
Trained Models Tell Us How to Make Them Robust to
Spurious Correlation without Group Annotation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Classifiers trained with Empirical Risk Minimization (ERM) tend to rely on at-1

tributes that have high spurious correlation with the target. This can degrade the2

performance on underrepresented (or minority) groups that lack these attributes,3

posing significant challenges for both out-of-distribution generalization and fair-4

ness objectives. Many studies aim to improve robustness to spurious correlation,5

yet nearly all require group annotation for training and/or model selection. This6

constrains their applicability in situations where the nature of the spurious correla-7

tion is not known, or when group labels for certain spurious attributes are either8

insufficient or completely absent. To meet the demand for effectively enhancing the9

model robustness under minimal assumptions about group annotation, we propose10

Environment-based Validation and Loss-based Sampling (EVaLS). It uses the losses11

from a trained model to construct a balanced dataset of high-loss and low-loss12

samples in which the training data group imbalance is mitigated. This results in13

a significant robustness to group shifts when equipped with a simple mechanism14

of last layer retraining. Furthermore, by utilizing environment inference methods15

for creating diverse environments with correlation shifts, EVaLS can potentially16

eliminate the need for group annotation in the validation data. In such a context, the17

worst environment accuracy acts as a reliable surrogate throughout the retraining18

process for tuning hyperparameters and finding a model that performs well across19

diverse group shifts. EVaLS effectively achieves group robustness, showing that20

group annotation is not necessary even for validation. It is a fast, straightforward,21

and effective approach that reaches near-optimal worst group accuracy without22

needing group annotations, marking a new chapter in the robustness of trained23

models against spurious correlation.24

1 Introduction25

Training deep learning models using Empirical Risk Minimization (ERM) on a dataset, poses the26

risk of relying on spurious correlation. These are correlations between certain patterns in the27

training dataset and the target (e.g., the class label in a classification task) despite lacking any causal28

relationship. Learning such correlations as shortcuts can negatively impact the models’ accuracy on29

minority groups that do not contain the spurious patterns associated with the target [1, 2]. This problem30

leads to concerns regarding fairness [3], and can also cause a marked reduction in the performance.31

This occurs particularly when minority groups, which are underrepresented during training, become32

overrepresented at the time of testing, as a result of shifts within the subpopulations [4]. Hence,33

ensuring robustness to group shifts and developing methods that improve worst group accuracy34

(WGA) is crucial for achieving both fairness and robustness in the realm of deep learning.35
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Many studies have proposed solutions to address this challenge. A promising line of research36

focuses on increasing the contribution of minority groups in the model’s training [1, 5–7]. A strong37

assumption that is considered by some previous works is having access to group annotations for38

training or fully/partially fine-tuning a pretrained model [8, 7, 1]. The study by Kirichenko et al. [1]39

proposes that retraining the last layer of a model on a dataset which is balanced in terms of group40

annotation can effectively enhance the model’s robustness against shifts in spurious correlation. While41

these works have shown tremendous robustness performance, their assumption for the availability of42

group annotation restricts their usage.43

In many real-world applications, the process of labeling samples according to their respective groups44

can be prohibitively expensive, and sometimes impractical, especially when all minority groups45

may not be identifiable beforehand. A widely adopted strategy in these situations involves the46

indirect inference of various groups, followed by the training of models using a loss function that is47

balanced across groups [5, 9, 10, 4]. The loss value of the model or its similar metrics is a popular48

signal for recognizing minority groups [5, 9–11]. While most of these techniques necessitate full49

training of a model, Qiu et al. [9] attempt to adapt the DFR method [1] with the aim of preserving50

computational efficiency while simultaneously improving robustness to group shift. However, this51

method still requires group annotations of the validation set for model selection and hyperparameter52

tuning. Consequently, this constitutes a restrictive assumption when adequate annotations for certain53

groups are not supplied. It also applies to situations where some shortcut attributes are completely54

unidentified.55

In this study, we present a novel strategy that effectively mitigates reliance on spurious correlation,56

completely eliminating the need for group annotations during both training and retraining. More57

interestingly, we provide empirical evidence indicating that group annotations are not necessary,58

even for model selection. We show that assembling a diverse collection of environments for model59

selection, which reflect group shifts can serve as an effective alternative approach. Our proposed60

method, Environment-based Validation and Loss-based Sampling (EVaLS), is a technique that61

strengthens the robustness of trained models against spurious correlation, all without relying on group62

annotations. EVaLS is pioneering in its ability to eliminate the need for group annotations at every63

phase, including the model selection step. EVaLS posits that in the absence of group annotations, a64

set of environments showcasing group shifts is sufficient. Worst Environment Accuracy (WEA) could65

then be utilized for model selection. Our findings demonstrate that utilizing environment inference66

methods [12], or even dividing the validation data based on the predictions of a random linear layer67

atop a trained model’s feature space can markedly enhance group robustness. Figure 1 demonstrates68

the overall procedure of the main parts of EVaLS.69

Our empirical observations support prior research which suggests that high-loss data points in a70

trained model may signal the presence of minority groups [5, 9, 10]. Our method, EVaLS, evenly71

selects from both high-loss and low-loss data to form a balanced dataset that is used for last-layer72

retraining. We offer theoretical explanations for the effectiveness of this approach in addressing group73

imbalances, and experimentally show the superiority of our efficient solution to the previous strategies.74

Comprehensive experiments conducted on spurious correlation benchmarks such as CelebA [13],75

Waterbirds [7], and UrbanCars [14], demonstrate that EVaLS achieves optimal accuracy. Moreover,76

when group annotations are accessible solely for model selection, our approach, EVaLS-GL, exhibits77

enhanced performance against various distribution shifts, including attribute imbalance, as seen in78

MultiNLI [15], and class imbalance, exemplified by CivilComments [16]. We further present a79

new dataset, Dominoes Colored-MNIST-FashionMNIST, which depicts a situation featuring multiple80

independent shortcuts, that group annotations are only available for part of them (see Section 2.2). In81

this setting, we show that strategies with lower levels of group supervision are paradoxically more82

effective in mitigating the reliance on both known and unknown shortcuts.83

The main contributions of this paper are summarized as follows:84

• We present EVaLS, a simple yet effective approach that enhances model robustness against85

spurious correlation without relying on ground-truth group annotations.86

• We offer both theoretical and practical insights on how balanced sampling from high-loss and87

low-loss samples can result in a dataset in which the group imbalance is notably mitigated.88

• Using simple environment inference techniques, EVaLS leverages worst environment accu-89

racy as a reliable indicator for model selection.90
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• EVaLS attains near-optimal worst group accuracies or even exceeds them in spurious91

correlation benchmarks, all with zero group annotations.92

• When group annotations are available for model selection, EVaLS delivers state-of-the-art93

performance across a variety of subpopulation shift benchmarks.94

• We introduce a new dataset consisting of two spurious features in which partial supervision95

may negatively impact the performance of the underrepresented groups.96

2 Preliminaries97

2.1 Problem Setting98

We assume a general setting of a supervised learning problem with distinct data partitions Dtr for99

training, Dval for validation, and Dtest for final evaluation. Each dataset comprises a set of paired100

samples (x, y), where x ∈ X represents the data and y ∈ Y denotes the corresponding labels.101

Conventionally, Dtr, Dval, and Dtest are assumed to be uniformly sampled from the same distribution.102

However, this idealized assumption does not hold in many real-world problems where distribution103

shift is inevitable. In this context, we consider the sub-population shift problem [4]. In a general104

form of this setting, it is assumed that data samples consist of different groups Gi, where each105

group comprises samples that share a property. More specifically, the overall data distribution106

p(x, y) =
∑

i αipi(x, y) is a composition of individual group distributions pi(x, y) weighted by their107

respective proportions αi, where
∑

i αi = 1. In this work, we assume that Dtr, Dval, and Dtest are108

composed of identical groups but with a different set of mixing coefficients {αi}. It is noteworthy109

that the validation set may have approximately identical coefficients to those of the training or testing110

sets, or it may have entirely different coefficients.111

Several kinds of subpopulation shifts are defined in the literature, including class imbalance, attribute112

imbalance, and spurious correlation [4]. Class imbalance refers to the cases where there is a difference113

between the proportion of samples from each class, while attribute imbalance occurs when instances114

with a certain attribute are underrepresented in the training data, even though this attribute may not115

necessarily be a reliable predictor of the label. On the other hand, spurious correlation occurs when116

various groups are differentiated by spurious attributes that are partially predictive and correlated with117

class labels but are causally irrelevant. More precisely, we can consider a set of spurious attributes118

S that partition the data into |S| × |Y| groups. When the concurrence of a spurious attribute with a119

label is significantly higher than its correlation with other labels, that spurious attribute could become120

predictive of the label, resulting in deep models relying on the spurious attributes as shortcuts instead121

of the core ones. This is followed by a decrease in the model’s performance on groups that do not122

have this attribute.123

Given a class, the group containing samples with correlated spurious attributes is referred to as124

majority group of that class, while the other groups are called the minority groups. As an example,125

in the Waterbirds dataset [7], for which the task is to classify images of birds into landbird and126

waterbird, there are spurious attributes {water background, land background}. Each background is127

spuriously correlated with its associated label, decompose the data into two majority groups waterbird128

on water background, and landbird on land background, and two minority groups waterbird on land129

background and landbird on water background. Our goal is to make the classifier robust to spurious130

attributes by increasing performance for all groups.131

2.2 Robustness of a Trained Model to an Unknown Shortcut132

In scenarios where group annotations are absent, traditional methods that depend on these annotations133

for training or model selection become infeasible. Moreover, as previously discussed by [14], when134

data contains multiple spurious attributes and annotations are only available for some of them, such135

methods would make the model robust only to the known spurious attributes. To explore such complex136

scenarios, we introduce the Dominoes Colored-MNIST-FashionMNIST (Dominoes CMF) dataset137

(Figure 3(d)). Drawing inspiration from Pagliardini et al. [17] and Arjovsky et al. [18], Dominoes138

CMF merges an image from CIFAR10 [19] at the top with a colored (red or green) MNIST [20] or139

