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Abstract001

Recent advances in text-to-video (T2V) gen-002
eration highlight the critical role of high-003
quality video-text pairs in training models ca-004
pable of producing coherent and instruction-005
aligned videos. However, strategies for op-006
timizing video captions specifically for T2V007
training remain underexplored. In this pa-008
per, we introduce VC4VG (Video Captioning009
for Video Generation), a comprehensive cap-010
tion optimization framework tailored to the011
needs of T2V models. We begin by analyz-012
ing caption content from a T2V perspective,013
decomposing the essential elements required014
for video reconstruction into multiple dimen-015
sions, and proposing a principled caption de-016
sign methodology. To support evaluation, we017
construct VC4VG-Bench, a new benchmark018
featuring fine-grained, multi-dimensional, and019
necessity-graded metrics aligned with T2V-020
specific requirements. Extensive T2V fine-021
tuning experiments demonstrate a strong cor-022
relation between improved caption quality and023
video generation performance, validating the024
effectiveness of our approach. All benchmark025
tools and code will be released to support fur-026
ther research.027

1 Introduction028

Text-to-video (T2V) generation has witnessed029

rapid progress in recent years, marked by im-030

pressive systems such as Sora (OpenAI, 2024)031

and Kling(Kuaishou, 2024). A core driver behind032

these advancements is the availability of large-033

scale, high-quality video-caption pairs that en-034

able T2V models to generate visually rich and035

instruction-aligned content. However, acquiring036

such high-quality video-text pairs remains a ma-037

jor bottleneck: although large volumes of video038

data are readily available online, most lack accu-039

rate textual annotations or are labeled with low-040

quality captions. To bridge this gap, recent large-041

scale datasets have increasingly relied on auto-042

mated captioning powered by multimodal large 043

language models (MLLMs) (Chen et al., 2024; 044

Wang et al., 2023). 045

As a result, emerging T2V systems (e.g., Open- 046

Sora (Zheng et al., 2024), CogVideoX (Yang 047

et al., 2024b)) and curated datasets (e.g., Open- 048

Vid (Nan et al., 2024), ShareGPT4Video (Chen 049

et al., 2025a), Miradata (Ju et al., 2025)) have 050

adopted pseudo-caption generation as a key pre- 051

processing step. Despite this trend, there re- 052

mains a critical gap: no existing work provides 053

a systematic caption optimization framework that 054

aligns caption design, evaluation, and T2V train- 055

ing in a unified, feedback-driven loop. Mean- 056

while, existing video captioning benchmarks suf- 057

fer from two key limitations: 1) They rely on out- 058

dated metrics (e.g., BLEU (Papineni et al., 2002), 059

CIDEr (Vedantam et al., 2015)) designed for short 060

and generic captions. 2) They lack evaluation pro- 061

tocols tailored to the specific needs of video gen- 062

eration tasks (e.g., AuroraCap (Chai et al., 2024), 063

Dream-1K (Wang et al., 2024a)). 064

To address these limitations, we propose 065

VC4VG (Video Captioning for Video Genera- 066

tion), a comprehensive caption optimization strat- 067

egy specifically designed to enhance T2V training. 068

As illustrated in Figure 1, our approach consists of 069

three key components: 070

Dimension-Aware Caption Optimization: From 071

a T2V generation perspective, we analyze the core 072

visual-linguistic elements required for video re- 073

construction and decompose captions into five es- 074

sential dimensions: (1) subject attributes, (2) envi- 075

ronmental context, (3) motion dynamics, (4) cam- 076

era parameters, and (5) atmospheric/stylistic ele- 077

ments. We hypothesize that rich and accurate cov- 078

erage across these dimensions contributes directly 079

to improved video generation performance. We 080

therefore optimize raw captions generated by the 081

captioner according these dimensions. 082

To investigate dimensional optimizations im- 083
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…

Camera:The 
video begins 

with a ground-
level view of a 
sandy beach, 
maintaining a 
medium shot. 
The camera 

remains static.

Subject Attributes:
A barefoot person's 
feet enter the frame. 

The person is 
wearing dark shorts. 

Environment 
Attributes:

 …The ocean visible 
in the background 

with waves crashing 
against the shore. …

Subject Actions:
The person's legs 
and lower body 

gradually become 
more visible as they 
walking towards the 

ocean. .

