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Abstract

Recent generative data augmentation methods conditioned on both image and text
prompts struggle to balance between fidelity and diversity, as it is challenging
to preserve essential image details while aligning with varied text prompts. This
challenge arises because representations in the synthesis process often become
entangled with non-essential input image attributes such as environmental con-
texts, creating conflicts with text prompts intended to modify these elements. To
address this, we propose a personalized image generation framework that uses a
salient concept-aware image embedding model to reduce the influence of irrelevant
visual details during the synthesis process, thereby maintaining intuitive align-
ment between image and text inputs. By generating images that better preserve
class-discriminative features with additional controlled variations, our framework
effectively enhances the diversity of training datasets and thereby improves the
robustness of downstream models. Our approach demonstrates superior perfor-
mance across eight fine-grained vision datasets, outperforming state-of-the-art
augmentation methods with averaged classification accuracy improvements by
0.73% and 6.5% under conventional and long-tail settings, respectively.

1 Introduction

Text-to-image (T2I) models [63]68] have demonstrated remarkable success in generating high-fidelity
images. One promising application is using synthetic image generation as a form of distillation,
transferring knowledge into classifiers to improve their performance [69, 5,7, (75, 97, [74]. However,
T2I models often struggle to generate fine-grained categories due to the limitations of textual
descriptions, introducing noise to the training set that can negatively impact the downstream classifier
training. For example, ambiguous terms can lead to incorrect image synthesis, such as jaguar referring
to either an animal or a car. Expert terminology outside the model’s training vocabulary, such as class
names from iNaturalist dataset, may produce unexpected output. Moreover, certain visual attributes,
such as human identities, cannot be fully captured through text alone. Generative data augmentation
(GDA) [99] addresses these limitations by conditioning synthesis on both text and image to better
capture the subject characteristics.

Specifically, GDA leverages personalized image generation methods [96] to augment existing images
of a given subject based on textual descriptions. However, existing approaches [76} 37, 83]] rely on
subject-specific optimization, which overly emphasizes instance-level details from the image prompts,
limiting diversity when text prompts call for meaningful modifications. They also inherit issues from
foundational tools such as DreamBooth [65]] and Textual inversion [25]], which are prone to overfitting
or suffer from imprecise subject representations. On the other hand, approaches such as SuTI [[14]
provide more flexible alternatives, which are pre-trained on web-scale data and support zero-shot
synthesis. However, these models often struggle to preserve the key concept in an image that defines
its class, especially when the class definition is abstract or the object corresponding to the target
concept on the image is small. This is caused by the inability of the methods to entail prior knowledge
on what to focus on in the image. We are motivated to learn a specialized synthesis model tailored for
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Figure 1: Comparison between our proposed data augmentation method with DA-Fusion [76]. DA-Fusion
uses Textual Inversion [23] to learn the word embedding of the ladybug from the image prompt. But in this
example, the generated outputs skew heavily toward a green color palette, failing to both preserve the ladybug’s
characteristics (black body with red spots) and align with the text prompts. Our method is designed with
in-context understanding of the task: it selectively encodes salient concept (the ladybug) and effectively reduce
the influence of irrelevant information (the greens and leaves) from the prompt, generating images with focused
diversity and thereby effectively improves the robustness of the downstream models.

a target domain that understands domain-specific characteristics, intra-class variations, and inter-class
relationships. This allows the model to generate novel, faithful, and diverse images that enrich the
distribution of the original dataset, particularly for underrepresented or unseen categories, improving
the robustness of the downstream classifier.

To this end, we define the problem of domain-specific personalized image generation for GDA: con-
sider a joint distribution (X, Y), where each sample consists of an image x; € X and a corresponding
fine-grained label y; € Y, our goal is to generate image x; € X that accurately captures the key
concept about y; from the image prompt x;, while also aligning with some relevant text prompt ¢; that
describes y;. We adopt the framework that uses an image embedding model to capture the
concept of interest from image, which is then integrated with text embedding to control a diffusion
model. While originally designed for personalized image generation 126l 38l 29] 58],
this approach has not been explored for GDA applications, particularly in properly balancing the
fidelity-diversity trade-off.

Our insight is that the widely adopted practice of naively using image embeddings to control
generative model is inadequate for GDA: these embeddings often entangle information that is less
relevant to the concept of interest, restricting the model’s ability to produce faithful results aligning
with text prompts. To mitigate, we propose to train a salient concept-aware (SCA) image embedding
model with the loss function that learns a discriminative representation space with high intra-class
compactness, mitigating the entanglement of less relevant information, and inter-class separation,
extracting distinctive salient concept characteristics from image prompts. As an example shown in
Figure [T} embeddings learned from Textual Inversion capture irrelevant background information
from the image, which conflict with the text prompt that asks for a different background. As a result,
the generated images cannot accurately reflect the variants asked by the text prompt. In contrast,
our generative model with salient concept-aware embedding focuses on the main subject and can
generate images faithful to the subject. In addition, our approach is more convenient than methods
that rely on additional input processing to capture target concepts, such as saliency detection or
segmentation [42]. These approaches typically require additional human interventions to make sure
the segmented concept is relevant to the task, and are limited to scenarios where the target object can
be clearly defined with spatial boundaries [15] 3]

Our contribution is that we are the first to leverage the recent personalized image generation framework
with dual embedding models for generative data augmentation, without the need for subject-specific
optimization. The proposed framework mitigate the fidelity-diversity trade-off by training a salient
concept-aware image embedding model that captures the salient concept of the image while adapting
effectively to diverse text edit instructions. Our approach is evaluated on concept preservation,
text alignment, and downstream classification accuracy across conventional, few-shot, long-tail,
and out-of-distribution settings. Experiments on eight Fine-Grained Visual Categorization (FGVC)



datasets [[17,[77,156, 151,179,143} |41]] demonstrate state-of-the-art performance over existing generative
data augmentation methods. Specifically, our method improves classification accuracy by 0.73% in
conventional settings and 6.5% in long-tail settings.

2 Related Work

Image generation has made remarkable progress with the success of foundation T2I diffusion models
[551 162} 163, 160, 201 |68, 16l 87, (191 24, 190]. Moreover, their adaptability to incorporate additional
controls has drawn significant interest 93, 98} 152 154, 148} 40, 30, 136} 167, [71,180]], which are trained
on paired image-text data at web scale but they struggle to establish concepts that are less frequently
appeared in the training set or cannot be described by language clearly.

