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Abstract

Direct speech-to-speech translation (S2ST)001
with discrete self-supervised representations002
has achieved remarkable accuracy, but is un-003
able to preserve the speaker timbre of the004
source speech. Meanwhile, the scarcity of high-005
quality speaker-parallel data poses a challenge006
for learning style transfer during translation.007
We propose an S2ST framework with style-008
transfer capability on the basis of discrete self-009
supervised speech representations and codec010
units. The acoustic language model we intro-011
duce for style transfer leverages self-supervised012
in-context learning, acquiring style transfer013
ability without relying on any speaker-parallel014
data, thereby overcoming the issue of data015
scarcity. By using extensive training data, our016
model achieves zero-shot cross-lingual style017
transfer on previously unseen source languages.018
Experiments show that our model generates019
translated speeches with high fidelity and style020
similarity. 1021

1 Introduction022

Speech-to-speech translation (S2ST) aims to trans-023

late spoken utterances from one language to an-024

other, which can bring immense convenience to025

international communication. Compared to con-026

ventional cascaded systems comprising ASR, text027

translation and TTS models (Lavie et al., 1997;028

Nakamura et al., 2006; Wahlster, 2013), direct029

S2ST models without intermediate text generation030

have a more concise pipeline with less computa-031

tion cost and error propagation while facilitating032

application to unwritten languages, and thus spark033

widespread interest in the community.034

Mainstream approaches of direct S2ST (Lee035

et al., 2021a,b; Huang et al., 2022; Popuri et al.,036

2022) utilize discrete speech representation from037

self-supervised models (such as HuBERT (Hsu038

1Audio samples are available at http://stylelm.
github.io/

et al., 2021)) as prediction target, and then use 039

them to reconstruct the waveform. Such represen- 040

tation eliminates speaker identity and prosody of 041

the speeches and retains only semantic contents, 042

which simplifies the target distribution and makes 043

the translation less challenging. However, it also 044

has the drawback of losing the style information 045

of the source speech. Extra voice conversion sys- 046

tems are needed if users want to keep the source 047

speaker timbre, which may cause degradation in 048

audio quality and content accuracy. 049

Some works propose direct S2ST with style 050

transfer (Jia et al., 2021; Song et al., 2023). These 051

methods depend on paired data that source and 052

target speech share the same speaker. However, 053

such data from the real world is extremely scarce 054

as it requires a large number of multilingual speak- 055

ers, while simulated data from multilingual TTS 056

systems suffers from less diversity and extra data 057

collection costs. Recent large-scale S2ST models 058

(Rubenstein et al., 2023; Barrault et al., 2023) have 059

also incorporated the capability of style transfer, 060

yet their sub-modules are highly coupled and are 061

difficult to apply to other S2ST models. 062

Inspired by recent progress in spoken language 063

models (Borsos et al., 2023; Wang et al., 2023), 064

we propose a novel approach for direct S2ST with 065

the ability of cross-lingual style transfer, and does 066

not rely on any speaker-parallel data. We utilize 067

two types of discrete representations, namely se- 068

mantic and acoustic units, from a self-supervised 069

speech model and a neural codec, separately. Our 070

method encompasses three stages: 1) speech-to- 071

semantic-unit translation, which translates source 072

speech to target semantic units; 2) acoustic unit 073

modeling, which generates target acoustic units 074

from translated semantic units using style informa- 075

tion in the source speech; and 3) unit-to-wave gen- 076

eration, which reconstructs high-fidelity translated 077

speech from the acoustic units. The modules of the 078

three stages are trained independently and decou- 079
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Figure 1: We propose an S2ST approach with style transfer based on discrete representations from a self-supervised
speech model and a neural codec. Figure (a) shows the inference pipeline of our method; figure (b) illustrates the
self-supervised training process of the acoustic language model of S2.

