
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HDFLOW: ENHANCING LLM COMPLEX PROBLEM-
SOLVING WITH HYBRID THINKING AND DYNAMIC
WORKFLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite recent advancements in large language models (LLMs), their performance
on complex reasoning problems requiring multi-step thinking and combining var-
ious skills is still limited. To address this, we propose a novel framework HDFlow
for complex reasoning with LLMs that combines fast and slow thinking modes
in an adaptive manner. Our approach consists of two key components: 1) a new
approach for slow, deliberate reasoning called Dynamic Workflow, which auto-
matically decomposes complex problems into more manageable sub-tasks and
dynamically designs a workflow to assemble specialized LLM or symbolic rea-
soning tools to solve sub-tasks; 2) Hybrid Thinking, a general framework that dy-
namically combines fast and slow thinking based on problem complexity. Finally,
we propose an easy-to-scale method for automatically synthesizing a large-scale
dataset of 27K challenging reasoning problems for complex reasoning and a hy-
brid thinking tuning method that trains smaller LLMs on this dataset to internalize
the fast/slow hybrid reasoning strategies. Experiments on four reasoning bench-
mark datasets demonstrate that our slow thinking with dynamic workflows signif-
icantly outperforms Chain-of-Thought, and hybrid thinking achieves the highest
accuracy while providing an effective balance between computational efficiency
and performance. Fine-tuning using our hybrid thinking approach also signifi-
cantly boosts the complex reasoning capabilities of open-source language models.
The results showcase the promise of slow thinking, dynamic workflows, and hy-
brid thinking in expanding the frontier of complex problem-solving with LLMs1.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of
tasks, from code generation and mathematical reasoning to natural language understanding and gen-
eration. Recent advancements in symbolic reasoning and tool usage, such as AlphaGeometry (Trinh
et al., 2024) and AlphaProof (AlphaProof/AlphaGeometry teams), have shown significant improve-
ments in specific domains by integrating LLMs with specialized procedures and symbolic reasoning
engines. Various prompting strategies, such as Chain-of-Thought (CoT) (Wei et al., 2022), Tree
of Thoughts (ToT) (Yao et al., 2024), and Graph of Thoughts (GoT) (Besta et al., 2024a), have
been developed to enable different reasoning topologies to enhance LLM problem-solving capabili-
ties. However, enhancing the reasoning abilities of LLMs to solve complex problems across various
domains in a unified framework remains a challenge for expanding their real-world applicability.

First, complex problem-solving often requires combining various knowledge domains, skills, and
tool usage. While previous approaches such as AlphaCodium (Ridnik et al., 2024) and Alpha-
geometry (Trinh et al., 2024) have demonstrated the potential of combining language models and
symbolic reasoning to solve complex problems, they rely on manually designed workflows tailored
to specific domains (i.e., competitive programming or geometry theorem proving). The language
model and symbolic engine take predefined turns in a rigid problem-solving process. This limits the
applicability and adaptability of these systems to broader domains. Thus, we aim to enhance the
generic problem-solving capabilities of LLMs by dynamically alternating between natural language

1Code and data will be released on Github.
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reasoning in the “text space” and symbolic reasoning in the “symbolic space” based on the prob-
lem at hand. This dynamic integration of the two reasoning modes enables the system to address
a much broader range of problems and adapt the problem-solving process to the unique require-
ments of each task. Second, traditional approaches to complex problem-solving with LLMs often
rely on a single mode of thinking, which may struggle with more intricate tasks that demand a de-
liberate, analytical approach. For example, many approaches employ a fixed reasoning strategy,
such as CoT prompting, regardless of the problem’s complexity. For instance, OpenAI’s most re-
cent o1 model2 only engages in a singular deep thinking mode despite the complexity of the user’s
query. This can lead to suboptimal performance on tasks requiring varying reasoning levels. The
model may either over-commit resources on simple tasks or underperform on more complex ones.
While multi-agent frameworks such as AutoGPT (Significant Gravitas), ReAct Yao et al. (2022),
and AutoGen (Wu et al., 2023) have addressed some aspects of this challenge by enabling recursive
goal decomposition, interleaving reasoning and acting, and state-driven workflows, they do not fully
exploit the potential of thinking approaches that can switch between intuitive thinking and more an-
alytical thinking modes based on problem complexity. Finally, as problem complexity increases, the
performance of existing approaches tends to degrade significantly, highlighting the need for frame-
works that can scale to handle even the most challenging reasoning problems. Recently, OpenAI
o1 model (OpenAI, 2024) demonstrates the potential to consistently improve LLM performance of
complex reasoning with compute scaling in inference-time through deep thinking.

To address these limitations, we propose a novel framework for complex reasoning with LLMs
that combines fast (system I) and more analytical slow thinking (system II) adaptively, inspired
by the dual process theory of human cognition (Daniel, 2017). Our approach consists of two key
components. First, we introduce a new approach for slow, deliberate reasoning called Dynamic
Workflow, which automatically decomposes complex problems into more manageable sub-tasks. It
then dynamically designs a workflow to assemble specialized LLM or symbolic tools to solve each
sub-task. To achieve this, the dynamic workflow orchestrates a team of specialized LLM experts,
each contributing unique domain knowledge or tool usage, to solve the sub-tasks in a structured
manner. Second, we propose Hybrid Thinking, a general framework that dynamically combines
fast and slow thinking based on problem complexity. For simpler tasks, the model defaults to a
fast-thinking mode using CoT strategy. When the model’s confidence in the fast thinking output is
low, it automatically switches to slow thinking with dynamic workflow, allowing for more efficient
and more accurate problem-solving. Finally, to train local LLMs for complex reasoning, we present
an easy-to-scale method for automatically synthesizing a large-scale dataset of 27K challenging
reasoning problems and propose a hybrid thinking tuning approach that finetunes open-source LLMs
on this dataset, enabling them to internalize the fast/slow hybrid reasoning strategies.

We conduct experiments on four reasoning benchmark datasets (i.e., BBH (Suzgun et al., 2022),
MATH (Hendrycks et al., 2021), Game of 24 Yao et al. (2024), DeepMind Math (Saxton et al.,
2019). Experiments using GPT-4-Turbo reveal that slow thinking with dynamic workflows sig-
nificantly outperformed CoT, with an average accuracy improvement of 22.4%. Hybrid thinking,
which combines fast and slow thinking, achieved the highest accuracy on three of the four datasets
and struck an effective balance between computational efficiency and performance. Furthermore,
fine-tuning Llama-3-8B-Instruct using hybrid thinking significantly boosted performance across all
datasets compared to the original model. Overall, the results demonstrate the promise of slow think-
ing with dynamic workflows and hybrid thinking in enhancing the complex problem-solving abilities
of LLMs.

2 RELATED WORK

Symbolic Reasoning and Tool Usage. Bridging LLMs with symbolic reasoning and tool usage
has demonstrated significant improvements across various domains. AlphaCode (Li et al., 2022;
AlphaCode Team) combines LLMs with a specialized search and reranking mechanism, achieving
top-tier performance in competitive programming. AlphaCodium (Ridnik et al., 2024) improves Al-
phaCode’s performance by applying a predefined multi-stage process of problem analysis, solution
generation, and iterative testing and bug fixing. By using an evolutionary search procedure guided

2o1-preview model tested on Sept.24, 2024. o1-preview model thinks for a few seconds to users’ casual
conversational queries such as How are you?
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Task
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CoT Solver Verify Each
Reasoning Step

Dynamic
Workflow Solver Verify Answer

No (retry)

Final Answer

No

Slow
Thinking

Yes

2

Figure 1: Overview of our HDFlow approach for complex problem-solving. Overall, it is a dual-
path hybrid thinking approach, beginning with a CoT solver for initial fast reasoning followed by
verification of each reasoning step. If verification fails, the process transitions to a slower, more
deliberate ”Dynamic Workflow Solver.” This solver iterates until a verified answer is obtained, in-
corporating a final verification step before concluding with a solution.

by an LLM, FunSearch (Romera-Paredes et al., 2024) can discover new mathematical constructions
and algorithmic heuristics. AlphaGeometry (Trinh et al., 2024) leverages a neuro-symbolic system
trained on synthetic data to guide a symbolic deduction engine, achieving near-expert performance
in geometry theorem proving. Program of Thoughts (PoT) (Chen et al., 2022) disentangles compu-
tation from reasoning by expressing the reasoning process as a program. Chain of Code (Li et al.,
2024) encourages LLMs to write pseudocode for challenging sub-problems, which is then executed
by the LM itself when a standard interpreter cannot handle it.

