satisfy:

T−1∑
t=0

γt+1E
[
∥∇f(θt;θt)∥2

]
≤ 8∆0 + 4Lσ2

0

T−1∑
t=0

γ2
t+1

+ 8b(β, c)
T−1∑
t=0

γt+1, (11)

where ∆0 := E[f(θ0;θ0) − ℓ⋆] is an upper bound to the
initial optimality gap for performative risk, and

b(β, c)=ℓmaxβ(σ0 + 8(1 + σ2
1)ℓmaxβ)+2max{G−c, 0}2.

The proof is relegated to §D.

To get further insights, fix any T ≥ 1 and set a constant
step size γt = 1/

√
T , we let T be a random variable chosen

uniformly and independently from {0, 1, · · · , T − 1}. The
iterates satisfy:

E
[
∥∇f(θT;θT)∥2

]
≤

(
∆0 +

Lσ2
0

2

)
8√
T

+ 8 b(β, c).

We observe that the first term vanishes as T → ∞. The
second term represents an upper bound to the asymptotic
bias for the clipped SGD algorithm that scales with the
distribution shift’s sensitivity β and the clipping threshold c.
Notice that as shown in (Koloskova et al., 2023), the clipped
SGD algorithm admits a non-zero asymptotic bias for the
case of non-convex optimization. In comparison, our bound
can be directly controlled by the clipping threshold.

Compared to the findings for the strongly convex case, while
the asymptotic bias persists in Theorem 5 and it also depends
on β and max{G − c, 0}, the latter effects are combined
in an additive fashion. Nevertheless, we suspect that this
bound on the bias can be improved in the non-convex case.
We note that in general, finding a tight lower bound for the
convergence of clipped SGD in the non-convex, decision-
dependent setting is an open problem.

3.2. Differential Privacy Guarantees

Our next objective is to study the implications of the conver-
gence analysis on the privacy preservation power of PCSGD.

To fix idea, we first introduce the definition of (ε, δ) differen-
tial privacy (DP) measure which is customary for measuring
the level of privacy leakage of a stochastic algorithm:

Definition 6. (Dwork & Roth, 2014) A randomized mecha-
nism M : D 7→ R satisfies (ε, δ)−differential privacy if for
any two adjacent inputs D,D′ ∈ D which differs by only 1
different sample, and for any subset of outputs S ⊆ R,

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ. (12)

The definition can be understood through the case with
ε, δ ≈ 0. In such case, the output (which consists of the
entire training history) of an DP algorithm on two adjacent
databases, D0,D

′
0 will be indistinguishable, thus protecting

the identity of each data sample.

To discuss privacy preservation in the framework of (Abadi
et al., 2016) using Definition 6, we need to introduce a
few specifications on the performative prediction problem
(1) and modifications to the PCSGD algorithm. First,
we consider a fixed, finite database setting for (1). The
database consists of m samples D0 := {z̄i}mi=1. The
decision-dependent distribution D(θ) is defined accord-
ingly: Z ∼ D(θ) refers to a (batch of) sample drawn from
the database D0 with distribution shift governed by a ran-
dom map Si : X → Z. Let si(θ) be a realization of Si(θ),

Z = z̄i + si(θ), i ∼ Unif([m]). (13)

Second, we concentrate on a slightly modified version of
(4) proposed in (Abadi et al., 2016): set Zt+1 ∼ D(θt),

θt+1 = PX
(
θt−γt+1(clipc(∇ℓ(θt;Zt+1))+ζt+1)

)
, (14)

for t = 0, ..., T − 1, where ζt+1 ∼ N (0, σ2
DPI) is an ar-

tificial (Gaussian) noise added to preserve privacy. Com-
pared to approaches such as (Chaudhuri et al., 2011) which
directly add Laplacian noise to SGD, the algorithm with
clipping offers better numerical stability.

Overall, we observe that (14) is a randomized mechanism
applied on the fixed dataset D0, where the distribution shifts
is treated as a part of the mechanism. In fact, we can analyze
the DP measure of PCSGD using the following corollary of
(Abadi et al., 2016):

Corollary 1. (Privacy Guarantee) For any ε ≤ T/m2,
δ ∈ (0, 1), and c > 0, the PCSGD algorithm with greedy
deployment is (ε, δ)-DP after T iterations if we let σDP =

c
√
T log(1/δ)/(mε).

See §E for detailed proof. Corollary 1 states that PCSGD
can achieve (ε, δ)-DP with an appropriate DP noise level.
Furthermore, the

√
T dependence for σDP leads to an ad-

ditional source of bias in (8). Together with Theorem 3,
the corollary gives a guideline for setting the algorithm’s
parameters such as clipping threshold c and step size γ.
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We are now equipped with the machinery to study the impli-
cations of previous convergence results with respect to the
DP guarantees for strongly convex ℓ(·). Suppose that the DP
parameters (ε, δ) are fixed. From Corollary 1, the DP noise
variance σ2

DP is proportional to T . It follows that increas-
ing T leads to an increase in the error term c1 observed in
Theorem 3 and it adds to the bias even when γt = O(1/T ).
In this light, the next result demonstrates how to design an
optimal constant step size that minimizes the upper bound
in (8) corresponding to the efficacy of the model:

Corollary 2. (Finite-time Analysis) Fix the privacy parame-
ters at (ε, δ) and clipping threshold at c. Assume that G > c
and a constant step size is used in PCSGD. For all T ≥ 1,
to achieve the minimum for E∥θ̂T ∥2, the optimal constant
step size can be set as

γ⋆ = log∆(µ̃)−1

µ̃T , where ∆(µ̃) :=
2(2(c2+G2)+dσ2

DP)

T µ̃2∥θ̂0∥2
. (15)

Let ϕ := d log(1/δ)
m2ε2 , then (8) simplifies to

E
∥∥∥θ̂T∥∥∥2 = O

( C1
µ̃2

+

[
c2 +G2

T µ̃2
+

c2ϕ

µ̃2

]
log

(
µ̃2

ϕc2

))
.

Besides the O(1/T ) dependence, we observe that γ⋆ is
affected by the sensitivity parameter through µ̃2, and the DP
parameters ε, δ.

Lastly, we examine the case when T ≫ 1. Observe that
by setting γt = c2/µ̃T for any c2 > 1, the first term in
(8) vanishes with sufficiently large T . Similar to the above
corollary, enforcing DP guarantee leads to an asymptotic
bias in (8) which depends on the interplay between the
clipping threshold c, DP noise variance σ2

DP, etc. We obtain
the following asymptotic guarantee upon optimizing the
clipping threshold c:

Corollary 3. (Asymptotic Analysis) Fix the privacy param-
eters at (ε, δ). Let T ≫ 1 and set γt = (1 + c2)/(µ̃T ),
the optimum asymptotic upper bound for the deviation from
θPS in Theorem 3 is given by

E ∥θ∞ − θPS∥2 = O
(
G2

µ̃2
(1 +

d log(1/δ)

m2ε2
)

)
. (16)

which is achieved by setting the clipping threshold as

c⋆ =
2Gm2ε2

d log(1/δ) + 2m2ε2
.

We observe that the asymptotic deviation from θPS is in the
order of O(d/(µ̃2ε2)) which contains the combined effects
from the sensitivity of distribution shift and DP requirement.

4. Reducing Clipping Bias in Clipped SGD
The previous section illustrates that PCSGD suffers from
a bias amplification phenomenon in the setting of perfor-
mative prediction. Although the issue can be remedied by

Algorithm 1 DiceSGD with Greedy Deployment
1: Input: C1, C2, a0, a1, ε, δ, D0, σ2

DP with C2 ≥ C1,
initialization θ0, e0 = 0.

2: for t = 0 to T − 1 do
3: Draw new sample Zt+1 ∼ D(θt) and Gaussian noise

ζt+1 ∼ N (0, σ2
DPI).

4: vt+1 = clipC1
(∇ℓ(θt;Zt+1)) + clipC2

(et).
5: θt+1 = θt − γt+1(vt+1 + ζt+1),

et+1 = et +∇ℓ(θt;Zt+1)− vt+1.
6: end for
7: Output: Last iterate θT .

tuning the step size γ and clipping threshold c, as in Corol-
laries 2, 3, it may not be feasible for practical applications
as the problem parameters such as µ̃, G may be unknown.