Personalized Image Generation. Different from image-editing approaches, personalized image
generation faithfully reflects a specific concept in novel scenes, drawing inspiration from reference
images from personal lives. Given a few samples of a concept, DreamBooth [65] fine-tunes the
full model and Textual inversion [25] optimizes a word vector for the new concept, followed by a
subsequent works generalized to muiltiple concepts [44} 27, 14, [86]. To support broad adoption for
practical usage, training-free methods [14, 89, 86, 46\ 84, 70, 26, 38\ [15 [13} 3] support zero-shot
synthesis using reference images. These methods train a single model with large-scale database
instead of per-object optimization, and do not necessarily preserve exact instance details from image
prompt. However, users often observe suboptimal performance when working with these models,
which are not specifically tailored to their categories of interest.

Synthesis for Analysis. Traditional methods such as Mixup [94] and CutMix [93]] transform ex-
isting data but cannot introduce genuinely novel visual content. Recent efforts have focused on
fine-tuning T2I models on in-domain datasets to improve fidelity [5, (73] or leveraging prompt en-
hancement techniques [92, [7, 145] to improve diversity. However, the scalability of synthetic data
for classification remains unsatisfactory [28], 91} 21], as generated samples often exhibit limited
transparency in their creation process, struggle to generalize across different contexts, and frequently
require prompt engineering to obtain faithful results. Generative data augmentation (GDA) tech-
niques [99} 76| 102} 53} [12] [82] leverage personalized image generation to improve the fidelity of
synthetic data. DA-Fusion [76] utilizes SDEdit [52] and textual inversion to modify real samples
with controlled generation strength. DiffuseMix [37] combine cut-mix with pix2pix [10]] generated
images. Diff-Mix [[83]] combines T2I personalization with I2I translation. Existing methods mostly
use a combination of popular tools to edit upon real images by initializing diffusion with the images
instead of noises, constraining image editing to a limited set of disentangled attributes such as
textures, backgrounds, and colors. Our approach implements an end-to-end framework that encodes
relevant image information into embedding, supporting concept-preserving image generation through
free-form text editing. As a result, our method produces faithful, diverse training data that better
challenges and improves the robustness of classifiers.

3 Our Approach

Generative data augmentation is a challenging task that aims to create diverse, high-fidelity datasets
that improve the robustness and generalization capabilities of downstream classification models.
Given a text-to-image generative model, a joint distribution (X, Y) representing the classification
task, our goal is to fine-tune a domain-specific generative model G so that, given an image z; and
a relevant text prompt ¢;, the generated image G(x;, t;) satisfies: 1) concept consistency, where the
generated image G(x;, ;) retains the key semantic attributes of x;, and 2) text consistency, where
G(z;,t;) accurately reflects the meaning of ¢;.

Our main contribution lies in demonstrating the significance of the image embedding used for training
synthesis model in achieving an optimal trade-off between text and image prompt consistency.
Specifically, we divide our training into two stages. First, to achieve stronger supervision and better
data efficiency, we independently train domain-specific salient concept-aware embedding model
(SCA) , as introduced in Section Then, we train the synthesis model, taking frozen image and
text embeddings as inputs and only tune the adapters, as described in Section[3.2] We then explain
our data synthesis approach for generating downstream classification training data in Section 3.3]
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Figure 2: Comparison of generated images conditioned on various image prompts and null text prompt. Our
model focuses on the fly in the image, evidenced by the high cosine similarity 0.82 between the segmented fly
image (d) and the original fly image (e), allowing our synthesis model to generate high-fidelity fly images (ab).
Foundation model like DINOvV2 encodes lots of information about the background, evidenced by the high cosine
similarity 0.83 between the embeddings of the original fly image (e) and the image with the fly removed (f), from
which the model can reconstruct the background (i). Although DINOv2 works well on segmented images with
the salient object to generate image (g), it introduces additional complexity in the pipeline, which is not suited
for data augmentation purposes, and does not work well with abstract concepts without well-defined boundaries.

3.1 Salient Concept-Aware Embedding Model

Previous personalized image generation methods guide the synthesis with text and image feature
extracted from large-scale pre-trained models such as CLIP [61]] or DINO [57]. However, as
shown in Figure 2] those image features are entangled with irrelevant information for the salient
concept from the prompt image, conflicting with the information provided by the text prompt [89].

Naive adoption of embeddings from a pre-trained classifier results in a significant performance
degradation, as cross-entropy (CE) does not explicitly encourage discriminative capability under
large intra-class or small inter-class appearance variations [18]], and does not generalize well for
underrepresented categories. As we demonstrate in our ablation study, data generated under the
guidance of a classifier’s embeddings provides marginal improvement for downstream training.

In this work, we introduce a penalty to improve both the intra-class compactness and inter-class
discrepancy. Specifically, given samples x; and x, from class p, and x; from a different class ¢, where
p,q € Y, we enforce the condition D(f7, f¢) < D(f{, f]'), where D is some distance measure in
the embedding space and f7, fi’, and f] are the respective embeddings, i.e., f = F (). To this end,
we adopt the margin function:

[Y;N
Term; = 6s-cos(arccoS(Wg‘fi)+c)7Terle _ Z 6S<WqTfj7
q=1,q#p;j=1,j7#i
N
1 Term,
Lmargin = — 75 log| i | » 1
fargin N p & (Terml + Term2> M

where W, € R? denotes the p-th column of the weight matrix W € R4*¥] 4 is the embedding vector
size, | Y| is the number of classes, IV is the total data volume, WpT fi represents the logit for the sample
x;, and variables c and s denote the margin penalty and scale factor, respectively. In practice, we
normalize each individual weight W, and embedding feature f; in £>. By adding an additive angular
margin c to the target angle, the embedding model F avoids encoding confounding characteristics
from different classes and focusing more on extracting key concept of interest. As shown in Figure 2]
the salient concept-aware embedding focuses on the main subject and can condition the generative
model to output images faithful to the subject from image prompt.
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Figure 3: Our proposed framework. The SCA embedding model captures the salient concept and projects it
with text embedding into cross-attention layers of U-Net. LoRA is applied to self-attention layers.