Prompting Strategies. Various prompting strategies have been developed to enable different rea-
soning topologies (Besta et al., 2024b) for enhancing LLM problem-solving capabilities. Chain-
of-Thought (CoT) prompting (Wei et al., 2022) first introduced the concept of generating inter-
mediate reasoning steps to improve performance on complex tasks. Building upon this, the Tree
of Thoughts (ToT) (Yao et al., 2024) enables the exploration of multiple potential reasoning paths
and incorporates deliberate decision-making through self-evaluation and backtracking. Graph of
Thoughts (GoT) (Besta et al., 2024a), models LLM-generated information as an arbitrary graph
where thoughts are vertices and dependencies are edges. SELF-DISCOVER (Zhou et al., 2024)
introduces a self-discovery process where LLMs select and compose multiple atomic reasoning
modules into explicit reasoning structures.

Multi-Agent Frameworks for Task-Solving. Recent advancements also have led to the devel-
opment of multi-agent collaboration for complex tasks. AutoGPT (Significant Gravitas) pioneers
recursive goal decomposition and sequential task completion using LLMs. ReAct (Yao et al., 2022)
introduces interleaving reasoning and acting, allowing LLMs to generate both reasoning traces and
actions. Reflexion (Shinn et al., 2024) enhances these agents with verbal reinforcement learning
for improved decision-making. MetaGPT (Hong et al., 2024) incorporates human workflows and
SOPs to enable domain-specific multi-agent collaboration in software tasks. AutoGen (Wu et al.,
2023) creates a flexible framework for customizable agent conversations with human input, while
CAMEL (Li et al., 2023) uses role-playing to foster autonomous cooperation. StateFlow (Wu et al.,
2024) conceptualizes task-solving as state-driven workflows for better control. In contrast, our ap-
proach uniquely integrates hybrid thinking, combining fast and slow modes with automated work-
flows to enhance LLMs’ adaptability and complex reasoning.

3 OVERVIEW OF THE HYBRID THINKING APPROACH

Figure 1 illustrates our hybrid thinking approach. It combines the strengths of fast and slow thinking
modes to enable LLMs to more effectively solve complex reasoning problems, which consists of the
three key components. 1) Fast Thinking with Direct CoT. In the fast thinking mode, the LLM uses
a direct chain of thought (CoT) approach to quickly solve the task query if possible. This leverages
the LLM’s core abilities to perform certain types of reasoning efficiently by directly generating the
rationale and the final answer. 2) Adaptive Combination of Fast and Slow Thinking. Next, we
employ a self-verification mechanism where the LLM examines each step of the fast-thinking CoT
reasoning to assess its confidence in the generated answer. This is achieved by applying the LLM
to analyze the coherence, logical consistency, and correctness of each reasoning step. If the LLM
detects any inconsistencies, errors, or low-confidence steps during this self-verification process, it

3
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Slow Thinking with Dynamic Workflow

Analyze Key Elements

Identify Sub-tasks

Stage 1: Problem
Reflection

Design Experts

Workflow Arrangement

Stage 2:
Workflow Design

Experts with specialties
• Linguist
• Mathematician
• Data Scientist
• …
Experts with tool usage
• Python
• Symbolic Engine
• …

Workflow
(pseudocode)

Stage 3: Graph
Construction and

Execution

Figure 2: Three-stage framework of dynamic workflow. The dynamic workflow design begins with
Problem Reflection, where key elements are analyzed and sub-tasks identified. Stage 2 focuses on
Expert Design, utilizing a variety of specialists and tools to architect an optimal workflow. Stage 3
involves constructing and executing the workflow graph to get the final result.

triggers a switch to the slow-thinking mode. 3) Slow Thinking with Dynamic Workflow. To tackle
highly complex tasks, we propose a novel slow-thinking mechanism called Dynamic Workflow (Fig-
ure 2), which automatically decomposes the original task into sub-tasks and dynamically switches
between verbal reasoning and symbolic reasoning to solve each sub-task. Our approach starts with
multi-level problem reflection and decomposition. It then designs a workflow to assemble special-
ized LLM skills or symbolic tools for sub-tasks. Next, we dynamically chain together the sub-task
reasoning steps into a multi-step workflow and execute the workflow. Finally, all sub-task results
are aggregated into the final answer to the original query. We will present details in Section 4.

By first attempting fast thinking, our hybrid thinking approach can efficiently handle queries that are
within the LLM’s core capabilities. When the query exceeds what fast thinking alone can confidently
handle, the hybrid thinking will smoothly transition to a slow thinking workflow to tackle a broader
range of challenges accurately.

4 SLOW THINKING WITH DYNAMIC WORKFLOW

In contrast to the rapid responses of fast thinking (e.g., CoT), our new slow-thinking mechanism
applies dynamic workflow to enable a more deliberate, analytical approach to complex problem-
solving (see Figure 2). It allows an LLM to dynamically transition between reasoning in the text
space (natural language reasoning) and the symbolic space (symbolic reasoning). The high-level
idea is we first let the LLM decompose the original reasoning problem into several more manageable
sub-tasks and solve each sub-task to form the final solution. When necessary, the LLM Engine will
translate the sub-problem from the text space into the symbolic space, enabling the symbolic engine3

to perform precise symbolic reasoning. The results are then mapped back into natural language using
the LLM Engine. By decomposing the problem, combining the strengths of both natural language
and symbolic reasoning in a tailored workflow, and executing it from start to finish, LLMs can
tackle very hard problems that require multiple steps of accurate reasoning. Appendix B presents a
complete example solution using our dynamic workflow approach and compares with the solution
using OpenAI o1-preview. Prompts used are listed in Appendix C.

4.1 BREAKING DOWN COMPLEXITY: PROBLEM ANALYSIS AND DECOMPOSITION (STAGE 1)

The first step in our slow thinking is problem analysis and planning. We aim to break down the
original problem statement into more manageable sub-tasks. Specifically, the LLM is asked to
analyze the key elements of the query, such as available information, constraints, and the desired
output. It then identifies logical sub-goals needed to progress from the initial state to the solution.
This decomposition allows the LLM to approach the problem in a structured manner, focusing on
one part at a time. Therefore, the LLM can catch gaps in reasoning and handle complex problems
that the fast thinking of CoT alone would struggle with.

3In this paper, we mainly use program to achieve symbolic reasoning.
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Problem Reflection. The first step in tackling complex problems is conducting a thorough problem
reflection. This involves the LLM analyzing the original problem and restating it in its own words
to demonstrate understanding. Our problem reflection includes two parts: 1) Identifying the core
objective or question posed by the problem. 2) Recognizing any constraints, assumptions, or special
conditions mentioned. By internalizing the problem through reflection, the LLM can gain a solid
understanding of what needs to be accomplished before proceeding to decomposition.