In this section, we discuss how to reduce the clipping bias
through applying a recently proposed clipped SGD algo-
rithm DiceSGD (Zhang et al., 2024). The latter is proven
to achieve DP while converging to the exact solution of a
convex optimization problem. We adapt this algorithm in
the performative prediction setting and show that it removes
the clipping bias inflicted by PCSGD.

For the subsequent discussion, we consider the uncon-
strained setting X ≡ Rd. The DiceSGD algorithm is
summarized in Algorithm 1 with the greedy deployment
mechanism for the performative prediction setting. Com-
pared to PCSGD, the notable differences include the use of
two clipping operators in line 4 for forming the stochastic
gradient estimate vt+1, and an error feedback step in line 5
where et accumulates the error due to clipping. The vector
et ∈ Rd is a private variable kept by the learner.

We remark that the pseudo code describes a general imple-
mentation which includes the Gaussian noise mechanism for
privacy protection. As shown in (Zhang et al., 2024), the use
of two clipping operators reduces the privacy leakage. With
an appropriate σ2

DP, the algorithm is guaranteed to achieve
(ε, δ)-DP through reparameterization of the notion of Renyi
DP, a relaxed notion for DP proposed in (Mironov, 2017).
Nonetheless, when the DP requirement is not needed, one
may set σ2

DP = 0 for a clipped algorithm with reduced bias.

Importantly, the error feedback mechanism is effective in
removing the asymptotic bias. To see that this insight can
be extended to the performative prediction setting, observe
that any fixed point (ē, θ̄) of Algorithm 1 satisfies

−clipC2
(ē) = EZ∼D(θ̄)[clipC1

(∇ℓ(θ̄;Z))]

∇f(θ̄; θ̄)− clipC2
(ē) = EZ∼D(θ̄)[clipC1

(∇ℓ(θ̄;Z))]
(17)

Under the condition C2 ≥ C1, a feasible fixed
point (ē, θ̄) shall satisfy ∇f(θ̄; θ̄) = 0 and ē =

6
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−EZ∼D(θ̄)[clipC1
(∇ℓ(θ̄;Z))] since

∥ē∥ ≤ EZ∼D(θ̄)[∥clipC1
(∇ℓ(θ̄;Z))∥] ≤ C1, (18)

where the first inequality is due to Jensen’s inequality. The
condition ∇f(θ̄; θ̄) = 0 implies θ̄ = θPS under strongly-
convex ℓ(·).
We conclude by presenting the convergence for the
DiceSGD algorithm in the performative prediction setting.
We first observe the assumption:

A8. There exists a constant M such that for any t ≥ 1,
E[∥et∥2] ≤ M2.

A8 is verified empirically in our experiments for the case
of C2 ≥ C1; see §H. Similar to PCSGD, the DiceSGD
algorithm is also a non-gradient algorithm with non-smooth
drifts. The following analysis is achieved by designing a
suitable Lyapunov function for each type of ℓ(·).

Strongly Convex Loss Notice that A4 implies that there
exists G,B ≥ 0 with

EZ∼D(θ)[∥∇ℓ(θ;Z)∥2] ≤ G2 +B2∥θ − θPS∥2, (19)

for any θ ∈ Rd. Denote µ̃ := µ − Lβ and θt := θt −
γtet − θPS , we have

Theorem 7. Under A1, 2, 4, 5, 8 and (19) holds. Suppose
that β < µ

L , there exists a0, a1, b, b̄ ≥ 0 such that the step
size of DiceSGD satisfies i) γt = a0/(a1 + t), a0 ≥ 1/b,
ii) γt ≤ min{µ̃/(16b), 8/µ̃, µ̃/4B2}, and iii) γ2

t /γ
2
t+1 ≤

1 + b̄γ2
t+1, Then, for any t ≥ 0,

E
∥∥θt+1

∥∥2 ≤
t+1∏
i=1

(
1− µ̃

4
γi

)∥∥θ0

∥∥2 + 8(G2 + dσ2
DP)

µ̃
γt+1

+
16L2M2(1 + β)2

µ̃2
γ2
t+1 +

24b2M2

µ̃
γ3
t+1

+
16L2M2b̄(1 + β)2

µ̃2
γ4
t+1. (20)

We present the detailed proof in §F. Under strong convex
losses A1, our analysis shows that DiceSGD converges to
a unique fixed point (θPS) in the mean square sense. Note
that the analysis framework here differs significantly from
that for non-convex losses.

We observe from (20) that the dominant term on the right-
hand-side is the second term which behaves as O(γt+1) =
O(1/t). Consequently, we have

E∥θt − θPS∥2 ≤ 2E
∥∥θt

∥∥2 + 2γ2
t E ∥et∥2 = O(1/t),

due to A8. In other words, the DiceSGD algorithm is asymp-
totically unbiased.

Non-convex Loss Our last endeavor is to show that for the
non-convex loss setting, DiceSGD also reduces the bias due
to clipping in performative prediction settings. We observe
the convergence result:

Theorem 8. Under A2, 4, 6, 7, 8. If we set γ = 1/
√
T , then

for sufficiently large T , it holds

min
t=0,...,T−1

E[∥∇f(θt;θt)∥2] = O
(

1√
T

+ bβ

)
, (21)

where b = O(ℓmax((C1 + C2) +
√
dσDP)).

The detailed theorem and proof can be found in §G. Our
analysis involved a few modifications over (Zhang et al.,
2024, Theorem 3.6) for the decision-dependent distribution.

Unlike the convergence Theorems 1 & 5 for the PCSGD
algorithm, the analysis of DiceSGD relaxes the uniformly
bounded gradient assumption (A3) to the variance-based
assumption (A4). This relaxation is enabled by the feedback
mechanism embedded in the DiceSGD algorithm.

Importantly, from (21), we observe that when β ≈ 0, there
is no asymptotic bias for DiceSGD. However, we also note
that unlike PCSGD, the multiplicative factor b depends on
σ2
DP, C1, C2 which indicates that the bias due to distribution

shift may become more sensitive when using DiceSGD.

Remark 2. The DP guarantees of DiceSGD with distri-
bution shift can be studied by extending (Zhang et al.,
2024, Theorem 3.7 & Appendix A.2). Particularly, we
can model the distribution shift through a random map-
ping f : (Z + D0) 7→ D0, similar to the one introduced
in Appendix E. Applying the data processing inequality
shows that a comparable bound for the DP guarantees of
the DiceSGD algorithm under distribution shift to (Zhang
et al., 2024, Theorem 3.7) can be established.

5. Numerical Experiments
All experiments are performed with Python on a server using
a single Intel Xeon 6138 CPU thread. In the interest of space,
we only consider the experiments with strongly convex ℓ(·)
and focus on the setting with DP guarantees to validate our
theoretical findings. For the sake of fair comparison between
the PCSGD and the DiceSGD algorithms, we choose the set
X to be such that the optimal point of the unconstrained and
constrained case of (2) will coincide. To maintain the same
DP guarantees, we respectively set the DP noise standard
deviation for PCSGD and DiceSGD as σDP and

√
96σDP,

according to Corollary 1 and (Zhang et al., 2024, Theorem
3.7). For the DiceSGD algorithm, we set C1 = C2. This
decision is motivated by the necessity to maintain a balanced
trade-off in Algorithm 1, where augmenting the values of
C1 and C2 would entail an increase in the variance of the
Gaussian mechanism in line 3.
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Figure 1. Quadratic Minimization (First) The performative stability gap ∥θt − θPS∥2. (Second) Trade off between privacy budget ε
and bias. (Third) Bias amplification effect due to β.
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Figure 2. Logistic Regression (First) Gap between iterations and performative stable point ∥θt − θPS∥2. (Second) Test true negative
rate with shifted distribution. (Third) Test true positive accuracy with shifted distribution.

We remark that additional experiment details and results can
be found in Appendix H, including an example for the case
with non-convex loss in Appendix H.3.