FashionMNIST [21] image at the bottom. The primary label is derived from the CIFAR10 image,140

while the bottom part introduces two independent spurious attributes: color and shape. Although141
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Figure 1: Overview of the proposed method. Given an ERM-trained model (similar to DFR [1]), the
following steps are performed: (a) we randomly split the held-out dataset into train and validation
splits. (b) An environment inference method is utilized to infer diverse environments from the
validation split. (c) We evaluate train split samples on the initial ERM classifier and sort high-loss and
low-loss samples of each class for loss-based sampling. (d) Finally, we perform last-layer retraining
on the loss-based selected samples. Each retraining setting (e.g. different k for loss-based sampling)
is validated based on the worst accuracy of the inferred environments. Note that majority and minority
groups are shown with dark and light colors for better visualization, but are not known in our setting.

annotations for shape are provided for training and model selection, color remains an unknown142

variable until testing. For more details on the dataset refer to the Appendix.143

The illustrations in Figure 3(a-c) depict the outlined scenario. A classifier trained using ERM is144

dependent on both spurious features (Figure 3(b)). Yet, achieving robustness against one spurious145

correlation (Figure 3(c)), does not ensure robustness against both (Figure 3(a)). In Section 4 we146

show that our method, which does not rely on the group annotations of the identified group, achieves147

enhanced robustness against both spurious correlations, outperforming strategies that depend on the148

known group’s information.149

3 Environment-based Validation and Loss-based Sampling150

Our method, EVaLS, is designed to improve the robustness of deep learning models to group shifts151

without the need for group annotation. In line with the DFR [1] approach, we utilize a classifier152

defined as f = hϕ ◦ gθ, where gθ represents a deep neural network serving as a feature extractor, and153

hϕ denotes a linear classifier. The classifier is initially trained with the ERM objective on the training154

dataset Dtr. Subsequently, we freeze the feature extractor gθ and focus solely on retraining the last155

linear layer hϕ using the validation dataset Dval as a held-out dataset.156

We randomly divide the validation set Dval into two subsets, DLL and DMS which are used for last157

layer training and model selection, respectively. In Section 3.1 we explain how to sample a subset158

of DLL that statistically handles the group shifts inherent in the dataset. In Section 3.2 we describe159

how DMS is divided into different environments that are later used for model selection. The optimal160

number of selected samples from DLL and other hyperparameters is determined based on the worst161

environment accuracies among environments that are obtained from DMS . By combining our novel162

sampling and validation strategy, we aim to provide a robust linear classifier hϕ∗ that significantly163

improves the accuracy of underrepresented groups without requiring group annotations of training164

or validation sets. Figure 1 illustrates the comprehensive workflow of the EVaLS methodology.165

Finally in Section 3.3, we provide theoretical support for the loss-based sampling procedure and its166

effectiveness.167

3.1 Loss-Based Instance Sampling168

Following previous works [5, 10, 9], we use the loss value as an indicator for identifying minority169

groups. We first evaluate classifier f on samples within DLL and choose k samples with the highest170

and lowest loss values for a given k. By combining these 2k samples from each class, we construct a171
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balanced set Dbalanced, consisting of high-loss and low-loss samples (see Figure 1(c)). Dbalanced is172

then used for the training of the last layer of the model.173

As depicted in Figure 2, the proportion of minority samples among various percentiles of samples174

with the highest loss values increases as we select a smaller subset of samples with the highest loss.175

This suggests that high and low-loss samples could serve as effective representatives of minority176

and majority groups, respectively. In Section 3.3, we offer theoretical insights explaining why this177

approach could lead to the creation of group-balanced data.178

3.2 Partitioning Validation Set into Environments179

Contrary to common assumptions and practices in the field, precise group labels for the validation180

set are not essential for training models robust to spurious correlations. Our empirical findings,181

detailed in Section 4, reveal that partitioning the validation set into environments that exhibit sig-182

nificant subpopulation shifts can be used for model selection. Under these conditions, the worst183

environment accuracy (WEA) emerges as a viable metric for selecting the most effective model and184

hyperparameters.185

The concept of an environment, as frequently discussed in the invariant learning literature, denotes186

partitions of data that exhibit different distributions. A model that consistently excels across these187

varied environments, achieving impressive worst environment accuracy (WEA), is likely to perform188

equally well across different groups in the test set. Several methods for inferring environments189

with notable distribution shifts have been introduced [12, 22]. Environment Inference for Invariant190

Learning (EIIL) [12], leverages the predictions from an earlier trained ERM model to divide the data191

into two distinct environments that significantly deviate from the invariant learning principle proposed192

by Arjovsky et al. [18], thus creating environments with distribution shifts. Initially, EIIL is employed193

to split DMS into two environments. Subsequently, each environment is further divided based on194

sample labels, resulting in 2× |Y| environments. To measure the difference between the distribution195

of environments, we define group shift of a class as the absolute difference in the proportion of196

a minority group between two environments of that class. A higher group shift suggests a more197

distinct separation between environments. As detailed in the Appendix, environments inferred by198

EIIL demonstrate an average group shift of 28.7% over datasets with spurious correlation. Further199

information about EIIL and the group shift quantities for each dataset can be found in the Appendix.200

We demonstrate that even more straightforward techniques, such as applying a random linear layer201

over the feature embedding space and distinguishing environments based on correctly and incorrectly202

classified samples of each class, can be effective to an extent in several cases (See Appendix E.2).203

It underscores that the feature space of a trained model is a valuable resource of information for204

identifying groups affected by spurious correlations. This supports the logic of previous research that205

employs clustering [23] or contrastive methods [24] in this space to differentiate between groups.206

3.3 Theoretical Analysis207

In this subsection, we provide theoretical insights into why loss-based sampling in a class can be208

utilized to create a balanced dataset of each group under sufficient conditions. We will show the close209

relationship between the existence of a balanced dataset and the difference between the minority vs.210

majority group means, calculated based on the logits of an ERM-trained classifier. Such logits are211

known to depend on spurious features. Hence the mentioned group mean difference is expected to be212

high if spurious features are present in the dataset.213

Consider a binary classification problem with a cross-entropy loss function. Let logits be denoted as214

L. Because loss is a monotonic function of logits, the tails of the distribution of loss across samples215

are equivalent to that of the logits in each class.216

We assume that in feature space (output of gθ) samples from the minority and majority of a class are217

derived from Gaussian distributions. So, we can consider N (µmin, σ
2
min) and N (µmaj, σ

2
maj) as the218

distribution of minority and majority samples in logits space.219

Proposition 3.1 (Feasiblity Of Loss-based Group Balancing). Suppose that L is derived from the220

mixture of two distributions N (µmin, σ
2
min) and N (µmaj , σ

2
maj) with proportion of ε and 1 − ε,221

respectively, where ε ≤ 1
2 . Under sufficient (see App.C) and necessary conditions on µmin, µmaj ,222

σmin and σmaj including inequality 1, there exists α and β such that restricting L to the α-left and223
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Figure 2: The proportion of minority(majority) samples across different classes within various
percentages of DLL samples with highest (lowest) loss for the Waterbirds (a) and CelebA (b) datasets.
Minority group samples are more prevalent among high-loss samples, while majority group samples
dominate the low-loss areas. The error bars are calculated across three ERM models. 1

β-right tails of its distribution results in a group-balanced distribution; in which both components224

are equally represented.225

ϵ ≥ sigmoid

(
−

(µmaj − µmin
)2

2(σ2
maj − σ2

min)
− log

(σmaj

σmin

))
(1)

We provide an outline for proof of Proposition 3.1 here and leave the complete and formal proof and226

also exact bounds to Appendix C. We also analyze the conditions and effects of spurious correlation227

in satisfying these conditions. To proceed with the outline we first define a key concept to outline our228

proof.229

Definition 3.1 (Proportional Density Difference). For any interval I = (a, b] and a mixture distri-
bution εP1(x) + (1 − ε)P2(x), the proportional density difference is defined as the difference of
accumulation of two component distributions in the interval I and is denoted by ∆εPmixture(I).

∆εPmixture(I)
∆
= εP1

(
x ∈ I

)
− (1− ε)P2

(
x ∈ I

)
Proof outline Our proof proceeds with three steps. First, we reformulate the theorem as an equality230

of left- and right-tail proportional distribution differences. In other words, we show that the more231

mass the minority distribution has on one tail, the more mass the majority distribution must have on232

the other tail. Afterward, supposing µmin < µmaj WOLG, we propose a proper range for β values233

on the right tail. We show that when σmaj ≤ σmin, values for α trivially exist that can overcome the234

imbalance between the two distributions. In the last step, for the case in which the variance of the235

majority is higher than the minority, we discuss a necessary and sufficient condition for the existence236

of α and β based on the left-tail proportional density difference using the properties of its derivative237

with respect to α.238

Condition 1 suggests that for a given degree of spurious correlation ϵ and variations σmaj, σmin, an239

essential prerequisite for the efficacy of loss-based sampling is a sufficiently large disparity between240

the mean distributions of minority and majority samples, denoted by ∥µmaj − µmin∥2. This indicates241

that the groups should be distinctly separable in the logits space.242

Although the parameters α and β are theoretically established under certain conditions, their actual243

values are undetermined. Therefore, validation data is necessary to ascertain them. For practicality244

and simplicity in this study, we consider that α = β and explore its corresponding sample number245

(the count of high- and low-loss samples) from a predefined set of possibilities. By leveraging the246

worst environment accuracy, as elaborated in Section 3.2, we identify the optimal candidate that247

ensures uniform accuracy across all environments.248

4 Experiments249

In this section, we evaluate the effectiveness of our proposed method through comprehensive experi-250

ments on multiple datasets and compare it with various methods and baselines. We begin by briefly251

1Note that in the CelebA dataset, only the "blond hair" class includes a minority group.
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Figure 3: Two spurious correlations in a dataset. (a) If both spurious attributes are known, they can be
utilized to fit a classifier that captures the essential attributes. (b) In the absence of knowledge about
both spurious attributes, the model would depend on them for classification, leading to incorrect
classification of minority samples. (c) If one spurious attribute is unknown (Spurious 2), the model
becomes robust only to the known spurious correlation (Spurious 1), but it still underperforms on
minority samples. (d) The Dominoes-CMF dataset, which contains two spurious attributes.

describing evaluation datasets and then introduce baselines and comparative methods. Finally, we252

report and fully explain the results.253

Datasets Our method, along with other baselines, is evaluated on Waterbirds [7], CelebA [13],254