Subtask Decomposition. Once the problem is well understood, the LLM is instructed to perform
a multi-level decomposition to break it down into some tractable sub-problems. The LLM is asked
to follow four principles to achieve an optimal decomposition. Sequential dependency. The sub-
problems are organized in a logical sequence, such that the outputs of earlier steps feed into subse-
quent ones, creating a structured workflow from start to finish. Non-overlapping. Each sub-problem
represents a distinct portion of the original problem, with no duplication of work between sub-
problems. This keeps the overall solution efficient. Proper Decomposition. The sub-problems are
decomposed to the optimal level of granularity - not so small that there are too many to track and
coordinate, but not so large that they are still struggling to solve. Modular. Where appropriate,
sub-problems are defined in a generalizable, modular way, such that the logic and code used to solve
them can potentially be reused to solve similar problems in other contexts.

Integrating Symbolic Reasoning. Another key aspect of our approach is leveraging the symbolic
engines to modularize the solution and handle well-defined sub-tasks more accurately. For example,
some sub-tasks in the decomposition can often be addressed by writing code functions. Therefore,
we explicitly instruct the LLM to consider sub-tasks that can be well handled by writing and exe-
cuting modular code in subtask decomposition.

4.2 ORCHESTRATING EXPERTISE: WORKFLOW DESIGN (STAGE 2)

With the problem decomposed into sub-tasks, our approach next proposes a team of specialized
experts, each contributing unique skills and tools, arranged in a dynamic workflow. The central
component is a Meta-Expert, initialized from the foundation LLM, designs the expert team, and
coordinates their efforts. The orchestration process consists of four steps.

1. Design of Experts. Based on the identified sub-tasks, the Meta-Expert designs a team of
specialized experts with one expert solving one sub-task. Each expert is assigned a unique
name and a clear description of their specific skills, knowledge, and responsibilities4. The
dynamic workflow leverages two types of experts to handle each sub-task, enabling a seam-
less integration of verbal and symbolic reasoning. The first type are specialized experts
initiated from LLMs, such as linguists, mathematicians, and data scientists. These experts
bring domain-specific knowledge and skills to the workflow, allowing for sophisticated
verbal reasoning and analysis within their fields. The second type of expert focuses on
symbolic reasoning, particularly using programming or other symbolic engines5. For ex-
ample, some sub-tasks can often be addressed by writing compact, targeted code functions.
This allows the LLM to handle common operations such as mathematical calculations, data
parsing and manipulation, and so on without bringing errors.

2. Workflow Arrangement. The Meta-Expert arranges the experts into an efficient workflow
sequence. Each expert’s output serves as the input for the next, progressively moving
towards the final solution. The Meta-Expert ensures there is no redundancy of functions
across experts.

3. Collaboration and Iteration. As the experts work through the problem, the Meta-Expert
facilitates collaboration and puts together their inputs and outputs. For sub-tasks involving
logical reasoning, mathematical operations, data structures, or programming, the Meta-
Expert provides strategic guidance and sends the implementation details to the correspond-
ing symbolic reasoning experts. These experts utilize LLMs to generate code, which is
then executed to perform symbolic reasoning in Stage 3.

4Our implementation leverages JSON for efficient data management and extraction across the system.
5We mainly use Python code interpreter as the symbolic engine in our experiments, but our approach can

be extended to other symbolic engines, such as the symbolic deduction engines used in AlphaGeometry (Trinh
et al., 2024) to solve Euclidean geometry problems.

5
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Figure 3: Data synthesis of complex reasoning problems.

4. Final Review and Conclusion. The last expert in the workflow, often an LLM specialist,
is tasked with holistically reviewing the findings of the previous experts and generating the
final answer to the original problem.

By combining the power of specialized LLMs and the usage of tools into a thoughtfully designed,
adaptable workflow, our approach can tackle complex problems that are beyond the capabilities of
the original model.

4.3 FLOW EXECUTION: CONSTRUCTING AND RUNNING WORKFLOWS (STAGE 3)

With the workflow graph generated, our approach finally proceeds to execute the graph to get the
final result. The execution follows the dependency order, ensuring the correct flow of data between
experts. To ensure robust execution, if any of the generated code encounters errors, the correspond-
ing symbolic reasoning experts will trace the issue, use the error message to repair the code, and
rerun it. As the workflow progresses, the downstream experts continually update their memory with
the intermediate results and insights generated by previous experts. Upon completion of the work-
flow execution, the last LLM expert analyzes the results, identifies key findings, and summarizes
them into a final answer to the original problem. The workflow execution is not a one-time process.
The LLM continually assesses the quality and correctness of the final generated solutions and iden-
tifies potential errors. It engages in iterative rerun by applying a different problem decomposition,
expert assignments, or adjusting the workflow structure.

5 MODEL TUNING OF HYBRID THINKING

In our experiments, we observed that open-source language models (typically those with around
7B parameters) often struggle with advanced meta-planning and problem-solving skills required for
solving difficult reasoning tasks. To address this limitation and develop local smaller models with
hybrid thinking abilities comparable to the large models, we construct a comprehensive training
dataset and propose hybrid thinking tuning to improve the complex reasoning abilities of local mod-
els. We define “local” models as models that can be trained and deployed on local hardware with
limited computational resources, such as the Llama-3 model (Meta, 2024). The primary challenge
lies in constructing a large-scale dataset of reasoning problems that are sufficiently diverse, high-
quality, and difficult. Such a dataset is crucial for teaching smaller local models to perform complex
reasoning tasks. However, manually curating such a dataset presents significant difficulties in ensur-
ing a wide range of problem domains and maintaining high standards in problem formulation. As a
result, it is extremely time-consuming and expensive to ask human experts to consistently generate
problems meeting all criteria. Therefore, we propose a novel approach for automatically generate
a variety of reasoning problems and collect solutions of hybrid thinking, which can then be used to
train our local LLMs.

5.1 REASONING PROBLEMS SYNTHESIS

To enhance reasoning task diversity and coverage, our data synthesis pipeline consists of three steps
(Figure 3). In the first step, we strategically leverage human-authored seed tasks to inspire the
creation of new reasoning problems (similar to Self-Instruct (Wang et al., 2023)) or let the LLM
brainstorm reasoning puzzles that cover a variety of task formats, difficulty levels, and problem
domains. This step only focuses on generating high-level task descriptions to encourage diversity.

6
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**Interpret a Morse Code Message**: Given a string of Morse code, translate it into English text,
adhering to standard Morse code conventions. The task involves recognizing each sequence of dots
(.) and dashes (-) as letters and spaces as separators for words.
A Morse code sequence has been found etched into an old artifact. It is believed to be a significant
mathematical formula. The Morse code is: ‘-. .. -. . - -.– / - .... .-. . . / - .. – . ... / ... . ...- . -. - -.–
/ ..-. .. ...- . / . –.- ..- .- .-.. ... / — -. . / .... ..- -. -.. .-. . -.. / .- -. -.. / - .– . -. - -.– / - .... .-. . .‘.
Decode this Morse code into English text, adhering to the standard Morse code conventions where
sequences of dots (.) and dashes (-) represent letters, and spaces are used to separate words.

**Cryptarithm Task: Solve the Equation**: In this cryptarithm, each letter represents a unique digit
from 0-9: **CROSS + ROADS = DANGER** No number may begin with zero. Determine the
digit each letter represents to satisfy the equation.

In a game of spies, two teams use different substitution ciphers to communicate. Team A uses a
cipher where each letter is replaced by the letter three positions to the right in the alphabet (with
wrapping), while Team B uses a cipher where each letter is replaced by the letter four positions
to the left (with wrapping). During the game, a message encrypted using Team B’s cipher was
intercepted: “XLMW MW XLI GIRXVI.” Decode this message assuming it was meant for Team A
but encrypted by Team B.

Figure 4: Three example reasoning problems generated by our data synthesis approach.

In the second step, we apply deduplication to remove near-identical tasks. Finally, we apply LLMs
again to write three specific problems based on the task descriptions and validate those problems.