3.2 Synthesis Model

Architecture. Our salient concept-aware (SCA) embedding model trained in the first stage extracts
visual features from image prompt, which are then projected into a feature space with the same
dimensionality as the text features in the pretrained diffusion model. Similar to the text features C™',
the projected image features C'™ are fed into every cross-attention layer in the U-Net, with new key
and value projectors. The attention Z is calculated as a weighted sum of the attention from both the
text and the image embeddings, with a weight factor A set to the default value of 1:

7 = (QKtxt)Vtxt 4 )\(QKimg)Vimg' 2)
Here, K'™2, and V™ are the key and value projections for the image prompt, defined as:
Kimg _ W;ngcimg’ Vimg _ W‘i}ﬂgcimg’ (3)

where W, and W, are weight matrices for key and value projections, respectively. For better
adaptation with image embeddings, we apply LoRA [33] to the text branch:

Q — Wszl‘eV _|_ AWQZPFCV’ Ktxl — W%lc«txt _|_ Awﬁ?t tXt7 Vtxt — W‘I/)ftctxl + AW‘t}(l txt’ (4)

where ZP™ is the previous state of the diffusion model, C*™' denotes text prompt feature, W,

2, and WX are the weight matrices and AW, AW, and AW} are the corresponding LoRA
linear layers, for the query, key, and value projections, respectively. We also apply LoRA to all
self-attention layers of the U-Net in a similar fashion for better domain adaptation. To bridge between
the embedding spaces of images and text, we adopt a light-weight image embedding projector [47]
consists of four building blocks, each comprising a cross-attention layer and a fully connected layer
with residual connections. See Figure | for more details on the synthesis model architecture.

Multi-Modal CFG. We apply classifier-free guidiance by randomly dropping image or text prompt
control during training. In particular for image prompt, instead of using zero vectors, we utilize the
average embedding of training data as the class-conditioning input for unconditional models.

3.3 Synthesis for Analysis

Data Construction. For the training data used to fine-tune the adapter and LoRA, we generate
corresponding prompts using image captioning models such as Blip2 [47] and MiniGPT [103]]. For
the inference data used to train the downstream classifier, we prompt Claude-3-Sonnet [2] as a
separate large language model to produce contextualized descriptions of images featuring a specific
class. These descriptions combine foreground objects and background elements in a concise manner.
An illustrative example is provided below. Note that for both training and inference text prompts,
we randomly replace the fine-grained class names with meta class names for robust training and
diversified inference, e.g., replace "bulldog" with "dog". To generate a synthetic data of a given
category, we randomly sample real data from that category along with the corresponding LLM prompt
to condition our synthesis model.

Question: Imagine there is a photo of [CLASS]. Describe the photo with one short sentence,
followed by a few relevant descriptive terms about the background of the photo, separated by
commas. This is used to prompt text-to-image models.

Answer: [Baby] A cute baby lying on a soft blanket, nursery, pastel colors, toys.

[Crane] A majestic crane stands tall, serene lake, lush greenery, distant mountains.




Backbone Method | CUB Aircrafts Flowers Cars Dogs Food | Avg.

Vanilla 86.62 89.14 99.29 9447 87.15 92.01 | 9145
CutMix [93] 87.31 89.19 99.21  94.74 87.57 9259 | 91.77
Mixup [94] 86.74 89.43 99.49 9441 8749 9145 | 91.50
RN50 Real-Guidance [28] | 87.26 89.21 99.26  94.64 87.27 92.03 | 91.61
Da-Fusion [76] 86.47 87.96 99.31  94.69 8736 91.59 | 91.23
Diff-Mix [83] 87.50 90.12 99.44 9521 87.88 9221 | 92.06
Ours 89.68 91.31 99.59 95.12 88.01 94.12 | 92.97
Vanilla 89.94 85.46 99.53 9423 9126 94.11 | 92.09
CutMix [93] 91.09 85.44 99.61 9485 91.94 95.62 | 93.08
Mixup [94] 90.89 86.27 99.70  94.87 91.83 94.17 | 93.12
ViT-B/16 ~ Real-Guidance [28] | 90.11 85.13 99.56  94.67 91.86 93.59 | 92.49
Da-Fusion [76] 89.97 83.84 99.58  94.55 91.88 94.23 | 92.01
Diff-Mix [83] 91.13 88.07 99.74 9493 91.76 93.53 | 93.19
Ours 91.47 88.42 99.92 9517 91.84 95.61 | 93.74

Table 1: Conventional classification Top-1 accuracy (%) across six datasets using RN50 and ViT-B/16. We
achieve an average improvement of 0.73% over peer methods.

Model Method | IN  Aircrafts Cars Food Flowers | Avg.
Vanilla 69.61 58.25 87.74 87.62  98.80 80.40
CutMix [93] 70.93 61.27 89.05 8893 98.97 81.83
ViT-B/16 Mixup [94] 71.24 62.39 89.07 87.59 99.07 81.87

Da-Fusion [76] | 71.95 65.71 90.94 88.01 99.25 | 83.17
Diff-Mix [83] 70.84 63.51 89.74 88.46  99.09 | 82.33
Ours 72.41 72.44 92.72 8838  99.17 | 85.02

Table 2: Few-shot classification Top-1 accuracy (%) using 10-shot training samples across five datasets.

Filtering. We use CLIP to assess text coherence by computing the cosine similarity between
embeddings of text prompt and generated image. To evaluate salient concept coherence, we measure
the cosine similarity between SCA embeddings of image prompt and generated image. Data samples
with the lowest 10% in either text or salient concept consistency are filtered out.

Classifier Training. We pre-generate and filter synthetic training data, producing a final dataset
that is of roughly K times the size of the original training set. During classifier training, each batch
combines synthetic and real samples, where P% of the data are sampled from synthetic pool.

4 Experiments

We introduce the experimental settings in Section[4.1] We compare our method with GDA baselines
in Section 4.2} Ablation studies and qualitative analysis are shown in Section[4.3] More results are
provided in the Supplementary.

4.1 Experimental Setting

Generative Model. For embedding model training, we fine-tune the model as defined in Equation
For synthesis model training, we only update image projector weights, image attention weights, and
LoRA weights. We adopt classifier-free guidance (CFG) [32] with a strength of 5.0, and randomly
apply conditional dropout to the embedding control and text control, with a 5% chance to drop the
control from image, text or both, respectively. More details are provided in the Appendix.

Synthesis for Analysis. We generate synthetic images at 512 resolution and downsample them to
256 for storage, following diffusers 78] parameter settings. The synthetic dataset pool consists of
approximately K'=5 times the number of original training samples. For example, for a category
with n real samples, we generate 5n text prompts from LLM, and then produce the same amount
of synthetic images of the same category. Under few-shot and long-tail settings, we ensure a more
balanced class distribution by generating at least 250 (= 50 x K) synthetic samples per class.

Classifier. We use CLIP pre-trained RN50 and ViT-B/16 with input resolution 224 x224 as our
backbone models, each topped with a 3-layer MLP projection head plus batch normalization. We
apply RandAugment [16] while holding out Mixup and CutMix for comparison. In few-shot settings,
we freeze the backbone and train only the projection head for 10% of the standard epoch count.
Additional training parameters are detailed in the Appendix.