Environment 
Changes: The 
person walks at 
a steady pace, 
their feet in the 
sand. leaving 
small imprints

Stylization: The 
overall style is 
naturalistic and 

serene. 

Raw Video

Reconstruction Video

Q: Where is the person in the 
video walking towards? 

A: Walking towards the sea in the 
background. …

VC4VG-Bench

Captioner Model

Optimized Captions

Text-to-Video
Model

Q: Which body parts of the person 
are mainly filmed in the video?

A: Lower body

Q: What can be seen on the beach 

in the video?
A: Small pebbles and debris

Figure 1: Overview of the video caption optimization strategy for text-to-video (T2V) generation. The original
video is transformed into textual descriptions via captioners. These captions are then optimized according to
dimensions that we consider essential for video reconstruction and instruct by VC4VG-Bench evaluation. Finally,
optimized captions are used during T2V models’ training and generating videos.

prove T2V generation compared to other caption084

models and scale caption generation efficiently for085

large datasets (typically >10M videos), we build a086

custom MLLM captioner, LLaVA-Video-Gen-7B,087

based on LLaVA-Video (Zhang et al., 2024) and088

enhanced using Gemini 1.5 Pro (Team et al., 2024)089

and temporal-sensitive data from RTime (Du et al.,090

2024). This model supports scalable, locally de-091

ployable high-quality caption generation.092

VC4VG-Bench: A Targeted Evaluation Bench-093

mark: We introduce VC4VG-Bench, a hierarchi-094

cal, LLM-assisted benchmark comprising 1,000095

human-annotated Video–QA pairs. These QAs096

span multi-level visual content, from high-level097

themes to fine-grained visual details. To measure098

caption effectiveness, we introduce a necessity-099

based hierarchy that distinguishes core vs. sup-100

plementary content for video reconstruction. This101

allows for automated, LLM-as-judge evaluations102

that align well with human assessments, enabling103

scalable and accurate evaluation of captioning104

quality from a generation-oriented perspective and105

providing actionable insights for model selection106

and data optimization in text-to-video generation.107

Closed-Loop Validation via T2V Fine-tuning:108

To validate the practical utility of our framework,109

we fine-tune the CogVideoX (Yang et al., 2024b)110

model on three versions of a 72K-sample video-111

caption dataset curated from OpenVid-1M (Nan112

et al., 2024), using captions generated by differ-113

ent methods, including CogVLM2-Caption (Yang 114

et al., 2024b), LLaVA-Video-7B (Zhang et al., 115

2024), and our proposed LLaVA-Video-Gen- 116

7B model. Quantitative results on MovieGen- 117

Bench (Polyak et al., 2024), supplemented with 118

qualitative studies, show that generation quality 119

correlates strongly with the richness and necessity 120

alignment of caption content across our defined di- 121

mensions, validating the effectiveness of our opti- 122

mization strategy. 123

Our main contributions are threefold: 1) We 124

systematically decompose video captioning into 125

five key dimensions critical to video reconstruc- 126

tion, providing guidance for scalable caption 127

generation. 2) We propose a benchmark with 128

1,000 human-verified QA pairs and an automated 129

evaluation protocol tailored to T2V needs. 3) 130

We demonstrate, through fine-tuning experiments, 131

that improvements in caption content directly en- 132

hance video generation quality, validating our cap- 133

tion optimization strategy. Our code, benchmark, 134

and model will be released to support further re- 135

search on high-quality video-text data generation 136

for T2V systems. 137

2 VC4VG 138

we propose VC4VG (Video Captioning for Video 139

Generation), a comprehensive caption optimiza- 140

tion strategy tailored for enhancing T2V train- 141

ing. In this section, we first present caption infor- 142
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QA Pairs by Evaluation Dimensions

Subject
Q: What does the man's hair look 
like in the video?
A: Graying hair; Curly hair.

Environment
Q: What does the background 
look like in the video?
A: Gray solid color 
background.

Motion
Q: In chronological order, what 
direction is the man looking at the 
beginning of the video? How does 
his gaze shift later on?
A: At the beginning, the man's 
gaze is directed to one side; 
Then, it shifts to the other side; 
Finally, he looks at the camera.

Camera Info
Q: What is the camera shot size 
in the video?
A: Medium close-up.