Quadratic Minimization. The first problem is concerned
with the validation of Theorems 3, 4, and 7. Here, we
consider a scalar performative risk optimization problem
with synthetic data

min
θ∈X

Ez∼D(θ)[(θ + az)2/2],

where D(θ) is a uniform distribution over the data points
{bZ̃i − βθ}mi=1 such that Z̃i ∼ B(p) is Bernoulli and a >
0, b > 0, p < 1/2. We also set X = [−10, 10] and observe
that for 0 < β < a−1, the performative stable solution is
θPS = − p̄a

1−aβ , where p̄ = 1
m

∑m
i=1 Z̃i is the sample mean.

We set p = 0.1, ε = 0.1, δ = 1/m, β ∈ {0.01, 0.05}, a =
10, b = 1, c = C1 = C2 = 1, the sample size m = 105.
The step size is γt = 10

100+t with the initialization θ0 = 5.
In Fig. 1 (first plot), we compare |θt − θPS |2 against the
iteration number t using plain SGD with DP noise, PCSGD
and DiceSGD. As observed, adding the DP noise compro-
mises SGD’s convergence. PCSGD cannot converge to
θPS due to the clipping bias which increases as β ↑. Mean-
while, DiceSGD finds a bias-free solution as it converges to
θPS at rate O(1/t).

Our next experiments examine the trade-off between clip-
ping bias of PCSGD |θT − θPS |2 and privacy budget ε or
distribution sensitivity β. We set a = 1, b = 6, c = c⋆ ≈
2.32, T = 105, β ∈ {0.1, 0.2} or ε ∈ {0.01, 0.1}, while
keeping the other parameters unchanged. Using Corollary 2,
we set the optimal step size according to γ⋆ in (15), and
the non-optimal step size as γ = log(1/∆(µ))

µT to simulate the
scenario when the presence of distribution shift is unknown.
From Fig. 1 (second & third plots), setting the optimal step
size γ⋆ adapted to distribution shifts achieves a smaller bias
in all settings. Meanwhile, as the privacy budget decreases
ε ↓ 0 or the sensitivity of distribution shift increases β ↑ µ

L ,
the bias of PCSGD increases.

Logistic Regression. We consider the real dataset
GiveMeSomeCredit (Kaggle, 2011) with m = 15776
samples and d = 10 features. We split the training/test sets
using the ratio of 7 : 3. The learner aims to find a classifier
via minimizing the regularized logistic loss:

ℓ(θ; z) = α(z)
(
log(1+exp(x⊤θ))−yx⊤θ

)
+ η

2 ∥θ∥
2
,

where η = 102/m is a regularization parameter, z ≡
(x, y) ∈ Rd × {0, 1} is the training sample, α(z) = y + 1
is a label weight, y = 0 (y = 1) denotes a customer with-
out (with) history of defaults. The strategic behavior of the
population, i.e., their features x are adapted to θ through
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maximizing a quadratic utility function.

We fix the privacy budget at ε = 1, δ = 1/m, clipping
thresholds c = C1 = C2 = 1, step size γt = 50/(5000+ t),
and sensitivity parameter β ∈ {0.001, 0.01, 0.1}. From
Fig. 2 (first plot), we observe the gap ∥θt − θPS∥2 of
DiceSGD decays at O(1/t) as t → ∞, PCSGD achieve the
steady state due to bias after the transient stage. This coin-
cides with Theorems 3 & 7. In Fig. 2 (second & third plots),
we compare the test accuracy against the iteration number
t. Here, the trajectory becomes more unstable as β ↑. An
interesting observation is that increasing the sensitivity β
leads to lower true positive rate.

6. Conclusions
This paper initiates the study of clipped SGD algorithms
in the performative prediction setting. In both cases with
strongly convex and non-convex losses, we discovered a
bias amplification effect with the PCSGD algorithm and
proposed several remedies including an extension of the
DiceSGD algorithm to performative prediction.
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A. Useful Facts
In the proof of Theorems 3 & 7, we utilize the following Lemma which is introduced in (Li et al., 2022, Lemma 6). The
lemma upper bounds the coefficients of contraction equations in the form of (28) and (45):

Lemma 1. (Li et al., 2022, Lemma 6) Consider a sequence of non-negative, non-increasing step sizes {γt}t≥1. Let a > 0,
p ∈ Z+ and γ1 < 2/a. If (

γt
γt+1

)p

≤ 1 +
a

2
· γp

t+1

for any t ≥ 1, then

t∑
j=1

γp+1
j

t∏
ℓ=j+1

(1− γℓa) ≤
2

a
γp
t , ∀ t ≥ 1. (22)

The proof of this lemma is presented in (Li et al., 2022, Lemma 6) and is therefore omitted.

Additionally, we rely on the following lemma that provides smoothness guarantees regarding the performative prediction
gradients:

Lemma 2. Under A2, 5. For any θ0,θ1,θ,θ
′ ∈ Rd, it holds that

∥∇f(θ0,θ)−∇f(θ1,θ
′)∥ ≤ L ∥θ0 − θ1∥+ Lβ ∥θ − θ′∥ . (23)

The proof of this lemma can be found in (Drusvyatskiy & Xiao, 2023, Lemma 2.1).

B. Proof of Theorem 3
We outline the main steps in proving the convergence for PCSGD. In particular, we shall consider the general form of
PCSGD in (14) where the DP noise is introduced. To this end, we aim at proving the following bound:

Theorem. Under A1, 2, 3, 5. Suppose that β < µ
L , the step sizes {γt}t≥1 are non-increasing and satisfy i) γt−1

γt
≤

1+ µ−Lβ
2 γt, and ii) γt ≤ 2

µ−Lβ . Then, for any t ≥ 1, the expected squared distance between θt and the performative stable
solution θPS satisfies

E∥θ̂t+1∥2 ≤
t+1∏
i=1

(1− µ̃γi)∥θ̂0∥2 +
2c1
µ̃

γt+1 +
8C1
µ̃2

,

where c1 := 2(c2 +G2) + dσ2
DP, C1 := (max{G− c, 0})2, and µ̃ := µ− Lβ.

To simplify notations, we define

∇̃g(θt) := clipc(∇ℓ(θt;Zt+1)), bt := ∇̃g(θt)−∇f(θt;θPS). (24)

Recall that θ̂t := θt − θPS , the following lemma characterizes the one-step progress of PCSGD.

Lemma 3. Under A2, 3, 5. For any t ≥ 0, it holds

Et∥θ̂t+1∥2 ≤ (1−2µγt+1)∥θ̂t∥2+γ2
t+1

(
min{c2, G2}+ dσ2

DP

)
− 2γt+1

〈
θ̂t |Et[bt]

〉
. (25)

The proof is in §B.1. The inner product term above involving Et[bt] captures the clipping bias and the distribution shift. The
latter is the difference between the clipped stochastic gradient and the expected gradient induced by D(θPS).

Such term is unlikely to be small except for a large clipping threshold c. For example, (Zhang et al., 2020b, Lemma 9)
applied an indicator function trick to bound ∥Et[bt]∥ by G/c. We improve their treatment on the bias term via a better use of
the smoothness property (cf. Lemma 2) to obtain:
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Lemma 4. Under A2, 3, 5, the following upper bound holds:

− 2γt+1 ⟨θt − θPS |Et[bt]⟩ ≤ 2Lβγt+1 ∥θt − θPS∥2 + µ̃γt+1 ∥θt − θPS∥2 +
4γt+1

µ̃
· C1, (26)

with the constants C1 := (max{G− c, 0})2, µ̃ := µ− Lβ.

See §B.2 for the detailed proof. The first two terms on the right hand side of Eq. (26) vanishes as ∥θt − θPS∥ → 0.
Meanwhile, the term 4γt+1C1

µ̃ has led to an inevitable clipping bias. Notice that this term vanishes only in the trivial case of
c ≥ G, i.e., the clipping threshold is larger than any stochastic gradient. Otherwise, this bias will propagate through the
algorithm and lead to an asymptotic bias.