Model Method | IN-LT  Head  Mid Tail | iNat Head Mid Tail
Vanilla 6949 83.12 6496 39.82 | 6552 76.54 68.31 59.25

CutMix [93] 72.69 8434 68.18 4273 | 6647 7749 69.26 60.20

Mixup [94] 70.73  84.38 66.22 4128 | 67.59 77.61 7038 61.32
ViT-B/16  Da-Fusion [76] | 71.96 83.61 70.45 44.63 | 66.61 77.51 69.35 60.27
Ours 7917 83.77 7829 69.93 | 7411 7736 7412 73.20

Vanilla+ LWS | 7228 79.78 69.83 56.77 | 71.97 7423 73.45 69.83
Ours + LWS 80.58 81.97 79.73 74.51 | 7854 75.58 78.84 79.03

Table 3: Long-tail classification Top-1 accuracy (%). Results are reported separately for head, mid, and tail
categories. Our approach outperforms existing data augmentation methods by 6.5%, especially for tail-classes.
The performance of our method can be further improved through class re-balancing method such as LWS.

Model Method | LL WW LW WL | Avg
Vanilla 43.68 3624 4339 3592 | 39.81
Real-Guidance [28] | 44.62 37.73 4529 35.50 | 40.79

ViT-B/16  Da-Fusion [76] 49.63 43.13 4995 39.21 | 45.48
Diff-Mix [83] 43.57 37.09 4256 37.61 | 40.21
Ours 54.86 45.53 56.51 47.74 | 51.16

Table 4: OOD classification Top-1 accuracy (%) on the Waterbird dataset. Our method is robust to unseen
domain shifts by reducing spurious relations between background and foreground elements.

Datasets. We conduct experiments on widely used Fine-Grained Visual Classification (FGVC)
datasets: ImageNet-1K [17] (IN), iNaturalist2018 [[77]] (iNat), Flower102 [56], Aircraft100 [51]],
CUB200-2011 [79]], Cars102 [43]], StanfordDogs120 [41] and Food101 [9]. Here, we clarify that we
trained individual generation model for each dataset.

Peer Methods. We implement Mixup [94] and CutMix [93]] with probabilities of 0.5 and 0.3 respec-
tively. We also evaluate against GDA methods such as Real-Guidance [28]], DA-Fusion [76]], and
Diff-Mix [83]], following their official implementations. We also compare with long-tail recognition
methods such as LWS [39] in the main text and others [[L00, |81} 34] in the Appendix.

4.2 Performance of Generative Data Augmentation

In this section, we evaluate the effectiveness of our approach across conventional, few-shot, long-tail,
and out-of-distribution scenarios. The reported results are the averaged over three independent trials
with different random seeds.

Conventional Classification Performance. In Table|l| we perform end-to-end training and evaluate
the performance of classifiers trained with real and synthetic data compared to baseline methods
on 6 FGVC datasets. Our method outperforms existing GDA techniques, achieving an average
improvement of 0.73% on RN50 and 0.55% on ViT-B/16.

Few-Shot Learning Performance. We adopt an N-way 10-shot setting over three episodes, where
N is the number of classes. For each class, we randomly draw 10 samples from the training set,
resulting in a total of 10V training data. We use this same limited dataset both for fine-tuning the
generation model at 15% of the epochs compared to conventional setting and training the downstream
classifier. Using fine-tuned generation model, we generate 250 synthetic images per category. During
classifier training, we freeze the CLIP backbone and fine-tune classification head for 15 to 50 epochs,
depending on N. As shown in Table 2] our method achieves the highest average performance across
all datasets, achieving an improvement over existing methods by 1.85% on ViT-B/16.

Long-Tail Classification Performance. We follow the work of [49, 59] to conduct experiments on
IN-LT and iNat. Our generation model is trained on the same dataset as the classification model. We
generate at least 250 images for all categories for better class balancing. As shown in Table 3] our
method achieves a remarkable performance improvement of 6.48% and 6.52% overall and 25.30%
and 11.88% on tail categories for IN-LT and iNat, respectively. This improvement is more significant
than in the few-shot setting. We hypothesize that this is because the synthesis model benefits from
a larger number of training samples in the long-tail scenario, allowing it to better understand the
relationships across categories and learning to generalize to capture salient concept for tail categories.
As a result, downstream classifier learns more robust representations for the tail class by training on



Dataset ~ Synthesis Model DreamSim]  Vendit CLIPT{ Gen. Top5

Real-Guidance [28] 0.4709 17.22 0.3396 88.27%
IN Da-Fusion [76] 0.4531 13.26 0.2801 76.93%
Diff-Mix [83] 0.4399 15.81 N/A 91.27%
Ours 0.3930 16.76 0.3119 98.84%
Real-Guidance [28] 0.5370 34.27 0.3302 31.09%
iNat Da-Fusion [76] 0.5426 28.19 0.2387 27.60%
Diff-Mix [83] 0.5224 31.57 N/A 45.34%
Ours 0.4293 34.48 0.3106 87.48%

Table 5: Comparison of quality of the generated image from different DA methods. We use DreamSim to
measure the foreground subject consistency and Vendi embedding score for measuring generated image diversity.
We further use Clip to measure the consistency between input text prompt and the output image and evaluate the
accuracy of external classifier on the generated images (Gen. Top5). Real-Guidance uses T2I generation models
and therefore has the best text-image consistency. Our method achieves the overall best trade-off between salient
concept consistency and diversity, particularly for fine-grained dataset such as iNat.

Data Model DreamSim| CLIPT Gen. Top5 | Cls. Topl
Ours w/o SCA (CE) 0.4626 0.2998 79.48% 66.24%
Ours w/o SDXL(+SD15) 0.4587 0.2785 75.79% 71.84%
iNat Ours w/o LoRA 0.4506 0.286 80.71% 68.86%
Ours w/o Adapter(+MLP) 0.4335 0.3048 87.17% 73.43%
Ours w/o Class Cond. 0.4321 0.3092 86.44% 73.77%
Ours 0.4293 0.3106 87.48% 74.01%

Table 6: Ablation study of the contribution of individual components in our synthesis pipeline on the iNat dataset.
Here, Gen. Top5 measures the accuracy of external classifier on the generated images, and Cls. Topl measures
the accuracy of downstream classifier trained on the generated data. We selectively removed or replaced the
proposed components to demonstrate their respective contributions. In particular, replacing the SCA embedding
with classifier embedding significantly degrades performance.

more faithful and diversified data. We will discuss more about the generalization capability of the
synthesis model in the next section.