pled from each other, allowing our framework to080

be applied to various existing speech-to-unit trans-081

lation models.082

For the acoustic unit modeling stage, we intro-083

duce an acoustic language model. It employs a self-084

supervised training approach and learns style trans-085

fer through in-context learning, which relies on no086

speaker-parallel data, and thus addresses the issue087

of data scarcity. By utilizing extensive training088

data, our model achieves zero-shot cross-lingual089

style transfer with source languages not included090

in the training. Experiments show that our model091

generates results with superior audio quality and092

style similarity while maintaining accurate content.093

Our contributions can be summarized as follows:094

• We propose an S2ST approach with cross-095

lingual style transfer capability, even on previ-096

ously unseen source languages.097

• By employing self-supervised training, our098

model does not rely on any speaker-parallel099

data, thus addressing the issue of data scarcity.100

• The decoupling nature of the sub-modules en-101

ables our framework to be adopted by various102

existing speech-to-unit translation models.103

• Experiments show that our method generates104

translated speeches with high quality and style105

similarity.106

2 Method107

The overall inference pipeline of our method is il-108

lustrated in Fig.1 (a). Our method comprises three109

consecutive stages, utilizing two distinct types of110

discrete units: 1) speech-to-semantic-unit transla-111

tion stage S1, which converts source audio into112

semantic units of the translated speech; 2) acoustic113

unit modeling stage S2, generating target acoustic 114

units conditioned on the semantic output from the 115

preceding stage and the acoustic units of the source 116

speech as style prompt; 3) unit-to-wave generation 117

stage S3, producing translated speech that main- 118

tains consistent style with the source. We provide 119

details about these two types of units and the three 120

stages in the following subsections. 121

2.1 Semantic and Acoustic Units 122

Discrete HuBERT (Hsu et al., 2021) units obtained 123

from the clustering of self-supervised speech rep- 124

resentations are shown (Lee et al., 2021b; Huang 125

et al., 2022) to be effective in providing seman- 126

tic content information and are widely adopted 127

in S2ST as prediction target (Lee et al., 2021a,b; 128

Huang et al., 2022; Popuri et al., 2022). HuBERT 129

encodes the target speech into continuous represen- 130

tations with a frame length of 20 ms, and these rep- 131

resentations are then discretized with the k-means 132

algorithm to get the semantic units. 133

On the other hand, audio codec models with 134

encoder-decoder architecture such as SoundStream 135

(Zeghidour et al., 2021) have recently shown out- 136

standing performance in learning acoustic infor- 137

mation. Such a codec model can produce discrete 138

representations (i.e. the acoustic units) of audio 139

by employing a convolutional encoder followed by 140

a residual vector quantizer. These representations 141

contain detailed acoustic information and can be 142

used to reconstruct waveforms with the correspond- 143

ing decoder or an additional vocoder. 144

2.2 Speech-to-Semantic-Unit Translation 145

The speech-to-semantic-unit translation stage gen- 146

erates translated semantic units conditioned on 147

source speech input, achieving translation of lin- 148

guistic content. Various models (Lee et al., 2021a; 149
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Huang et al., 2022; Popuri et al., 2022) have been150

