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Abstract

A long line of works characterizes the sample complexity of regret minimization
in sequential decision-making by min-max programs. In the corresponding saddle-
point game, the min-player optimizes the sampling distribution against an adver-
sarial max-player that chooses confusing models leading to large regret. The most
recent instantiation of this idea is the decision-estimation coefficient (DEC), which
was shown to provide nearly tight lower and upper bounds on the worst-case ex-
pected regret in structured bandits and reinforcement learning. By re-parametrizing
the offset DEC with the confidence radius and solving the corresponding min-
max program, we propose a novel anytime variant of the Estimation-To-Decisions
algorithm (ANYTIME-E2D). Importantly, the algorithm optimizes the exploration-
exploitation trade-off online instead of via the analysis. Our formulation leads
to a practical algorithm for finite model classes and linear feedback models. We
illustrate the results by deriving improved rates for high-dimensional linear bandits.
Lastly, we point out connections to the information ratio, decoupling coefficient and
PAC-DEC, and numerically evaluate the performance of E2D on simple examples.

1 Introduction

Regret minimization is a widely studied objective in bandits and reinforcement learning theory [Lat-
timore and Szepesvári, 2020a] that has inspired practical algorithms, for example, in noisy zero-order
optimization[e.g., Srinivas et al., 2010] and deep reinforcement learning [e.g., Osband et al., 2016].
Cumulative regret measures the online performance of the algorithm by the total loss suffered due to
choosing suboptimal decisions. Regret is unavoidable to a certain extent as the learner collects infor-
mation to reduce uncertainty about the environment. In other words, a learner will inevitably face the
exploration-exploitation trade-off where it must balance collecting rewards and collecting information.
Finding the right balance is the central challenge of sequential decision-making under uncertainty.

More formally, denote by Π a decision space and O an observation space. Let M be a class of
models, where f = (rf ,Mf ) ∈ M associated with a reward function rf : Π → R and observation
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map Mf : Π → P(O), where P(O) is the set of all probability distributions over O.1 The learner’s
objective is to collect as much reward as possible in n steps when facing a model f∗ ∈ M. The
learner’s prior information is M and the associated reward and observation maps, but does not know
the true instance f∗ ∈ M. The learner constructs a stochastic sequence π1, . . . , πn of decisions
taking values in Π and adapted to the history of observations yt ∼ Mf (πt). The policy of the learner
is the sequence of probability kernels µ1:n = (µt)

n
t=1 that are used to take decisions. The expected

regret of a policy µ1:n and model f∗ after n ∈ N steps is

Rn(µ1:n, f
∗) = max

π∈Π
E

[
n∑

t=1

rf∗(π)− rf∗(πt)

]
The literature studies regret minimization for various objectives, including worst-case and instance-
dependent frequentist regret [Lattimore and Szepesvári, 2020a], Bayesian regret [Russo and Van Roy,
2014] and robust variants [Garcelon et al., 2020, Kirschner et al., 2020a]. For the frequentist analysis,
all prior knowledge is encoded in the model class M. The worst-case regret of policy µ1:n on M
is supf∈M Rn(µ1:n, f), and therefore the optimal minimax regret infµ supf∈M Rn(µ1:n, f) only
depends on M and the horizon n. The Bayesian, in addition, assumes access to a prior ν ∈ P(M),
which leads to the Bayesian regret Ef∼ν [Rn(µ1:n, f)]. Interestingly, the worst-case frequentist regret
and Bayesian regret are dual in the following sense [Lattimore and Szepesvári, 2019]:2

inf
µ1:n

sup
f∈M

Rn(µ1:n, f) = sup
ν∈P(M)

inf
µ1:n

Ef∼ν [Rn(µ1:n, f)] (1)

Unfortunately, directly solving for the minimax policy (or the worst-case prior) is intractable, except
in superficially simple problem. Ths is because the optimization is over the exponentially large
space of adaptive policies. However, the relationship in Eq. (1) has been directly exploited in prior
works, for example, to derive non-constructive upper bounds on the worst-case regret via a Bayesian
analysis [Bubeck et al., 2015]. Moreover, it can be seen as inspiration underlying “optimization-based”
algorithms for regret minimization: The crucial step is to carefully relax the saddle point problem in
a way that preserves the statistical complexity, but can be analyzed and computed more easily. This
idea manifests in several closely related algorithms, including information-directed sampling [Russo
and Van Roy, 2014, Kirschner and Krause, 2018], ExpByOpt [Lattimore and Szepesvári, 2020b,
Lattimore and Gyorgy, 2021], and most recently, the Estimation-To-Decisions (E2D) framework
[Foster et al., 2021, 2023]. These algorithms have in common that they optimize the information trade-
off directly, which in structured settings leads to large improvements compared to standard optimistic
exploration approaches and Thompson sampling. On the other hand, algorithms that directly optimize
the information trade-off can be computationally more demanding and, consequently, are often not
the first choice of practitioners. This is partly due to the literature primarily focusing on statistical
aspects, leaving computational and practical considerations underexplored.

Contributions Building on the results by Foster et al. [2021], we introduce the average-constrained
decision-estimation coefficient (decacϵ ), a saddle-point objective that characterizes the frequentist
worst-case regret in sequential decision-making with structured observations. Compared to the
decision-estimation coefficient of [Foster et al., 2021], the decacϵ is parametrized via the confidence
radius ϵ, instead of the Lagrangian offset multiplier. This allows optimization of the information
trade-off online by the algorithm, instead of via the derived regret upper bound. Moreover, optimizing
the decacϵ leads to an anytime version of the E2D algorithm (ANYTIME-E2D) with a straightforward
analysis. We also point out relations between the decacϵ , the information ratio [Russo and Van Roy,
2016], the decoupling coefficient [Zhang, 2022] and a PAC version of the DEC [Foster et al., 2023].
We further detail how to implement the algorithm for finite model classes and linear feedback models,
and demonstrate the advantage of the approach by providing improved bounds for high-dimensional
linear bandits. Lastly, we report the first empirical results of the E2D algorithm on simple examples.

1.1 Related Work

There is a broad literature on regret minimization in bandits [Lattimore and Szepesvári, 2020a]
and reinforcement learning [Jin et al., 2018, Azar et al., 2017, Zhou et al., 2021, Du et al., 2021,

1To simplify the presentation, we ignore tedious measure-theoretic details in this paper. The reader could
either fill out the missing details, or just assume that all sets, unless otherwise stated, are discrete.

2The result by Lattimore and Szepesvári [2019] was only shown for finite action, reward and observation
spaces, but can likely be extended to the infinite case under suitable continuity assumptions.
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Zanette et al., 2020]. Arguably the most popular approaches are based on optimism, leading to the
widely analysed upper confidence bound (UCB) algorithms [Lattimore and Szepesvári, 2020a], and
Thompson sampling (TS) [Thompson, 1933, Russo and Van Roy, 2016].

A long line of work approaches regret minimization as a saddle point problem. Degenne et al.
[2020b] showed that in the structured bandit setting, an algorithm based on solving a saddle point
equation achieves asymptotically optimal regret bounds, while explicitly controlling the finite-order
terms. Lattimore and Szepesvári [2020b] propose an algorithm based on exponential weights in
the partial monitoring setting [Rustichini, 1999] that finds a distribution for exploration by solving
a saddle-point problem. The saddle-point problem balances the trade-off between the exponential
weights distribution and an information or stability term. The same approach was further refined by
Lattimore and Gyorgy [2021]. In stochastic linear bandits, Kirschner et al. [2021] demonstrated that
information-directed sampling can be understood as a primal-dual method solving the asymptotic
lower bound, which leads to an algorithm that is both worst-case and asymptotically optimal. The
saddle-point approach has been further explored in the PAC setting [e.g., Degenne et al., 2020b,a].