We further apply learnable weight scaling (LWS) [39] that fine-tunes additional weight scaling
factors for 40 epochs to improve the performance. At this stage, the model is trained on a balanced
dataset consists of class-balanced sampling from the real dataset with probability (1 — P)% and
instance-balanced sampling from the synthetic dataset with probability P%. The performance can be
further improved by 1.41% and 4.43% for IN and iNat, respectively. We also conduct experiments
on other re-balancing and calibration methods in the long-tail recognition literature [100, 81} [34].
We find that LWS works the best for our settings and we will present the results for others in the
Appendix.

Performance under OOD Setting. We conduct out-of-distribution (OOD) evaluation using the
Waterbird dataset [66]], which is created by superimposing foregrounds from the CUB dataset onto
backgrounds from the Places dataset [101]. The results of our OOD evaluation are presented in
Table 4] where "L" and "W" denote land and water, respectively. For example, "L,W" means a
landbird placed against a water background. We train the model following [N-way 5-shot scenario
over three episodes using the CUB dataset, augmented with synthetic data generated through our
GDA framework. Our approach is well-suited for this challenge, outperforming peer approaches by
5.68%, as our inference data construction in Section [3.3]explicitly incorporates diverse background
variations, allowing classifier to mitigate spurious correlations with background elements.

4.3 Ablation Studies

Performance of Personalized Image Generation. In this section, we directly assess the diversity
and faithfulness of our method’s generated data and compare it with peer methods. For concept
preservation, we use external expert classifiers from timm [85] leaderboard that achieve best recogni-
tion accuracy on target image domains. We report classification performance using Top-5 accuracy
on synthetic images. To evaluate text-image alignment, we compute the cosine similarity between
feature embeddings extracted from the CLIP-B/16 model’s text and image encoders for input text
prompts and generated images, respectively. We additionally use DreamSim [23] for measuring fore-
ground subject consistency and Vendi [22] embedding score for measuring generated image diversity.
The evaluation is conducted on image-text prompt pairs explained in Section [3.3|used for training
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Figure 4: Impact of synthetic-to-real data ratio K and synthetic sampling probability P on Top-1 classification
accuracy. Performance improves when a balanced proportion of synthetic data is used, but degrades when
synthetic samples dominate. Increasing P improves dataset diversity, but the benefits diminish as P grows.

downstream classifiers, without applying any filtering. We present performance results in Table 3]
The dataset generated by our method is diversified, achieving decent vendi and text consistency
scores, and faithful, achieving best dreamsim scores and evaluation classifier accuracy. The advantage
is significant for more fine-grained dataset like iNat, where we outperform the second-best model by
42.14% in Top-5 accuracy.

We intentionally exclude metrics such as CLIP image embedding consistency and widely used
measures like FID [31] and KID [8] scores that favor identity mapping, which do not align with our
objective of generating images that are meaningfully different from the input. For example, FID is
minimized when comparing two identical datasets because it quantifies the distance between two
distributions.

Effectiveness of Components. To assess the effectiveness of the SCA embedding, we train a classifier
using a standard cross-entropy (CE) loss for image prompt feature extraction. As shown in Table[6}
this results in a performance drop across all metrics, meaning that conventional CE-based embeddings
are inadequate for preserving key concepts and generating diversified augmentations. Additionally,
we examine the impact of key architectural choices in our generation framework. Specifically, we
replace the SDXL backbone with Stable Diffusion 1.5 (SD15), substitute the adapter with a naive
MLP, remove LoRA, and replace the image classifier-free null guidance with a zero vector. Across
these ablations, we always observe performance drop across all metrics. This shows that each part of
our architectural design is integral in improving the overall performance.

Synthetic Ratios and Sampling Probabilities. We conduct an ablation study on two key factors
affecting downstream classification performance: the synthetic-to-real data ratio K and the probability
of sampling synthetic data P during training, both defined in Section[3.3] In Figure ] we analyze the
Top-1 accuracy of the downstream classifier across different values of K = {0,0.2,0.5,0.75,1.0}
and P = {0,1,2,3,4,5}. Our default settings use K = 0.2 for IN and iNat and K = 0.5 for other
FGVC datasets, with P = 5. The results indicate that performance improves when K is within
the range of 0.2 to 0.5, but degrades when K becomes excessively large. Incorporating synthetic
data improves model generalization, but they may also introduce distributional shifts that negatively
impact classification performance. Similarly, the sampling probability P controls the diversity of the
training set. Performance increases as P grows but stabilizes beyond P = 3.

Computational Cost Analysis. A practical consideration for any data augmentation method is its
computational overhead. Our approach involves two training stages: (1) training the SCA embedding
model, and (2) fine-tuning the synthesis model using SCA embeddings. We provide a detailed analysis
of the computational requirements for both stages. Training the SCA embedding model requires
approximately 20% of the time needed to fine-tune the synthesis model. Table[7]reports wall-clock
training times on an 8 x A100 GPU setup across datasets of varying scales. For typical FGVC datasets
with approximately 10K images, the total training time is 20-30 minutes. For larger-scale datasets
such as iNat2018 (440K images) and ImageNet-1K (1.3M images), training requires 19 and 25 hours,
respectively. For the largest dataset we experimented with, iNat2021 containing 2.7M images, training
takes approximately 3 days. We argue that this computational cost is practical for most application
scenarios, especially in domains where curating high-quality in-domain data is prohibitively expensive
or time-consuming. Once trained, the synthesis model can generate unlimited augmented samples



Dataset FGVC iNat2018 ImageNet-1K  iNat2021

Dataset Size ~10K 440K 1.3M 2.7
Training Time  20-30 mins 19 hours 25 hours ~3 days

Table 7: Training time for our method across datasets of different scales (8 X A100 GPUs). Training time scales
reasonably with dataset size, ranging from 20-30 minutes for typical FGVC datasets to approximately 3 days for
the largest dataset (iNat2021 with 2.7M images).

efficiently during downstream classifier training, providing consistent performance improvements
over baseline GDA methods with a one-time training investment.

5 Conclusion

In this paper, we introduce a new approach to generative data augmentation (GDA) using a person-
alized image generation framework with a salient concept-aware (SCA) image embedding model,
mitigating the fidelity-diversity tradeoff. SCA effectively captures key information from image
prompts while preserving the semantics specified by text prompts, maintaining intuitive alignment
across both modalities. Our method generates training data with focused diversity that significantly
improve the robustness of the model, especially under long-tail settings. Experiments across eight
fine-grained datasets show that our method outperforms existing GDA methods, particularly under
long-tail and out-of-distribution settings. Through ablation studies, we compare the quality and diver-
sity of our generated images with peer GDA methods, validate the effectiveness of each component in
our synthesis pipeline, and studied the impact factors on the downstream classification performance.
Our method is proved to be a promising approach for generative data augmentation.
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towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction of this paper accurately reflect its contributions
and scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
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Justification: N/A
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: N/A
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Experiment details are provided in this paper.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: Legal constraints.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All the training and test details are specified.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Our results are averaged over trials.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide them in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The work has no social impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.