Proof of Theorem 3. Combining Lemmas 3, 4 leads to the following recursion:

Et∥θ̂t+1∥2 ≤ (1− µ̃γt+1)∥θ̂t∥2 +
4C1
µ̃

γt+1 + γ2
t+1

(
2c2 + 2G2 +dσ2

DP

)
. (27)

Recall that c1 := (2c2 + 2G2 + dσ2
DP). Taking full expectation on both sides of (27) leads to:

E∥θ̂t+1∥2 ≤
t+1∏
i=1

(1− µ̃γi)
∥∥∥θ̂0∥∥∥2 + c1

t+1∑
i=1

γ2
i

t+1∏
j=i+1

(1− µ̃γj +
4C1
µ̃

t+1∑
i=1

γi

t+1∏
j=i+1

(1− µ̃γj)

≤
t+1∏
i=1

(1− µ̃γi)
∥∥∥θ̂0∥∥∥2 + 8C1

µ̃2
+

2c1
µ̃

γt+1, (28)

where we used Lemma 1 in the last inequality for step size satisfying supt≥1 γt ≤ 2
µ̃ .

B.1. Proof of Lemma 3

Proof. Recall the notation ∇̃g(θt) := clipc(∇ℓ(θt;Zt+1)) which we introduce in (24). Then, we deduce the following
chain

∥θt+1 − θPS∥2
(a)
=

∥∥∥PX

(
θt − γt+1

[
∇̃g(θt) + ζt+1

])
− PX (θPS + γt+1∇f(θPS ;θPS))

∥∥∥2
(b)

≤
∥∥∥θt − γt+1

[
∇̃g(θt) + ζt+1

]
− θPS + γt+1∇f(θPS ;θPS)

∥∥∥2
= ∥θt − θPS∥2 + γ2

t+1

∥∥∥∇̃g(θt) + ζt+1 −∇f(θPS ;θPS)
∥∥∥2

− 2γt+1

〈
θt − θPS | ∇̃g(θt) + ζt+1 −∇f(θPS ;θPS)

〉
,

where in equality (a), we applied the definition of θPS in (2). Inequality (b) is due to the non-expansive property of the
projection operator. Introducing notation bt := ∇̃g(θt)−∇f(θt;θPS) which we define in (24) into the above inequality
gives us

∥θt+1 − θPS∥2 ≤ ∥θt − θPS∥2 + γ2
t+1

∥∥∥∇̃g(θt) + ζt+1 −∇f(θPS ;θPS)
∥∥∥2

− 2γt+1 ⟨θt − θPS | bt + ζt+1 +∇f(θt;θPS)−∇f(θPS ;θPS)⟩
(a)

≤ (1− 2γt+1µ) ∥θt − θPS∥2 + γ2
t+1

∥∥∥∇̃g(θt) + ζt+1 −∇f(θPS ;θPS)
∥∥∥2

− 2γt+1 ⟨θt − θPS | bt + ζt+1⟩ ,

where inequality (a) is due to strong convexity of ℓ(·; z), i.e., ⟨θt − θPS | ∇f(θt;θPS)−∇f(θPS ;θPS)⟩ ≥ µ∥θt−θPS∥2.
Taking conditional expectation with regards to θt on both sides gives us

Et ∥θt+1 − θPS∥2 ≤ (1− 2µγt+1) ∥θt − θPS∥2 − 2γt+1 ⟨θt − θPS |Et[bt]⟩

+ γ2
t+1Et

∥∥∥∇̃g(θt) + ζt+1 −∇f(θPS ;θPS)
∥∥∥2 . (29)

12
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For the last term of right-hand-side of the above inequality, we have

Et

∥∥∥∇̃g(θt) + ζt+1 −∇f(θPS ;θPS)
∥∥∥2

= Et

[
∥∇̃g(θt)−∇f(θPS ;θPS)∥2 + ⟨∇̃g(θt)−∇f(θPS ;θPS) | ζt+1⟩+ ∥ζt+1∥2

]
(a)
= Et∥∇̃g(θt)−∇f(θPS ;θPS)∥2 + 0 + dσ2

DP

= Et∥clipc(∇ℓ(θt; zt+1))−∇f(θPS ;θPS)∥2 + dσ2
DP

≤ 2Et ∥clipc(∇ℓ(θt; zt+1))∥2 + 2 ∥∇f(θPS ;θPS)∥2 + dσ2
DP

(b)

≤ 2(c2 +G2) + dσ2
DP,

where (a) is obtained since the additive perturbing noise is zero mean and statistically independent of the stochastic gradient,
(b) is due to A 3 and definition of clipping operator.

Substituting above upper bound to (29) leads to

Et ∥θt+1 − θPS∥2 ≤ (1− 2µγt+1) ∥θt − θPS∥2 − 2γt+1 ⟨θt − θPS |Et[bt]⟩
+ γ2

t+1

(
2c2 + 2G2 + dσ2

DP

)
,

which finishes the proof of Lemma 3.

B.2. Proof of Lemma 4

Proof. Applying the Cauchy-Schwarz inequality on the inner product ⟨θPS − θt |Et[bt]⟩ yields the following upper bound:

−2γt+1 ⟨θt − θPS |Et[bt]⟩ ≤ 2γt+1 ∥θt − θPS∥ · ∥Et[bt]∥ .
We now proceed to upper bounding ∥Et[bt]∥:

∥Et[bt]∥ =
∥∥∥Et

[
∇̃g(θt)−∇f(θt;θPS)

]∥∥∥
= ∥∇g(θt;θt)−∇f(θt;θPS)∥
≤ ∥∇g(θt;θt)−∇f(θt;θt)∥+ ∥∇f(θt;θt)−∇f(θt;θPS)∥
≤

∥∥Ez∼D(θt) (clipc(∇ℓ(θt; z))−∇ℓ(θt; z))
∥∥+ Lβ ∥θt − θPS∥

where the last inequality is due to Assumption 2 and Lemma D.4 of (Perdomo et al., 2020). Moreover,∥∥∥∥Ez∼D(θt)

[
min

(
1,

c

∥∇ℓ(θt; z)∥

)
− 1

]
∇ℓ(θt; z)

∥∥∥∥
≤ Ez∼D(θt)

[∣∣∣∣1−min

(
1,

c

∥∇ℓ(θt; z)∥

)∣∣∣∣ · ∥∇ℓ(θt; z)∥
]

= Ez∼D(θt) [max (0, ∥∇ℓ(θt; z)∥ − c)] ≤ max{G− c, 0},

(30)

where we have used Assumption 3 in the last inequality. Finally, we obtain

−2γt+1 ⟨θt − θPS |Et[bt]⟩ ≤ 2γt+1 ∥θt − θPS∥ · (max{G− c, 0}+ Lβ ∥θt − θPS∥)
= 2Lβγt+1 ∥θt − θPS∥2 + 2γt ∥θt − θPS∥ ·max{G− c, 0}

≤ 2Lβγt+1 ∥θt − θPS∥2 + µ̃γt+1 ∥θt − θPS∥2 +
4γt+1

µ̃
· (max{G− c, 0})2,

where in the last inequality, we used the Hölder’s inequality xy ≤ ax2 + y2

a and set a = µ̃/2.

C. Proof of Theorem 4
Proof. Let a, b, β > 0 and denote by B(p) the Bernoulli distribution with mean 0 < p < 1

2 . We consider the following
quadratic loss function:

minθ∈X EZ∼D(θ)[ℓ(θ;Z)],

13
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where ℓ(θ; z) = 1
2 (θ + az)2 and Z ∼ D(θ) ⇐⇒ Z = bZ̃ − βθ, Z̃ ∼ B(p). (31)

We require that ab ≥ 2c. When Z ∼ D(θ), we note that the stochastic gradient is in the form:

∇ℓ(θ;Z) = θ + a(bZ̃ − βθ) = (1− aβ)θ + abZ̃.

Problem (31) satisfies A2 with µ = 1, L = a and A5 with the parameter β.

Consider the following point:
θ∞ = − pc

(1− p)(1− aβ)
.

We claim that θ∞ is a fixed point of the clipped SGD algorithm. Note that the stochastic gradient at θ∞ with Z ∼ D(θ∞)
when Z̃ = 0 is not clipped, since

|(1− aβ)θ∞ + ab · 0| =
∣∣∣∣(1− aβ)×

(
− pc

(1− p)(1− aβ)

)∣∣∣∣ = ∣∣∣∣− pc

1− p

∣∣∣∣ ≤ c,

where the last inequality is due to the assumption p < 1
2 . Meanwhile, when Z̃ = 1, the stochastic gradient is:

(1− aβ)θ∞ + ab = − pc

1− p
+ ab ≥ −c+ 2c = c,

where the last inequality uses the condition ab ≥ 2c. In particular, we have that:

EZ∼D(θ)[clipc(∇ℓ(θ∞;Z))] = (1− p) · [(1− aβ)θ] + pc = 0.