Our work is closely related to recent work by Foster et al. [2021, 2023]. They consider decision
making with structured observations (DMSO), which generalizes the bandit and RL setting. They
introduce a complexity measure, the offset decision-estimation coefficient (offset DEC), defined as
a min-max game between a learner and an environment, and provide lower bounds in terms of the
offset DEC. Further, they provide an algorithm, Estimation-to-Decisions (E2D) with corresponding
worst-case upper bounds in terms of the offset DEC. Notably, the lower and upper bound nearly
match and recover many known results in bandits and RL. More recently, Foster et al. [2023] refined
the previous bounds by introducing the constrained DEC and a corresponding algorithm E2D+.

There are various other results related to the DEC and the E2D algorithm. Foster et al. [2022a] show
that the E2D achieves improved bounds in model-free RL when combined with optimistic estimation
(as introduced by Zhang [2022]). Chen et al. [2022] introduced two new complexity measures based
on the DEC, and how they are necessary and sufficient for reward-free learning and PAC learning.
They also introduced new algorithms based on the E2D algorithm for the above two settings and
various other improvements. Foster et al. [2022b] have shown that the DEC is necessary and sufficient
to obtain low regret for adversarial decision-making. An asymptotically instance-optimal algorithm
for DMSO has been proposed by Dong and Ma [2022], extending a similar approach for the linear
bandit setting [Lattimore and Szepesvari, 2017].

The decision-estimation coefficient is also related to the information ratio [Russo and Van Roy, 2014]
and the decoupling coefficient [Zhang, 2022]. The information ratio has been studied under both
the Bayesian [Russo and Van Roy, 2014] and the frequentist regret [Kirschner and Krause, 2018,
Kirschner et al., 2020b, 2021, 2023] in various settings including bandits, reinforcement learning,
and partial monitoring. The decoupling coefficient was studied for the Thompson sampling algorithm
in contextual bandits [Zhang, 2022], and RL [Dann et al., 2021, Agarwal and Zhang, 2022].

2 Setting

We consider the sequential decision-making problem already introduced in the preface. Recall
that Π is a compact decision space and O is an observation space. The model class M is a set of
tuples f = (rf ,Mf ) containing a reward function rf : Π → R and an observation distribution
Mf : Π → P(O). We define the gap function

∆(π, g) = rg(π
∗
g)− rg(π) ,

where π∗
g = argmaxπ∈Π rg(π) is an optimal decision for model g, chosen arbitrarily if not

unique. A randomized policy is a sequence of kernels µ1:n = (µt)
n
t=1 from histories ht−1 =

(π1, y1, . . . , πt−1, yt−1) ∈ (Π×O)t−1 to sampling distributions P(Π). The filtration generated by
the history ht is Ft. The learner’s decisions π1, . . . , πn are sampled from the policy πt ∼ µt and
observations yt ∼ Mf∗(πt) are generated by an unknown true model f∗ ∈ M. The expected regret
under model f∗ is formally defined as follows:

Rn(µ1:n, f
∗) = E

[
n∑

t=1

Eπt∼µt(ht)[∆(πt, f
∗)]

]
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For now, we do not make any assumption about the reward being observed. This provides additional
flexibility to model a wide range of scenarios, including for example, duelling and ranking feed-
back [Yue and Joachims, 2009, Radlinski et al., 2008, Combes et al., 2015, Lattimore et al., 2018,
Kirschner and Krause, 2021] (e.g. used in reinforcement learning with human feedback, RLHF)
or dynamic pricing [den Boer, 2015]. The setting is more widely known as partial monitoring
Rustichini [1999]. The special case where the reward is part of the observation distribution is called
decision-making with structured observations [DMSO, Foster et al., 2021]. Earlier work studies the
closely related structured bandit setting [Combes et al., 2017].

A variety of examples across bandit models and reinforcement learning are discussed in [Combes
et al., 2017, Foster et al., 2021, 2023, Kirschner et al., 2023]. For the purpose of this paper, we focus
on simple cases for which we can provide tractable implementations. Besides the finite setting where
M can be enumerated, these are the following linearly parametrized feedback models.
Example 2.1 (Linear Bandits, Abe and Long [1999]). The model class is identified with a subset
of Rd and features ϕπ ∈ Rd for each π ∈ Π. The reward function is rf (π) = ⟨ϕ(π), f⟩ and the
observation distribution is Mf (π) = N (⟨ϕπ, f⟩, 1).

The linear bandit setting can be generalized by separating reward and feedback maps, which leads to
the linear partial monitoring framework [Lin et al., 2014, Kirschner et al., 2020b]. Here we restrict
our attention to the special case of linear bandits with side-observations [c.f. Kirschner et al., 2023],
which, for example, generalizes the classical semi-bandit setting Mannor and Shamir [2011]
Example 2.2 (Linear Bandits with Side-Observations). As in the linear bandit setting, we have
M ⊂ Rd, and features ϕπ ∈ Rd that define the reward functions rf (π) = ⟨ϕπ, f⟩. In addition,
observation matrices Mπ ∈ Rmπ×d for each π ∈ Π define mπ-dimensional observation distributions
Mf (π) = N (Mπf, σ

21mπ
). We assume that ϕπϕ

⊤
π ⪯ M⊤

π Mπ, which is automatically satisfied if
ϕ⊤
π is included in the rows of Mπ , i.e. when the reward is part of the observations.

3 Regret Minimization via Saddle-Point Optimization

The goal of the learner is to choose decisions π ∈ Π that achieve a small gap ∆(π, f∗) under the
true model f∗ ∈ M. Since the true model is unknown, the learner has to collect data that provides
statistical evidence to reject models g ̸= f∗ for which the regret ∆(π, g) is large. To quantify the
information-regret trade-off, we use a divergence D(·∥·) defined for distributions in P(O). For a
reference model f , the information (or divergence) function is defined by:

If (π, g) = DKL(Mg(π)∥Mf (π)) ,

where DKL(·∥·) is the KL divergence. Intuitively, If (π, g) is the rate at which the learner collects
statistical information to reject g ∈ M when choosing π ∈ Π and data is generated under the
reference model f . Note that If (π, f) = 0 for all f ∈ M and π ∈ Π. As we will see shortly, the
regret-information trade-off can be written precisely as a combination of the gap function, ∆, and the
information function, If . We remark in passing that other choices such as the Hellinger distance are
also possible, and the KL divergence is mostly for concreteness and practical reasons.

To simplify the notation and emphasize the bilinear nature of the saddle point problem that we study,
we will view ∆, If ∈ RΠ×M

+ as |Π| × |M| matrices (by fixing a canonical ordering on Π and M).
For vectors µ ∈ RΠ and ν ∈ RM, we will frequently write bilinear forms µ∆fν and µIfν. This also
means that by convention, µ will always denote a row vector, while ν will always denote a column
vector. The standard basis for RΠ and RM is (eπ)π∈Π and (eg)g∈M.

3.1 The Decision-Estimation Coefficient

To motivate our approach, we recall the decision-estimation coefficient (DEC) introduced by Foster
et al. [2021, 2023], before introducing the main quantity of interest, the average-constrained DEC.
First, the offset decision-estimation coefficient (without localization) [Foster et al., 2021] is

decoλ(f) = min
µ∈P(Π)

max
g∈M

µ∆eg − λµIfeg

The tuning parameter λ > 0 controls the weight of the information matrix relative to the gaps:
Viewing the above as a two-player zero-sum game, we see that increasing λ forces the max-player
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to avoid models that differ significantly from f under the min-player’s sampling distribution. The
advantage of this formulation is that the information term µIfeg can be telescoped in the analysis,
which directly leads to regret bounds in terms of the estimation error (introduced below in Eq. (8)).
The disadvantage of the λ-parametrization is that the trade-off parameter is chosen by optimizing the
final regret upper bound. This is inconvenient because the optimal choice requires knowledge of the
horizon and a bound on maxf∈M decoλ(f). Moreover, any choice informed by the upper bound may
be conservative, leading to sub-optimal performance.