Atmosphere&Style
Q: What is the mood or tone of 
the video?
A: Introspective.

Dual-Reference Human Annotation Strategy

Video
Reference

Caption 
Reference

Hallucinations

Precise and Detailed Content

Information Gaps

Figure 2: The core framework of evaluation QA-
pairs, structured around five key assessment dimen-
sions. Leveraging dual-reference (video content & tex-
tual captions) enables multimodal alignment verifica-
tion, effectively assisting human annotation to ensure
accuracy and comprehensive coverage in evaluation
QA-pairs.

Q: [level-1] What is the elephant 
doing in the video?
A: Drinking water.

Q: [level-1] Is the elephant's trunk 
moving in the video? 

A: Yes.

Core Structures

High-level Themes

Q: [level-2] In chronological order, 
what movements does the 

elephant's trunk make in the video?
A: [scoring point-1]At first, it is 

submerged in water; 
[scoring point-2]Then it bends 

towards its mouth to drink water. 

Fine Details

Q: What actions does the elephant 
perform in the video?

Q: What actions does the elephant's 
trunk exhibit after it is submerged 

in water in the video?

Multigranularity QA

Temporal-Info Processing

Evaluation Metrics

Multiple Scoring Points within 
QA [scoring point-x]

Reconstruction-Necessity-based 
Hierarchy [level-1]& [level-2] 

Figure 3: Illustration of the multi-granularity evalu-
ation QA-pair system specifically designed for video
generation tasks. Featuring moderate information clus-
tering in temporal processing, the hierarchical QA-pair
architecture based on reconstruction-necessity incorpo-
rates multiple scoring points to comprehensively assess
caption quality in video generation tasks.

mation dimensions decomposed from the essen-143

tial requirements of T2V reconstruction, accom-144

panied by the development of LLaVA-Video-Gen,145

a captioner for large-scale video captioning in Sec-146

tion 2.1. We then introduce VC4VG-Bench, a147

novel benchmark specifically designed for video148

captioning from the text-to-video generation per-149

spective in Section 2.2.150

Diverse Reference Answers & Isolation of Complex Info 

Q: Which young people in the video have arm movements while dancing? 
What specific movements are they doing?
A: 
The man wearing a hat/green jacket has arm movements;
The man wearing a hat/green jacket raises both his arms;
The third white man/light brown short-haired man also has arm movements;
The third white man/light brown short-haired man raises one arm.

Figure 4: Separating scoring metrics: (1) presence
of arm movements and (2) movement specificity, to
systematically isolate complex information evaluation.
Concurrently, character-specific features (e.g., wearing
hat, wearing green jacket) are leveraged to formulate
diverse reference answers, and therefore enhance an-
swer adaptability across diverse caption.

2.1 Caption Optimization 151

High-quality video-caption pairs are essential for 152

effective T2V training. We hypothesize that rich 153

and accurate coverage across key dimensions in 154

captions directly enhances video generation per- 155

formance. To validate this, we systematically de- 156

compose video captioning into five critical dimen- 157

sions based on core reconstruction requirements, 158

ensuring comprehensive yet flexible coverage of 159

essential content. These dimensions include: 160

• Camera Parameter Specification: Camera pa- 161

rameters critically govern text-to-video genera- 162

tion through three key dimensions: (1) shot size 163

defining subject scale relative to the frame, (2) 164

camera angles specifying viewpoint orientation, 165

and (3) movement patterns describing dynamic 166

transitions inferred by analyzing scene context 167

and static reference objects. Special techniques 168

like slow motion or macro shots are explicitly 169

annotated as shot technology modifiers. 170

• Subject Attributes: We define subjects as the 171

main objects in videos, focusing on two key 172

visual features: (1) basic properties including 173

quantity, appearance, clothing, and accessories; 174

(2) spatial relationships between different sub- 175

jects, such as their positions and interactions. 176

• Motion Dynamics: We define motion dynam- 177

ics through three core elements: (1) Gradual en- 178

vironmental changes over time, (2) Sequential 179

actions broken down into detailed limb move- 180

ments, and (3) Movement paths showing direc- 181
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[Qwen2-VL Caption] 
… The man appears to be walking 

slowly (missing) and is looking 
down at the sand as he walks. …

[LLaVA-Video Caption] … The 
person continues to walk towards 

the camera, gradually getting 
closer with each step. ….