Task Generation Inspired by Seed Tasks. The first step of our reasoning data synthesis pipeline is
generating an expanded set of reasoning tasks. We augment the few-shot prompts with 10 high-level
task descriptions randomly sampled from the 214 BigBench tasks (Srivastava et al., 2022). Next,
we employ the 10 seed tasks as in-context examples to prompt LLMs6 to generate 10 new tasks. To
encourage additional diversity in the generated tasks, we also let the LLM to brainstorm different
genres of puzzles, such as crossword puzzles, math puzzles, number puzzles, relational puzzles,
logic puzzles, etc. By repeating two strategies, we produce an expanded pool of 45K candidate
reasoning tasks that creatively cover diverse reasoning types and scenarios.

Data Filtering and Deduplication. The previous task generation step produces a sizable pool
of candidate reasoning tasks. However, the generated data is likely to contain duplicate or highly
similar entries. To address this, we employ a comprehensive data filtering and deduplication process.
First, we apply n-gram to identify nearly identical tasks. Next, we filter out any tasks or problems
that fail to meet our quality criteria by prompting GPT-4-Turbo, such as insufficient complexity (e.g.,
trivial one-step questions), or ambiguity in the description. This helps ensure that only high-quality,
unambiguous reasoning tasks are retained in the final dataset. Through this rigorous deduplication
and filtering process, we condense the pool of 45K generated tasks down to 18K deduplicated tasks.

Reasoning Problem Synthesis. In the last step, we aim to synthesize multiple concrete reasoning
problems for each of the 18K tasks. Taking each task’s description as input, we prompt an LLM to
generate 3 distinct questions or problems that test the specified reasoning skill. This enables us to
turn each high-level task into a set of actual solvable questions, resulting in a pool of 54k reasoning
problems. To ensure the generated problems are well-posed and solvable, we employ a chain-of-
thought (CoT) based validation step. We prompt GPT-4-Turbo to apply CoT to each synthesized
problem and analyze if the resulting reasoning steps coherently lead to a definite answer. Problems
for which the model fails to converge to a clear solution or exhibits inconsistent reasoning are filtered
out. This results in the final 27K reasoning problems. Figure 4 provides three examples of reasoning
problems generated.

5.2 FINETUNING OPEN-SOURCE MODELS ON SYNTHESIZED DATA

To prepare the training data for enhancing the open-source models’ complex problem-solving abili-
ties, we utilize the GPT-4-turbo model to collect reasoning trajectories on the dataset of synthesized

6We use both GPT-4-0125 and Claude-3-Opus to encourage diversity. We find Claude-3-Opus does generate
very different reasoning tasks compared with GPT-4-0125.
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Table 1: Accuracy (%) of GPT-4-Turbo-0125 across different reasoning modes on various datasets.
We show the accuracy of the model using Chain of Thought (CoT) v.s. slow thinking (with dynamic
workflow) and Hybrid Thinking approaches proposed by us. The Fast/Slow indicates the ratio of
Fast and Slow Thinking contributions in the Hybrid approach. Results are derived from the top 100
instances for each sub-category in BBH (27 sub-tasks), MATH (7 sub-domains), and GameOf24 (3
difficulty levels) to reduce API cost and ensure replicability. For the DeepMind Math dataset, the
top 10 instances from each of the 56 sub-domains were used.

Methods BBH MATH DeepMind Math GameOf24 Avg.

CoT (Fast Think.) 77.8 62.6 53.4 9.3 50.8
Slow Think. 87.1 (+9.3) 67.6 (+4.6) 67.7 (+14.3) 70.3 (+61.0) 73.2 (+22.4)
Hybrid Think. 87.8 (+10.0) 70.0 (+7.9) 59.6 (+6.2) 72.0 (+62.7) 72.4 (+21.6)

Table 2: Average number of inference tokens of GPT-4-Turbo-0125 using different reasoning modes
on various datasets. Performance is reported in Table 1.

Methods BBH MATH DeepMind Math GameOf24 Avg. Tokens

CoT (Fast Think.) 351 992 581 387 577.8
Slow Think. 3227 5694 3562 5246 4432.0
Hybrid Think. 1299 4398 1742 4983 3105.5

and mathematical problems. For each problem, GPT-4-turbo generates one or several fast/slow
reasoning trajectories using the hybrid thinking approach. Each reasoning trajectory consists of
a sequence of (query, answer) pairs representing the model’s step-wise hybrid thinking process.
Therefore, we use all (query, answer) pairs from the reasoning trajectories to construct the train-
ing data, capturing the complete problem-solving process. When multiple reasoning trajectories are
produced (iterative retry), only the solution trajectory that passes the verification process is retained
in the training set to optimize the model’s problem-solving capabilities, while the verification re-
sults for all trajectories are kept to enhance the model’s self-verification abilities. We choose the
Llama-3-8B-Instruct model (Meta, 2024) as the foundation model for our hybrid thinking tuning
experiments. More training details are included in Appendix A.

6 EXPERIMENT

6.1 REASONING BENCHMARK DATASETS

BIG-Bench Hard (BBH) (Suzgun et al., 2022): A subset of 27 challenging tasks from the BIG-
Bench benchmark (Srivastava et al., 2022), which aims to measure the capabilities and limitations
of language models. MATH (Hendrycks et al., 2021): A dataset consisting of 5,000 test problems
from mathematics competitions across seven disciplines. Game of 24 (Yao et al., 2024): A math-
ematical reasoning challenge dataset containing 1,362 games sorted by human solving time. The
goal is to use four given numbers and basic arithmetic operations (+ - * /) to obtain 24. DeepMind
Math (Saxton et al., 2019): A dataset consisting of various types of mathematics questions, released
with both generation code and pre-generated questions. This dataset provides an additional measure
of algebraic generalization abilities.

6.2 RESULTS BASED ON PROMPTING

We first conduct experiments by prompting GPT-4-Turbo-01257 to achieve three reasoning modes:
Chain of Thought (CoT), Slow Thinking with Dynamic Workflow, and Hybrid Thinking across four
benchmark datasets. Table 1 shows that slow thinking with dynamic workflow significantly out-
performs CoT by 22.4% on average across four benchmarks. It also reveals that Hybrid Thinking
achieves the best accuracy on three datasets BBH, MATH and GameOf24. Notably, both Slow

7https://platform.openai.com/docs/models. A full list of prompts can be found in Ap-
pendix C.
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Table 3: Performance comparison of the original Llama-3-8B-Instruct model and the Llama-3-8B-
Instruct after our hybrid thinking tuning. We show the accuracy (%) of the model using CoT v.s. slow
thinking (with dynamic workflow) and Hybrid Thinking approaches proposed by us. The Fast/Slow
indicates the ratio of Fast and Slow Thinking contributions in the Hybrid approach. Results are
derived from the full test set in BBH, MATH, DeepMind Math and GameOf24.

Methods BBH MATH DeepMind Math GameOf24 Avg.

Llama-3-8B-Instruct (Original)

CoT 51.7 30.0 18.6 2.7 25.8

Llama-3-8B-Instruct (After Hybrid Thinking Tuning)

CoT (Fast Think.) 58.5 (+6.8) 37.0 (+7.0) 34.2 (+15.6) 5.1 (+2.4) 33.7 (+7.9)
Slow Think. 61.2 (+9.5) 37.8 (+7.8) 48.8 (+30.2) 15.4 (+12.7) 40.8 (+15.0)
Hybrid Think. 62.3 (+10.6) 40.2 (+10.2) 41.7 (+23.1) 16.0 (+13.3) 40.5 (+14.7)

Table 4: Average number of inference tokens of the original Llama-3-8B-Instruct model and the
Llama-3-8B-Instruct after our hybrid thinking tuning on various datasets. Performance is reported
in Table 3.