The constrained decision-estimation coefficient [Foster et al., 2023] is

deccϵ(f) = min
µ∈P(Π)

max
g∈M

µ∆eg s.t. µIfeg ≤ ϵ2 (2)

In this formulation, the max player is restricted to choose models g that differ from f at most by ϵ2 in
terms of the observed divergence under the min-player’s sampling distribution. Note that because
eπIfef = 0 for all eπ ∈ Π, there always exists a feasible solution. For horizon n, the radius can be set
to ϵ2 ≈ βM

n , where βM is a model estimation complexity parameter, thereby essentially eliminating
the trade-off parameter from the algorithm. However, because of the hard constraint, strong duality of
the Lagrangian saddle point problem (for fixed µ) fails, and consequently, telescoping the information
gain in the analysis is no longer easily possible (or at least, with the existing analysis). To achieve
sample complexity deccϵ(f), Foster et al. [2023] propose a sophisticated scheme that combines phased
exploration with a refinement procedure (E2D+).

As the main quantity of interest in the current work, we now introduce the average-constrained
decision-estimation coefficient, defined as follows:

decacϵ (f) = min
µ∈P(Π)

max
ν∈P(M)

µ∆ν s.t. µIfν ≤ ϵ2 (3)

Similar to the deccϵ, the parameterization of the decacϵ is via the confidence radius ϵ2, making the
choice of the hyperparameter straightforward in many cases (more details in Section 3.2). By
convexifying the domain P(M) of the max-player, we recover strong duality of the Lagrangian (for
fixed µ). Thereby, the formulation inherits the ease of choosing the ϵ-parameter from the deccϵ , while,
at the same time, admitting a telescoping argument in the analysis and a much simpler algorithm.

Specifically, Sion’s theorem implies three equivalent Lagrangian representations for Eq. (3):

decacϵ (f) = min
µ∈P(Π)

max
ν∈P(M)

min
λ≥0

µ∆ν − λ(µIfν − ϵ2) (4)

= min
λ≥0,µ∈P(Π)

max
ν∈P(M)

µ∆ν − λ(µIfν − ϵ2) (5)

= min
λ≥0

max
ν∈P(M)

min
µ∈P(Π)

µ∆ν − λ(µIfν − ϵ2) (6)

When fixing the outer problem, strong duality holds for the inner saddle-point problem in each line,
however, the joint program in Eq. (5) is not convex-concave. An immediate consequence of relaxing
the domain of the max player and Eq. (5) is that

deccϵ(f) ≤ decacϵ (f) = min
λ≥0

{decoλ(f) + λϵ2} (7)

The decacϵ can therefore be understood as setting the λ parameter of the decoλ optimally for the given
confidence radius ϵ2. On the other hand, the cost paid for relaxing the program is that there exist model
classes M where the inequality in Eq. (7) is strict, and decacϵ does not lead to a tight characterization
of the regret [Foster et al., 2023, Proposition 4.4]. The remedy is that under a stronger regularity con-
dition and localization, the two notions are essentially equivalent [Foster et al., 2023, Proposition 4.8].

3.2 Anytime Estimation-To-Decisions (Anytime-E2D)

Estimations-To-Decisions (E2D) is an algorithmic framework that directly leverages the decision-
estimation coefficient for choosing a decision in each round. The key idea is to compute a sampling
distribution µt ∈ P(Π) attaining the minimal DEC for an estimate f̂t of the underlying model,
and then define the policy to sample πt ∼ µt. The E2D approach, using the decacϵ formulation,
is summarized in Algorithm 1. To compute the estimate f̂t, the E2D algorithm takes an abstract
estimation oracle EST as input, that, given the collected data, returns f̂t ∈ M. The final guarantee
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Algorithm 1: ANYTIME-E2D
Input : Hypothesis class M, estimation oracle EST, sequence λt ≥ 0 or ϵt ≥ 0, data D0 = ∅

1 for t = 1, 2, 3, . . . do
2 Estimate f̂t = EST(Dt−1)

3 Compute gap and information matrices, ∆ and If̂t ∈ RΠ×M

4 With λt given: µt = argminµ∈P(Π) maxν∈P(M) µ∆ν − λtµIf̂tν

5 With ϵt given: µt = argminµ∈P(Π) maxν∈P(M){µ∆ν : µIf̂tν ≤ ϵ2t }
6 Sample πt ∼ µt and observe yt ∼ Mf∗(πt)
7 Append data Dt = Dt−1 ∪ {(πt, yt)}

depends on the estimation error (or estimation regret), defined as the sum over divergences of the
observation distributions under the estimate f̂t and the true model f∗:

Estn = E

[
n∑

t=1

µtIf̂tef∗

]
(8)

Intuitively, the estimation error is well-behaved if f̂t ≈ f∗, since µtIf∗ef∗ = 0. Equation (8) is
closely related to the total information gain used in the literature on information-directed sampling
[Russo and Van Roy, 2014] and kernel bandits [Srinivas et al., 2010].

To bound the estimation error, Foster et al. [2021] rely on online density estimation (also, online
regression or online aggregation) [Cesa-Bianchi and Lugosi, 2006, Chapter 9]. For finite M, the
default approach is the exponential weights algorithm (EWA), which we provide for reference in
Appendix A. When using this algorithm, the estimation error always satisfies Estn ≤ log(|M|),
see [Cesa-Bianchi and Lugosi, 2006, Proposition 3.1]. While these bounds extend to continuous
model classes via standard covering arguments, the resulting algorithm is often not tractable without
additional assumptions. For linear feedback models (Examples 2.1 and 2.2), one can rely on the
more familiar ridge regression estimator, which, we show, achieves bounded estimation regret
Estn ≤ O(d log(n)). For further discussion, see Appendix A.1.

With this in mind, we state our main result.
Theorem 1. Let λt ≥ 0 be any sequence adapted to the filtration Ft. Then the regret of ANYTIME-
E2D (Algorithm 1) with input sequence λt satisfies for all n ≥ 1:

Rn ≤ ess sup
t∈[n]

{
decacϵt,λt

(f̂t)

ϵ2t

}(
n∑

t=1

ϵ2t + Estn

)
where we defined decacϵ,λ(f) = minµ∈P(Π) maxν∈P(M) µ∆ν − λ(µIfν − ϵ2).

As an immediate corollary, we obtain a regret bound for Algorithm 1 where the sampling distribution
µt is chosen to optimize decacϵt for any sequence ϵt.
Corollary 1. The regret of ANYTIME-E2D (Algorithm 1) with input ϵt ≥ 0 satisfies for all n ≥ 1:

Rn ≤ max
t∈[n],f∈M

{
decacϵt (f)

ϵ2t

}( n∑
t=1

ϵ2t + Estn

)

Importantly, the regret of Algorithm 1 is directly controlled by the worst-case DEC,
maxf∈M decacϵ (f), and the estimation error Estn. It remains to set ϵ2t (respectively λt) ap-
propriately. For a fixed horizon n, we let ϵ2t = Estn

n . With the reasonable assumption that
maxf∈M

{
ϵ−2decacϵ (f)

}
is non-decreasing in ϵ, Corollary 1 reads

Rn ≤ 2nmax
f∈M

{
decac√

Estn/n
(f)

}
. (9)

This almost matches the lower bound Rn ≥ Ω(ndecc1/√n(F))3 [Foster et al., 2023, Theorem 2.2],
up to the estimation error and the beforehand mentioned gap between deccϵ and decacϵ .