Guidelines:
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13.

14.

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cited all assets being used.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets released.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: N/A
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: N/A
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: N/A
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Model Preliminaries

Synthesis Model Preliminary. Diffusion models [33]] can generate high-fidelity images from noise
in an iterative manner, which is often accelerated with fast samplers like DDIM [72]. For conditional
diffusion models, techniques like classifier-free guidance [32] are employed to balance image fidelity
and sample diversity, realized by randomly dropping the condition during training. In this study, we
adopt Stable Diffusion XL (SDXL) [60] as our base architecture. As a latent diffusion model [63],
SDXL built upon UNet [64] with attention layers, conditioned on text features extracted from two
frozen CLIP text encoders.

Synthesis Model Size Statistics. SDXL is our baseline text-to-image model with 3.856 billion
parameters. SDXL-UNet and SDXL-VAE are the U-Net and VAE components with 2.955 billion and
84 million parameters, respectively. SDXL-TextEncoders are the two text encoders proposed in the
original SDXL paper with a total of 818 million parameters. Adapter is our proposed module for
fusing text and image representations, with 73 million parameters. LoRA is a technique for efficiently
adapting new concept knowledge into pre-trained models, with a total of 387 million parameters. The
Image Embedder is our module for embedding image representations, with 87 million parameters.
Our adapter plus LoRA approach adds a total of 460 million parameters to the base SDXL model.

Classifier. For all experiments, we employed the official CLIP architecture with RN50 and ViT-B/16
backbones.

B More Training Details

SCA Training. Our SCA embedding model is developed from a pre-trained DINOv2-Base back-
bone [57]], connecting with a head component with two linear layers containing batch normalization,
and one fully connected layer. We fine-tune the whole SCA model with s equals to 32, c equals to
0.35. Following [l1]], we set the training epoch as 32, learning rate as 4e-5, and batch size as 128, train
with 8 xA100 GPUs using AdamW [50] optimizer. After training, we normalize the embedding from
the backbone and feed it into our diffusion model.

SDXL Training. Diffusion model backbone is SDXL [60] implemented in Diffusers [78] reposi-
tory, a model originally trained on high-resolution images of size 1024. To optimize memory usage
and accomodate lower resolution training data, we centercrop the image followed by resizing to
a size of 512, allowing an effective batch size of 64 when distributed across 8 x A100 GPUs. We
use Blip2 [47] and MiniGPT-4 [103] to generate textual prompts for each training image. During
the training process, to encourage diversity and improve the model’s robustness in understanding
prompts, we randomize the training prompts by splitting the generated prompt paragraphs into short
sentences and key terms, which are then randomly sampled and recombined to form the final training
prompts. Furthermore, we adopt classifier-free guidance [32], randomly applying conditional dropout
to the embedding control and text control, with a 5% chance to drop the control from image, text
or both, respectively. We also apply data augmentation techniques such as horizontal flipping and
color jittering. We use the AdamW [50] optimizer with a constant learning rate of le-5, where we
update only the image projector weights, image attention weights, and LoRA weights. We train the
adapted model for 10 epochs across all datasets. We observe that smaller datasets converge faster,
while larger datasets converge slower. For example, it takes approximately 3 days to converge with
8x A100 GPUs for iNaturalist [77]] when training on a set of about 2.7 million images.

The training objective is to reconstruct the image prompt given the caption prompt. Taking Ima-
geNetlK (IN1K) as an example, for training, the image prompts were sourced from the training
split, and the corresponding text prompts were generated by the publicly available Blip and MiniGPT
models. We forward pass the image « through SCA and and text through language encoder to obtain
respective embeddings zfni;;e, Zext» Which are taken by the synthesis model as inputs, and the image

x being the ground truth target for the output. Namely, training triplet is consisting of (zfn%fge, Ziexts
x). Since the € loss in the training phase do not require us to generate completed images, we only
have the generated images available during the evaluation phase, where the image prompt and text
prompt are the inputs, and generated image is the output.

Classifier Training. We primarily followed the training protocol established in Azizi et al. [3]],
with modifications tailored to our specific requirements. For ResNet50, we train ImageNet-1K and
iNaturalist 2018 for 300 and 450 epochs respectively, and for smaller datasets we use 100 epochs;



Model Method | IN-LT  Head  Mid Tail | iNat Head Mid Tail

CE 79.17  83.77 7829 6993 | 7411 7736 74.12 73.20
cRT [39] 80.41 8256 7948 7279 | 77.14 7621 76.86 77.67
VIT-B/16 LWS [39] 80.58 8197 79.73 7451 | 7854 7558 78.84 79.03
LAS [100] 79.96 821 78.86 7284 | 7635 75.07 7623 76.81
RIDE-3 [81] 7895 79.85 7841 7327 | 75.05 72.66 7535 7537

PC Softmax [34] | 79.98 8152 79.04 73.96 | 76.62 74.85 76.09 77.63

Table 8: Comparisons among long-tail recognition methods, reported in classification Top-1 accuracy (%). The
performance of the classifier can be further improved by fine-tuning the header with re-balancing or calibration
approaches.

ViT-B/16 requires 60% more epochs across all datasets. The learning rate decays by a factor of 10 at
50% and 75% of total epochs. More precisely, for example, for large-scale datasets like ImageNet,
we consider the following settings: for the ResNet50 model, training goes for 300 epochs with an
input size of 224 x 224 and a large batch size of 8192. We use SGD optimizer with a learning rate of
3.6, a cosine decay schedule and a weight decay of 1 x 10~%. There’s a 5-epoch warmup phase. On
the other hand, the ViT-B/16 model is trained for 480 epochs with the same input size but a smaller
batch size of 1024, using the AdamW optimizer with a lower initial learning rate of 1 x 1073, also
decaying via a cosine schedule but with a higher weight decay of 0.05. Its warmup period is longer
at 10 epochs, and it additionally uses a drop path rate of 0.2. Both models apply a standard random
cropping of 224 x 224 pixels, a horizontal flip probability of 0.5, label smoothing with a factor of
0.1, and RandAugment set to 1 for data augmentation. For FGVC datasets, we reduced the training
duration to one-third of the epochs. We further adjusted the hyperparameters for few-shot learning
and OOD detection tasks to optimize performance.