UrbanCars [14], CivilComments [16], and MultiNLI [15]. As per the study by Yang et al. [4],255

Waterbirds, CelebA, and UrbanCars among these datasets exhibit spurious correlation. Among the256

rest, CivilComments has class and attribute imbalance, whereas MultiNLI exhibits attribute imbalance.257

For additional details on the datasets, please refer to the Appendix.258

Baselines We compare our method with four baselines in addition to standard ERM. GroupDRO [7]259

trains a model on the data with the objective of minimizing its average loss on the minority samples.260

This method requires group labels of both the training and validation sets. DFR [1] argues that261

models trained with ERM are capable of extracting the core features of images. Thus, it first trains a262

model with ERM, and retrains only the last linear classifier layer on a group-balanced subset of the263

validation or the held-out training data. While DFR reduces the number of group-annotated samples,264

it still requires group labels in the training phase. GroupDRO + EIIL [12] infers environments of265

the training set and trains a model with GroupDRO on the inferred environments. JTT [5] first trains266

a model with ERM on the dataset, and then retrains it on the dataset by upweighting the samples that267

were misclassified by the initial ERM model. AFR [9] trains a model with ERM on a portion of the268

training set, and retrains the classifier on the weighted held-out training data. The weights assigned to269

retraining samples are based on the loss of the ERM model, upweighting samples from the minority270

groups. Group DRO + EIIL, JTT and AFR remove the reliance on group annotation in the training271

phase. However, unlike our method, they all require group labels for model selection.272

Setup Similar to all the works mentioned in Section 4, we use ResNet-50 [25] pretrained on273

ImageNet [26] for image classification tasks. We used random crop and random horizontal flip274

as data augmentation, similar to [1]. For a fair comparison with the baselines, we did not employ275

any data augmentation techniques in the process of retraining the last layer of the model. For the276

CivilComments and MultiNLI, we use pretrained BERT [27] and crop sentences to 220 tokens length.277

In EvaLS, we use the implementation of EIIL by spuco package [28] for environments inference on278

the model selection set with 20000 steps, SGD optimizer, and learning rate 10−2 for all datasets.279

Model selection and hyper-parameter fine-tuning are done according to the worst environment(or280

group if annotations are assumed to be available) accuracy on the validation set. For each dataset,281

we assess the performance of our model in two cases: fine-tuning the ERM classifier or retraining it.282

For all datasets except MultiNLI, retraining yielded better validation results. We report the results283

of our experiments in two settings: (i) EVaLS, which incorporates loss-based instance sampling for284

training the last layer, and environment inference for model selection. (ii) EVaLS-GL, similar to285

EVaLS except in using ground-truth group labels for model selection. For more details on the ERM286

training and last layer re-training hyperparameters refer to the Appendix.287
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4.1 Results288

The results of our experiments along with the reported results on GroupDRO [7], DFR [1], JTT [5],289

and AFR [9] on five datasets are shown in Table 1. The reported results for GroupDRO, DFR, JTT,290

and AFR except those for the UrbanCars are taken from Qiu et al. [9]. For EIIL+Group DRO, the291

results are reported from Zhang et al. [24]. We report only the worst group accuracy of methods in292

Table 1. The average group accuracies are documented in the Appendix. The Group Info column293

shows whether group annotation is required for training or model selection entry for each method.294

When compared to other methods with the same level of supervision, EVaLS-GL outperforms on four295

of the five datasets, achieving near-optimal worst group accuracy on Waterbirds, demonstrating the296

effectiveness of loss-based sample selection compared to the weighting scheme in AFR [9]. Given297

that AFR employs exponential weights with a temperature parameter to assign a positive weight298

to all samples, proportional to the model’s assigned probability of the correct class, an increase299

in the number of low-loss samples will lead to a corresponding rise in their cumulative weight.300

Consequently, in situations where spurious correlation is high and an uptick in majority samples leads301

to a greater proportion of low-loss over high-loss samples, determining an appropriate parameter302

becomes challenging.303

The comparison between EVaLS and Group DRO + EIIL indicates that when environments are304

available instead of groups, our method, which uses environments solely for model selection and305

utilizes loss-based sampling, is more effective than GroupDRO, a potent invariant learning method,306

which uses this annotation for training.307

Regarding the UrbanCars, which contains an un-annotated spurious attribute, Li et al. [14] has shown308

that shortcut mitigation methods often struggle to address multiple shortcuts simultaneously. Notably,309

techniques such as DFR [1] which are designed to reduce reliance on a specific shortcut feature,310

cannot make the model robust to an unknown shortcut. In contrast, our experiments suggest that311

loss-based methods can mitigate the impact of both labeled and unlabeled shortcut features more312

effectively. Also, in the case of CivilComments, which is viewed as a benchmark for class imbalance,313

EVaLS-GL exceeds all prior methods, even those with complete group annotation, thanks to the class314

balancing for the training of the last layer.315

Our evaluation of EVaLS is based on the spurious correlation benchmarks. This is because, in316

other instances of subpopulation shift, the attributes that differ across groups are not predictive of317

the label, thereby reducing the visibility of these attributes’ effects in the model’s final layers [29].318

Consequently, EIIL, which depends on output logits for prediction, might not effectively separate319

the groups. This observation is further supported by our findings related to the degree of group320

shift between the environments inferred by EIIL for each class in the CivilComments and MultiNLI321

datasets. The average group shift (defined in the Section 3.2) in the environments of the minority322

class of CivilComments is only 5.6±0.8%. Also, environments associated with Classes 1 and 2 in323

MultiNLI show only 1.1±0.3% and 1.9±1.0% group shift respectively. More results and ablation324

studies can be found in the Appendix.325

Mitigating Multiple Shortcut Attributes To evaluate the performance of our method in the case326

of unknown spurious correlations, we train a ResNet-18 [25] model on the Dominoes-CMF dataset.327

We apply DFR [1], EVaLS-GL, and EVaLS on top of the trained ERMs to assess their ability to328

mitigate multiple shortcuts. For the last layer training set, we consider the MNIST/Fashion-MNIST329

feature as the known group label, and the color as the unknown attribute. The results are shown in330

Table 2. To clarify, we calculate the worst-group accuracy on the validation set considering only the331

label of one shortcut, i.e., the lowest accuracy among the four groups based on the combination of the332

target label and the single known shortcut label. Note that EVaLS does not require group annotations.333

Our results confirm findings by Li et al. [14], suggesting that methods using group labels mitigate334

reliance on the known shortcut but not necessarily on the unknown one. EVaLS-GL mitigates this335

phenomenon using its loss-based sampling approach, but surprisingly EVaLS even outperforms336

EVaLS-GL. Combining a loss-based sampling approach for last layer training and environment-based337

model selection, results in a completely group-annotation-free method in a multi-shortcut setting and338

successfully re-weights features to perform well with respect to both spurious attributes.339
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Table 1: A comparison of the worst group accuracy across various methods, ours included, on
five datasets. The Group Info column indicates if each method utilizes group labels of the train-
ing/validation data, with ✓✓denoting that group information is employed during both the training
and validation stages. Bold numbers are the highest results overall, while underlined ones are the
best among methods that may require group annotation only for model selection. CivilComments is
class imbalanced, MultiNLI has imbalanced attributes, and the other three datasets have spurious
correlations. The × sign indicates that the dataset is out of the scope of the method. The mean and
standard deviation are calculated over three runs with different seeds.

Method Group Info Datasets

Train/Val Waterbirds CelebA UrbanCars CivilComments MultiNLI

GDRO [7] ✓/✓ 91.4 88.9 - 69.9 77.7
DFR [1] ✗/✓✓ 92.9±0.2 88.3±1.1 79.6±2.22 70.1±0.8 74.7±0.7

GDRO + EIIL [12] ✗/✓ 77.2±1 81.7±0.8 - 67.0±2.4 -
JTT [5] ✗/✓ 86.7 81.1 - 69.3 72.6
AFR [9] ✗/✓ 90.4±1.1 82.0±0.5 80.2±2.0 68.7±0.6 73.4±0.6

EVaLS-GL (Ours) ✗/✓ 89.4±0.3 84.6±1.6 82.27±1.16 80.5±0.4 75.1±1.2

ERM ✗/✗ 66.4±2.3 47.4±2.3 18.67±2.01 61.2±3.6 64.8±1.9

EVaLS (Ours) ✗/✗ 88.4±3.1 85.3±0.4 82.13±0.92 × ×

Table 2: Worst test group accuracy of ERM, DFR, EVaLS, and EVaLS-GL on the Dominoes-CMF
Dataset. The mean and standard deviation are calculated based on runs with three distinct seeds.

ERM DFR EVaLS-GL EVaLS

Worst Group Accuracy 50.6±1.0 60.2±1.2 63.6±1.3 67.1±4.2

5 Discussion340

This study presents EVaLS, a novel approach to improve robustness to spurious correlations with341

zero group annotation. EVaLS uses loss-based sampling to create a balanced training dataset that342

effectively disrupts spurious correlations and employs EIIL to infer environments for model selection.343

We also explore situations with multiple spurious correlations where not all spurious factors are344

known. In this context, we introduce Dominoes-CMF, a dataset in which two factors are spuriously345

correlated with the label, but only one is identified. Our findings suggest that EVaLS attains near-346

optimal worst test group accuracy on spurious correlation datasets. We also present EVaLS-GL, which347

needs group labels only for model selection. Our empirical tests on various datasets demonstrate348

EVaLS-GL outperforms state-of-the-art methods requiring group data during evaluation or training.349

Note that this paper remains consistent with the findings of Lin et al. [30]. Our approach does not350

involve identifying spurious attributes without auxiliary information. Instead, the objective is to make351

a trained model robust against its reliance on shortcuts. Specifically, conditioning on what a trained352

model learns, we ascertain that both the loss value and the model’s feature space are instrumental in353

mitigating shortcuts and effectuating notable shifts among groups.354

EVaLS and EVaLS-GL may struggle with small datasets due to a low number of selected samples355

for the last layer training. Also, as environment inference from the last layer features is not effective356

for all types of subpopulation shifts, EVaLS is limited to datasets with spurious correlation. Similar357

to other methods in the field, EVaLS prioritizes the worst group accuracy at the cost of less average358

accuracy. Additionally, a notable variance has been observed in some of our experiments.359