3Here, deccϵ(F) = maxf∈co(M) minµ∈P(Π) maxg∈M∪{f}{µ∆ν : µIfeg ≤ ϵ2}.
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Setting decoγ decacϵ
Multi-Armed Bandits |Π|/γ 2ϵ

√
|Π|

Linear Bandits d/4γ ϵ
√
d

Lipschitz Bandits 2γ− 1
d+1 2

d+1
d+2 ϵ

2
d+2

Convex Bandits Õ(d4/γ) Õ(ϵd2)

Table 1: Comparison of decoγ and decacϵ for different settings. Bounds between decoγ and decacϵ can
be converted using Eq. (7). Refined bounds for linear bandits with side-observations are in Lemma 4.

To get an anytime algorithm with essentially the same scaling as in Eq. (9), we set ϵ2t = log(|M|)/t
for finite model classes, and ϵ2t = βM

t if Estt ≤ βM log(t) for βM > 0. For linear bandits,
decacϵ ≤ ϵ

√
d (see Section 3.3), and Estn ≤ d log(n). Choosing ϵ2t = d/t recovers the optimal regret

bound Rn ≤ Õ(d
√
n) [Lattimore and Szepesvári, 2020a]. Alternatively, one can also choose λt

by minimizing an upper bound on maxt∈[n],f∈M
{

decacϵt,λt
(f)/ϵ2t

}
. For example, in linear bandits,

decacϵt,λ ≤ d
4λ + λϵ2t (see Table 1); hence, for ϵ2t = d/t, we can set λt = t/4. Further discussion and

refined upper bound for linear feedback models are in Section 3.3.

Proof of Theorem 1. Let µ∗
t and ν∗t be a saddle-point solution to the offset dec,

decoλt
(f̂t) = min

µ∈P(Π)
max

ν∈P(M)
µ∆ν − λtµIf̂tν

Note that µ∗
t∆ν∗t −λtµ

∗
t Ifν

∗
t ≥ µ∗

t∆ef −λtµ
∗
t Ifef ≥ 0, which implies that λtϵ

2
t ≤ decacϵt,λt

. Next,

Rn = E

[
n∑

t=1

µt∆ef∗

]
=

n∑
t=1

E
[
µt∆ef∗ − λt(µtIf̂tef∗ − ϵ2t ) + λt(µtIf̂tef∗ − ϵ2t )

]
≤

n∑
t=1

E
[
max
g∈M

µt∆f̂t
eg − λt(µtIf̂teg − ϵ2t ) + λt(µtIf̂tef∗ − ϵ2t )

]

=

n∑
t=1

E
[

min
µ∈P(Π)

max
ν∈P(M)

µ∆ν − λt(µIf̂tν − ϵ2t ) + λt(µtIf̂tef∗ − ϵ2t )

]
So far, we only introduced the saddle point problem by maximizing over f∗. The last equality is by
our choice of λt and µt, and noting that ν ∈ P(M) can always be realized as a Dirac. Continuing,

Rn ≤
n∑

t=1

E
[
decacϵt,λt

(f̂t) + λt(µtIf̂tef∗ − ϵ2t )
]

(i)

≤
n∑

t=1

E
[

decacϵt,λt
(f̂t) +

1

ϵ2t
decacϵt,λt

(f̂t)µtIf̂tef∗

]
(ii)

≤ ess sup
t∈[n]

max
f∈M

{
1

ϵ2t
decacϵt,λt

(f)

} n∑
t=1

(
ϵ2t + E

[
µtIf̂tef∗

])
We first drop the negative term in (i) and use the beforehand stated fact that λtϵ

2
t ≤ decacϵt,λt

(f̂t). The
last step, (ii), is taking the maximum out of the sum.

3.3 Certifying Upper Bounds

As shown by Corollary 1, the regret of Algorithm 1 scales directly with the decacϵ . For analysis
purposes, it is however useful to compute upper bounds on the decacϵ to verify the scaling w.r.t. pa-
rameters of interest. Via the equivalence Eq. (7), bounds on the decoλ directly translate to the decacϵ
(see Table 1). For a detailed discussion of upper bounds in various models, we refer to Foster et al.
[2021]. Below, we highlight three connections that are directly facilitated by the decacϵ .
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To this end, we first introduce a variant of the decacϵ where the gap function depends on f :

decac,fϵ (f) = min
µ∈P(Π)

max
ν∈P(M)

µ∆fν s.t. µIfν ≤ ϵ2 , (10)

where ∆f (π, g) = rg(π
∗
g) − rf (π). We remark that for distributions ν ∈ P(M) and µ ∈ P(Π),

the gap ∆f can be decoupled, µ∆fν = δfν + µ∆fef , where we defined δf (g) = rg(π
∗
g)− rf (π

∗
f ).

The following assumption implies that the observations for a decision π are at least as informative as
observing the rewards.
Assumption 1 (Reward Data Processing). The rewards and information matrices are related via the
following data-processing inequality that holds for any µ ∈ P(Π):

|Eπ∼µ[rf (π)− rg(π)]| ≤
√
Eπ∼µ[D(Mf (π)∥Mg(π))]

The next lemma shows that under Assumption 1, decacϵ (f) and decac,fϵ (f) are essentially equivalent,
at least for the typical worst-case bounds where maxf∈M decacϵ (f) ≥ Ω(ϵ).
Lemma 1. If Assumption 1 holds, then

decac,fϵ (f)− ϵ ≤ decacϵ (f) ≤ decac,fϵ (f) + ϵ

The proof is in Appendix C.1. We remark that Algorithm 1 where the sampling distribution is
computed for decac,fϵ (f̂t) and ∆f achieves a bound analogous to Theorem 1, as long as Assumption 1
holds. For details see Lemma 8 in Appendix C.

Upper Bounds via Decoupling First, we introduce the information ratio,

Ψf (µ, ν) =
(µ∆fν)

2

µIfν

The definition is closely related to the Bayesian information ratio [Russo and Van Roy, 2016], where
ν takes the role of a prior over M. The Thompson sampling distribution is µTS

ν =
∑

h∈M νheπ∗
h

.
The decoupling coefficient, dc(f), [Zhang, 2022, Definition 1] is defined as the smallest number
K ≥ 0, such that for all distributions ν ∈ P(M),

µTS
ν ∆fν ≤ inf

η≥0

{
η
∑

g,h∈M

νgνheπ∗
h
(rg − rf )

2 +
K

4η

}
=
√
K
∑

g,h∈M νgνheπ∗
h
(rg − rf )

2 (11)

The next lemma provides upper bounds on the decacϵ (f) in terms of the information ratio, which is
further upper-bounded by the decoupling coefficient.
Lemma 2. With Ψ(f) = maxν∈M minµ∈P(Π) Ψf (µ, ν) and Assumption 1 satisfied, we have

decac,fϵ (f) ≤ ϵ
√
Ψ(f) ≤ ϵ

√
dc(f)

The proof follows directly using the AM-GM inequality, see Appendix C.2. By [Zhang, 2022, Lemma
2], this further implies decac,fϵ ≤ ϵ

√
d. An analogous result for the generalized information ratio

[Lattimore and Gyorgy, 2021] that recovers rates ϵρ for ρ ≤ 1 is given in Appendix C.4.

PAC to Regret Another useful way to upper bound the decac,fϵ is via an analogous definition for
the PAC setting [c.f. Eq. (10), Foster et al., 2023]:

pac-decac,fϵ (f) = min
µ∈P(Π)

max
ν∈M

δfν s.t. µIfν ≤ ϵ2 (12)

Lemma 3. Under Assumption 1,

decac,fϵ (f) ≤ min
p∈[0,1]

{
pac-decac,f

ϵp−1/2(f) + p∆max

}
The proof is given in Appendix B.1.
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Application to Linear Feedback Models To illustrate the techniques introduced, we compute a
regret bound for Algorithm 1 for linear bandits with side-observations (Examples 2.1 and 2.2).
Lemma 4. For linear bandits with side-observations and divergence If (π, g) = ∥Mπ(g − f)∥2,

pac-decac,fϵ (f) ≤ min
µ∈P(Π)

max
b∈Π

ϵ∥ϕb∥V (µ)−1 ≤ ϵ
√
d

where V (µ) =
∑

π∈Π µπMπM
⊤
π . Moreover,

decac,fϵ (f) ≤ min
(
ϵ
√
Ψ(f), 2ϵ2/3d1/3∆1/3

max

)
The proof is given in Appendix B.2. The lemma has the following implications for linear bandits
with side-observations, where we get improved rates in high-dimensional settings.