C Long-Tail Recognition Methods

Our method exhibits compelling performance under the long-tail setting. We further apply long-tail
recognition methods upon our generated data to investigate potential performance improvements.
Using the representation from the CE pre-trained model, we fine-tune for an additional 20-50 epochs
during the second stage training on the classifier header (or experts for RIDE). For re-balancing
approaches, we implement class balance strategies for real and synthetic data separately, as the latter
is more balanced by construction. More precisely, the stage-two balanced dataset consists of class-
balanced sampling from the real dataset with probability (1 — P)% and instance-balanced sampling
from the synthetic dataset with probability P%. For calibration approaches, we employ a heuristic
approach that recalibrates the number of data points n to be a weighted average of real and synthetic
data: n = Nyeq + (1 — @) Nfake, Where o« = 0.8. The results presented in Tabledemonstrate that our
method achieves superior performance when combined with additional re-balancing or calibration
methods. In particular, learnable weight scaling (LWS) achieves the best results compared to other
methods for both datasets, outperforming the baseline by 1.41% and 4.43%.

D Broader Applicability Beyond Fine-Grained Classification

Although our main experiments focus on fine-grained visual classification, this choice is motivated
by practical challenges in niche domains where expert models must be trained on domain-specific
datasets that are often small or class-imbalanced. GDA is particularly valuable in these settings,
as it can generate faithful and diverse samples by leveraging world priors learned from synthesis
models, thereby improving robustness of downstream classifiers. We note that our current synthesis
pipeline, built on SDXL, is optimized for object-centric image generation and may not be directly
suitable for complex vision tasks such as text-rich VQA or GraphQA. Nevertheless, we demonstrate
the broader applicability of our method through two additional experimental settings: abstract scene
understanding and multi-modal visual classification.

D.1 Abstract Scene Understanding: Places365

To evaluate performance beyond object-centric datasets, we conduct few-shot experiments on
Places365 [101], a large-scale dataset for scene recognition. We follow the same N-way 10-shot



Method  Vanilla CutMix Mixup Da-Fusion Diff-Mix  Ours

Top-1 35.32 36.23 35.53 36.57 37.53 39.06
Top-5 64.15 65.62 64.47 65.88 66.91 68.69

Table 9: Classification accuracy (%) using 10-shot training samples on Places365 validation set. Our method
achieves consistent improvements over baseline augmentation methods.

Method CUB  Aircraft Flowers Cars Dogs Food Average
Zero-shot 79.44  58.78 82.91 87.58 78.48 90.31 79.58
Fine-tuned (Diff-Mix) 89.37  66.92 94.71 9530 87.14 83.23 86.11
Fine-tuned (Ours) 9049 7931 9530  96.57 87.33 91.53 90.09

Table 10: Classification accuracy (%) under N-way 10-shot setting with Qwen2.5-VL-7B backbone. Our method
demonstrates consistent improvements over both zero-shot and Diff-Mix augmented fine-tuning.

experimental protocol described in Table 2 of the main paper, with evaluation performed on the
validation set. As shown in Table 0] our method outperforms the strongest baseline (Diff-Mix) by
1.53% and 1.78% in Top-1 and Top-5 accuracy, respectively. This demonstrates that our approach
generalizes effectively to abstract scene understanding tasks beyond fine-grained object classification.

D.2 Multi-Modal Visual Classification

Classification remains an important task for modern multi-modal models, which often require fine-
tuning on domain-specific datasets to achieve production-level performance. To demonstrate the
effectiveness of our generation method in this context, we explore multi-modal visual classification
by performing supervised fine-tuning on a multi-modal large language model using FGVC datasets.

We use Qwen2.5-VL-7B as our backbone model. During fine-tuning, we tune only the vision projector
and vision encoder while keeping the LLM frozen. The classification problem is reformulated as
a 26-choice multiple-choice QA task, where the ground-truth label is always included among the
choices. We use the following prompt template:

“You are an expert classifier. Based on the visual evidence in the image, select the
most appropriate category. Please choose ONE of the following: A. beef _tartare B.
creme_brulee ... Z. tacos. Please respond ONLY with your answer wrapped in this
format: <answer> LETTER </answer>.”

Table[TI0] presents classification accuracy under the N-way 10-shot setting across six FGVC datasets.
Zero-shot performance is generally unsatisfactory, particularly on specialized domains like Aircraft
recognition. When fine-tuning with augmented data generated by our method, we achieve substantial
improvements over Diff-Mix, with an average gain of 3.98% across all datasets.

E Complete Image Quality Evaluation

In Section 4.3 of the main paper, we presented image quality evaluation on ImageNet and iNaturalist,
the two largest and most challenging datasets in our benchmark. For completeness, Table [T T] presents
the full evaluation across all six remaining FGVC datasets. Our method consistently achieves the
best performance across all metrics and datasets. Notably, our approach maintains superior diversity
(Vendi Score) and simultaneously improves fidelity (lower DreamSim) and generation accuracy. This
demonstrates that the fidelity-diversity trade-off is effectively balanced by our SCA embeddings
across different visual domains, from fine-grained flowers and birds to aircraft and food categories.

F Comparison with Off-the-Shelf Diffusion Adapters

To contextualize our approach within the broader landscape of image-conditioned diffusion models,
we compare our method against several state-of-the-art off-the-shelf adapters: IP-Adapter [89],
ELITE [84]], E4T [26l, and FastComposer [86]. These methods provide pre-trained image encoders
and adapter modules that can be directly applied to new domains without task-specific fine-tuning.



Dataset Method DreamSim]  Vendit CLIP-Tt Gen. Top-1  Gen. Top-5

Real-Guidance 0.3307 15.16 0.3236 87.31% 95.30%
Flowers DA—Fu§i0n 0.3260 13.06 0.2795 88.24% 96.22%
Diff-Mix 0.3195 14.20 N/A 91.83% 99.00%
SCA (Ours) 0.3051 15.31 0.3089 95.27% 99.88%
Real-Guidance 0.4382 8.01 0.3627 54.27% 82.93%
Cars DA-Fusion 0.4263 7.59 0.3169 60.85% 85.60%
Diff-Mix 0.4035 7.72 N/A 85.46% 98.69%
SCA (Ours) 0.3880 7.96 0.3411 86.60% 99.07 %
Real-Guidance 0.4676 7.59 0.3411 25.67% 65.99%
Aircraft D_A-Fugion 0.4549 6.54 0.2974 33.58% 71.35%
Diff-Mix 0.4230 7.04 N/A 49.46% 81.96%
SCA (Ours) 0.4001 7.61 0.3167 60.17 % 92.95%
Real-Guidance 0.4584 11.91 0.3479 63.03% 93.75%
CUB DA—Fu§ion 0.4624 11.81 0.3033 62.14% 90.97%
Diff-Mix 0.4379 11.49 N/A 69.53% 96.49%
SCA (Ours) 0.4092 11.89 0.3283 73.66 % 97.64%
Real-Guidance 0.4833 21.44 0.3413 87.71% 99.03%
Food-101 DA—Fu§i0n 0.4796 19.46 0.2974 87.56% 98.41%
Diff-Mix 0.4513 20.13 N/A 90.16% 99.22%
SCA (Ours) 0.4374 21.31 0.3289 92.48% 99.84%
Real-Guidance 0.4731 37.92 0.3668 79.38% 96.09%
Dogs DA-Fu;ion 0.4569 32.07 0.3011 79.74% 97.27%
Diff-Mix 0.4274 34.73 N/A 81.24% 97.40%
SCA (Ours) 0.4105 37.99 0.3439 83.78% 98.26 %