[LLaVa-Video-Gen Caption] 
… The person walks at a steady 
pace, passing the camera and 

continuing to walk towards the 
ocean….

[Gemini-1.5-Pro Caption] … A 
barefoot person‘s feet enter the 

frame from the bottom left, 
walking towards the ocean. …

Q: Where is the person in the video walking towards? 
A: Walking towards the sea in the background.

[CogVLM-2 Caption] 
A bearded man … feeds a 

strawberry to a woman (missing) …

[VideoLLaMA3 Caption] 
… In the video, a man is seen 

feeding a woman a strawberry 
(missing) while they are on a 

couch. ….

[LLaVa-Video-Gen Caption] 
… He holds a strawberry in his 
right hand and offers it to the 

woman, …

[Tarsier2 Caption] 
… feeding a strawberry to a woman 
(missing) … while he continues to 

hold the strawberry. …

Q: Which hand is the man holding the strawberry with in the video?
A: His left hand

Figure 5: Illustration of representative examples of
video caption performance on the benchmark, demon-
strating variations in action descriptions.

tion and position changes when subjects travel182

through scenes.183

• Environmental Contexts: We set environment184

descriptions encompass: (1) Spatiotemporal at-185

tributes (lighting conditions, weather, time-of-186

day), (2) Geospatial layout with object place-187

ments, and All elements are grounded in visually188

observable evidence without subjective interpre-189

tation.190

• Stylization Guidelines: We summarize high191

level visual aspects through: (1) Emotional am-192

biance conveyed via color grading and motion193

patterns, (2) Stylistic descriptors (e.g., anime,194

cyberpunk) governing rendering pipelines.195

These are derived from low-level visual cues196

rather than external semantic knowledge.197

To systematically investigate how dimensional198

optimizations improve T2V generation compared199

to conventional caption models, while addressing200

the scalability requirements for large-scale video201

recaptioning demands for T2V training (requir-202

ing processing tens of millions of videos), we203

distills the comprehensive captioning capabilities204

from the powerful MLLM Gemini 1.5 Pro (Team205

et al., 2024) into a 7B-parameter expert model206

considering dimensions above. Our fine-tuning207

data curation strategy involves two complemen-208

tary components: 1) We first filter videos from209

WebVid-10M (Bain et al., 2021) to ensure visual210

diversity for foundational concept understanding;211

2) We incorporate the RTime dataset (Du et al.,212

2024) containing temporally sensitive videos with213

human annotations for both forward and reversed214

versions, where we leverage these high-confidence 215

short captions as references when generating cap- 216

tions via Gemini 1.5 Pro to enhance temporal 217

understanding. After collecting enough video- 218

caption pairs generated by Gemini 1.5 Pro, we uni- 219

formly sample 32 frames per video and fine-tune 220

LLaVA-Video-7B (Zhang et al., 2024) to obtain 221

LLaVA-Video-Gen, an expert model specialized 222

for video captioning. 223

2.2 VC4VG-Bench 224

To quantitatively evaluate caption coverage accu- 225

racy across critical video reconstruction dimen- 226

sions and assess corresponding T2V generation 227

improvements, we introduce VC4VG-Bench, an 228

automated evaluation caption benchmark for T2V. 229

2.2.1 Evaluation Dimensions and Videos 230

Aligning with the characteristics of a detailed cap- 231

tion necessary to generate high-quality video, our 232

benchmark encompasses evaluations in five criti- 233

cal dimensions of videos mentioned in Section 2.1. 234

Therefore, in terms of video collection, rather than 235

achieving diversity through disparate data sources, 236

we prioritize the diversity of videos across the five 237

evaluation dimensions. The evaluation videos are 238

curated from Pixabay1, chosen for their high aes- 239