Remark 1. For linear bandits, Lemma 4 implies that decacϵ (f) ≤ min{ϵd1/2, ϵ2/3d1/3}. For Estn ≤
d log(n), the implied (anytime) regret bound of Algorithm 1 is Rn ≤ Õ(min{d

√
n, d2/3n2/3}).

This rate is better than the standard d
√
n rate in the regime n ≤ d2. For semi-bandits with a “revealing”

action π̂, e.g. Mπ̂ = 1d, the regret bound further improves to Rn ≤ min{d
√
n, d1/3n2/3}, since then

pac-decac,fϵ (f) ≤ ϵ. The corresponding improvement in the regime n ≤ d4 might seem modest, but is
relevant in high-dimensional and non-parametric models. Moreover, in (deep) reinforcement learning,
high-dimensional models are commonly used and the learner obtains side information in the form of
state observations. Therefore, it is plausible that the n2/3 rate is dominant even for a moderate horizon.
Exploring this effect in reinforcement learning is therefore an important direction for future work.

Notably, this improvement is not observed by upper confidence bound algorithms and Thompson sam-
pling, because both approaches discard informative but suboptimal actions early on [c.f. Lattimore
and Szepesvari, 2017]. E2D for a constant offset parameter λ > 0, in principle, attains the better rate,
but only if one pre-commits to a fixed horizon. Lastly, we note that a similar effect was observed
for information-directed sampling in sparse high-dimensional linear bandits [Hao et al., 2020].

3.4 Computational Aspects

For finite model classes, Algorithm 1 can be readily implemented. Since almost no structure is
imposed on the gap and information matrices of size |Π| × |M|, avoiding scaling with |Π| · |M|
seems hardly possible without introducing additional assumptions. Even in the finite case, solving
Eq. (3) is not immediate because the corresponding Lagrangian is not convex-concave. A practical
approach is to solve the inner saddle point for Eq. (5) as a function of λ. Strong duality holds for the
inner problem, and one can obtain a solution efficiently by solving the corresponding linear program
using standard solvers. It then remains to optimize over λ ≥ 0. This can be done, for example, via a
grid search over the range [0,maxf∈M ϵ−2decacϵ (f)].

In the linear setting, the above is not satisfactory because most commonly M is identified with param-
eters in Rd. As noted before, ridge regression can be used instead of online aggregation while preserv-
ing the optimal scaling of the estimation error (see Appendix A.1). The next lemma further shows that
the saddle point problem Eq. (3) can be rewritten to only scale with the size of the decision set |Π|.
Lemma 5. Consider linear bandits with side observations, M = Rd and quadratic divergence,
If (π, g) = ∥Mπ(g − f)∥2, and denote ϕµ =

∑
π∈Π µπϕπ and V (µ) =

∑
π∈Π µπM

⊤
π Mπ . Then

decac,fϵ (f̂t) = min
λ≥0

min
µ∈P(Π)

max
b∈Π

⟨ϕb − ϕµ, f̂t⟩+
1

4λ
∥ϕb∥2V (µ)−1 + λϵ2

Moreover, the objective is convex in µ ∈ P(Π).

The proof is a straightforward calculation provided in Appendix C.5. Note that the saddle point
expression is analogous to Eq. (5), and in fact, one can linearize the inner maximization over P(Π),
such that the inner saddle point becomes convex-concave. This leads to expressions equivalent to
Eqs. (4) and (6), albeit the objective is no longer linear in µ ∈ P(Π). We use Lemma 5 to employ the
same strategy as before: As a function of λ ≥ 0, solve the inner problem of the expression in Lemma 5,
for example, as a convex program with |Π| variables and |Π| constraints (Appendix D). Then all that
remains is to solve a one-dimensional optimization problem over λ ∈ [0,maxf∈M ϵ−2decacϵ (f)]. We
demonstrate this approach in Appendix E to showcase the performance of E2D on simple examples.
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4 Conclusion

We introduced ANYTIME-E2D, an algorithm based on the estimation-to-decisions framework for
sequential decision-making with structured observations. The algorithm optimizes the average-
constrained decision-making coefficient, which can be understood as a reparametrization of the
corresponding offset version. The reparametrization facilitates an elegant anytime analysis and makes
setting all remaining hyperparameters immediate. We demonstrate the improvement with a novel
bound for linear bandits with side-observations, that is not attained by previous approaches. Lastly, we
discuss how the algorithm can be implemented for finite and linear model classes. Nevertheless, much
remains to be done. For example, one can expect the reference model to change very little from round
to round, and therefore, it seems wasteful to solve Eq. (3) from scratch repetitively. Preferable instead
would be an incremental scheme that iteratively computes updates to the sampling distribution.
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Algorithm 2: Exponential Weights Algorithm (EWA) for Density Estimation
Input :Finite model class M, data Dt = {(y1, π1), . . . , (yt, πt)}, Learning rate η > 0

1 Define L(f) = −
∑t

s=1 logMf (ys|πs)
2 Let p(f) ∝ exp(−ηL(f))
3 For convex M: Return

∑
f∈M p(f)f

4 Else: Return f ∼ p(·).

A Online Density Estimation

For any f ∈ M and π ∈ Π, we denote by p(·|π, f) the the density function of the observation
distribution Mf (π) w.r.t. a reference measure over the observation space O. Consider a finite model
class M and the KL divergence,

eπIfeg = Ey∼Mg(π)

[
log

(
p(y|π, g)
p(y|π, f)

)]
(13)

In this case, the estimation error can be written as follows:

Estn = E

[
n∑

t=1

eπt
If̂tef∗

]
= E

[
n∑

t=1

log(p(yt|πt, f
∗)/p(yt|πt, f̂t)

]

= E

[
n∑

t=1

log

(
1

p(yt|πt, f̂t)

)
−

n∑
t=1

log

(
1

p(yt|πt, f∗)

)]
The last line can be understood as the estimation regret of the estimates f̂1, . . . , f̂n under the
logarithmic loss. A classical approach to control this term is the exponential weights algorithm
(EWA) given in Algorithm 2. For the EWA algorithm, we have the following bound.
Lemma 6 (EWA for Online Density Estimation). For any data stream {y1, π1, . . . , yn, πn} the
predictions f̂1, . . . f̂n obtained via Algorithm 2 with η = 1 satisfy

Estn ≤ E

[
n∑

t=1

log

(
1

p(yt|πt, f̂t)

)
− inf

g∈M

n∑
t=1

log

(
1

p(yt|πt, g)

)]
≤ log(|M|) (14)

For a proof, see [Cesa-Bianchi and Lugosi, 2006, Proposition 3.1].

A.1 Bounding the Estimation Error of Projected Regularized Least-Squares

In this section, we consider the linear model from Example 2.2. We denote by ∥ · ∥ the Euclidean
norm. For simplicity, the observation maps Mπ ∈ Rm×d are assumed to have the same output
dimension m ∈ N. The observation distribution is such that yt = Mπt

f∗ + ξt, where ξ ∈ Rm is
random noise such that Et[ξ] = 0 and Et

[
∥ξ∥2

]
≤ σ2. Here, Et[·] = E[·|π1, y1, . . . , πt−1, yt−1, πt]

is the conditional observation in round t including the decision πt chosen in round t.