The above shows that θ∞ is a fixed point of the Clipped SGD algorithm.

On the other hand, the performative stable solution, θPS , of problem (31) solves the following equation,

Ez∼D(θPS)[∇ℓ(θPS ; z)] = EZ∼D(θPS)(θPS + aZ) = θPS + a(p− βθPS) = 0,

we get that
θPS = − pa

1− aβ
.

Finally, we can lower bound the asymptotic bias of clipped SGD as

∥θ∞ − θPS∥2 =

∥∥∥∥− pc

(1− p)(1− aβ)
+

pa

1− aβ

∥∥∥∥2 =
p2

(1− aβ)2

(
a− c

1− p

)2

= Ω

(
1

(µ− Lβ)2

)
,

Finally, we aim to prove that θ∞ is unique. We remark that the limiting points of clipping SGD satisfies

Ez∼D(θ)clipc(∇ℓ(θ; z)) = 0,

which is equivalent to

p× clipc[(1− aβ)θ + ab] + (1− p)× clipc[(1− aβ)θ] = 0. (32)

Case 1: (1− aβ)θ + ab > c and (1− aβ)θ < c, then, we will get θ∞.

Case 2: (1− aβ)θ + ab > c and (1− aβ)θ > c, then

p× c+ (1− p)× c = 1 ̸= 0.

Case 3: (1− aβ)θ + ab < c and (1− aβ)θ < c, i.e, it requires that θ < c−ab
1−aβ , then from (32), we obtain that

p× [(1− aβ)θ + ab] + (1− p)× [(1− aβ)θ] = 0.

Solve it, we get θ = pab
1−aβ . Note that

θ =
pab

1− aβ
≤ c− ab

1− aβ
,

which is impossible, since ab ≥ 2c and p, a > 0. In conclusion, there is only one solution of (32). This concludes the
proof.
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D. Proof of Theorem 5
In this section, we consider a special case of (1) where X = Rd. Similar to §B, we also consider the general setting of
PCSGD with DP noise (14).

Theorem. Under A2, 3, 4, 6, 7. Let the step sizes satisfy supt≥1 γt ≤ 1
2(1+σ2

1)
. Then, for any T ≥ 1, the iterates {θt}t≥0

generates by (4) satisfy:

T−1∑
t=0

γt+1E
[
∥∇f(θt;θt)∥2

]
≤ 8∆0 + 4L(σ2

0 + σ2
DP)

T−1∑
t=0

γ2
t+1 + 8b(β, c)

T−1∑
t=0

γt+1,

where ∆0 := E[f(θ0;θ0)− ℓ⋆] is an upper bound to the initial optimality gap for performative risk, and

b(β, c) := L̂β

(√
σ2
0 + σ2

DP + 8(1 + σ2
1)L̂β

)
+ 2max{G− c, 0}2,

where L̂ := ℓmax.

Proof of Theorem 5 with general σ2
DP. For fixed z ∈ Z, applying A2 leads to

ℓ(θt+1; z) ≤ ℓ(θt; z) + ⟨∇ℓ(θt; z) |θt+1 − θt⟩+
L

2
∥θt+1 − θt∥2

= ℓ(θt; z)− γt+1⟨∇ℓ(θt; z) | clipc (∇ℓ(θt; zt+1)) + ζt+1⟩+
Lγ2

t+1

2

∥∥clipc(∇ℓ(θt;zt+1
)) + ζt+1

∥∥2
= ℓ(θt; z)− γt+1⟨∇ℓ(θt; z) | ∇̃g(θt) + ζt+1⟩+

Lγ2
t+1

2

∥∥∥∇̃g(θt) + ζt+1

∥∥∥2 .
The second line is due to the update rule of (4). In the last line, we recall the notation ∇̃g(θt) := clipc(∇ℓ(θt; zt+1)).
Taking integration on fixed z with weights given by the p.d.f. of D(θt), i.e.,

∫
(·)pθt(z)dz on both sides of above inequality

yield

f(θt+1;θt) ≤ f(θt;θt)− γt+1⟨∇f(θt;θt) | ∇̃g(θt) + ζt+1⟩+
Lγ2

t+1

2

∥∥∥∇̃g(θt) + ζt+1

∥∥∥2 .
Taking conditional expectation Et[·] on the clipping stochastic gradients leads to

f(θt+1;θt) ≤ f(θt;θt)− γt+1⟨∇f(θt;θt) |Et

[
∇̃g(θt)

]
⟩+ Lγ2

t+1

2
Et

[∥∥∥∇̃g(θt) + ζt+1

∥∥∥2] . (33)

where we use the property that ζt+1 ∼ N (0, σ2
DPI). For the last term in above, we observe the following chain,

Et

[∥∥∥∇̃g(θt) + ζt+1

∥∥∥2] = Et

∥∥∥∇̃g(θt)
∥∥∥2 + 0 + σ2

DP

(a)

≤ Et ∥∇ℓ(θt; zt+1)∥2 + σ2
DP

= Et ∥∇ℓ(θt; zt+1)−∇f(θt;θt)∥2 + ∥∇f(θt;θt)∥2 + σ2
DP

(b)

≤ σ2
0 + σ2

DP + (1 + σ2
1) ∥∇f(θt;θt)∥2 ,

where (a) used the definition of clipping operator (6) and (b) used A4. Substituting above results to (33) gives us

f(θt+1;θt) ≤ f(θt;θt)− γt+1

〈
∇f(θt;θt) |Et

[
∇̃g(θt)

]〉
+

Lγ2
t+1

2

(
σ2
0 + σ2

DP + (1 + σ2
1) ∥∇f(θt;θt)∥2

)
. (34)

The inner product term can be lower bounded by〈
∇f(θt;θt) |Et

[
∇̃g(θt)

]〉
= ∥∇f(θt;θt)∥2 − ⟨∇f(θt;θt) | ∇g(θt)−∇f(θt;θt)⟩

≥ ∥∇f(θt;θt)∥2 − ∥∇f(θt;θt)∥ · ∥∇g(θt)−∇f(θt;θt)∥
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(a)

≥ ∥∇f(θt;θt)∥2 −max{G− c, 0} ∥∇f(θt;θt)∥

≥ 1

2
∥∇f(θt;θt)∥2 − 2max{G− c, 0}2,

where (a) is due to (30) in Lemma 4 and the last inequality is due to the fact that xy ≤ ax2+ y2

a , for any a > 0. Substituting
back to (34) gives

f(θt+1;θt) ≤ f(θt;θt)−
1

2
∥∇f(θt;θt)∥2 + 2max{G− c, 0}2 + Lγ2

t+1

2

(
σ2
0 + σ2

DP + (1 + σ2
1) ∥∇f(θt;θt)∥2

)
.

Rearranging terms,(
1

2
− L(1 + σ2

1)γt+1

2

)
∥∇f(θt;θt)∥2 ≤ f(θt;θt)− f(θt+1;θt) + 2max{G− c, 0}2 + L(σ2

0 + σ2
DP)

2
γ2
t+1.

The step size condition supt≥1 γt ≤ 1
2(1+σ2

1)
implies that 1

2 − L(1+σ2
1)γt+1

2 ≥ 1
4 .