Table 11: Complete image quality evaluation across all FGVC datasets. We report perceptual similarity
(DreamSim |), sample diversity (Vendi Score 1), text-image alignment (CLIP-T 1), and generation accuracy
(Gen. Top-1/Top-5). Our SCA method consistently achieves the best balance across all metrics.

Synthesis Model Image Encoder DreamSim]  Vendit CLIP-TT Gen. Top-1  Gen. Top-5
ELITE [84] CLIP-B 0.5239 29.37 0.2816 20.11% 30.57%
EAT [26] CLIP-L 0.5384 31.22 0.2819 2.26% 5.82%
IP-Adapter [89] CLIP-H 0.5037 31.92 0.3007 26.18% 48.28%
FastComposer [86] CLIP-L 0.5194 30.82 0.2944 4.06% 9.94%
SDXL-Finetuned CLIP-B 0.4812 31.85 0.2721 36.53% 62.00%
SDXL-Finetuned DINOv2-B 0.4537 32.24 0.2803 58.45% 80.84%
SDXL-Finetuned (Ours) SCA 0.4293 34.48 0.3106 67.28% 87.48%

Table 12: Comparison with off-the-shelf diffusion adapters on iNaturalist. Our SCA method achieves substantial
improvements over pre-trained adapters and alternative visual encoders across all metrics.

Following the evaluation protocol in Table 5 of the main paper, we conduct experiments on the
iNaturalist dataset. For each method, we generate synthetic data using the respective adapter and
measure: (1) concept preservation using DreamSim [23]], (2) sample diversity using the Vendi
Score [22], (3) text-image alignment using CLIP-T [61]], and (4) generation quality using Top-1
and Top-5 accuracy from an external classifier (a strong model from the TIMM leaderboard). We
additionally include ablations using SDXL fine-tuned with CLIP and DINOvV2 encoders (without our
SCA training procedure) to isolate the contribution of our proposed loss function.

Table[T2]presents a comprehensive comparison. Our method consistently outperforms all off-the-shelf
adapters across every metric. Notably, we achieve a 41.1% improvement in Gen. Top-1 accuracy
over the best off-the-shelf adapter (IP-Adapter: 26.18% vs. Ours: 67.28%), demonstrating the critical
importance of domain-specific adaptation for fine-grained visual tasks.

Pre-trained adapters such as IP-Adapter and ELITE, while effective for general-purpose image
generation, show poor generation quality on fine-grained classification tasks. Even IP-Adapter with
CLIP-H achieves only 26.18% Top-1 accuracy, indicating that the generated images frequently
do not preserve the correct fine-grained category. This suggests that generic adapters lack the
specialized visual understanding required for subtle inter-class distinctions in domains like species



Model IN-LT  iNat Cars CUB  Flowers Aircraft Food Dogs  Average

SCA Probing 69.64 65774 9431 90.24 99.17 85.22 93.97 9093 86.15
SCA Augmented (Ours) 79.17 7411 9517 91.47 99.92 88.42 95.61 91.84 89.46
Improvement +9.53 +837 +0.86 +1.23 +0.75 +3.20 +1.64 +0.91 +3.31

Table 13: Comparison of direct SCA feature classification vs. SCA-guided generative augmentation. Classifica-
tion accuracy (%) on eight datasets demonstrates that generative augmentation provides substantial improvements
over direct feature use.

identification. Fine-tuning SDXL with CLIP-B embeddings (without our SCA training) yields 36.53%
Top-1 accuracy, already surpassing all off-the-shelf methods. This demonstrates that task-specific
adaptation of the synthesis model is essential for fine-grained domains. Switching to DINOv2-B
embeddings further improves performance to 58.45%, highlighting the importance of encoder choice.
Our proposed method, which combines DINOv2-based initialization with our angular margin loss
training, achieves 67.28% Top-1 accuracy, which is an 8.83% improvement over DINOv2 alone. This
improvement, coupled with the best CLIP-T score (0.3106) and highest diversity (34.48 Vendi Score),
demonstrates that our SCA training procedure effectively learns to encode salient visual concepts
while maintaining text alignment and sample diversity.

G Direct Classification with SCA Features

Our approach can be understood through the lens of knowledge distillation: the SCA embedding
model encodes task-specific visual priors, which are then transferred to downstream classifiers via the
synthesis model. The synthesis model, leveraging its world knowledge, generates images with diverse
incidental features (backgrounds, lighting, poses) while preserving salient concepts. This process
enables the downstream classifier to learn robust representations that focus on class-discriminative
features rather than spurious correlations.

A natural question arises: could we bypass the synthesis stage entirely and use SCA embeddings
directly for classification? Despite conceptually appealing, this approach would forfeit the primary
benefit of our method that leverages the foundation synthesis model’s world knowledge to generate
diverse training samples that improve classifier robustness.

To investigate this question empirically, we compare two approaches: (1) SCA Probing: training
a linear classification head on frozen SCA features, and (2) SCA Augmented: our full method
using SCA-guided generative augmentation. For fair comparison, we use OpenAl CLIP-B/16 as the
backbone for SCA training, matching the initialization used for downstream classifiers in our main
experiments. As shown in Table[T3] our full generative augmentation method outperforms direct SCA
feature classification by an average of 3.31% across eight datasets. The improvement is particularly
pronounced on challenging datasets: ImageNet-LT (+9.53%) and iNaturalist (+8.37%), both of which
feature long-tailed distributions with limited samples for many classes.

It is important to emphasize that SCA training is not a silver bullet for isolating salient concepts
with perfect precision. Rather, it is an effective mitigation strategy that reduces conflicts between
image and text prompts during synthesis, helping achieve a better fidelity-diversity trade-off in
generated data. The synthesis model remains the primary source of distributional diversity that drives
downstream classifier robustness.
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