We will use the quadratic divergence4, eπIfeg = 1
2∥Mπ(g − f)∥2 This choice corresponds to the

Gaussian KL, but we do not require that the noise distribution is Gaussian is the following. In the
linear bandit model, this choice reduces to eπIfeg = 1

2 ⟨ϕπ, g − f⟩2.

Let K ⊂ Rd be a closed convex set. Our goal is to control the estimation regret for the projected
regularized least-squares estimator,

f̂t = argmin
f∈K

t−1∑
s=1

∥Mπs
f − ys∥2 + ∥f∥2V0

= ProjVt

(
V −1
t

t−1∑
s=1

M⊤
πs
ys

)
(15)

where V0 is a positive definite matrix, Vt =
∑t−1

s=1 M
⊤
πs
Mπs + V0 and ProjVt

(·) is the orthogonal
projection w.r.t. the ∥ · ∥Vt

norm. For K = Rd and V0 = η1d, this recovers the standard ridge

4We added a factor of 1
2

for convenience.
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regression. The projection is necessary to bound the magnitude of the squared loss, and the result
will depend on an almost-surely bound on the ‘observed’ diameter,

max
f,g∈K

max
π∈Π

∥Mπ(f − g)∥ ≤ B

Recall that our goal is to bound the estimation error,

Estn = E

[
n∑

t=1

eπtIf̂tef∗

]
= E

[
n∑

t=1

1
2∥Mπt(f

∗ − f̂t)∥2
]

(16)

We remark that one can get the following naive bound by applying Cauchy-Schwarz:

n∑
t=1

∥Mπt
(f∗ − f̂t)∥2 ≤

n∑
t=1

∥Mπt
∥2
V −1
t

∥f∗ − f̂t∥2Vt
≤ O(d2 log(n)2) (17)

The last inequality follows from the elliptic potential lemma and standard concentration inequalities
[Lattimore and Szepesvári, 2020a, Lemma 19.4 and Theorem 20.5]. However, this will lead to an
additional d-factor in the regret that can be avoided, as we see next.

For K = Rd, one-dimensional observations and noise bounded in the range [−B̄, B̄], one can also
directly apply [Cesa-Bianchi and Lugosi, 2006, Theorem 11.7] to get Estn ≤ O(B̄2d log(n)), thereby
improving the naive bound by a factor d log(n). This result is obtained in a more general setting,
where no assumptions, other than boundedness, are placed on the observation sequence y1, . . . , yn.
Here we refine and generalize this result in two directions: First, we allow for the more general
feedback model in with multi-dimensional observations (Example 2.2). Second, we directly exploit
the stochastic observation model to obtain a stronger result that does not require the observation noise
to be bounded.

Theorem 2. Consider the linear observation setting with additive noise and quadratic diver-
gence eπIfeg = 1

2∥Mπ(g − f)∥2, as described at the beginning of this section. Assume that
maxf,g∈M,π∈Π ∥Mπ(f − g)∥ ≤ B and E

[
∥ξt∥2

]
≤ σ2. Then

Estn ≤ (σ2 +B2)E
[
log

(
detVn

detV0

)]
If in addition ∥Mπ∥ ≤ L and V0 = η1d, then Estn ≤ (σ2 +B2) log

(
1 + nL2

ηd

)
.

Remark 2. Note that by the [Lattimore and Szepesvári, 2020a, Theorem 19.4], log
(

detVn

detV0

)
can

further be upper bounded by d log
( traceV0+nL2

d det(V0)1/d

)
, which effectively results the desired bound.

Proof. The proof adapts [György et al., 2013, Theorem 19.8] to multi-dimensional observations and
takes advantage of the stochastic loss function by taking the expectation.

First, define lt(f) =
1
2∥Mπt

f − yt∥2. Then, using that Et[yt] = Mπt
f∗,

Estn = E

[
n∑

t=1

1
2∥Mπt

(f∗ − f̂t)∥2
]
= E

[
n∑

t=1

1
2∥Mπt

f̂t − yt∥2 − 1
2∥Mπt

f∗ − yt∥2
]

= E

[
n∑

t=1

lt(f̂t)− lt(f
∗)

]

Further, by directly generalizing [György et al., 2013, Lemma 19.7], we have that

lt(f̂t+1)− lt(f̂t) ≤ ∇lt(f̂t)V
−1
t ∇lt(f̂t) = (Mπt

f̂t − yt)
⊤M⊤

πt
V −1
t Mπt

(Mπt
f̂t − yt) (18)
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We now start upper bounding the estimation error,

Estn
(i)

≤ ∥f∗∥2 + E

[
n∑

t=1

(
lt(wt)− lt(wt+1)

)]
(ii)

≤ ∥f∗∥2 + E

[
n∑

t=1

(
ξt +Mπt

(f∗ − f̂t−1)
)
Mπt

V −1
t Mπt

(
ξt +Mπt

(f∗ − f̂t−1)
)]

(iii)
= ∥f∗∥2 + E

[
n∑

t=1

ξtMπt
V −1
t Mπt

ξt
)]

+ E

[
n∑

t=1

x̄tMπt
V −1
t Mπt

x̄t

)]
(iv)

≤ ∥f∗∥2 + E

[
n∑

t=1

λmax(MπtV
−1
t Mπt)∥ξt∥2

]
+ E

[
n∑

t=1

λmax(MπtV
−1
t Mπt)∥x̄t∥2

)]
(v)

≤ ∥f∗∥2 + (σ2 +B2)E

[
n∑

t=1

λmax(Mπt
V −1
t Mπt

)

]
(19)

The inequality (i) follows from [Shalev-Shwartz et al., 2012, Lemma 2.3]. For (ii) we used Eq. (18).
For (iii) we used that Et[ξt] = 0. In (iv), we introduce the maximum eigenvalue λmax(A) for
A ∈ Rm×m and denote x̄t = Mπt

(f∗ − ft−1). Lastly, in (v) we used that ∥x̄t∥2 ≤ B and
Et

[
∥ξt∥2

]
≤ σ2.

We conclude the proof with basic linear algebra. Denote by λi(A) the i-th eigenvalue of a matrix
M ∈ Rm×m. Using the generalized matrix determinant lemma, we get

det(Vt−1) = det(Vt −M⊤
πt
Mπt

)

= det(Vt) det(I −M⊤
πt
V −1
t Mπt)

= det(Vt)

m∏
i=1

(1− λi(M
⊤
πt
V −1
t Mπt

))

Note that λi(M
⊤
πt
V −1
t Mπt) ∈ (0, 1]. Next, using that log(1− x) ≤ −x for all x < 1, we get that

log

(
det(Vt−1)

det(Vt)

)
=

m∑
i=1

log(1− λi(M
⊤
πt
V −1
t Mπt

)) ≤ −
m∑
i=1

λi(M
⊤
πt
V −1
t Mπt

)

Rearranging the last display, and bounding the sum by its maximum element, we get

λmax(M
⊤
πt
V −1
t Mπt

) ≤
m∑
i=1

λi(M
⊤
πt
V −1
t Mπt

) ≤ log

(
det(Vt)

det(Vt−1)

)
(20)

The proof is concluded by combining Eqs. (19) and (20).

Remark 3 (Expected Regret). The beauty of Theorem 1 is that the proof uses only in-expectation
arguments. This is unlike most previous analysis, that controls the regret via controlling tail-events,
and bounds on the expected regret are then derived a-posteriori from high-probability bounds. In
the context of linear bandits, Theorem 2 leads to bound on the expected regret that only requires the
noise variance to be bounded, whereas most previous work relies on the stronger sub-Gaussian noise
assumption [e.g. Abbasi-Yadkori et al., 2011].
Remark 4 (Kernel Bandits / Bayesian Optimization). Using the standard ‘kernel-trick’, the analysis
can further be extended to the non-parametric setting where M is an infinite-dimensional reproducing
kernel Hilbert space (RKHS).