Methods BBH MATH DeepMind Math GameOf24 Avg. Tokens

Llama-3-8B-Instruct (Original)

CoT 356 496 359 510 430.2

Llama-3-8B-Instruct (After Hybrid Thinking Tuning)

CoT (Fast Think.) 720 985 770 1384 964.7
Slow Think. 3901 5743 4395 6714 5188.2
Hybrid Think. 2521 4414 2577 6371 3970.7
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Figure 5: Proportion of fast thinking (CoT) and slow thinking (dynamic workflow) applied in hybrid
thinking across four datasets. The left is GPT-4-Turbo (performance is shown in Table 1), while the
right is Llama-3-8B-Instruct after our hybrid thinking tuning (Table 3).

Thinking and Hybrid Thinking consistently outperform CoT across all datasets, with the most dra-
matic improvements seen in GameOf24, where gains are 61.0% and 62.7% respectively.

Table 2 illustrates the average number of inference tokens used by each method. CoT consistently
used the fewest tokens (average 577.8), while Slow Thinking required the most (4432.0 on average).
Hybrid Thinking struck a balance with an average of 3105.5 tokens. A clear trade-off emerged be-
tween computational efficiency and performance, with CoT using the fewest tokens but achieving
the lowest accuracy. Hybrid Thinking demonstrated a good balance, achieving high accuracy with
moderate token usage. These findings suggest that incorporating dynamic workflows and combin-
ing fast and slow thinking processes can enhance the reasoning capabilities of LLMs, with Hybrid
Thinking emerging as a particularly promising approach.
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Table 5: Accuracy comparison of the original Llama-3-8B-Instruct model and the Llama-3-8B-
Instruct after our hybrid thinking tuning on different domains of the MATH dataset. “Count. and
Prob.” and “Inter. Algebra” represents “Counting and Probability” and “Intermediate Algebra”.

MATH Subsets Llama-3-8B-Ins. Llama-3-8B-Ins. (After Hybrid Thinking Tuning)
CoT CoT (Fast Think.) Slow Think. Hybrid Think. Fast/Slow

Prealgebra 43.2% 58.9% 59.7% 63.3% 0.69/0.31
Algebra 30.2% 53.6% 52.7% 56.1% 0.68/0.32
Number Theory 15.0% 31.1% 37.6% 38.0% 0.52/0.48
Count. and Prob. 21.1% 32.5% 34.2% 35.9% 0.48/0.52
Geometry 13.4% 24.8% 23.6% 26.3% 0.33/0.67
Precalculus 12.5% 22.0% 21.8% 24.5% 0.35/0.65
Inter. Algebra 9.1% 15.6% 16.3% 17.3% 0.30/0.70

6.3 RESULTS OF HYBRID THINKING TUNING

We next compare the performance of the original Llama-3-8B-Instruct model and the model after our
hybrid thinking tuning. As shown in Table 3, the Llama-3-8B-Instruct model after hybrid thinking
tuning significantly outperforms the baseline model on all datasets. Examining the different thinking
modes, hybrid thinking consistently provided the best tradeoff between performance and efficiency.
Compared to the CoT baseline, hybrid thinking improved accuracy by 10.6%, 10.2%, 23.1% and
13.3% on the BBH, MATH, DeepMind Math and GameOf24 datasets respectively. Interestingly,
we also observe that hybrid thinking tuning enhances Llama-3’s fast thinking (CoT) performance
across all reasoning tasks at the cost of increased model inference tokens.

Table 5 breaks down performance on the MATH dataset into specific subject areas. Again, the
Llama-3-8B-Instruct model after hybrid thinking tuning outperforms the original model on all sub-
sets, with gains ranging from 8% on intermediate Algebra to 23% on Number Theory. Hybrid
thinking yielded the highest accuracy in each domain, demonstrating its broad applicability.

6.4 FAST/SLOW ROUTING ANALYSIS

Figure 5 illustrates the proportion of fast thinking and slow thinking (orange) approaches applied by
both models when solving complex problems across the datasets. The GPT-4-Turbo model demon-
strates a higher reliance on fast thinking for BBH, DeepMind MATH, and Game of 24 tasks com-
pared with Llama-3-8B-Instruct model. This observation can be attributed to the fact that GPT-4-
Turbo’s fast thinking (in the form of CoT) is more reliable and effective compared to Llama-3-8B-
Instruct. As a result, hybrid thinking in GPT-4-Turbo tends to apply more fast thinking since it is
sufficient to achieve a correct solution in many cases. In contrast, Llama-3-8B-Instruct after tun-
ing exhibits a greater reliance on slow thinking strategies, particularly in complex tasks, where fast
thinking alone may not yield the desired results. This highlights the importance of hybrid thinking to
improve problem-solving efficiency, suggesting that our method can dynamically adjust the optimal
balance between fast and slow thinking based on the model’s downstream reasoning capabilities.

In summary, the dynamic combination of fast and slow thinking modes greatly enhanced the model’s
problem-solving capabilities. Our results showcase the potential of hybrid thinking approaches to
expand the frontier of what LLMs can achieve on challenging tasks.

7 CONCLUSION

This paper introduces a novel framework HDFlow for enhancing the complex problem-solving
capabilities of LLMs through hybrid thinking and dynamic workflows. The dynamic workflow
mechanism enables LLMs to decompose complex problems into manageable sub-tasks and inte-
grate specialized language models and symbolic reasoning tools, while hybrid thinking strategically
engages deeper, multi-step reasoning for challenging problems that exceed the capabilities of fast
thinking alone. Extensive experiments demonstrate the significant advantages of our approach, with
slow thinking with dynamic workflow greatly outperforming CoT and hybrid thinking achieving the
highest overall accuracy by balancing efficiency and performance.
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A TRAINING DETAILS OF HYBRID THINKING TUNING

The Llama-3 models have demonstrated superior performance compared to other models of similar
size due to significant enhancements in both pretraining and post-training (Meta, 2024). Therefore,
we choose the Llama-3-8B-Instruct model as the foundation model for our hybrid thinking tuning
experiments due to its SOTA performance on benchmarks. Specifically, The Llama-3-8B-Instruct
model was fine-tuned using 8 A100 GPUs with bf16 precision8. The training utilized a global batch
size of 128, spanning 4 epochs. The model employed the AdamW optimizer of a learning rate
of 2.0e-5, with a maximum sequence length of 4096 tokens and a maximum of 2048 new tokens
generated.

B DYNAMIC WORKFLOW EXAMPLE SOLUTION

In this section, we demonstrate how our dynamic workflow approach works by presenting an ex-
ample solution to a reasoning problem. We also present the solution provided by the OpenAI o1-
preview model to compare with our approach. We can see the solution produced by our approach
contains many sub-goals (sub-tasks), which is very similar to the o1-preview solution. Our approach
also leverages the symbolic tool - Python to enhance the accuracy of the final answer. The reasoning
problem is generated using our data synthesis method.

B.1 REASONING PROBLEM:

An encrypted Morse code message contains a list of three items that were
crucial to a historical event. The Morse code is: ‘- . .- / -.-. ---
..-. ..-. . . / ... ..- --. .- .-.‘. Decode this Morse code message
into English text, keeping in mind the standard Morse code
conventions where each sequence of dots (.) and dashes (-)
corresponds to a letter, and spaces separate words.

B.2 SOLUTION USING DYNAMIC WORKFLOW:

Stage 1. Problem Reflection

===== Meta-Expert@REFLECTION =====
### Problem Reflection start ###

**Task Description**: Decode a given Morse code message into English text
.

**Elements of the Task**:
1. The message is encoded in Morse code, which uses a series of dots (.)

and dashes (-) to represent letters and spaces to separate words.
2. Decoding involves translating each Morse code sequence into its

corresponding English letter or symbol.
3. The Morse code provided is a list of three items related to a

historical event, which implies the output should be meaningful and
correctly formatted.

**Sub-tasks Identification**:
1. **Morse Code Dictionary Creation**: Establish a dictionary in Python

where keys are Morse code sequences (dots and dashes) and values are
corresponding English letters. This will facilitate the translation
process.