EVaLS represents a significant advancement in the development of methods for enhancing model360

fairness and robustness without prior knowledge about group annotations. Future work could explore361

developing environment inference methods effective for other types of subpopulation shift, such as362

attribute and class imbalance.363
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A Related Work506

Robustness to spurious correlation is a critical concern across various machine learning subfields.507

It is a form of out-of-distribution generalization [31] where the distribution shift arises from the508

disproportionate representation of minority groups—those instances that are devoid of the correlated509

spurious patterns associated with their labels [4]. The issue of spurious correlation also intersects510

with the discourse on fairness in machine learning. [32, 33].511

Past studies have proposed a range of strategies to mitigate the models’ reliance on spurious correla-512

tion. Broadly speaking, these methods can be categorized according to the degree of supervision they513

require regarding group labels.514

Invariant learning (IL) methods [18, 34, 35] operate under the assumption of having access to a515

collection of environments that comprise group shift. By imposing invariant conditions on these envi-516

ronments, IL methods strive to create classifiers robust against group-sensitive features. IRM [18] is517

designed to learn a feature extractor, which, when utilized, guarantees the existence of a classifier that518

would be optimal in all training environments. VREx [34] aims to decrease the risk variance among519

different training environments. PGI [36] works by minimizing the distance between the expected520

softmax distribution of labels, conditioned on inputs across both majority and minority environments.521

Lastly, Fishr [35] focuses on bringing the variance of risk gradients closer together across different522

training environments. For scenarios which environments are not available, environment inference523

methods [12, 22] are used to obtain a set of environments. Creager et al. [12] introduce environment524

inference for invariant learning (EIIL), which tries to partition samples into two groups such that the525

objective of IRM [18] is maximized. HRM [22] aims to optimize both an environment inference526

module and an invariant prediction module jointly, with the goal of achieving an invariant predictor.527

When group annotations are accessible, various methods leverage this information to equalize the528

impact of different groups on the model’s loss. The Group Distributionally Robust Optimization529

(GDRO) approach [7], for instance, focuses on optimizing the loss for the worst-performing group530

during training. Kirichenko et al. [1] has shown that models can still learn and extract core data531

features even in the presence high spurious correlation. Consequently, They suggest that retraining532

just the last layer of a model initially trained with Empirical Risk Minimization (ERM) can effectively533

reduce reliance on spurious correlation for predicting class labels. This method, termed Deep Feature534

Re-weighting (DFR), has been validated as not only highly effective but also significantly more535

efficient than earlier techniques that necessitated retraining the full model [8, 7]. However, availability536

of group annotations is considered a serious restrictive assumption.537

Several recent studies have endeavored to enhance model robustness against spurious correlation,538

even in the absence of group annotations [5, 24, 9, 2, 6]. Liu et al. [5] introduce a two-stage method539

that involves training a model using ERM for a number of epochs before retraining it to give more540

weight to misclassified samples. The study by Zhang et al. [24] employs the same two-stage training541

process, but with a twist for the second stage: they utilize contrastive methods. The goal is to542

bring samples from the same class but with divergent predictions closer in the feature space, while543

simultaneously increasing the separation between samples from different classes that have similar544

predictions. Another method, known as automatic feature reweighting (AFR) [9], reweights the last545

layer of an ERM-pretrained model to favor samples that the original model was less accurate on.546

LaBonte et al. [2] refine the last layer of an ERM-trained model through class-balanced finetuning,547

identifying challenging data points by comparing the classifier’s predictions with those of an early-548

stopped version. While these methods have significantly reduced the reliance on group annotations,549

some are still required for validation and model selection. This remains a constraint, particularly550

when the spurious correlation is completely unknown.551

For making a trained model robust to spurious correlation with zero group annotations, recently,552

LaBonte et al. [2] have empirically demonstrated that the class-balanced retraining of a model553

pretrained with ERM can effectively improve the WGA for certain datasets. However, this approach554

fails in datasets with a high degree of spurious correlation.555

13



Table 3: The average and variation percentage (%)(across 3 seeds) of group shift between the
inferred environments using EIIL [12] for each class, which is the absolute difference between the
proportion of a minority group in the two environments of a class. Higher group shift indicates better
separation of environments. In most cases, a significant group shift is observed between the inferred
environments.

Class No. Dataset

Waterbirds CelebA UrbanCars

0 16.6±0.7 3.6±0.2 17.7±1.2, 23.5±0.1, 62.1±1.9

1 50.5±0.3 14.1±0.9 40.7±7.9, 13.8±0.1, 19.2±3.9

B Environment Inference for Invariant Learning556

Consider the training dataset Dtr = {(x(i), y(i))|x(i) ∈ X , y(i) ∈ Y}, where X and Y represent the557

input and output spaces, respectively. This dataset can be partitioned into different environments558

Etr = {e1, ..., en}, such that for any i ̸= j, the data distribution in ei and ej differs. The objective559

of invariant learning is to train a predictor that performs consistently across all environments in Etr.560

Under certain conditions, this predictor is also expected to perform well on etst, a test environment561

with a distribution distinct from the training data. Invariant Risk Minimization (IRM) [18] approaches562

this problem by learning a feature extractor Φ(.) such that a classifier ω(.) exists, where ω ◦ Φ(.)563

performs consistently across all training environments. The practical implementation of the IRM564

objective is to minimize565 ∑
e∈Etr

Re(Φ) + λ||∇ω̄R
e(ω̄ ◦ Φ)||2, (2)

where ω̄ is a constant scalar with a value of 1.0, λ is a hyperparameter, and Re(f) =566

E(x,y)∼pe
[l(f(x), y)] is referred to as the risk on environment e.567

In real-world scenarios, training environments might not always be available. To address this,568

Environment Inference for Invariant Learning (EIIL) [12] partitions samples into two environments569

in a way that maximizes the objective in Eq 2.570

During the training phase, the EIIL algorithm replaces the hard assignment of environments to571

samples with a soft assignment qi(e) = p(e|(x(i), y(i)), where qi is learnable. Consequently, the572

relaxed version of the risk function is defined as R̃e(Φ) = 1
N

∑N
i qi(e)[l(Φ(x

(i)), y(i))]. Given a573

model Φ that has been trained with ERM on the dataset, EIIL optimizes574

q∗ = argmax
q

||∇ω̄R̃
e(ω̄ ◦ Φ)||. (3)

As discussed in Creager et al. [12], using a biased base model Φ could lead to environments exhibiting575

varying degrees of spurious correlation. During the inference phase, the soft assignment is converted576

to a hard assignment. The average group shift between the inferred environments using EIIL is577

illustrated in Table 3.578
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C Theoretical Analysis579

In this section, we establish a more formal description of loss-based sampling for balanced dataset580

creation and then prove it. We thoroughly analyze the close relationship between the availability of581

the balanced dataset and the gap between spurious features of minority and majority groups.582

Consider a binary classification problem with a cross-entropy loss function. Let logits be denoted583

as L. Because loss is a monotonic function of logits, the tails of the distribution of loss across584

samples are equivalent to that of the logits in each class. We assume that in feature space (output585

of gθ) samples from the minority and majority of a class are derived from Gaussian distributions586

N (hmin, t
2
minId) and N (hmaj, t

2
majId), respectively. Before diving into the group balance problem we587

initially show that the distribution of minority and majority samples in the logit space (output of hϕ)588

are Gaussian too.589

Lemma C.1 (Gaussain Distribution of Logits). if Z ∼ N (h, t2Id) in feature space and W ∈ Rd590

then logits L = ⟨W,Z⟩ ∼ N
(
Wh, t2 ∥W∥2

)
591

Proof. Let Z ∼ N (h, t2Id).592

Consider the linear combination L = ⟨W,Z⟩ = WTZ, where W ∈ Rd which is a univariate593

gaussian.594

To find the distribution of L, we need to determine its mean and variance.595

1. Mean of L596

E[L] = E[⟨W,Z⟩] = E[WTZ] = WTE[Z] = WTh = ⟨W,h⟩.

Therefore, the mean of L is Wh.597

2. Variance of L:598

The variance of L can be computed using the properties of covariance. Recall that if Z ∼ N (h, t2Id),599

then the covariance matrix of Z is t2Id.600

The variance of the linear combination L = WTZ is given by:601

Var(L) = Var(WTZ) = WTCov(Z)W.

Given Cov(Z) = t2Id, we have:602

Var(L) = WT (t2Id)W = t2WT IdW = t2 ∥W∥2 ,

where ∥W∥ denotes the Euclidean norm of W .603

Combining the mean and variance results, we conclude that L is normally distributed with mean Wh604

and variance t2 ∥W∥2:605

L = ⟨W,Z⟩ ∼ N (Wh, t2 ∥W∥2).

Thus, we have proved that if Z ∼ N (h, t2Id), then the logits L = ⟨W,Z⟩ follow the distribution606

N (Wh, t2 ∥W∥2).607

From now on, we consider N (µmin, σ
2
min) and N (µmaj, σ

2
maj) as the distribution of minority and608

majority samples in logits space.609

Next, we prove the more formal version of the main proposition 3.1 which describes the existence of610

a balanced dataset, only after we define a key concept, proportional density difference (illustrated in611

figure 4) to outline our proof.612
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Definition C.1 (Proportional Density Difference). For any interval I = (a, b] and a mixture dis-
tribution εP1(x) + (1 − ε)P2(x), proportional density difference is defined by the difference of
accumulation of two component distributions in the interval I and is denoted by ∆εPmixture(I).

∆εPmixture(I)
∆
= εP1

(
x ∈ I

)
− (1− ε)P2

(
x ∈ I

)
Definition C.2 (Tail Proportional Density Difference). For a mixture distribution εP1(x) + (1 −613

ε)P2(x), we define tailL(α) as ∆εPmixture

(
(−∞, α]

)
and tailR(β) as −∆εPmixture

(
(β,+∞)

)
.614

Corollary C.1.
tailL(α) = εF 1(α)− (1− ε)F 2(β)

tailR(α) = (1− ε)
[
1− F 2(β)

]
− ε
[
1− F 1(β)

]
where F 1 and F 2 are CDF of two component distributions.615

Proportional Density Difference

I

ε=0.4

majority

minority

(a)

βα

tailR(β)tailL(α)

ε=0.4

majority

minority

(b)

Figure 4: (a) Illustration of proportion density difference C.1, (b) equation of tailL(α) = tailR(β)
at C.2.