thetic quality and rich visual detail, with durations 240

typically ranging from 5 to 20 seconds. 241

2.2.2 Evaluation QA Design 242

In terms of evaluation QA system design, We 243

adopt the similar divide-and-conquer strategy by 244

AuroraCap (Chai et al., 2024). 245

Human Annotation Strategy Unlike Aurora- 246

Cap (Chai et al., 2024)’s approach, which relies 247

on manually refined ground-truth captions derived 248

from LLM-generated outputs and fully automates 249

QA generation using GPT-4 (OpenAI, 2023) with 250

predefined prompts, our QA pairs are entirely 251

human-annotated as shown in Figure 2. Anno- 252

tators simultaneously reference both the original 253

video content and Gemini-1.5-Pro (Team et al., 254

2024) generated captions—the latter of which may 255

contain information omissions or hallucinations. 256

This dual-reference methodology creates a com- 257

plementary framework where human visual inter- 258

pretation and multi-modal model understanding 259

jointly establish a holistic and precise comprehen- 260

sion of video content. 261

1https://pixabay.com/videos
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We opt for manual QA annotation over manual262

caption refinement to ensure that our QA design263

incorporates diverse granularity and complexity264

levels to assess nuanced information reconstruc-265

tion. Directly generating QA pairs by LLMs ex-266

hibit the inherent reliability limitations.267

Temporal Information Processing In terms of268

question formulation, temporal information intro-269

duces significant complexity, particularly when270

considering sequences of actions (e.g., motion tra-271

jectories of subjects or camera operations) that in-272

volve chronological ordering, concurrent events,273

or causal relationships.274

We address this by clustering temporally corre-275

lated information (e.g., sequences of hand move-276

ments) for evaluation. This design is motivated277

by two primary considerations: First, aggregating278

multiple temporal elements into a single question279

(e.g., "What sequential actions did the subject per-280

form?") would substantially increase the difficulty281

of answer formulation and evaluation. Second, de-282

composing sequences into individual actions risks283

introducing conditional dependencies (e.g., "What284

occurred after Action 1?"), which becomes un-285

manageable if the caption omits or misrepresents286

prerequisite actions (e.g., Action 1).287

General QA Formualtion To further enhance288

assessment robustness against variations in cap-289

tioner outputs (e.g., linguistic diversity, descrip-290

tive paradigms, accuracy, comprehensiveness, and291

granularity), we implement three general strate-292

gies as shown in Figure 3 and Figure 4:293

1) Multigranularity QA supplementation: In-294

corporating questions that assess both fine-grained295

details (e.g., enumerating specific hand move-296

ments) and high-level assertions (e.g., pres-297

ence/absence of hand actions);298

2) Isolation of complex information: Separat-299

ing challenging elements (e.g., left/right hand dis-300

tinctions) from broader contextual descriptions to301

avoid conflated evaluations;302

3) Diversified reference answers: Accommo-303

dating multiple valid descriptions for ambiguous304

entities (e.g., “the man on the left” vs. “the man305

wearing a black hat”) through semantically equiv-306

alent answer variants.307

2.2.3 Evaluation Metrics308

In the design of evaluation metrics, we allocate309

scores based on the informational density of each310

Satistics QA Pair Scoring Point Avg Point/Pair

Subject 293 462 1.6
Environment 306 450 1.5

Atmosphere&Style 17 17 1.0
Motion 208 335 1.6

Camera Info 132 145 1.1

Necessity-L1 / 614 /
Necessity-L2 / 796 /

Total 956 1410 1.5

Table 1: VC4VG-Bench Statistics.