2. **Parsing the Morse Code**: Split the input Morse code string into
individual Morse code sequences for letters and words. This involves
handling spaces correctly to differentiate between letters and word
boundaries.

8We adopt LitGPT (AI, 2023) in our model training.
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3. **Translation Process**: For each Morse code sequence obtained from
the parsing step, use the Morse code dictionary to translate it into
the corresponding English letter.

4. **Reconstruction of Message**: Combine the translated letters into
words and then into the complete message. This step ensures that the
output is a readable English sentence.

5. **Output Formatting**: Format the final output to ensure it is clear
and presentable, adhering to proper English syntax and spacing.

### Problem Reflection end ###

Stage 2. Workflow Design

===== Meta-Expert@EXPERTS_DESIGN =====
### Specialized Experts Design start ###

**Morse Code Dictionary Creation Expert**: Specializes in creating a
comprehensive dictionary that maps Morse code symbols to English
letters. This expert will ensure that all Morse code sequences are
accurately represented with their corresponding English characters,
which is crucial for the decoding process. Expert card (in JSON
format): {"Name": "Morse Code Dictionary Creation Expert", "
Expert_Type": "LLM", "Input_Type": "None", "Output_Type": "Dict[str,
str]"}

**Morse Code Parsing Expert**: Skilled in breaking down the Morse code
string into individual Morse sequences for letters and words. This
expert will handle the input Morse code string, correctly identifying
the separation between letters and words, which is essential for

accurate translation. Expert card (in JSON format): {"Name": "Morse
Code Parsing Expert", "Expert_Type": "LLM", "Input_Type": "str", "
Output_Type": "List[List[str]]"}

**Python Expert of Translation**: Utilizes Python to map Morse code
sequences to English letters using the dictionary provided by the
Morse Code Dictionary Creation Expert. This expert will translate
each Morse code sequence into the corresponding English letter,
ensuring that the translation is accurate and adheres to the Morse
code standards. Expert card (in JSON format): {"Name": "Python Expert
of Translation", "Expert_Type": "Tool", "Input_Type": "List[List[str

]], Dict[str, str]", "Output_Type": "List[str]"}

**Message Reconstruction Expert**: Specializes in reconstructing the
translated English letters into coherent words and sentences. This
expert ensures that the translated letters are correctly combined to
form meaningful words and that these words are arranged into a
readable and grammatically correct sentence. Expert card (in JSON
format): {"Name": "Message Reconstruction Expert", "Expert_Type": "
LLM", "Input_Type": "List[str]", "Output_Type": "str"}

**Final Review and Presentation Expert**: Responsible for reviewing the
reconstructed message to ensure it meets the clarity and accuracy
standards. This expert will also format the final message for
presentation, ensuring that it is clear, concise, and ready for
delivery as the solution to the problem. Expert card (in JSON format)
: {"Name": "Final Review and Presentation Expert", "Expert_Type": "
LLM", "Input_Type": "str", "Output_Type": "str"}

### Specialized Experts Design end ###

Stage 3. Graph Construction and Execution

===== Morse Code Dictionary Creation Expert =====
### Approach Explanation Start ###
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To solve the assigned sub-task of creating a comprehensive Morse code
dictionary, I will map each Morse code symbol (comprising dots ‘.‘
and dashes ‘-‘) to its corresponding English letter. This dictionary
is essential for the subsequent decoding process, as it allows for
the translation of Morse code sequences into readable English text.

**Steps to Create the Morse Code Dictionary**:
1. **Identify Morse Code Symbols**: List all Morse code symbols for

English alphabet letters (A-Z) and numerals (0-9) if necessary.
2. **Map to English Letters**: Each Morse code symbol will be associated

with its corresponding English letter. This mapping is based on the
standard Morse code conventions.

3. **Dictionary Format**: The dictionary will be structured in Python
dictionary format, where keys are Morse code symbols and values are
the corresponding English letters.

This dictionary will be used by the next expert in the workflow, the
Morse Code Parsing Expert, who will parse the Morse code message into
individual symbols using this dictionary for translation.

### Approach Explanation End ###

### My Final Output Start ###
{

"A": ".-",
"B": "-...",
"C": "-.-.",
"D": "-..",
"E": ".",
"F": "..-.",
"G": "--.",
"H": "....",
"I": "..",
"J": ".---",
"K": "-.-",
"L": ".-..",
"M": "--",
"N": "-.",
"O": "---",
"P": ".--.",
"Q": "--.-",
"R": ".-.",
"S": "...",
"T": "-",
"U": "..-",
"V": "...-",
"W": ".--",
"X": "-..-",
"Y": "-.--",
"Z": "--..",
"1": ".----",
"2": "..---",
"3": "...--",
"4": "....-",
"5": ".....",
"6": "-....",
"7": "--...",
"8": "---..",
"9": "----.",
"0": "-----"

}
### My Final Output End ###

===== Morse Code Parsing Expert =====
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### Approach Explanation Start ###

To solve the task of parsing the Morse code string into individual Morse
sequences for letters and words, I will follow these steps:

1. **Understanding Morse Code Structure**: Morse code uses dots (.) and
dashes (-) to represent letters, and spaces are used to separate
different Morse sequences. A single space indicates a separation
between letters within the same word, and a sequence of three spaces
(represented as " / ") indicates a separation between words.

2. **Splitting the Input String**: The input Morse code string will be
split based on the " / " sequence to differentiate between words.
This results in a list where each element is a Morse code sequence
representing a word.

3. **Further Splitting for Letters**: Each word obtained from the
previous step will be further split using a single space as the
delimiter. This will break down the word into individual Morse code
sequences, each representing a letter.

4. **Constructing the Output**: The final output will be a list of lists,
where each sublist represents a word and contains Morse code

sequences for each letter in that word.

This structured approach ensures that the Morse code is accurately parsed
into its constituent letters and words, preparing it for translation
in the subsequent steps of the workflow.

### Approach Explanation End ###

### My Final Output Start ###
[[’- . .-’, ’-.-. --- ..-. ..-. . .’, ’... ..- --. .- .-.’]]
### My Final Output End ###

===== Python Expert of Translation =====
### Python Code Start ###

def translate_morse_code(morse_words, morse_dict):
translated_words = []
for word in morse_words:

translated_word = []
for letter in word.split():

# Using next() with a default value to avoid StopIteration
translated_letter = next((key for key, value in morse_dict.

items() if value == letter), ’?’)
translated_word.append(translated_letter)

translated_words.append(’’.join(translated_word))
return translated_words

morse_words = [[’- . .-’, ’-.-. --- ..-. ..-. . .’, ’... ..- --. .-
.-.’]]

morse_dict = {
"A": ".-",
"B": "-...",
"C": "-.-.",
"D": "-..",
"E": ".",
"F": "..-.",
"G": "--.",
"H": "....",
"I": "..",
"J": ".---",
"K": "-.-",
"L": ".-..",

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

"M": "--",
"N": "-.",
"O": "---",
"P": ".--.",
"Q": "--.-",
"R": ".-.",
"S": "...",
"T": "-",
"U": "..-",
"V": "...-",
"W": ".--",
"X": "-..-",
"Y": "-.--",
"Z": "--..",
"1": ".----",
"2": "..---",
"3": "...--",
"4": "....-",
"5": ".....",
"6": "-....",
"7": "--...",
"8": "---..",
"9": "----.",
"0": "-----"

}

for words in morse_words:
translated = translate_morse_code(words, morse_dict)
print(translated)

### Python Code End ###

### Python Execution Result Start ###
[’TEA’, ’COFFEE’, ’SUGAR’]
### Python Execution Result End ###

===== Message Reconstruction Expert =====
### My Approach Explanation Start ###

As the Message Reconstruction Expert, my primary role is to take the
translated English words provided by the Python Expert of Translation
and construct them into a coherent and grammatically correct

sentence. The translated words are ’TEA’, ’COFFEE’, and ’SUGAR’.
These words represent items, and the context suggests they are a list
of crucial items related to a historical event.