1

4
∥∇f(θt;θt)∥2 ≤ f(θt;θt)− f(θt+1;θt) + 2max{G− c, 0}2 + L(σ2

0 + σ2
DP)

2
γ2
t+1. (35)

Next, taking full expectation on both sides and decomposing the term f(θt;θt)− f(θt+1;θt) as:

E[f(θt;θt)− f(θt+1;θt)] = E[f(θt;θt)− f(θt+1;θt+1)] + E[f(θt+1;θt+1)− f(θt+1;θt)]

(a)

≤ E[f(θt;θt)− f(θt+1;θt+1)] + L̂β ∥θt+1 − θt∥
(b)

≤ E[f(θt;θt)− f(θt+1;θt+1)] + L̂βγt+1Et

∥∥∥∇̃g(θt) + ζt+1

∥∥∥
(c)

≤ E[f(θt;θt)− f(θt+1;θt+1)] + L̂βγt+1

√
Et

∥∥∥∇̃g(θt) + ζt+1

∥∥∥2
(d)

≤ E[f(θt;θt)− f(θt+1;θt+1)] + L̂βγt+1

(√
σ2
0 + σ2

DP +
√
(σ2

1 + 1) ∥∇f(θt;θt)∥
)

≤ E[f(θt;θt)− f(θt+1;θt+1)]

+ L̂βγt+1

(√
σ2
0 + σ2

DP + (1 + σ2
1) · 8L̂β +

1

8L̂β
∥∇f(θt;θt)∥2

)
.

(36)

Inequality (a) is due to (Li & Wai, 2024, Lemma 3), (b) is due to the update rule (4) and (c) is implied by [EX]
2 ≤ E[X2].

In (d), we apply A4. Back to (35), we have

1

8
γt+1E ∥∇f(θt;θt)∥2 ≤ E [f(θt;θt)− f(θt+1;θt+1)] +

L(σ2
0 + σ2

DP)

2
γ2
t+1 + b(β, c) · γt+1,

where b(β, c) is a constant depending on distribution shifting strength and clipping threshold, which defined as

b(β, c) := L̂β

(√
σ2
0 + σ2

DP + 8(1 + σ2
1)L̂β

)
+ 2max{G− c, 0}2. (37)

Taking summation from t = 0, 1, · · · , T − 1 gives us

1

8

T−1∑
t=0

γt+1E ∥∇f(θt;θt)∥2 ≤ ∆0 +
L(σ2

0 + σ2
DP)

2

T−1∑
t=0

γ2
t+1 + b(β, c) ·

T−1∑
t=0

γt+1.

Set γt = 1/
√
T and divide

∑T−1
t=0 γt+1 on both sides yields the theorem.
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E. Proof of Corollary 1
Proof. Let o and aux denote an outcome and an auxiliary input, respectively. We wish to prove

Pr(M(aux,Z) = o) ≤ eε Pr(M(aux,Z ′) = o) + δ,

where Z and Z ′ are two adjacent datasets, i.e., they are only different by one sample. Let us define the privacy loss of an
outcome o on two datasets Z and Z ′ as

c(o;M, aux,Z,Z ′) := log
Pr(M(aux,Z) = o)

Pr(M(aux,Z ′) = o)

and its log moment generating function as

αM(λ; aux,Z,Z ′) := logEo∼M(aux,Z)[exp(λ · c(o;M, aux,Z,Z ′))],

where M is the mechanism we focus on, λ > 0 is the variable of log moment generating function. Taking maximum over
conditions, the unconditioned log moment generating function is

α̂M(λ) := max
aux,Z,Z′

αM(λ; aux,Z,Z ′).

The overall log moment generating function can be bounded as following according to composability in (Abadi et al., 2016,
Theorem 2)

α̂M(λ) ≤
T∑

t=1

α̂M(t)

(λ).

Let q = 1
m denotes the probability each data sample is drawn uniformly from the dataset D0. Recall (13), which leads to

z̄i = Z − si(θ) where i is chosen uniformly from [m] and si(θ) is generated according to the random mapping Si : X → Z.
We can define this relationship by the random mapping f : (Z+ D0) → D0, where for X ⊆ Rd and Y ⊆ Rd we let X + Y
denote the set with all the variables {x+ y : x ∈ X, y ∈ Y } and the randomness follows from the uniform distribution
of i ∈ [m] and the random mapping Si : X → Z. By (Dwork & Roth, 2014, Proposition 2.1) using the post processing
function f , after the privacy mechanism M, i.e. f ◦M, does not compromise differential privacy.

Observe that the distribution shift due to Si(θ) in (13) cannot compromise differential privacy (Dwork & Roth, 2014,
Proposition 2.1). Let q ≤ c

16σDP
and λ ≤ σ2

DP

c2 log c
qσDP

, we apply (Abadi et al., 2016, Lemma 3) to bound the unconditioned
log moment generating function as

α̂M(t)

(λ) ≤ q2λ(1 + λ)c2

(1− q)σ2
DP

+O
(
q3λ3c3

σ3
DP

)
= O

(
q2λ2c2

σ2
DP

)
.

Finally, we only need to verify that there exists some λ that satisfies the following inequalities

T

(
qcλ

σDP

)2

≤ λε

2
, exp(−λε/2) ≤ δ, λ ≤ σ2

DP

c2
log

(
c

qσDP

)
.

We can verify that when ε = c1q
2T , q = 1/m and σDP =

cq
√

T log(1/δ)

ε , all above conditions can be satisfied for some
explicit constant c1. This finishes the proof.

F. Proof of Theorem 7
For the convenience of derivations, we introduce the following notations: θ̃t = θt − γtet. Its update rule is

θ̃t+1 = θt+1 − γt+1et+1

= θt − γt+1(vt+1 + ζt)− γt (et +∇ℓ(θt; zt)− vt+1) (38)
= θt − γt+1ζt+1 − γt+1 (et +∇ℓ(θt; zt+1))
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= θ̃t + (γt − γt+1) et − γt+1 (ζt+1 +∇ℓ(θt; zt+1)) .

We remark that if we choose a constant step size, i.e, γt ≡ γ, then θ̃t+1 = θ̃t − γ (ζt+1 +∇ℓ(θt; zt+1)), which degenerates
to the case in the proof of (Zhang et al., 2024).

Meanwhile, we can obtain the feedback error et’s update rule:

et+1 = et +∇ℓ(θt; zt+1)− clipC2
(et)− clipC1

(∇ℓ(θt; zt+1)) (39)
= (1− αt

e)et + (1− αt)∇ℓ(θt; zt+1),

where we define αt
e, αt as following:

αt
e := min

{
1,

C1

∥et∥

}
, αt := min

{
1,

C2

∥∇ℓ(θt; zt+1)∥

}
. (40)

We aim to analyze the squared distance between θ̃t+1 and θPS .∥∥∥θ̃t+1 − θPS

∥∥∥2 =
∥∥∥θ̃t + (γt − γt+1)et − γt+1 (∇ℓ(θt; zt+1) + ζt+1)− θPS

∥∥∥2
=

∥∥∥θ̃t − θPS

∥∥∥2 + ∥(γt − γt+1)et − γt+1[∇ℓ(θt; zt+1) + ζt+1]∥2

+ 2
〈
θ̃t − θPS | (γt − γt+1)et − γt+1[∇ℓ(θt; zt+1) + ζt+1]

〉
.

Tacking conditional expectation Et[·] on both sides leads to

Et

∥∥∥θ̃t+1 − θPS

∥∥∥2 ≤
∥∥∥θ̃t − θPS

∥∥∥2 + 2 ∥(γt − γt+1)et∥2 (41)

+ 2γ2
t+1

[
Et ∥∇ℓ(θt; zt+1)∥2 + dσ2

DP

]
+ 2

〈
θ̃t − θPS | (γt − γt+1)et

〉
− 2γt+1

〈
θ̃t − θPS | ∇f(θt;θt)−∇f(θPS ,θPS)

〉
,

where we use inequality (a+ b)2 ≤ 2a2 + 2b2, ζt+1 ∼ N (0, σ2
DPI) and the fact that ∇f(θPS ,θPS) = 0.

Applying (19) leads to following upper bound:

Et∥θ̃t+1 − θPS∥2 ≤ (1 + 2γ2
t+1B

2)
∥∥∥θ̃t − θPS

∥∥∥2 + 2(γt − γt+1)
2 ∥et∥2 (42)

+ 2γ2
t+1

[
G2 + dσ2

DP

]
+ 2

〈
θ̃t − θPS | (γt − γt+1)et

〉
︸ ︷︷ ︸

:=B1

− 2γt+1

〈
θ̃t − θPS | ∇f(θt;θt)−∇f(θPS ,θPS)

〉
︸ ︷︷ ︸

:=B2

.