proposed for this procedure. These models share151

a common basic architecture of a convolutional152

speech encoder followed by an encoder-decoder153

architecture based on a transformer or conformer.154

Due to the decoupling nature of the sub-modules of155

the three stages, we have the flexibility to adopt dif-156

ferent S2UT models in this stage, and we attempted157

two of them in our experiments (See Section 3.1).158

2.3 Acoustic Unit Modeling159

The acoustic unit modeling stage S2 generates160

translated acoustic units from semantic tokens and161

style prompts. The core component of S2 is an162

acoustic language model, which is basically a163

decoder-only transformer. The model takes a prefix164

sequence formed by concatenating acoustic unit165

sequence ap, which serves as a style prompt, and166

the target semantic sequence s, and generates the167

target acoustic sequence a autoregressively. This168

procedure can be formulated as169

p (a | ap, s; θAR) =

T∏
t=1

C∏
c=1

p
(
ac
t | a<t,a

<c
t ,ap, s; θAR

)
(1)170

The entire sequence is in the format of [ap|s|a],171

with a separator token between each pair of adja-172

cent parts. 3 codebooks are used for ap and a.173

The training procedure of S2 is illustrated in174

Figure 1(b). It adopts a self-supervised training175

paradigm, where the first three seconds of each au-176

dio sample is truncated as prompt, and the acoustic177

language model is trained to predict the acoustic178

units of the remaining part conditioned on its se-179

mantic units and the prompt acoustic units with180

cross-entropy loss. This in-context learning ap-181

proach enables the model to grasp the correspon-182

dence in acoustic characteristics between the two183

parts and acquire style transfer ability. During in-184

ference, we use semantic tokens from the previous185

stage and acoustic units of source speech as the186

style prompt to realize cross-lingual style transfer.187

2.4 Unit-to-Wave Generation188

In the waveform generation stage S3, we adopt a189

GAN-based unit vocoder to map the target acoustic190

units to high-fidelity waveforms. Our vocoder is191

derived from BigVGAN (Lee et al., 2022), with a192

generator built from a set of look-up tables (LUT)193

that embed the discrete units, and a series of blocks194

composed of transposed convolution and a residual195

block with dilated layers. Multi-period discrim-196

inator (MPD) and multi-resolution discriminator 197

(MRD) are used for adversarial training. 198

3 Experiments 199

3.1 Setup 200

Datesets We use two language pairs in the CVSS 201

dataset (Jia et al., 2022) as the translation bench- 202

mark, which are French-English (Fr-En) and 203

Spanish-English (Es-En). For S2 and S3 stages, 204

we use the unlab-60k subset of Libri-Light (Kahn 205

et al., 2020) to train the acoustic language model, 206

and use LibriTTS (Zen et al., 2019) a to train the 207

SoundStream model and the vocoder. All audio is 208

processed at a 16 kHz sampling rate. We provide 209

more details about the datasets in Appendix A. 210

Model Configurations We apply the publicly avail- 211

able multilingual HuBERT (mHuBERT) model 212

with the k-means model of 1000 clusters for the 213

11th-layer features and train a SoundStream model 214

with a size of 1024 for each codebook and an over- 215

all downsampling rate of 320. For stage S1, we 216

train an S2UT-conformer for Fr-En following (Lee 217

et al., 2021a), and an xm-transformer for Es-En 218

following (Popuri et al., 2022) but without mbart- 219

decoder initialization. The decoder-only trans- 220

former of S2 has about 760M parameters, with 221

details of its architecture provided in Appendix B. 222

Baselines Considering that previous S2ST mod- 223

els with style transfer (Jia et al., 2021; Song et al., 224

2023; Rubenstein et al., 2023; Barrault et al., 2023) 225

either differ from ours in settings or are not open- 226

sourced, we mainly compare our model with S2UT 227

models used in S1 followed by a single-speaker 228

vocoder, and cascaded pipelines formed by ap- 229

pending various voice conversion models after 230

the vocoder, which are PPG-VC(Liu et al., 2021), 231

NANSY(Choi et al., 2021) and YourTTS(Casanova 232

et al., 2022). 233

Evaluation Metrics We employ both objective 234

and subjective metrics to measure the model per- 235

formance in terms of translation accuracy, speech 236

quality, and style similarity with the source speech. 237

For objective evaluation, we calculate the BLEU 238

score between the ASR-transcripts of the translated 239

speech and reference text as well as speaker cosine 240

similarity (Cos). For subjective metrics, we use 241

crowd-sourced human evaluation with 1-5 Likert 242

scales and report mean opinion scores on speech 243

quality (MOS) and style similarity (SMOS) with 244

95% confidence intervals (CI). More details are 245

provided in Appendix C. 246
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Table 1: Translation Quality and Audio Similarity on CVSS Dataset.

ID Model BLEU (Fr-En) (↑) BLEU (Es-En) (↑) MOS (↑) SMOS(↑) Cos (↑)

1 S2UT 18.08 23.78 3.73 ± 0.05 / /
2 S2UT + PPG-VC 17.05 23.03 3.37 ± 0.07 3.30 ± 0.06 0.65
3 S2UT + NANSY 17.21 23.36 3.56 ± 0.06 3.47 ± 0.05 0.68
4 S2UT + YourTTS 16.73 22.09 3.74 ± 0.05 3.60 ± 0.06 0.69

5 Ours 17.64 23.41 3.86 ± 0.06 3.69 ± 0.05 0.74

6 GT (CVSS-C) 84.52 88.54 3.92 ± 0.05 / /
7 GT (CVSS-T) 81.48 84.81 3.95 ± 0.05 3.56 ± 0.06 0.68

Table 2: Ablation on Training Data Volume and Sizes of S2 Model.