Given this context, my task is to format these words into a readable
English sentence that clearly communicates the items as a list. The
appropriate format for presenting such a list in English would
typically involve separating the items with commas and using the
conjunction "and" before the last item. This ensures the sentence is
both grammatically correct and easy to understand.

### My Approach Explanation End ###

### My Final Output Start ###
Tea, coffee, and sugar
### My Final Output End ###

===== Final Review and Presentation Expert =====
### Explanation of Approach Start ###

As the Final Review and Presentation Expert, my primary role is to ensure
that the reconstructed message from the Message Reconstruction

Expert is clear, accurate, and well-presented. The message provided
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is "Tea, coffee, and sugar," which lists three items crucial to a
historical event.

**Steps in my approach:**
1. **Review Accuracy**: Check if the message accurately reflects the

translated Morse code. The previous experts have translated and
reconstructed the message correctly as "Tea, coffee, and sugar" from
the Morse code ‘- . .- / -.-. --- ..-. ..-. . . / ... ..- --. .-
.-.‘.

2. **Review Clarity**: Ensure the message is clear and understandable.
The use of commas and the conjunction "and" appropriately lists the
items, making the sentence coherent and easy to read.

3. **Presentation**: Format the message to ensure it is ready for
presentation. This involves checking for any grammatical errors,
proper capitalization, and punctuation.

Given the outputs from the previous experts, the message "Tea, coffee,
and sugar" is already well-constructed. My task focuses on confirming
these aspects and presenting the final output.

### Explanation of Approach End ###

### My Final Output Start ###
Tea, coffee, and sugar
### My Final Output End ###

===== Meta-Expert@FINAL_JUDGEMENT =====
### Analysis Start ###

**Problem Recap**: The task was to decode a Morse code message that lists
three items crucial to a historical event. The Morse code provided

was ‘- . .- / -.-. --- ..-. ..-. . . / ... ..- --. .- .-.‘.

**Workflow Review**:
1. **Morse Code Dictionary Creation**: The dictionary was correctly

established, mapping each Morse code sequence to its corresponding
English letter. This is foundational for accurate translation.

2. **Morse Code Parsing**: The parsing expert successfully identified and
separated the Morse code into three distinct word sequences, which

is crucial for correct translation.

3. **Translation Process**: Using the dictionary, the translation expert
accurately converted the Morse code sequences into the English words
’TEA’, ’COFFEE’, and ’SUGAR’. This step was executed correctly,
adhering to Morse code standards.

4. **Message Reconstruction**: The reconstruction expert transformed the
list of words into a coherent and grammatically correct English
phrase: "Tea, coffee, and sugar". This step was crucial in making the
output readable and presentable.

5. **Final Review and Presentation**: The final output "Tea, coffee, and
sugar" was reviewed and presented clearly. The expert ensured that
the output was concise and correctly formatted, suitable for
answering the problem statement.

**Evaluation of Accuracy and Completeness**:
- The translation of Morse code to English was accurate based on the

provided dictionary.
- The final message is meaningful and directly corresponds to the Morse

code given.
- The output is formatted in a way that is easy to understand and

relevant to the context of a list of items.
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**Conclusion**:
The workflow from dictionary creation to final presentation was executed

seamlessly, with each expert fulfilling their role effectively. The
final output accurately reflects the decoded message from the Morse
code, presented in a clear and concise manner.

### Analysis End ###

FINAL EVALAUTION: YES

B.3 SOLUTION USING OPENAI O1-PREVIEW

Hidden Thought Process (thought for 12 seconds)

===== Parsing Morse code =====
I’m separating the Morse code message into three words. Each word is then

further divided into its constituent letters for decoding.

===== Parsing Morse code =====
In this chunk, the task involves parsing Morse code by handling letter

concatenation within words and word separation through slashes. Morse
code typically separates letters with spaces and words with slashes.

===== Breaking down Morse code =====
I’m looking at Morse code to decode - . .-, mapping it to letters. This

makes me think about interpreting symbols as letters.

===== Considering Morse code decoding =====
I’m thinking through the method of reversing Morse code, focusing on

identifying letter partitions and parsing two-letter words to
determine valid Morse code sequences, examining all possible
partitions of the code.

===== Identifying letter patterns =====
I’m working through different Morse code partitions to isolate letter

patterns like T E A and T U. This involves analyzing various
combinations of Morse code symbols.

===== Decoding Morse code =====
It’s interesting to see that the Morse code was parsed as -.-. --- ..-.

..-. . . for ’COFFIE’ and ’T E A’ as the most plausible word. This
suggests a detailed analysis of each symbol is crucial for accurate
translation.

===== Decoding Morse code =====
I’m working through the Morse code sequence, breaking down each symbol to

reveal letters like C, O, F, F, E, E, S, U, G, and ?.

Final solution

To decode the Morse code message ‘- . .- / -.-. --- ..-. ..-. . . / ...
..- --. .- .-.‘, we’ll break it down word by word and letter by
letter.

### Morse Code Reference Table:

| Letter | Morse Code |
| --- | --- |
| A | .- |
| B | -... |
| C | -.-. |
| D | -.. |
| E | . |
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| F | ..-. |
| G | --. |
| H | .... |
| I | .. |
| J | .--- |
| K | -.- |
| L | .-.. |
| M | -- |
| N | -. |
| O | --- |
| P | .--. |
| Q | --.- |
| R | .-. |
| S | ... |
| T | - |
| U | ..- |
| V | ...- |
| W | .-- |
| X | -..- |
| Y | -.-- |
| Z | --.. |

### Decoding Process:

**First Word: ‘- . .-‘**

* ‘-‘ : **T**
* ‘.‘ : **E**
* ‘.-‘ : **A**

Combined: **TEA**

**Second Word: ‘-.-. --- ..-. ..-. . .‘**

* ‘-.-.‘ : **C**
* ‘---‘ : **O**
* ‘..-.‘ : **F**
* ‘..-.‘ : **F**
* ‘.‘ : **E**
* ‘.‘ : **E**

Combined: **COFFEE**

**Third Word: ‘... ..- --. .- .-.‘**

* ‘...‘ : **S**
* ‘..-‘ : **U**
* ‘--.‘ : **G**
* ‘.-‘ : **A**
* ‘.-.‘ : **R**

Combined: **SUGAR**

### Final Decoded Message:

**TEA COFFEE SUGAR**

* * *

These three items-**tea**, **coffee**, and **sugar** - were crucial
commodities in historical trade events, such as the Boston Tea Party
and the global trade networks during the colonial era.

**Answer:**
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TEA COFFEE SUGAR

C PROMPTS USED IN OUR DYNAMIC WORKFLOW APPROACH

Note that placeholders enclosed in {} are used within the prompts to represent variables that will be
substituted with actual values at LLM query time.