QA pair. For QA pairs containing substantial in- 311

formation, we decompose answers into multiple 312

scoring points to enable precise score distribution 313

while reducing the complexity of automated eval- 314

uation. 315

Reconstruction-necessity-based Hierarchy. We 316

stratify QA pairs into two levels according to their 317

necessity for video reconstruction. This hierar- 318

chy reflects our expectation that captions should 319

prioritize accurate coverage of information criti- 320

cal to video fidelity. Regarding the classification 321

criteria for reconstruction-necessity-based hierar- 322

chy, information pertaining to high-level concepts 323

and core structures is predominantly categorized 324

as Level-1 necessity, while fine details are gener- 325

ally assigned to Level-2 necessity. Concurrently, 326

the dimension of information or its visual saliency 327

level within the video context also impacts neces- 328

sity classification. For instance, although both rep- 329

resent fine details, the color of the dress of the 330

subject female (as the visual focus) would be clas- 331

sified as Level-1 necessity, whereas the color of 332

background curtains (secondary visual elements) 333

would typically fall under Level-2 necessity. 334

2.2.4 Automated Evaluation Results 335

We adopt the LLM-as-judge paradigm to imple- 336

ment automated evaluation, leveraging GPT-4o for 337

extracting target information from captions and 338

determining whether predefined scoring criteria 339

are adequately addressed. The pipeline achieved a 340

consistency rate over 80% with human judgments, 341

which demonstrates the reliability of our frame- 342

work. 343

As demonstrated in Table 3, under the free- 344

generated setting, mainstream MLLMs and spe- 345

cialized captioners exhibit significant performance 346

variations on our benchmark. Gemini-1.5-Pro 347

demonstrates relative advantages overall. How- 348

ever, without explicit prompt guidance, it tends to 349

generate concise and generalized captions that fre- 350

5



Caption Model
Environment Subject Motion Camera Atmosphere&style Necessity-L1 Necessity-L2 Total score

Score/% Score/% Score/% Score/% Score/% Score/% Score/% Score/%

ShareCaptioner-Video-7B (Chen et al., 2025a) 196/43.5 103/22.3 85/25.4 48/33.1 12/70.6 284/46.3 160/20.1 444/31.5
Vriptor (Yang et al., 2024a) 208/46.1 126/27.3 60/17.9 31/21.4 16/94.1 303/49.3 138/17.3 441/31.3

VideoLLaMA3-7B (Zhang et al., 2025) 119/26.4 106/22.9 88/26.3 17/11.7 14/82.4 232/37.8 112/14.1 344/24.4
Qwen2VL-7B (Wang et al., 2024b) 179/39.7 134/29 98/29.3 23/15.9 12/70.6 296/48.2 150/18.8 446/31.6

CogVLM2-Caption (Yang et al., 2024b) 216/47.9 174/37.7 93/27.8 14/9.7 13/76.5 317/51.6 193/24.2 510/36.2
LLaVA-Video-7B (Zhang et al., 2024) 287/63.6 211/45.7 110/32.8 28/19.3 15/88.2 367/59.8 284/35.7 651/46.2

Gemini 1.5 Pro (Team et al., 2024) 278/61.6 255/55.2 119/35.5 44/30.3 17/100.0 374/60.9 339/42.6 713/50.6

LLaVA-Video-Gen-7B(Ours) 304/67.4 256/55.4 154/46.0 74/51.0 16/94.1 459/74.8 345/43.3 804/57.0
Gemini 1.5 Pro-MiraData (Ju et al., 2025) 335/74.3 287/62.1 163/48.7 77/53.1 16/94.1 471/76.7 407/51.1 878/62.3

Gemini 1.5 Pro-VC4VG (Team et al., 2024) 372/82.5 328/71.0 170/50.7 85/58.6 17/100.0 513/83.6 459/57.7 972/68.9

Table 2: Quantitative captioning evaluation results comparison between free-generated and content-constrained
models. The best results of video captioning methods are marked in bold and the second-best are underlined. It
is important to note that due to inherent differences of model and variations in prompt engineering strategies, the
caption results do not reflect their absolute performance capabilities. For free-generated setting, models response
using the uniform prompt "Please describe this video in detail".