ID Model BLEU (Fr-En) (↑) BLEU (Es-En) (↑) MOS (↑) SMOS (↑) Cos (↑)

Ablation on Traing Data Volume

1 LibriTTS 17.62 23.37 3.84 ± 0.05 3.55 ± 0.05 0.67
2 Libri-Light unlab-60k 17.64 23.41 3.86 ± 0.05 3.69 ± 0.05 0.74
3 + CVSS source 17.25 23.49 3.85 ± 0.05 3.71 ± 0.05 0.76

Ablation on Model Size

4 Small (160M) 16.55 21.78 3.73 ± 0.06 3.58 ± 0.05 0.70
5 Base (430M) 16.87 22.36 3.81 ± 0.05 3.64 ± 0.05 0.73
6 Large (760M) 17.64 23.41 3.86 ± 0.05 3.69 ± 0.05 0.74

3.2 Results and Analysis247

Table 1 summarizes the main experiment results.248

We observe a comprehensive decrease in BLEU249

scores for 2-5 compared to 1, indicating that addi-250

tional style transfer processes lead to a loss in se-251

mantic content. Nevertheless, our model achieves252

the slightest decrease of 0.44 and 0.37 in BLEU,253

together with the highest MOS of 3.86. This in-254

dicates that in comparison to cascaded voice con-255

version, our style transfer mechanism based on256

discrete intermediate representations can mitigate257

quality and content losses during the transfer and258

produce higher-quality audio.259

On the other hand, our model achieves the high-260

est speaker similarity, with SMOS being 3.69 and261

Cos being 0.74, which surpasses all three cascaded262

systems and even the CVSS-T target, demonstrat-263

ing the outstanding performance in zero-shot cross-264

lingual style transfer of our model. This can be265

attributed to the large model size and extensive266

training data, through which our model acquires267

strong zero-shot style transfer capability and can268

generalize effectively to unseen source languages.269

3.3 Ablation Studies270

We further conduct ablations on the training data271

volume and model size of S2, and the results are272

summarized in Table 2. We observe that when273

using LibriTTS with shorter duration and fewer274

speakers, there is a significant decrease in SMOS 275

and Cos of 0.14 and 0.07, with only a minor de- 276

crease in BLEU and MOS of 0.02, 0.04, and 0.02. 277

This suggests that the model’s style transfer perfor- 278

mance relies on a large amount of speech data from 279

multiple speakers, while achieving high-quality 280

speech generation does not require as much data. 281

We also add part of the speech from the CVSS 282

source to the training data, obtaining a marginal 283

improvement of 0.02 on both Cos and SMOS. This 284

indicates that with extensive training data, the per- 285

formance of S2 on unseen source languages is close 286

to that on seen languages. Furthermore, we observe 287

a comprehensive improvement in all metrics as the 288

model size increases in 4-6, proving that the supe- 289

rior performance of our acoustic language model 290

is closely linked to its large parameter size. 291

4 Conclusions 292

We propose an S2ST approach with style trans- 293

fer capability by adopting an acoustic language 294

model that learns style transfer through in-context 295

learning. By adopting self-supervised training and 296

large-scale training data, our method addresses the 297

scarcity of speaker-parallel data and achieves cross- 298

lingual style transfer with unseen source languages. 299

Experiments indicate that our approach achieves 300

outstanding results in terms of translation accuracy, 301

speech quality and style similarity. 302
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5 Limitations and Potential Risks303