Problem Reflection Prompt

### Problem Statement Start ###
{task problem}
### Problem Statement End ###
You are an exceptionally capable Meta-Expert, possessing a unique capability for conducting problem
reflection. Your primary function involves receiving the above problem query, which you must me-
thodically decompose into smaller, more manageable sub-tasks (including sub-tasks that can solved
by implementing Python functions). When designing the solution, you should think about its general-
izability. A robust solution can tackle a similar range of problems effectively with minor adaptations.
This decomposition will later facilitate the creation of a team of specialized experts, enabling efficient
collaboration of experts to address and solve the above problem. When breaking down into sub-tasks,
it is crucial to:
1. Ensure Sequential Logic: Arrange the sub-tasks in a logical, sequential order that facilitates a
smooth workflow from start to finish.
2. Avoid Overlap: Each sub-task must be distinct, with no duplication of efforts across the tasks, en-
suring efficient allocation of expertise.
3. Pursue Optimal Decomposition: Ensure sub-tasks are sufficiently defined to be tackled effectively.
Maintain a manageable number of specific sub-tasks, facilitating easier coordination and management.
In particular, please conduct the ”Problem Reflection” for the given problem: Reflect on the problem,
and describe it in your own words, in bullet points. Analyze how you can decompose the problem into
smaller, more manageable sub-tasks. Note that you can integrate Python-driven sub-tasks by imple-
menting and running modular Python code if necessary. Pay attention to small details, nuances, notes
and examples in the problem description.
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Experts Design Prompt

### Problem Statement Start ###
{task problem}
### Problem Statement End ###
### Problem Reflection Start ###
{problem reflection}
### Problem Reflection End ###
You are an extremely powerful Meta-Expert with the unique ability to design a team of specialized
experts and arrange those experts through a workflow to tackle and solve the above problem. Based on
the above problem statement and its reflection analysis, please design a team of experts and orchestrate
those experts to effectively address and solve the above problem.
In particular, you are to do ”Specialized Experts Design”:
- Design a list of subject-matter experts (SMEs) including, but not limited to, Essayist Expert, Python
Expert, Linguistic Analyst, Mathematician, Data Scientist, and various other Analysts. Each expert is
only to perform one specific sub-task, such as processing data, making decisions, or utilizing Python
tools.
- Arrange the experts to operate in a sequential workflow, meaning each expert’s output becomes the
input for the next, progressively moving towards the final answer. Avoid redundancy of functions
across experts.
- Assign unique names to each expert and provide an clear description of their specific skills, knowl-
edge, and the sub-tasks they are going to perform. Ensure the expert description is comprehensive
and self-contained that encapsulates all important information and details from **Sub-tasks Identifi-
cation**.
- For sub-tasks involving logical reasoning, mathematical operations, data structure manipulation, or
programming-related challenges, you can outline strategic approaches and delegate the specifics of im-
plementation to the Python expert (Tool). The Python expert will translate the instructions into code,
execute it, and return the results. You can include multiple Python experts if needed. Please provide
explicit implementation instructions to the Python expert(s).
- Conclude each expert’s description with a name card in JSON format, summarizing key attributes.
Specify the type of each expert as either ’LLM’ for those based on Large Language Model or ’Tool’
for those utilizing Python tools.
- The final expert should be responsible for reviewing the findings of previous experts and then gener-
ating the final answer to the problem.
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Execution Prompt of Experts Initiated from LLM

### Problem Statement Start ###
{original problem}
### Problem Statement End ###
### Problem Reflection Start ###
{problem reflection}
### Problem Reflection End ###
Please act as {name}. Your role: {role} You are part of a specialized expert team. You are designed to
accomplish a sub-task and collaborate with other experts through a workflow graph to solve the above
problem.
The expert team operates based on the following design:
### Experts Design Start ###
{experts design}
### Experts Design End ###
Each expert, including you, is responsible for a specific sub-task. The workflow is structured so that
each expert’s output becomes the input for the next, progressively moving towards the final answer.
The process should be thought of as sequential steps, where you contribute towards the solution based
on the outputs from the previous experts.{data type instruction} You can think step by step if neces-
sary.
The results from the preceding experts are as follows:
### Experts’ Results Start ###
input data
### Experts’ Results End ###
Please provide a brief explanation of your approach to solving the assigned sub-task. After your
explanation, clearly indicate your final output as follows:
### My Final Output Start ###
[Your final answer here]
### My Final Output End ###
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Execution Prompt of Experts initiated from Symbolic Engine

### Problem Statement Start ###
{original problem}
### Problem Statement End ###
### Problem Reflection Start ###
{problem reflection}
### Problem Reflection End ###
Please act as {name}. Your role: {role} You are a specialized Python expert among a team of experts.
You are designed to write Python code to accomplish a sub-task and collaborate with other experts
through a workflow graph to solve the above problem.
The expert team operates based on the following design:
### Experts Design Start ###
{experts design}
### Experts Design End ###
Each expert, including you, is responsible for a specific sub-task. The workflow is structured so that
each expert’s output becomes the input for the next, progressively moving towards the final answer.
You should take the previous expert’s output as input, write the Python code, execute the code, and
send the output to the next expert.
The results from the preceding experts are as follows:
### Experts’ Results Start ###
input data
### Experts’ Results End ###
Please write the Python code that takes input in {input type} and return output in {output type}.
Guidelines: - Make sure the code includes all the necessary module imports, properly initialize the
variables, and address the problem requirements. - The code needs to be self-contained, and executable
as-is. Output only code, without any explanations or comments.
The code output must follow this structure:

‘‘‘python
def f1(...):

...
return ...

def f2(...):
...
return ...

...

if __name__ == "__main__":
...

‘‘‘

how to read input
The output should be printed without additional words using the ’print()’ method.
Answer:

‘‘‘python
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Verification Prompt

### Problem Statement Start ###
{task problem}
### Problem Statement End ###
### Problem Reflection Start ###
{problem reflection}
### Problem Reflection End ###
**Experts Design:** - Based on the problem reflection, a team of experts has been designed and
organized through a workflow to tackle and solve the problem described above. - Experts are designed
to operate in a sequential workflow, meaning each expert’s output becomes the input for the next,
progressively moving towards the final answer. - The final expert is responsible for reviewing the
findings of previous experts and then generating the final answer to the problem.
Here is a description of the experts’ roles and the workflow structure:
### Experts Design Start ###
{experts design}
### Experts Design End ###
Based on the workflow design, the experts have provided the following results:
### Experts’ Results Start ###
{experts results}
### Experts’ Results End ###
Given the described workflow design and the results produced by the experts, your task is to eval-
uate whether the final output of the ”{final expert}” successfully and correctly solves the problem
presented.
Please provide your analysis and then conclude your evaluation by stating ’FINAL EVALUATION:
YES’ or ’FINAL EVALUATION: NO’.

D DATA SYNTHESIS OF REASONING PROBLEMS

Data Synthesis Prompt 1

Please develop 10 new and diverse reasoning tasks, one per line, inspired by but distinct from the
following 10 example reasoning tasks:
{example tasks}
Guidelines for task creation:
- Ensure each new task is distinctly different from the example tasks provided; avoid mere variations.
- Clearly and accurately define each task, making its objective and scope explicit.
- Design tasks that yield deterministic answers, facilitating the creation of single, definitive standard
answers for subsequent problems derived from these tasks. This helps straightforward evaluation of
correctness.
- Target a moderate to hard difficulty level for each task, requiring thorough analysis and in-depth
reasoning to solve.

Data Synthesis Prompt 2

Please develop 10 new and diverse puzzle tasks, one per line, to test various reasoning abilities.
Guidance:
- Each new puzzle task should clearly and accurately describe what the task is.
- Design puzzle tasks that yield deterministic answers, facilitating the creation of single, definitive
standard answers for subsequent problems derived from these tasks. This helps straightforward evalu-
ation of correctness.
- Puzzle tasks should have a moderate to hard difficulty level - they should require thorough analysis
and in-depth reasoning to work through.
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Problem Validation Prompt

### Problem Start ###
{problem}
### Problem End ###
Your task is to verify whether the above problem is a valid reasoning problem or not.
Valid Criteria:
- It is clear and unambiguous (NO multiple interpretations).
- It provides all necessary information required to solve the problem.
- The problem is logically structured so that it can be approached through reasoning skills. It does not
depend on subjective judgments or opinions.
- The problem is solvable and has one single, definitive correct answer that can be derived through
reasoning.
- There are no internal contradictions or conflicts in the problem.
Please provide a concise analysis and then output ’## VALID ##’ or ’## INVALID ##’. Next, if it is
invalid, please rewrite it into a new valid reasoning problem following the format below. Make sure
the new problem is challenging enough.
### New Valid Problem Start ###
[new problem]
### New Valid Problem End ###
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