B PAC to Regret Bounds

B.1 Proof of Lemma 3

Proof. The Lagrangian for Eq. (12) is

pac-decac,fϵ (f) = min
λ≥0

min
µ∈P(Π)

max
ν∈P(M)

δfν − λ(µIfν − ϵ2).
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Reparametrize any µ ∈ P(Π) as µ̄(p) = (1 − p)eπ∗
f
+ pµ2. We bound decac,fϵ by a function of

pac-decac,fϵ . Starting from Eq. (5), we have

decac,fϵ (f) = min
λ≥0

min
µ∈P(Π)

max
ν∈P(M)

µ∆fν − λ(µIfν − ϵ2)

= min
λ≥0

min
µ̄∈P(Π)

max
ν∈P(M)

µ̄∆fν − λ(µ̄Ifν − ϵ2)

= min
λ≥0

min
0≤p≤1

min
µ2∈P(Π)

max
ν∈P(M)

δfν + pµ2∆fef − λµ̄Ifν − λϵ2

≤ min
λ≥0

min
0≤p≤1

min
µ2∈P(Π)

max
ν∈P(M)

δfν + pµ2∆fef − λpµ2Ifν − λϵ2

≤ min
0≤p≤1

min
λ′≥0

min
µ2∈P(Π)

max
ν∈P(M)

δfν − λ′(µ2Ifν − ϵ2

p
) + p∆max

≤ min
0≤p≤1

pac-decac,fϵ√
p
(f) + p∆max .

B.2 Proof of Lemma 4

Proof of Lemma 4. For the first part, note that

pac-decac,fϵ (f) = min
µ∈P(Π)

min
λ≥0

max
ν∈P(M)

δfν − λµIfν + λϵ2

= min
µ∈P(Π)

min
λ≥0

max
b∈Π

max
g∈M

⟨ϕb, g⟩ − ⟨ϕπ∗
f
, f⟩ − λ∥g − f∥2V (µ) + λϵ2

(i)
= min

µ∈P(Π)
min
λ≥0

max
b∈Π

⟨ϕb − ϕπ∗
f
, f⟩+ 1

4λ
∥ϕb∥2V (µ)−1 + λϵ2

(ii)

≤ min
µ∈P(Π)

min
λ≥0

max
b∈Π

1

4λ
∥ϕb∥2V (µ)−1 + λϵ2

= min
µ∈P(Π)

max
b∈Π

ϵ∥ϕb∥V (µ)−1

(iii)

≤ ϵ
√
d .

Equation (i) follows by computing the maximizer attaining the quadratic form over M = Rd. The
inequality (ii) is by definition of π∗

f and the last inequality (iii) by the assumption that the reward is
observed, respectively, ϕπϕ

⊤
π ⪯ M⊤

π Mπ , and the Kiefer–Wolfowitz theorem.

The second part of the statement follows by combining Lemmas 2 and 3.

C Coefficient Relations Results and Proofs

Lemma 7. Assume Assumption 1 holds, i.e.

(µ(rf − rg))
2 ≤ µIfeg . (21)

Then (∑
g

µ(rf − rg)νg

)2

≤
∑
g

(
µ(rf − rg)

)2
νg ≤ µIfν .

Proof. First Jensen’s inequality, then Eq. (21).
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C.1 Proof of Lemma 1

Proof of Lemma 1. Note that

decacϵ (f) = min
µ∈P(Π)

max
ν∈P(M)

µ∆ν s.t. µIfν ≤ ϵ2

= min
µ∈P(Π)

max
ν∈P(M)

µ∆fν +
∑
g∈M

∑
π∈Π

νgµπ(rf (π)− rg(π)) s.t. µIfν ≤ ϵ2

≤ min
µ∈P(Π)

max
ν∈P(M)

µ∆fν +
√

µIfν s.t. µIfν ≤ ϵ2

≤ ϵ+ min
µ∈P(Π)

max
ν∈P(M)

µ∆fν s.t. µIfν ≤ ϵ2

≤ ϵ+ decac,fϵ (f) s.t. µIfν ≤ ϵ2,

where the first inequality is by Lemma 7. Also, by lower bounding the sum in the second inequality
by −

√
µIfν we get left inequality.

C.2 Proof of Lemma 2

Proof of Lemma 2. For the first inequality, using the definition of decacϵ (f,∆f ) and the AM-GM
inequality:

decac,fϵ (f) = min
λ≥0

max
ν∈P(M)

min
µ∈P(Π)

µ∆fν − λµIfν + λϵ2

≤ min
λ>0

max
ν∈P(M)

min
µ∈P(Π)

(µ∆fν)
2

4λµIfν
+ λϵ2 (22)

= min
λ>0

Ψ(f)

4λ
+ λϵ2 = ϵ

√
Ψ(f) . (23)

Further, by Eq. (11) and Assumption 1 we have µTS
ν ∆fν ≤

√
K
∑

g,h∈M νgνheπ∗
h
(rg − rf )2 ≤√

KµTS
f Ifν, which gives Ψ(f) ≤ K. Plugging this into Eq. (23) gives the second inequality.

C.3 Regret bound for Algorithm 1 defined for ∆f and decac,fϵ

Lemma 8. If Assumption 1 holds, then the regret of ANYTIME-E2D (Algorithm 1) with ∆ replaced
with ∆f is bounded as follows:

Rn ≤ max
t∈[n],f∈M

{
decac,fϵt (f)

ϵ2t

}(
n∑

t=1

ϵ2t + Estn

)
+
√
nEstn

Proof. The proof follows along the lines of the proof of Theorem 1. The main difference is that when
introducing ∆f , we get a term that captures the reward estimation error:

Rn ≤
n∑

t=1

E
[
decacϵt (f̂t) + λt(µtIf̂tef∗ − ϵ2t )

]
+

n∑
t=1

E
[
µt(rf̂t − rf∗)

]
(24)

≤ max
t∈[n]

max
f∈M

{
1

ϵ2t
decacϵt (f)

} n∑
t=1

(
ϵ2t + E

[
µtIf̂tef∗

])
+

√
nEstn (25)

For the last inequality, we used Cauchy-Schwarz and Assumption 1 to bound the error term,

n∑
t=1

E
[
µt(rf̂t − rf∗)

]
≤

√√√√n

n∑
t=1

E
[
(µt(rf̂t − rf∗))2

]
≤

√√√√n

n∑
t=1

E
[
µtIf̂tef

]
=

√
nEstn
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C.4 Generalized Information Ratio

The generalized information ratio [Lattimore and Gyorgy, 2021] for µ ∈ P(Π), ν ∈ P(M), and
α > 1 is defined as

Ψα,f (µ, ν) =
(µ∆fν)

α

µIfν
(26)

For α = 2, we get the standard information ratio introduced by Russo and Van Roy [2014] with ν
as a prior over the model class M. Define Ψα(f) = maxν∈M minµ∈P(Π) Ψα,f (µ, ν). To upper
bound decacϵ , we have the following lemma.
Lemma 9. For the reference model f , the ac-dec can be upper bounded as

decacϵ (f) ≤ min
λ>0

{
λ

1
1−αα

α
1−α (α− 1)Ψα(f)

1
α−1 + λϵ2

}
(27)

for α > 1.

Proof. We start by noting that for x1, . . . , xα ≥ 0, from AM-GM we have that α(x1 ·x2 · · ·xα)
1/α ≤

x1 + · · · + xα. Substituting x2 = x3 = · · ·xα, we get α · x
1
α
1 · x

α−1
α

2 − x1 ≤ (α − 1)x2. Writing

x1 = λµIfν and x2 = α
α

1−α

(
(µ∆ν)α

λµIfν

) 1
α−1

and using the previous inequality with the decacϵ program
gives the result.