Despite that our model excels in style transfer and304

generating high-quality translated speech, it still305

suffers from several limitations: 1) Our evaluation306

(especially the objective evaluation) of style trans-307

fer capability mainly focuses on the global speaker308

timbre, and we have not yet delved deeply into309

other stylistic characteristics such as prosody and310

emotion. We leave the exploration of these aspects311

for future work. 2) The large model size and the312

autoregressive generation paradigm may lead to313

efficiency issues, such as long inference latency. 3)314

The BLEU scores heavily depend on the ASR qual-315

ity, which may not accurately reflect the speech316

translation performance. Future directions could317

be improving ASR quality or exploring other eval-318

uation metrics without reliance on ASR models.319

Besides, due to the speaker timbre transfer capabil-320

ity of our model, it may be misused to disinform,321

defame, or commit fraud. We will add some con-322

straints to guarantee people who use our code or323

pre-trained model will not use the model in illegal324

cases.325
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A Datasets449

In this section, we provide details of the translation450

benchmark dataset and the corpora for training S2451

and S3 models.452

CVSS CVSS (Jia et al., 2022) is an S2ST bench-453

mark dataset derived from the CoVoST 2 (Wang454

et al., 2020) speech-to-text translation corpus by455

synthesizing the translation text into speech us-456

ing TTS systems. It comprises two sub-versions457

of CVSS-C and CVSS-T, where the target speech458

in CVSS-C is generated by a single-speaker TTS459

system while that of CVSS-T is generated by a460

multi-speaker TTS system with speaker timbre461

Layer Norm
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Learned Positional 
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Input Units
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Layer Norm

×N
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Figure 2: Structure of the Acoustic Language Model.

transferred from the source speech. We use CVSS- 462

C for training and evaluating the translation models, 463

and provide results of ground truth target audios 464

in CVSS-T as a reference for style transfer perfor- 465

mance. 466

Libri-Light Libri-Light is a large-scale corpus con- 467

taining unlabelled speech from audiobooks in En- 468

glish. The unlab-60k subset we use consists of 469

57.7k hours of audio with 7,439 speakers. 470

LibriTTS LibriTTS is a multi-speaker English 471

TTS dataset. It comprises 585.5 hours of audio 472

with 2,456 speakers. 473

B Model Settings 474

We illustrate the structure of the acoustic language 475

model in Figure 2, and provide hyperparameters 476

of our S2 and S3 stage models in Table 3. We 477

also refer the readers to the original papers (Lee 478

et al., 2021a; Popuri et al., 2022) for details of S1 479

models used. Each sub-module is trained with 4 480

NVIDIA-V100 GPUs for about a week. 481
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Hyperparameter Prompt-Singer

Acoustic
Language

Model
(Small)

Layers 22
Hidden Dim 768

Attention Headers 12
FFN Dim 3,072

Number of Parameters 160.5M

Acoustic
Language

Model
(Base)

Layers 26
Hidden Dim 1,152

Attention Headers 16
FFN Dim 4,608

Number of Parameters 420.2M

Acoustic
Language

Model
(Large)

Layers 26
Hidden Dim 1,536

Attention Headers 16
FFN Dim 6,144

Number of Parameters 763.1M

Unit
Vocoder

Upsample Rates [5,4,2,2,2,2]
Hop Size 320

Upsample Kernel Sizes [9,8,4,4,4,4]
Number of Parameters 121.6M

Table 3: Hyperparameters of S2 and S3 Stage Models.

C Evaluation Metrics482

For translation accuracy, we use an open-sourced483

ASR model in fairseq 2 (Ott et al., 2019) frame-484

work to transcribe the audios and then calculate485

the BLEU score between the transcripts and the486

reference text. For speaker similarity, we use Ry-487

semblyzer3, which is a public-available speaker488

encoder to extract speaker embeddings of the syn-489

thesized and source speech and calculate their co-490

sine similarity.491

Our subjective evaluation tests are crowd-492

sourced and conducted via Amazon Mechanical493

Turk. For audio quality evaluation, we ask the494

testers to examine the audio quality and natural-495

ness. For style similarity, we instruct the testers496

to evaluate the style similarity between the synthe-497

sized and source speech while ignoring the content.498

The testers rate scores on 1-5 Likert scales. We pro-499

vide screenshots of the testing interfaces in Figure500

3 and 4. Each data item is rated by 2 testers, and501

the testers are paid $8 hourly.502

We calculate BLEU scores over the entire test503

split and randomly sample 500 items from each504

language pair for other metrics, which represents505

approximately 3% of the test set.506

2https://github.com/facebookresearch/
fairseq/tree/main/examples/speech_to_
speech/asr_bleu

3https://github.com/resemble-ai/
Resemblyzer
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Figure 3: Screenshot of MOS testing.

Figure 4: Screenshot of SMOS testing.
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