quently omit details essential for video reconstruc-351

tion.352

CogVLM2-Caption (Yang et al., 2024b),353

ShareCaptioner-Video-7B (Chen et al., 2025a)354

and Vriptor (Yang et al., 2024a), despite being355

specialized captioning models, exhibit deficien-356

cies across multiple dimensions and therefore357

struggle to generate captions that effectively358

support text-to-video applications.359

Under the prompt engineering setting, we com-360

pared two data synthesis strategies for T2V tasks,361

MiraData (Ju et al., 2025) and our VC4VG, us-362

ing Gemini-1.5-Pro. Both approaches empha-363

size comprehensive descriptions across video di-364

mensions, where the former requires structured365

caption output while the latter imposes no for-366

mat restrictions. Benchmark results demon-367

strate that Gemini-1.5-Pro-VC4VG achieves sig-368

nificantly higher scores than Gemini-1.5-Pro-369

MiraData, which in turn significantly outperforms370

Gemini-1.5-Pro under free-generated setting. This371

suggests that while MiraData’s synthesis strategy372

can effectively align with critical dimensions of373

T2V tasks, there remains room for improvement.374

Our captioning model trained on Gemini-375

1.5-Pro-VC4VG data demonstrates competitive376

performance on the benchmark. Compared377

to Gemini-1.5-Pro under free-generated setting,378

it shows significant improvements at the pri-379

mary necessity-level, approaching the perfor-380

mance level of Gemini-1.5-Pro-MiraData. This in-381

dicates that the captions generated by our model382

can accurately and comprehensively describe the383

highly essential information across various dimen-384

sions required for video reconstruction.385

3 T2V Generation Experiments 386

In this section, we present experimental results 387

and analysis of applying different captioning 388

methods to CogVideoX-5B (Yang et al., 2024b) 389

T2V model training. Section 3.1 details our train- 390

ing preparation including video sources, caption- 391

ing methodologies, and parameter configurations. 392

We subsequently demonstrate the effectiveness of 393

video-caption pairs generated by different caption- 394

ing models for T2V model training in Section 3.2. 395

3.1 Expermental Settings 396

Video Source and Preprocessing: We curated ap- 397

proximately 72K videos from OpenVid-1M (Nan 398

et al., 2024) through rigorous filtering based on 399

aesthetic quality and temporal consistency. To 400

mitigate aspect ratio distortion caused by res- 401

olution mismatches during training, we imple- 402

ment adaptive resizing and cropping based on 403

each video’s original aspect ratio. Given that 404

CogVideoX-5B generates 6-second videos with 49 405

frames at 8 frames per second (fps), we tempo- 406

rally segment all source videos into 6-second clips 407

through random sampling to ensure motion con- 408

sistency. This refined dataset serves as our pri- 409

mary video source for validating different caption- 410

ing methodologies. 411

Captioning Methods: Consistent with the cap- 412

tioning guidelines in Table 3, we employ the 413

following models for video caption generation: 414

(1)CogVLM2-Caption (Yang et al., 2024b) is 415

adopted during the training of CogVideoX to con- 416

vert video data into textual descriptions. This 417

alignment tends to ensure consistency between 418

the fine-tuning phase and CogVideoX’s training 419

paradigm. (2)LLaVA-Video-7B (Zhang et al., 420
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Captioning Models Environment Subject Motion Camera Atmosphere&style Overall
G/S/B/% G/S/B/% G/S/B/% G/S/B/% G/S/B/% G/S/B/%

LLaVA-Video-Gen - - - - - -
-vs LLaVA-Video-7B 26.5/72/1.5 50/44/6 23.5/68.5/8 0.5/98.5/1 1/99/0 61/28.5/10.5
-vs CogVLM-Caption 16/82.5/1.5 28.5/62.5/9 23.5/68.5/8 1/97.5/1.5 0/99.5/0.5 37.5/51/11.5

Table 3: Quantitative T2V human-annotated evaluation results. The evaluation compares the performance of
LLaVA-Video-Gen, against two baseline models: LLaVA-Video-7B and CogVLM-Caption. Human annotators
assessed video outputs from these models based on 200 samples from the MovieGenBench dataset, which are
annotated with prompts in miradata-style (Ju et al., 2025) For each comparison, evaluators rated whether LLaVA-
Video-Gen’s output was Good (G), Same (S), or Bad (B) relative to the baseline across several criteria. The scores
are presented as G:S:B percentages, indicating the proportion of times LLaVA-Video-Gen was judged superior,
equivalent, or inferior to the respective baseline for each dimension.