The information ratio Ψα,f (µ, ν) can be thought of as the Bayesian information ratio in [Russo and
Van Roy, 2014] where the expectation is taken over the distribution ν of possible environments.
However, for information gain If , [Russo and Van Roy, 2014] use entropy difference in the posterior
distribution of π∗

f before and after the observation is revealed.

C.5 Proof of Lemma 5

Proof of Lemma 5.

decac,fϵ (f̂t) = min
µ∈P(Π)

min
λ≥0

max
b∈Π

max
g∈M

⟨ϕb, g⟩ − ⟨ϕµ, f̂t⟩ − λ∥g − f̂t∥2V (µ) + λϵ2

= min
λ≥0

min
µ∈P(Π)

max
b∈Π

⟨ϕb − ϕµ, f̂t⟩+
1

4λ
∥ϕb∥2V (µ)−1 + λϵ2 . (28)

The first equality is by definition, and the second equality follows from solving the quadratic
maximization over g ∈ M = Rd. To show that the problem is convex in µ, note that taking
inverses of positive semi-definite matrices X,Y is a convex function, i.e. ((1 − η)X + ηY )−1 ⪯
(1− η)X−1 + ηY −1. In particular, V ((1− η)µ1 + ηµ2)

−1 ⪯ (1− η)V (µ1)
−1 + ηV (µ2)

−1. With
this the claim follows.

D Convex Program for Fixed λ

Take Eq. (28) and fix λ > 0. Then we have the following saddle-point problem:

min
µ∈P(Π)

max
b∈Π

⟨ϕb − ϕµ, f̂t⟩+
1

4λ
∥ϕb∥2V (µ)−1 + λϵ2

= λϵ2 + min
µ∈P(Π)

max
b∈Π

⟨ϕb − ϕµ, f̂t⟩+
1

4λ
∥ϕb∥2V (µ)−1

Up to the constant additive term, this saddle point problem is equivalent to the following convex
program

min
y∈R,µ∈RΠ

y s.t. y ≥ ⟨ϕb − ϕµ, f̂t⟩+
1

4λ
∥ϕb∥2V (µ)−1 ∀b ∈ Π

1µ = 1

µπ ≥ 0 ∀π
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E Experiments

All experiments below were run on a semi-bandit problem with a "revealing action", as alluded to in
the paragraph below Remark 1. Specifically, we assume a semi-bandit model where M = Rd and the
features are ϕπ ∈ Rd. For an instance f∗ ∈ M, the reward function is rf∗ = ⟨ϕπ, f

∗⟩ for all π ∈ Π.
There is one revealing (sub-optimal) action π̂ ̸= π∗

f∗ . The observation for any action π ̸= π̂ is

Mf∗(π) = N (⟨ϕπ, f
∗⟩, 1) (29)

Define Mπ̂ = [ϕπ1 , . . . , ϕπ|Π| ]
⊤. Then the observation for action π̂ is

Mf∗(π̂) = N (Mπ̂f
∗,1d) (30)

Thus, the information for any action π ̸= π̂ is

If (g, π) =
σ2

2
⟨ϕπ, g − f⟩2 (31)

while the information for action π̂ is

If (g, π̂) =
σ2

2
∥Mπ̂(g − f)∥2 =

σ2

2

∑
π

⟨ϕπ, g − f⟩2 (32)

For this setting Estn ≤ O(d log(n)) (see Appendix A.1).

E.1 Experimental Setup

Our main objective is to compare our algorithm ANYTIME-E2D to the fixed-horizon E2D algorithm
by Foster et al. [2021]. ANYTIME-E2D and E2D were implemented by using the procedure described
in Section 3.4. Both ANYTIME-E2D and E2D need to solve the inner convex problem in Lemma 5.
To do so we use Frank-Wolfe [Frank and Wolfe, 1956, Dunn and Harshbarger, 1978, Jaggi, 2013]
for 100 steps and warm-starting the optimization at the solution from the previous round, µt−1.
For ANYTIME-E2D we further perform a grid search over λ ∈ [0,maxg∈M ϵ−2decac,f (g)] (with a
discretization of 50 points) to optimize over lambda within each iteration of Frank-Wolfe. For both
the E2D and ANYTIME-E2D algorithm we used the version with the gaps ∆ replaced with ∆f , since
we noticed that both algorithms performed better with ∆f . For E2D, the scale hyperparameter λ was
set using λ =

√
n

4 log(n) as mentioned in Foster et al. [2021, Section 6.1.1]. While for ANYTIME-

E2D we set the hyper-parameter ϵ2t = d/t. Further, we compare to standard bandit algorithms: Upper
Confidence Bound (UCB) and Thompson Sampling (TS) [Lattimore and Szepesvári, 2020a].

E.2 Experiment 1

In this experiment, we aim to demonstrate the advantage of having an anytime algorithm. Specifically,
we tune λ in the E2D algorithm for different horizons n = 200, 500, 1000, 2000, but run it for a
fixed horizon of n = 2000. As such, we expect our algorithm ANYTIME-E2D to perform better
than E2D when λ was tuned for the incorrect horizons (i.e. n = 200, 500, 1000). The feature
dimension is d = 3. The number of decisions is |Π| = 10. We generated the features ϕπ for each
π ∈ Π and parameter f∗ ∈ Rd randomly at the beginning and then kept them fixed throughout the
experimentation. 100 independent runs were performed for each algorithm.

The results of the experiment can be seen as the left plot in Fig. 1. As expected, our algorithm
ANYTIME-E2D performs better than E2D (for n = 200, 500, 1000). This indicates that the E2D al-
gorithm is sensitive to different settings of λ, which is problematic when the horizon is not known
beforehand. Whereas our ANYTIME-E2D algorithm performs well even when the horizon is not
known.

E.3 Experiment 2

In this experiment, we investigate the case when n < d4. As pointed out below Remark 1, we expect
improvement in this regime as the regret bound of our algorithm is Rn ≤ min{d

√
n, d1/3n2/3},

19



0 500 1000 1500 2000
step

0

10

20

30

re
gr

et

0 200 400 600 800 1000
step

0

5

10

15

20

25

re
gr

et

TS UCB E2D-200 E2D-500 E2D-1000 E2D-2000 AnytimeE2D

Figure 1: Running ANYTIME-E2D, TS, UCB, and E2D optimized for different horizons n ∈
{200, 500, 1000, 2000}. Left: The result for horizon n = 2000, and the feature space dimension
d = 3. Right: The result for horizon n = 1000, and the feature space dimension d = 30.

while the default, fixed-horizon E2D algorithm cannot achieve these bounds simultaneously and one
has to pick one of d

√
n or d1/3n2/3 beforehand for setting the scale hyperparameter λ. It is standard

that the choice of λ is made according to the d
√
n regret bound for E2D Foster et al. [2021](which

is not optimal when n << d4), especially, if the horizon is not known beforehand. Thus, we set
the horizon to n = 1000 and the dimension of the feature space to d = 30, which gives us that
n = 1000 << 810000 = d4. The rest of the setup and parameters are the same as in the previous
experiment except for the features ϕπ and f∗ which are again chosen randomly in the beginning and
then kept fixed throughout the experiment.

The results of the experiment can be seen as the right plot in Fig. 1. As expected, our algorithm
ANYTIME-E2D performs better than E2D, UCB, and TS. This indicates that indeed, ANYTIME-
E2D is likely setting λ appropriately to achieve the preferred d1/3n2/3 regret rate for small horizons.
The poor performance of the other algorithms can be justified, since E2D is optimized based on the
worse d

√
n regret rate (for small horizons), while the UCB and TS algorithms are not known to get

regret better than d
√
n.
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