Proposition C.1 (Feasiblity Of Loss-based Group Balancing). Suppose that L is derived from616

the mixture of two distributions N (µmin, σ
2
min) and N (µmaj, σ

2
maj) with proportion of ε and 1 − ε,617

respectively, where ε ≤ 1
2 . There exists α and β such that restricting L to the α-left and β-right tails618

of its distribution results in a group-balanced distribution if and only if σmin ≥ σmaj or619

tailL(
−B +

√
∆

2A
) > 0 (4)

and620

ϵ ≥ sigmoid

(
−

(µmaj − µmin
)2

2(σ2
maj − σ2

min)
− log

(σmaj

σmin

))
(5)

where A =
(

1
2σ2

maj
− 1

2σ2
min

)
, B =

(
µmin
σ2

min
− µmaj

σ2
maj

)
and ∆ =

(µmin−µmaj)
2

σ2
minσ

2
maj

− 4
[
log
(

σmaj

σmin

)
+621

log
(

ϵ
1−ϵ

)][
1

2σ2
maj

− 1
2σ2

min

]
.622

Proof outline Our proof proceeds with three steps. First, we reformulate the theorem as an equality623

of left- and right-tail proportional distribution differences. In other words, we show that the more624

mass the minority distribution has on one tail, the more mass the majority distribution must have on625

the other tail. Afterward, supposing µmin < µmaj WOLG, we propose a proper range for β values626

on the right tail. We show that when σmaj ≤ σmin, values for α trivially exist that can overcome the627

imbalance between the two distributions. In the last step, for the case in which the variance of the628

majority is higher than the minority, we discuss a necessary and sufficient condition for the existence629

of α and β based on the left-tail proportional density difference using the properties of its derivative630

with respect to α.631
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Step 1 Reformulating the problem based on proportional distribution difference.632

We introduce a utility random variable Logit Value Tier as T , which is defined as a function of a633

random variable L.634

Tα,β =


High if L ≥ β

Mid if α < L < β

Low if L ≤ α

(6)

We can rewrite the problem in formal form as finding an α and β which satisfies the following635

equation:636

P
(
g = min

∣∣∣Tα,β ̸= Mid
)
= P

(
g = maj

∣∣∣Tα,β ̸= Mid
)

(7)

Equation 5 now can be rewritten to a more suitable form:637

P
(
g = min

∣∣∣Tα,β ̸= Mid
)
= P

(
g = maj

∣∣∣Tα,β ̸= Mid
)

(8)

⇐⇒
P
(
Tα,β ̸= Mid

∣∣∣g = min
)
P
(
g = min

)
P
(
Tα,β ̸= Mid

) =
P
(
Tα,β ̸= Mid|g = maj

)
P
(
g = maj

)
P
(
Tα,β ̸= Mid

) (9)

⇐⇒ P
(
Tα,β ̸= Mid

∣∣∣g = min
)
P
(
g = min

)
= P

(
Tα,β ̸= Mid

∣∣∣g = maj
)
P
(
g = maj

)
(10)

⇐⇒ εP
(
Tα,β ̸= Mid

∣∣∣g = min
)
= (1− ε)P

(
Tα,β ̸= Mid

∣∣∣g = maj
)

(11)

⇐⇒ ε

[
P
(
Tα,β = Low

∣∣∣g = min
)
+ P

(
Tα,β = High

∣∣∣g = min
)]

= (12)

(1− ε)

[
P
(
Tα,β = Low

∣∣∣g = maj
)
+ P

(
Tα,β = High

∣∣∣g = maj
)]

(13)

⇐⇒ ε

[
P
(
L ≤ α

∣∣∣g = min
)
+ P

(
L ≥ β

∣∣∣g =min
)]

= (14)

(1− ε)

[
P
(
L ≤ α

∣∣∣g = maj
)
+ P

(
L ≥ β

∣∣∣g = maj
)]

(15)

⇐⇒ ε

[
Fmin(α) +

(
1− Fmin(β)

)]
= (1−ε)

[
Fmaj(α) +

(
1− Fmaj(β)

)]
(16)

⇐⇒ εFmin(α)− (1− ε)Fmaj(α) = (1− ε)
[
1− Fmaj(β)

]
− ε
[
1− Fmin(β)

]
(17)

We can see the left side of equation 17 is just a function of alpha. The same goes for the right side of638

the equation which is a function of β.639

Rewriting the left side of the equation as tailL(α) and right side as tailR(β), the problem is now640

reduced to finding an α and β that satisfies641

tailL(α) = tailR(β) (18)

which is shown in figure 4.642

Before reaching out to step two we discuss the properties of tailL and tailR in Lemma C.2.643

Lemma C.2. tailL(α) and tailR(β) are continuous functions and limα→−∞ tailL(α) = 0,644

limα→+∞ tailL(α) = 2ε− 1 < 0 , limβ→+∞ tailR(β) = 0 and limβ→−∞ tailR(β) = 1− 2ε > 0.645

646

Proof. Simply proved by the definition of tail functions and properties of CDF.647

Step 2 Solving the equation 18 for simple cases.648
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Lemma C.3. tailR(µmaj) >
1
2 − ε ≥ 0649

Proof.

tailR(µmaj) = (1− ε)
[
1− Fmaj(µmaj)

]
− ε
[
1− Fmin(µmaj)

]
(19)

= (1− ε)
[
1− ϕ(0)

]
− ε
[
1− ϕ

(µmaj − µmin

σmin

)]
(20)

>
(1− ε)

2
− ε
(
1− 1

2

)
=

1− 2ε

2
=

1

2
− ε (21)

650

Corollary C.2. Because tailR is continuous and limβ→+∞ tailR(β) = 0, based on the mean value651

theorem, any value between zero and (1−2ε)
2 is obtainable by selecting a β in [µ2,+∞).652

According to the previous corollary C.2 finding a positive tailL(α) will satisfy our need. to find a653

suitable point, we employ derivatives and properties of relative PDFs to maximize tailL(α) and find654

a positive value.655

dtailL(α)

dα
= εfmin(α)− (1− ε)fmaj(α) = εfmaj(α)

[fmin(α)

fmaj(α)
− 1− ε

ε

]
(22)

The term [ f
min(α)

fmaj(α) −
1−ε
ε ] has the same sign with derivative of tailL(α), also it’s roots are critical656

points of tailL, analyzing characteristics of log fmin(α)
fmaj(α) is the key insight to find a proper α value.657

log fmin(α)− log fmaj(α) = log
(1− ϵ

ϵ

)

⇒ log
(σmaj

σmin

)
− log

(1− ϵ

ϵ

)
− (α− µmin)

2

2σ2
min

+
(α− µmaj)

2

2σ2
maj

= 0

⇒
( 1

2σ2
maj

− 1

2σ2
min

)
α2 +

(µmin

σ2
min

−
µmaj

σ2
maj

)
α+

[ µ2
maj

2σ2
maj

− µ2
min

2σ2
min

+ log
(σmaj

σmin

)
+ log

( ϵ

1− ϵ

)]
= 0

Because limα→−∞ tailL(α) = 0 and limβ→+∞ tailR(β) < 0 to have a positive tailL(α) we need658

to have an interval which dtailL(α)
dα is positive, for a second degree polynomial like ax2 + bx+ c to659

have positive value, either a ≥ 0 or ∆ > 0, in our case a is
(

1
σ2

maj
− 1

σ2
min

)
. if σmin ≥ σmaj then a ≥ 0660

and the minority CDF function will dominate the majority CDF function in the left-side tail and by661

choosing a negative number with big enough absolute value for alpha and tailL(α) will be positive.662

Step 3 Solving equation 18 for special case σmin < σmaj In case of σmin ≤ σmaj, having ∆ > 0663

is a necessary condition, also derivative of tailL(α) is only positive in (−b−
√
∆

2a , −b+
√
∆

2a ) so the664

maximum of tailL is either in −∞ or in −b+
√
∆

2a . Having tailL(
−b+

√
∆

2a ) > 0 next to ∆ > 0665

condition, would be the necessary and also sufficient in this case.666

B2 =
µ2

min

σ4
min

+
µ2

maj

σ4
maj

− 2
µmajµmin

σ2
majσ

2
min

4AC =
µ2

min

σ4
min

− µ2
min

σ2
majσ

2
min

−
µ2

maj

σ2
majσ

2
min

+
µ2

maj

σ4
maj

+ 4
[
log
(σmaj

σmin

)
+ log

( ϵ

1− ϵ

)][ 1

2σ2
maj

− 1

2σ2
min

]
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Figure 5: Tail thresholds for three cases: (a) minority group variance is less than majority (σmin <
σmaj), (b) the variance of two groups are equal (σmin = σmaj) and (c) the variance of the minority
group is more than majority (σmin > σmaj).

∆ =
(µmin − µmaj)

2

σ2
minσ

2
maj

− 4
[
log
(σmaj

σmin

)
+ log

( ϵ

1− ϵ

)][ 1

2σ2
maj

− 1

2σ2
min

]
≥ 0

⇐⇒ (µmin − µmaj)
2 ≥ 2

[
log
(1− ϵ

ϵ

)
− log

(σmaj

σmin

)][
σ2

maj − σ2
min

]

⇐⇒ ϵ ≥ sigmoid

(
−

(µmaj − µmin
)2

2(σ2
maj − σ2

min)
− log

(σmaj

σmin

))

Next, we investigate properties of the conditions of the proposition C.1 in case of σmaj < σmin.667

Schematic interpretation of these conditions is presented in figure 6.668

• As equation 5 indicates, the minority group is not allowed to be too underrepresented. This669

especially has a direct relation with the difference of means. The more mean values of670

groups are different, the more imbalance can be mitigated through loss-based sampling.671

Mean value difference is especially affected by the spurious correlation, it escalates as the672

model relies on spurious correlation and also when the spurious features between groups are673

too different.674

• On the other hand condition 4 is more complex and doesn’t have a simple closed form, we675

analytically describe its behaviors by fixating the means and calculating the valid values for676

ε. As the results show in figure 6, most of ε are feasible in for σmin < ∆µ as we can see the677

possible region declines with an increase of σmin and valid ε values cease to exist.678
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Figure 6: (a) Conditions if σmin > σmaj, (b), (c), (d) Minimum, maximum and interval length of
feasible ε values across (σmin, σmaj) field for µmin = 0, µmaj = 1.
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Table 4: A comparison of the various methods, ours included, on spurious correlation datasets. The
Group Info column indicates if each method utilizes group labels of the training/validation data,
with ✓✓denoting that group information is employed during both the training and validation stages.
Both the average test accuracy and worst test group accuracy are reported. The mean and standard
deviation are calculated over three runs with different seeds. The numbers in bold represent the
highest results among all methods, while the underlined numbers represent the best results among
methods that do not require group annotation in the training phase.