Now, let’s consider the term B1 first. Using Holder’s inequality, we have

B1 ≤ 4(γt − γt+1)

[∥∥∥θ̃t − θPS

∥∥∥2 + ∥et∥2
]
.

For the term B2, we observe the following chain,

B2 =
〈
θ̃t − θPS | ∇f(θt;θt)−∇f(θ̃t;θPS) +∇f(θ̃t;θPS)−∇f(θPS ;θPS)

〉
(a)

≥ µ
∥∥∥θ̃t − θPS

∥∥∥2 + 〈
θ̃t − θPS | ∇f(θt;θt)−∇f(θ̃t;θPS)

〉
= µ

∥∥∥θ̃t − θPS

∥∥∥2 − 〈
θPS − θ̃t | ∇f(θt;θt)−∇f(θ̃t; θ̃t)

〉
−

〈
θPS − θ̃t | ∇f(θ̃t; θ̃t)−∇f(θ̃t;θPS)

〉
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(b)

≥ µ
∥∥∥θ̃t − θPS

∥∥∥2 − ∥∥∥θ̃t − θPS

∥∥∥ · L(1 + β)
∥∥∥θt − θ̃t

∥∥∥− Lβ
∥∥∥θ̃t − θPS

∥∥∥2
(c)
= µ̃

∥∥∥θ̃t − θPS

∥∥∥2 − L(1 + β)
∥∥∥θ̃t − θPS

∥∥∥ · ∥γtet∥

≥ µ̃
∥∥∥θ̃t − θPS

∥∥∥2 − L(1 + β) ·
(

µ̃

2L(1 + β)

∥∥∥θ̃t − θPS

∥∥∥2 + 2L(1 + β)

µ̃
γ2
t ∥et∥2

)
=

µ̃

2

∥∥∥θ̃t − θPS

∥∥∥2 − 2L2(1 + β)2

µ̃
γ2
t ∥et∥2 ,

where in inequality (a), we have used A2, in inequality (b), we have used A5 and Lemma D.4 of (Perdomo et al., 2020), and
in equality (c), we use the definition of θ̃t = θt − γtet.

Substituting above upper bound for B1 and B2 to (41) gives us

Et

∥∥∥θ̃t+1 − θPS

∥∥∥2 ≤
(
1− µ̃γt+1 + 2B2γ2

t+1 + 4(γt − γt+1)
) ∥∥∥θ̃t − θPS

∥∥∥2 + 2(G2 + dσ2
DP)γ

2
t+1

+

(
6(γt − γt+1)

2 +
4L2(1 + β)2

µ̃
γ2
t γt+1

)
∥et∥2 .

(43)

Setting γt+1 ≤ µ̃/(4B2) ensures that

Et

∥∥∥θ̃t+1 − θPS

∥∥∥2 ≤ (1− (µ̃/2)γt+1 + 4(γt − γt+1))
∥∥∥θ̃t − θPS

∥∥∥2 + 2(G2 + dσ2
DP)γ

2
t+1

+

(
6(γt − γt+1)

2 +
4L2(1 + β)2

µ̃
γ2
t γt+1

)
∥et∥2 .

(44)

If γt ≡ γ is constant step size, then γt − γt+1 = 0. For diminishing step size case γt =
a0

a1+t , if a0 ≥ 1
b , b > 0, we can

prove that γt − γt+1 ≤ bγ2
t+1. Therefore, (44) becomes

Et

∥∥∥θ̃t+1 − θPS

∥∥∥2 ≤
(
1− (µ̃/2)γt+1 + 4bγ2

t+1

) ∥∥∥θ̃t − θPS

∥∥∥2 + 2(G2 + dσ2
DP)γ

2
t+1

+

(
6b2γ4

t+1

4L2(1 + β)2

µ̃
γ2
t γt+1

)
∥et∥2 .

If supt≥1 γt ≤ µ̃
16b then we have 1− (µ̃/2)γt+1 + 4bγ2

t+1 ≤ 1− (µ̃/4)γt+1. Thus,

Et

∥∥∥θ̃t+1 − θPS

∥∥∥2 ≤ (1− (µ̃/4)γt+1)
∥∥∥θ̃t − θPS

∥∥∥2 + 2(G2 + dσ2
DP)γ

2
t+1

+

(
6b2γ4

t+1 +
4L2(1 + β)2

µ̃
γ2
t γt+1

)
∥et∥2 .

Taking full expectation on both sides and applying A8 leads to

E
∥∥∥θ̃t+1 − θPS

∥∥∥2 ≤ (1− (µ̃/4)γt+1)
∥∥∥θ̃t − θPS

∥∥∥2 + 2(G2 + dσ2
DP)γ

2
t+1 + 6b2M2γ4

t+1

+
4L2M2(1 + β)2

µ̃
γ2
t γt+1.

Suppose that supt≥1 γ
2
t /γ

2
t+1 ≤ 1 + b̄γ2

t+1, then we have

E
∥∥∥θ̃t+1 − θPS

∥∥∥2 ≤ (1− (µ̃/4)γt+1)
∥∥∥θ̃t − θPS

∥∥∥2 + 2(G2 + dσ2
DP)γ

2
t+1 +

4L2M2(1 + β)2

µ̃
γ3
t+1

+ 6b2M2γ4
t+1 +

4L2M2b̄(1 + β)2

µ̃
γ5
t+1.
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Solving the above recursion leads to

E
∥∥∥θ̃t+1 − θPS

∥∥∥2 ≤
t+1∏
i=1

(1− (µ̃/4)γi)
∥∥∥θ̃0 − θPS

∥∥∥2 + 2(G2 + dσ2
DP)

t+1∑
i=1

γ2
i

t+1∏
j=i+1

(1− µ̃

4
γi)

+
4L2M2(1 + β)2

µ̃

t+1∑
i=1

γ3
i

t+1∏
j=i+1

(1− µ̃

4
γi) + 6b2M2

t+1∑
i=1

γ4
i

t+1∏
j=i+1

(1− µ̃

4
γi)

+
4L2M2b̄(1 + β)2

µ̃

t+1∑
i=1

γ5
i

t+1∏
j=i+1

(1− µ̃

4
γi)

≤
t+1∏
i=1

(1− (µ̃/4)γi)
∥∥∥θ̃0 − θPS

∥∥∥2 + 8(G2 + dσ2
DP)

µ̃
γt+1 +

16L2M2(1 + β)2

µ̃2
γ2
t+1

+
24b2M2

µ̃
γ3
t+1 +

16L2M2b̄(1 + β)2

µ̃2
γ4
t+1, (45)

where the last inequality follows from Lemma 1. Thus, we can now conclude the proof.

G. Proof of Theorem 8
Theorem 8 (formal). Under A2, 4, 6, 7, 8. Let γ denotes the constant step size. If it holds that γ ≤ 1/(2L(1 + σ2

1)), then
the iterates generated by DiceSGD admits the following bound for any T ≥ 1,

min
t=0,...,T−1

E
[
∥∇f(θt;θt)∥2

]
≤ 4∆0

Tγ
+ bβ + 2Lγ

[
σ2
DP + σ2

0

]
+ 2L2M2γ2, (46)

where ∆0 := E [f(θ0 − γe0;θ0)− ℓ⋆] is an upper bound for the initial error and the constant b is defined as

b := 4ℓmax

(
C1 + C2 +

√
dσDP

)
.

In particular, for sufficiently large T , setting γ = 1/
√
T yields the bound in (21) of the main paper.