Method Group Info Waterbirds CelebA UrbanCars

Train/Val Worst Best Worst Best Worst Best

GDRO [7] ✓/✓ 91.4 93.5 88.9 92.9 - -
DFR [1] ✗/✓✓ 92.9±0.2 94.2±0.4 88.3±1.1 91.3±0.3 79.6±2.22 87.5±0.6

GDRO + EIIL [12] ✗/✓ 77.2±1 96.5±0.2 81.7±0.8 85.7±0.1 - -
JTT [5] ✗/✓ 86.7 93.3 81.1 88.0 - -
AFR [9] ✗/✓ 90.4±1.1 94.21.2 82.0±0.5 91.3±0.3 80.2±2.0 87.1±1.2

EVaLS-GL (Ours) ✗/✓ 89.4±0.3 95.1±0.3 84.6±1.6 91.1±0.6 82.27±1.16 88.2±0.6

ERM ✗/✗ 66.4±2.3 90.3±0.5 47.4±2.3 95.5±0.0 18.67±2.01 76.5±4.6

EVaLS (Ours) ✗/✗ 88.4±3.1 94.1±0.1 85.3±0.4 89.4±0.5 82.13±0.92 88.1±0.9

Table 5: A comparison of the various methods, ours included, on CivilComments and MultiNLI.
The Group Info column indicates if each method utilizes group labels of the training/validation data,
with ✓✓denoting that group information is employed during both the training and validation stages.
Both the average test accuracy and worst test group accuracy are reported. The mean and standard
deviation are calculated over three runs with different seeds. The numbers in bold represent the
highest results among all methods, while the underlined numbers represent the best results among
methods that do not require group annotation in the training phase.

Method Group Info CivilComments MultiNLI

Train/Val Worst Best Worst Best

GDRO [7] ✓/✓ 69.9 88.9 77.7 81.4
DFR [1] ✗/✓✓ 70.1±0.8 87.2±0.3 74.7±0.7 82.1±0.2

GDRO + EIIL [12] ✗/✓ 67.0±2.4 90.5±0.2 - -
JTT [5] ✗/✓ 69.3 91.1 72.6 78.6
AFR [9] ✗/✓ 68.7±0.6 89.8±0.6 73.4±0.6 81.4±0.2

EVaLS-GL (Ours) ✗/✓ 80.5±0.4 88.0±0.4 75.1±1.2 81.6±0.2

ERM ✗/✗ 61.2±3.6 92.0±0.0 64.8±1.9 82.6±0.0

D Experimental Details679

D.1 Complete Results680

The complete results on Waterbirds, CelebA, and UrbanCars, in addition to complete results on681

CivilComments and MultiNLI are reported in Tables 4 and 5 respectively. The results for all methods682

except Group DRO + EIIL on all datasets except UrbanCars are reported by Qiu et al. [9]. The683

results for Group DRO + EIIL are taken from Zhang et al. [24]. Also, the results of our method and684

DFR are shown in Table 6685

D.2 Dominoes-Colored-MNIST-FashionMNIST686

Dominoes-Colored-MNIST-FashionMNIST (Dominoes-CMF) is a synthetic dataset. We adopt687

a similar approach to previous works [37, 38, 1] using a modified version of the Dominoes binary688

classification dataset. This dataset consists of images with the top half showing CIFAR-10 images689

[19], divided into two meaningful classes: vehicles (airplane, car, ship, truck) and animals (cat,690

dog, horse, deer). The bottom half displays either MNIST [20] images from classes {0 − 3} or691

Fashion-MNIST [21] images from classes {T-shirt,Dress,Coat,Shirt}. The complex feature (top692
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Table 6: A Comparison of ERM, DFR, EVaLS, and EVaLS-GL on the Dominoes-CMF Dataset. Both
the worst and average of test group accuracies are presented. The mean and standard deviation are
calculated based on runs with three distinct seeds.

Method Worst Average

ERM 50.6±1.0 84.1±0.0

DFR 60.2±1.2 84.6±0.4

EVaLS-GL 63.6±1.3 78.7±1.5

EVaLS 67.1±4.2 78.6±2.0

half) serves as the core feature and the simple feature (bottom half) is linearly separable and correlated693

with the class label at 75%. Furthermore, inspired by the approaches in Zhang et al. [24], Arjovsky694

et al. [18], we intentionally introduce an additional spurious attribute by artificially coloring a subset695

of images in the following manner: 90% of the bottom half images in class c1 are randomly assigned696

a red color, while 10% are assigned a green color, and vice versa for class c2. See Table 7 for more697

details about the dataset statistics.

Table 7: Dominoes-CMF Dataset Statistics
Top part Bottom part

CIFAR-10 Class Color MNIST Fashion-MNIST

c1 (Vehicle) Red 13,500 4,500
Green 1,500 500

c2 (Animal) Red 500 1,500
Green 4,500 13,500

Total 40,000

698

Table 8: ERM Accuracies on Dominoes-CMF Dataset. The mean and standard deviation are reported
based on three runs with different seeds.

Top part Bottom part
CIFAR-10 Class Color MNIST Fashion-MNIST

c1 (Vehicle) Red 99.2±0.01% 95.21.1%
Green 84.5±2.4% 54.7±0.5%

c2 (Animal) Red 56.8±5.6% 86.7±2.4%
Green 96.2±0.5% 99.3±0.2%

D.3 Datasets699

Waterbirds [7] The dataset comprises images of diverse bird species, classified into two categories:700

waterbirds and landbirds. Each image features a bird set against a backdrop of either water or land.701

Interestingly, the background scene acts as a spurious feature in this classification task. Waterbirds are702

primarily shown against water backgrounds, and landbirds against land backgrounds. Consequently,703

waterbirds on water and landbirds on land form the minority groups in the training data. It’s important704

to note that the validation dataset for waterbirds is group-balanced, meaning birds from each class are705

equally represented against both water and land backgrounds. This dataset is mainly categorized as a706

spurious correlation dataset.707

CelebA [13] is a widely used dataset in image classification tasks, featuring annotations for 40708

binary facial attributes such as hair color, gender, and age. Hair color classification is particularly709

prominent in literature focusing on spurious correlation robustness. Notably, gender serves as a710

spurious attribute within this dataset, where a significant majority 94% of individuals with blond hair711
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Figure 7: The proportion of minority and majority samples across different classes within various
percentages of DLL samples with highest and lowest loss for the MultiNLI (a) and UrbanCars (b)
datasets. MultiNLI exhibits attribute imbalance rather than spurious correlation, which explains its
different behavior compared to Waterbirds and CelebA.

are women, while men with blond hair represent a minority group. In addition to spurious correlation712

in the class of blond hair, this dataset also exhibits class imbalance.713

MultiNLI [15] dataset involves a text classification task focused on determining the relationship714

between pairs of sentences: contradiction, entailment, or neutral. Sentences containing negation715

words such as "no" or "never" are under-represented in all three classes, inducing attribute imbalance716

in the dataset. Figure 7 illustrates the distinct behavior of this dataset compared to other datasets that717

contain spurious attributes.718

CivilComments [16] dataset, as part of the WILDS benchmark, involves a text classification task719

focused on labeling online comments as either "toxic" or "not toxic". Each comment is associated720

with 8 attributes, including gender (male, female), sexual orientation (LGBTQ), race (black, white),721

and religion (Christian, Muslim, or other), based on whether these characteristics are mentioned722

in the comment. While there is a small attribute imbalance in the dataset, it can categorized into723

datasets with class imbalance. In this paper, we use the implementation of the dataset by the WILDS724

package [39].725

UrbanCars [14] is an image classification dataset with multiple shortcuts. Each image in the726

dataset consists of a car in the center of the image on a natural scene background, with another object727

to the right of the image. Images are labeled Urban or City according to the type of car present in728

the center. However, each of the backgrounds and the additional objects is highly correlated with729

the label. While the test set consists of 8 environments based on combinations of the core and two730

spurious patterns, the training and validation set consist of four groups, based on combinations of the731

label and only one of the shortcuts.732

D.4 Training Details733

ERM For Waterbirds and CelebA, we utilize the ResNet50 checkpoints available in734

the GitHub repository of Kirichenko et al. [1] as our base model. We use the735

ResNet-50 architecture provided by the torchvision package. In the case of Civil-736

Comments and MultiNLI, we adopt a similar approach to Kirichenko et al. [1], using737

BertForSequenceClassification.from_pretrained(’bert-base-uncased’, ...) from738

the transformers package. The model is trained using the AdamW optimizer with a learning739

rate of 10−5, weight decay of 10−4, and a batch size of 16 for a total of 5 epochs.740

For the UrbanCars dataset, we adhere to the settings described in Li et al. [14], which involves741

training a ResNet-50 model pretrained on ImageNet using the SGD optimizer with a learning rate742

of 10−3, momentum of 0.9, weight decay of 10−4, and a batch size of 128 for 300 epochs. For the743

Dominoes-CMF dataset, we train a ResNet18 model pretrained on ImageNet for 20 epochs with a744

batch size of 128 and an SGD optimizer with a learning rate of 10−3, momentum of 0.9, and weight745

decay of 10−4.746

EVaLS and EVaLS-GL For every dataset, EIIL was utilized with a learning rate of 0.01, a total of747

20000 steps, and a batch size of 128. The last layer of the model was trained on all datasets using the748
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Adam optimizer. A batch size of 32 and a weight decay of 10−4 were used for all datasets. Our method749

was evaluated on the validation sets of each dataset, considering both fine-tuning and retraining of the750

last layer. For all datasets, with the exception of MultiNLI, retraining provided superior validation751

results. The specifics regarding the number of epochs and the ranges for hyperparameter search752

(including learning rate, l1-regularization coefficient (λ), and the number of selected samples (k)) for753

each dataset are as follows:754

• Waterbirds.755

– epochs = 100,756

– lr = 5× 10−4,757

– λ ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5},758

– k ∈ {20, 25, 30, 35, 40, 45, 50, 55, 60}.759

• CelebA760

– epochs = 50,761

– lr = 5× 10−4,762

– λ ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5,763

0.6, 0.7, 0.8, 0.9, 1, 2},764

– k ∈ {50, 100, 150, 200, 250, 300}.765

• UrbanCars766

– epochs = 100,767

– lr ∈ {5× 10−4, 10−3},768

– λ ∈ {0, 0.01, 0.02, 0.05, 0.1, 1},769

– k ∈ {10, 20, 30, 50, 63}.770

• CivilComments771

– epochs = 50,772

– lr = 5× 10−4,773

– λ ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5,774

0.6, 0.7, 0.8, 0.9, 1, 2},775

– k ∈ {500, 750, 1000, 1250, 1500}.776

• MultiNLI777

– epochs = 200,778

– lr ∈ {10−2, 10−3},779

– λ ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5},780

– k ∈ {20, 30, 40, 50, 60, 75, 100, 125, 150, 200, 250, 300}.781
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E Ablation Study782

E.1 Use of EIIL with DFR and AFR783

We conducted an ablation study to investigate the impact of using environments inferred from EIIL on784

model selection. Specifically, we benchmarked the performance of DFR and AFR with EIIL-inferred785

groups. The results, presented in Table 9, demonstrate the effectiveness of incorporating EIIL-inferred786

groups in model selection. The results show that while EIIL-inferred groups reduce the performance787

compared to ground-truth annotations for model selection, they still can be effective for robustness to788

an extent. Moreover, EVaLS outperforms these two methodw when using EIIL inferred environments.789

Table 9: Results of DFR and AFR with EIIL-inferred environment for model selection.
Method Waterbirds Celeba

DFR (with EIIL) 92.21± 0.02 85.55± 1.0
AFR (with EIIL) 82.6± 0.04 72.5± 0.01

E.2 Other Group Inference Methods790

In addition to EIIL, other group inference methods could be utilized for partitioning the model791

selection set into environments.792

Error Splitting JTT [5] partitions data into two correctly classified and misclassified sets based793

on the predictions of a model trained with ERM. We split each of these two sets based on labels of794

samples, obtaining |Y| × 2 environments.795

Random Classifier Splitting uses a random classifier to classify features obtained from a model796

trained with ERM into correctly classified and misclassified sets. Similar to error splitting, we split797

the sets based on group labels. The difference between error splitting and random classifier splitting798

is solely in the reinitialization of the classification layer.799

The results for EVaLS-ES (EVaLS+Error Sampling) and EVaLS-RC (EVaLS+Random Classifier) are800

shown in Table 10. One limitation of error splitting is that in datasets with noisy labels or corrupted801

images, samples that an ERM model misclassifies may not always belong to minority groups. In these802

situations, choosing models based on their accuracy on corrupted data could lead to the selection of803

models that are not robust to spurious correlations. This is demonstrated by the results of EVaLS-ES804

on the CelebA dataset.805

This shortcoming of error splitting can be alleviated by employing a random classifier instead of806

the ERM-trained one. Due to the feature-level similarity between minority and majority samples in807

datasets affected by spurious correlation [23, 1, 29], it is expected that the classifier can differentiate808

between the groups to some extent. As shown in Table 10, surprisingly, EVaLS-RC produces results809

that are generally comparable to EVaLS. However, the performance of this method may have high810

variance, depending on the different initializations of the classifier.811

Table 10: The performances of three environment inference methods, when combined with loss-based
sample selection, are evaluated on spurious correlation benchmarks. The mean and standard deviation
values are calculated over three separate runs, each initiated with a different seed.

Method Waterbirds CelebA UrbanCars

Worst Average Worst Average Worst Average

EVaLS-ES 82.1±1.2 94.3±0.04 48.4±11.6 69.5±6.5 79.2±2.9 86.1±0.9

EVaLS-RC 88.7±1.0 94.3±1.1 78.1±5.1 93.5±0.2 82.4±3.2 88.2±0.8

EVaLS 88.4±3.1 94.1±0.1 85.3±0.4 89.4±0.5 79.4±3.1 86.5±1.5
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F Societal Impacts812

Real-world datasets often encapsulate social biases that stem from entrenched stereotypes and813

historical discrimination, affecting various groups such as genders and races. Machine learning814

methods, which learn the correlation between patterns in input data and their targets (e.g., labels815

in a classification task) [40], inadvertently absorb this bias. This unintended consequence leads to816

fairness issues in many applications. While strategies to mitigate such biases have been proposed817

(as discussed comprehensively in Section A), societal biases are not always known and determined.818

We believe that our work, as it addresses these unidentified biases, takes a significant step towards819

making machine learning fairer for our society.820

G Computational Resources821

Each experiment was conducted on one of the following GPUs: NVIDIA A100 with 80G memory,822

NVIDIA Titan RTX with 24G memory, Nvidia GeForce RTX 3090 with 24G memory, and NVIDIA823

GeForce RTX 3080 Ti with 12G memory.824
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NeurIPS Paper Checklist825

1. Claims826

Question: Do the main claims made in the abstract and introduction accurately reflect the827

paper’s contributions and scope?828

Answer: [Yes]829

Justification: The scope of the effectiveness and main claims are clearly demonstrated in the830

abstract and introduction.831

Guidelines:832

• The answer NA means that the abstract and introduction do not include the claims833

made in the paper.834

• The abstract and/or introduction should clearly state the claims made, including the835

contributions made in the paper and important assumptions and limitations. A No or836

NA answer to this question will not be perceived well by the reviewers.837

• The claims made should match theoretical and experimental results, and reflect how838

much the results can be expected to generalize to other settings.839

• It is fine to include aspirational goals as motivation as long as it is clear that these goals840

are not attained by the paper.841

2. Limitations842

Question: Does the paper discuss the limitations of the work performed by the authors?843

Answer: [Yes]844

Justification: The limitations are discussed in the discussion section.845

Guidelines:846

• The answer NA means that the paper has no limitation while the answer No means that847

the paper has limitations, but those are not discussed in the paper.848

• The authors are encouraged to create a separate "Limitations" section in their paper.849

• The paper should point out any strong assumptions and how robust the results are to850

violations of these assumptions (e.g., independence assumptions, noiseless settings,851

model well-specification, asymptotic approximations only holding locally). The authors852

should reflect on how these assumptions might be violated in practice and what the853

implications would be.854

• The authors should reflect on the scope of the claims made, e.g., if the approach was855

only tested on a few datasets or with a few runs. In general, empirical results often856

depend on implicit assumptions, which should be articulated.857

• The authors should reflect on the factors that influence the performance of the approach.858

For example, a facial recognition algorithm may perform poorly when image resolution859

is low or images are taken in low lighting. Or a speech-to-text system might not be860

used reliably to provide closed captions for online lectures because it fails to handle861

technical jargon.862

• The authors should discuss the computational efficiency of the proposed algorithms863

and how they scale with dataset size.864

• If applicable, the authors should discuss possible limitations of their approach to865

address problems of privacy and fairness.866

• While the authors might fear that complete honesty about limitations might be used by867

reviewers as grounds for rejection, a worse outcome might be that reviewers discover868

limitations that aren’t acknowledged in the paper. The authors should use their best869

judgment and recognize that individual actions in favor of transparency play an impor-870

tant role in developing norms that preserve the integrity of the community. Reviewers871

will be specifically instructed to not penalize honesty concerning limitations.872

3. Theory Assumptions and Proofs873

Question: For each theoretical result, does the paper provide the full set of assumptions and874

a complete (and correct) proof?875

Answer: [Yes]876
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Justification: All the lemmas and propositions are stated upon exact definitions, assumptions877

and conditions. All the theorems, formulas, and proofs in the paper are numbered and878

cross-referenced.879

Guidelines:880

• The answer NA means that the paper does not include theoretical results.881

• All the theorems, formulas, and proofs in the paper should be numbered and cross-882

referenced.883

• All assumptions should be clearly stated or referenced in the statement of any theorems.884

• The proofs can either appear in the main paper or the supplemental material, but if885

they appear in the supplemental material, the authors are encouraged to provide a short886

proof sketch to provide intuition.887

• Inversely, any informal proof provided in the core of the paper should be complemented888

by formal proofs provided in appendix or supplemental material.889

• Theorems and Lemmas that the proof relies upon should be properly referenced.890

4. Experimental Result Reproducibility891

Question: Does the paper fully disclose all the information needed to reproduce the main ex-892

perimental results of the paper to the extent that it affects the main claims and/or conclusions893

of the paper (regardless of whether the code and data are provided or not)?894

Answer: [Yes]895

Justification: The training precedure is described accurately and all the training details and896

hyperparameters required for reproducing the results are provided.897

Guidelines:898

• The answer NA means that the paper does not include experiments.899

• If the paper includes experiments, a No answer to this question will not be perceived900

well by the reviewers: Making the paper reproducible is important, regardless of901

whether the code and data are provided or not.902

• If the contribution is a dataset and/or model, the authors should describe the steps taken903

to make their results reproducible or verifiable.904

• Depending on the contribution, reproducibility can be accomplished in various ways.905

For example, if the contribution is a novel architecture, describing the architecture fully906

might suffice, or if the contribution is a specific model and empirical evaluation, it may907

be necessary to either make it possible for others to replicate the model with the same908

dataset, or provide access to the model. In general. releasing code and data is often909

one good way to accomplish this, but reproducibility can also be provided via detailed910

instructions for how to replicate the results, access to a hosted model (e.g., in the case911

of a large language model), releasing of a model checkpoint, or other means that are912

appropriate to the research performed.913

• While NeurIPS does not require releasing code, the conference does require all submis-914

sions to provide some reasonable avenue for reproducibility, which may depend on the915

nature of the contribution. For example916

(a) If the contribution is primarily a new algorithm, the paper should make it clear how917

to reproduce that algorithm.918

(b) If the contribution is primarily a new model architecture, the paper should describe919

the architecture clearly and fully.920

(c) If the contribution is a new model (e.g., a large language model), then there should921

either be a way to access this model for reproducing the results or a way to reproduce922

the model (e.g., with an open-source dataset or instructions for how to construct923

the dataset).924

(d) We recognize that reproducibility may be tricky in some cases, in which case925

authors are welcome to describe the particular way they provide for reproducibility.926