Proof. 2Consider the DiceSGD algorithm with constant step size γt+1 = γ. Similar to §F, we define θ̃t = θt − γet and
notice the following recursion:

θ̃t+1 = θ̃t − γ (ζt+1 +∇ℓ(θt;Zt+1))

To facilitate the derivations, we define the shorthand notation: ∇ft := ∇f(θt;θt). For any fixed sample z ∈ Z, applying
A2 leads to the following upper bound:

ℓ(θ̃t+1, z) ≤ ℓ(θ̃t, z) + ⟨∇ℓ(θ̃t, z) | θ̃t+1 − θ̃t⟩+
L

2

∥∥∥θ̃t+1 − θ̃t

∥∥∥2
Taking integration on the fixed z with weights given by the p.d.f. of D(θt) on the both sides of above inequality yields

f(θ̃t+1,θt) ≤ f(θ̃t,θt) + ⟨∇f(θ̃t,θt) | θ̃t+1 − θ̃t⟩+
L

2

∥∥∥θ̃t+1 − θ̃t

∥∥∥2
= f(θ̃t,θt)− γ⟨∇f(θ̃t,θt) | ζt+1 +∇ℓ(θt;Zt+1)⟩+

Lγ2

2
∥ζt+1 +∇ℓ(θt;Zt+1)∥2

Taking the conditional expectation Et[·] yields

Et[f(θ̃t+1,θt)] ≤ f(θ̃t,θt)− γ⟨∇f(θ̃t,θt) | ∇f(θt;θt)⟩+
Lγ2

2
Et

[
∥ζt+1 +∇ℓ(θt;Zt+1)∥2

]
(47)

2We notice that our proof differs from that of (Zhang et al., 2024, Theorem 3.6) and is simpler than the latter due to the addition of A8.
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Notice that

Et

[
∥ζt+1 +∇ℓ(θt;Zt+1)∥2

]
≤ σ2

DP + σ2
0 + (1 + σ2

1)∥∇f(θt;θt)∥2

and under A8, it holds that

−E⟨∇f(θ̃t,θt) | ∇f(θt;θt)⟩ = −E∥∇ft∥2 + E⟨∇f(θ̃t,θt)−∇f(θt;θt) | ∇f(θt;θt)⟩

≤ −1

2
E∥∇ft∥2 +

1

2
E∥∇f(θ̃t,θt)−∇f(θt;θt)∥2

(a)

≤ −1

2
E∥∇ft∥2 +

L2

2
E∥θ̃t − θt∥2

≤ −1

2
E∥∇ft∥2 +

L2

2
E∥γet∥2 ≤ −1

2
E∥∇ft∥2 +

L2M2γ2

2

where (a) is due to Lemma 2. Substituting back into (47) and taking full expectation lead to

E[f(θ̃t+1,θt)] ≤ E[f(θ̃t,θt)]−
γ

2

(
1− Lγ(1 + σ2

1)
)
E[∥∇ft∥2] +

Lγ2

2

[
σ2
DP + σ2

0

]
+

L2M2γ3

2

≤ E[f(θ̃t,θt)]−
γ

4
E[∥∇ft∥2] +

Lγ2

2

[
σ2
DP + σ2

0

]
+

L2M2γ3

2

where the last inequality is due to γ ≤ 1/(2L(1 + σ2
1)). Recall that we have bounded a similar term in (36):

E
[
f(θ̃t+1;θt)− f(θ̃t+1;θt+1)

]
≤ ℓmaxβ ∥θt − θt+1∥ ≤ γℓmaxβ

(
(C1 + C2) +

√
dσDP

)
,

under A6 & 7. This yields

γ

4
E[∥∇ft∥2] ≤ E[f(θ̃t,θt)− f(θ̃t+1,θt+1)] + γℓmaxβ

(
C1 + C2 +

√
dσDP

)
+

Lγ2

2

[
σ2
DP + σ2

0

]
+

L2M2γ3

2

Summing up the inequality from t = 0 to t = T − 1 and dividing by Tγ/4 yields

1

T

T−1∑
t=0

E[∥∇ft∥2] ≤
4

Tγ

[
f(θ̃0,θ0)− ℓ⋆

]
+ 4ℓmaxβ

(
C1 + C2 +

√
dσDP

)
+ 2Lγ

[
σ2
DP + σ2

0

]
+ 2L2M2γ2

For sufficiently large T , setting γ = 1/
√
T yields the bound in the desired theorem.

H. Details of Numerical Experiments
This section provides additional details for the numerical experiments in §5.

H.1. Validating A8 Empirically

Fig. 3 plots the average of ∥et∥2 for DiceSGD as a function of t. Observe that ∥et∥2 is always bounded for both of our
numerical examples, thus validating our A8 empirically.

H.2. Additional Details of Numerical Experiments

We provide additional details for the numerical experiments on the logistics regression problem.

Detailed Setup. We develop a strategic classification example adapted from (Perdomo et al., 2020, Sec. 5). Consider the
learner as a bank operator who aims to minimize the logistic loss given by

ℓ(θ; z) = α(z) (log(1 + exp(⟨x |θ⟩))− y⟨x |θ⟩) + η/2 ∥θ∥2 , (48)

where η > 0 is a regularization parameter, z ≡ (x, y) ∈ Rd × {0, 1} is the training sample, α(z) = y + 1 is a label weight,
y = 0 (y = 1) denotes a customer without (with) history of defaults.
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Figure 3. Behavior of et with DiceSGD for quadratic minimization (left) and logistic regression (right).

Training samples are contributed by m users (e.g., customers served by the bank) that form a base distribution D0 =
Unif({(x̄i, ȳi}mi=1). Upon knowing about the classifier model θ, the customer queried by the bank/learner may shift his/her
profile strategically. A possible model is:

Z ∼ D(θ) ⇔ Z = (xi, yi) with i ∼ Unif([m]), yi = ȳi, xi = argmaxx U(x; x̄i,θ), (49)

For example, U(x; x̄i,θ) =
−yi⟨θ | x⟩

max{ϵU,∥θ∥} − 1
2β ∥x− x̄i∥2 with ϵU, β > 0 models strategical users with history of defaults

who are trying to evade detection.

Additional Experiments. Fig. 4 (Left) plots the performative risk Ez∼D(θt)[ℓ(θt; z)] as a function of the number of
iterations t. We observe that DiceSGD can achieve lower performative risk at a faster rate compared to PCSGD. Furthermore,
increasing sensitivity β ↑ leads to lower train true positive rate, which is compatible with our Theorems 3 and 7.

In the training set, records with positive labels (y = 1) account for 6.624%, while negative samples (y = 0) comprise
93.37%. To evaluate model performance, we have presented the test true negative/positive rate in Fig. 2 (second & third).
The training true negative/positive rate is shown in Fig. 4 (Middle& Right). For self-completeness, we recall the definition
positive (negative) label accuracy as follows:

True Positive (Negative) rate =
TPpos/neg

TPpos/neg + FNpos/neg

where TPpos/neg denotes the number of samples with positive (negative) labels correctly classified as positive (negative),
whereas FNpos/neg represents the number of samples with positive (negative) labels incorrectly classified as negative
(positive).
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Figure 4. Logistic Regression (Left): Performative Risk V (θ). (Middle) & (Right): Train true neg./pos. rate.

H.3. Additional Numerical Experiments on Non-convex Loss

In this subsection, we present additional simulations on non-convex loss based on synthetic data to support Theorems 5 & 8.
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Synthetic Data with Linear Model. We consider the following binary classification problem using a linear model. We
adopt the following sigmoid loss function:

ℓ(θ; z) :=
(
1 + exp(c · yx⊤θ)

)−1
+

η

2
∥θ∥2 , (50)

which is smooth but non-convex for small regularization parameter η > 0. The data distribution Do ≡ {(xi, yi)}mi=1 is
generated by Unif[−1, 1], with m = 103, and the label ȳi = sgn(⟨xi |θo⟩) ∈ {±1}. The shift dynamics are given by
{(xi − βθ; yi)}mi=1. We randomly flip 10% of the labels to obtain the final labels yi. In detail, we set d = 10, c = 0.1, and
β ∈ {0.1, 0.5}. The batch size is b = 1, and the stepsize is constant, γ = 1/

√
T , with T = 106.

We implement the PCSGD, DiceSGD, and Clip213 algorithms (in the n = 1 case) (Khirirat et al., 2023). From Fig. (5), we
observe that the SPS-stationarity measures in 2 for the algorithms initially decrease and eventually saturate at a certain level,
which is consistent with the predictions of Theorems 5 & 8.
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Figure 5. Synthetic Data with Sigmoid Loss. SPS measure ∥∇J(θt;θt)∥2 of PCSGD, DiceSGD, and Clip21 algorithm with greedy
deployment schemes versus iteration number t.

3We set the parameters as following: injected noise variance σ = 1, two clipping thresholds ν = 1, and τ = 6ν.
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