In the case of closed-source models, it may be that access to the model is limited in927

some way (e.g., to registered users), but it should be possible for other researchers928

to have some path to reproducing or verifying the results.929

5. Open access to data and code930
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Question: Does the paper provide open access to the data and code, with sufficient instruc-931

tions to faithfully reproduce the main experimental results, as described in supplemental932

material?933

Answer: [Yes]934

Justification: Codes and information of datasets that are constructed or reused in the paper935

are anonymized and included in the main paper and supplementary material.936

Guidelines:937

• The answer NA means that paper does not include experiments requiring code.938

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/939

public/guides/CodeSubmissionPolicy) for more details.940

• While we encourage the release of code and data, we understand that this might not be941

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not942

including code, unless this is central to the contribution (e.g., for a new open-source943

benchmark).944

• The instructions should contain the exact command and environment needed to run to945

reproduce the results. See the NeurIPS code and data submission guidelines (https:946

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.947

• The authors should provide instructions on data access and preparation, including how948

to access the raw data, preprocessed data, intermediate data, and generated data, etc.949

• The authors should provide scripts to reproduce all experimental results for the new950

proposed method and baselines. If only a subset of experiments are reproducible, they951

should state which ones are omitted from the script and why.952

• At submission time, to preserve anonymity, the authors should release anonymized953

versions (if applicable).954

• Providing as much information as possible in supplemental material (appended to the955

paper) is recommended, but including URLs to data and code is permitted.956

6. Experimental Setting/Details957

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-958

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the959

results?960

Answer: [Yes]961

Justification: The training details, hyperparameters, model selection criteria, etc. have are962

written in the Appendix and the data and metadata have been provided in our code.963

Guidelines:964

• The answer NA means that the paper does not include experiments.965

• The experimental setting should be presented in the core of the paper to a level of detail966

that is necessary to appreciate the results and make sense of them.967

• The full details can be provided either with the code, in appendix, or as supplemental968

material.969

7. Experiment Statistical Significance970

Question: Does the paper report error bars suitably and correctly defined or other appropriate971

information about the statistical significance of the experiments?972

Answer: [Yes]973

Justification: All tables report standard deviation and how it was computed and the plot974

contains error bar (also by standard deviation).975

Guidelines:976

• The answer NA means that the paper does not include experiments.977

• The authors should answer "Yes" if the results are accompanied by error bars, confi-978

dence intervals, or statistical significance tests, at least for the experiments that support979

the main claims of the paper.980
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• The factors of variability that the error bars are capturing should be clearly stated (for981

example, train/test split, initialization, random drawing of some parameter, or overall982

run with given experimental conditions).983

• The method for calculating the error bars should be explained (closed form formula,984

call to a library function, bootstrap, etc.)985

• The assumptions made should be given (e.g., Normally distributed errors).986

• It should be clear whether the error bar is the standard deviation or the standard error987

of the mean.988

• It is OK to report 1-sigma error bars, but one should state it. The authors should989

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis990

of Normality of errors is not verified.991

• For asymmetric distributions, the authors should be careful not to show in tables or992

figures symmetric error bars that would yield results that are out of range (e.g. negative993

error rates).994

• If error bars are reported in tables or plots, The authors should explain in the text how995

they were calculated and reference the corresponding figures or tables in the text.996

8. Experiments Compute Resources997

Question: For each experiment, does the paper provide sufficient information on the com-998

puter resources (type of compute workers, memory, time of execution) needed to reproduce999

the experiments?1000

Answer: [No]1001

Justification: The paper does provide details about the hardware used for the experiments.1002

However, since experiments were done on different hardwares, the computational resources1003

needed for each individual experiment are not documented.1004

Guidelines:1005

• The answer NA means that the paper does not include experiments.1006

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1007

or cloud provider, including relevant memory and storage.1008

• The paper should provide the amount of compute required for each of the individual1009

experimental runs as well as estimate the total compute.1010

• The paper should disclose whether the full research project required more compute1011

than the experiments reported in the paper (e.g., preliminary or failed experiments that1012

didn’t make it into the paper).1013

9. Code Of Ethics1014

Question: Does the research conducted in the paper conform, in every respect, with the1015

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1016

Answer: [Yes]1017

Justification: All codes and rules have been thoroughly reviewed and checked, with no1018

instances of non-compliance found.1019

Guidelines:1020

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1021

• If the authors answer No, they should explain the special circumstances that require a1022

deviation from the Code of Ethics.1023

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1024

eration due to laws or regulations in their jurisdiction).1025

10. Broader Impacts1026

Question: Does the paper discuss both potential positive societal impacts and negative1027

societal impacts of the work performed?1028

Answer: [Yes]1029

Justification: In the Social Impacts section we discuss that our work can significantly1030

contribute to fairness in machine learning. We did not find any negative social impacts of1031

our work.1032
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Guidelines:1033

• The answer NA means that there is no societal impact of the work performed.1034

• If the authors answer NA or No, they should explain why their work has no societal1035

impact or why the paper does not address societal impact.1036

• Examples of negative societal impacts include potential malicious or unintended uses1037

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1038

(e.g., deployment of technologies that could make decisions that unfairly impact specific1039

groups), privacy considerations, and security considerations.1040

• The conference expects that many papers will be foundational research and not tied1041

to particular applications, let alone deployments. However, if there is a direct path to1042

any negative applications, the authors should point it out. For example, it is legitimate1043

to point out that an improvement in the quality of generative models could be used to1044

generate deepfakes for disinformation. On the other hand, it is not needed to point out1045

that a generic algorithm for optimizing neural networks could enable people to train1046

models that generate Deepfakes faster.1047

• The authors should consider possible harms that could arise when the technology is1048

being used as intended and functioning correctly, harms that could arise when the1049

technology is being used as intended but gives incorrect results, and harms following1050

from (intentional or unintentional) misuse of the technology.1051

• If there are negative societal impacts, the authors could also discuss possible mitigation1052

strategies (e.g., gated release of models, providing defenses in addition to attacks,1053

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1054

feedback over time, improving the efficiency and accessibility of ML).1055

11. Safeguards1056

Question: Does the paper describe safeguards that have been put in place for responsible1057

release of data or models that have a high risk for misuse (e.g., pretrained language models,1058

image generators, or scraped datasets)?1059

Answer: [NA]1060

Justification: The paper poses no such risks.1061

Guidelines:1062

• The answer NA means that the paper poses no such risks.1063

• Released models that have a high risk for misuse or dual-use should be released with1064

necessary safeguards to allow for controlled use of the model, for example by requiring1065

that users adhere to usage guidelines or restrictions to access the model or implementing1066

safety filters.1067

• Datasets that have been scraped from the Internet could pose safety risks. The authors1068

should describe how they avoided releasing unsafe images.1069

• We recognize that providing effective safeguards is challenging, and many papers do1070

not require this, but we encourage authors to take this into account and make a best1071

faith effort.1072

12. Licenses for existing assets1073

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1074

the paper, properly credited and are the license and terms of use explicitly mentioned and1075

properly respected?1076

Answer: [Yes]1077

Justification: Every asset that we utilized for our implementations have been appropriately1078

referenced, both within the paper itself and in the code (if needed). Although we did not1079

specify the names of their respective licenses, you can find these details on the webpages1080

we’ve cited.1081

Guidelines:1082

• The answer NA means that the paper does not use existing assets.1083

• The authors should cite the original paper that produced the code package or dataset.1084
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• The authors should state which version of the asset is used and, if possible, include a1085

URL.1086

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1087

• For scraped data from a particular source (e.g., website), the copyright and terms of1088

service of that source should be provided.1089

• If assets are released, the license, copyright information, and terms of use in the1090

package should be provided. For popular datasets, paperswithcode.com/datasets1091

has curated licenses for some datasets. Their licensing guide can help determine the1092

license of a dataset.1093

• For existing datasets that are re-packaged, both the original license and the license of1094

the derived asset (if it has changed) should be provided.1095

• If this information is not available online, the authors are encouraged to reach out to1096

the asset’s creators.1097

13. New Assets1098

Question: Are new assets introduced in the paper well documented and is the documentation1099

provided alongside the assets?1100

Answer: [NA]1101

Justification: The paper does not release new assets.1102

Guidelines:1103

• The answer NA means that the paper does not release new assets.1104

• Researchers should communicate the details of the dataset/code/model as part of their1105

submissions via structured templates. This includes details about training, license,1106

limitations, etc.1107

• The paper should discuss whether and how consent was obtained from people whose1108

asset is used.1109

• At submission time, remember to anonymize your assets (if applicable). You can either1110

create an anonymized URL or include an anonymized zip file.1111

14. Crowdsourcing and Research with Human Subjects1112

Question: For crowdsourcing experiments and research with human subjects, does the paper1113

include the full text of instructions given to participants and screenshots, if applicable, as1114

well as details about compensation (if any)?1115

Answer: [NA]1116

Justification: The paper does not involve crowdsourcing nor research with human subjects.1117

Guidelines:1118

• The answer NA means that the paper does not involve crowdsourcing nor research with1119

human subjects.1120

• Including this information in the supplemental material is fine, but if the main contribu-1121

tion of the paper involves human subjects, then as much detail as possible should be1122

included in the main paper.1123

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1124

or other labor should be paid at least the minimum wage in the country of the data1125

collector.1126

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1127

Subjects1128

Question: Does the paper describe potential risks incurred by study participants, whether1129

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1130

approvals (or an equivalent approval/review based on the requirements of your country or1131

institution) were obtained?1132

Answer: [NA]1133

Justification: The paper does not involve crowdsourcing nor researh with human subjects.1134

Guidelines:1135
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• The answer NA means that the paper does not involve crowdsourcing nor research with1136

human subjects.1137

• Depending on the country in which research is conducted, IRB approval (or equivalent)1138

may be required for any human subjects research. If you obtained IRB approval, you1139

should clearly state this in the paper.1140

• We recognize that the procedures for this may vary significantly between institutions1141

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1142

guidelines for their institution.1143

• For initial submissions, do not include any information that would break anonymity (if1144

applicable), such as the institution conducting the review.1145
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