2024) extends the LLaVA-Onevision (Li et al.,421

2024) through fine-tuning on the LLaVA-Video-422

178K which containing detailed caption annota-423

tions, enabling the generation of comprehensive424

and fine-grained video descriptions. (3)LLaVA-425

Video-Gen represents our expert captioner model426

introduced in Section 2.1, which is distilled from427

Gemini 1.5 Pro with prompt enhanced on dimen-428

sions mentioned in Sec 2.1.429

T2V Model Setting: We conduct full-parameter430

fine-tuning of CogVideoX-5B, a widely adopted431

open-source DiT-based T2V generation model, us-432

ing the original training configuration: 49-frame433

sampling, 720×480 resolution, learning rate of 2e-434

5, and 64×NVIDIA H20 GPUs for 5 epochs. Dur-435

ing inference, we maintain identical resolution and436

frame count as in training, configured with 8 fps437

to generate approximately 6-second videos. The438

CogVideoXDPMScheduler (Lu et al., 2022a,b) is439

employed with 50 steps and guidance of scale 6440

throughout inference phases.441

3.2 Experimental Results Comparision442

3.2.1 Human-annotated GSB Quatitative443

Evaluation444

To enable fine-grained evaluation of T2V gen-445

eration fidelity, we curate 200 samples from446

MovieGenBench (Polyak et al., 2024). Us-447

ing Gemini-1.5-Pro, we generate Miradata-448

style prompts with MovieGen-produced videos449

as reference, then reconstruct videos through450

each T2V model. Three domain experts451

perform blind assessments comparing LLaVA-452

Video-Gen against its closest-performing counter-453

parts (LLaVA-Video-7B and CogVLM-Caption)454

through side-by-side evaluation using GSB (Good,455

Same, Bad) scoring criteria across five reconstruc-456

tion dimensions.457

Our findings reveal three key insights: (1) Infor- 458

mation gains in Environment, Subject, and Motion 459

dimensions directly correlate with T2V generation 460

improvements; (2) Comparable performance on 461

Atmosphere attributes across models aligns with 462

VC4VG-Bench’s lower task difficulty for this di- 463

mension; (3) For Camera properties, while models 464

effectively control shot size and angles, movement 465

patterns prove challenging due to MLLMs’ limited 466

capability in understanding fine-grained temporal 467

dynamics - a limitation exacerbated by MovieGen- 468

Bench’s sparse coverage of complex camera mo- 469

tions. 470

We also provide automatic VBench (Huang 471

et al., 2024) metric in Appendix C.2. Collec- 472

tively, these empirical results validate that our 473

dimension-aware optimization strategy effectively 474

guides T2V training data curation. 475

3.2.2 Qualitative Evaluation 476

We choose samples for Figure 6 visualizes rep- 477

resentative cases. The T2V model fine-tuned on 478

captions generated by different models demon- 479

strates t2v improvements in scene detail preser- 480

vation and instruction adherence compared to the 481

raw CogVideoX-5B. More cases are shown in Ap- 482

pendix. 483

4 Related Works 484

Video-Text Dataset. High-quality T2V models 485

require video-text datasets with scene details and 486

instruction alignment for effective training. Ex- 487

isting datasets primarily fall into three categories: 488

human-annotated (Xu et al., 2016; Du et al., 489

2024; Wang et al., 2019; Anne Hendricks et al., 490

2017), metadata-derived captions from video plat- 491

forms (Bain et al., 2021), and automatically gen- 492

erated captions (Miech et al., 2019; Chen et al., 493

2024; Wang et al., 2023; Yang et al., 2024a; Nan 494

7



MovieGen Ground Truth

LLaVA-Video-Gen(Ours)

CogVLM2-Caption

CogVideoX-5B

Figure 6: Qualitative evaluation of different T2V mod-
els’ reconstruction performance. Please zoom in for a
better view.

et al., 2024; Ju et al., 2025). Traditional automa-495

tion methods like ASR transcription (Miech et al.,496

2019; Xue et al., 2022) achieve scale but exhibit497

weak video-text semantic alignment, making them498

suboptimal for generative tasks.499

Modern multimodal LLMs (MLLMs) demon-500

strate enhanced visual description capabilities,501

driving their adoption in T2V training corpus gen-502

eration (Chen et al., 2024; Wang et al., 2023; Nan503

et al., 2024; Zheng et al., 2024; Hong et al., 2022;504

Yang et al., 2024b; Kong et al., 2024; Polyak et al.,505

2024; Ju et al., 2025; Chen et al., 2025a; Yang506

et al., 2024a). Datasets like Panda-70M (Chen507

et al., 2024) and InternVid (Wang et al., 2023) only508

produce short captions. Current solutions priori-509

tize fine-grained dense video descriptions through510

MLLM-based approaches: OpenSora (Zheng511

et al., 2024) leverages PLLaVA (Xu et al., 2024),512

CogVideoX (Yang et al., 2024b; Hong et al., 2022)513

employs its proprietary CogVLM2-Cap, OpenVid514

utilizes LLaVA-1.6 (Liu et al., 2024), and Mira-515

Data (Ju et al., 2025) adopts cost-intensive GPT-516

4V (Zhang et al., 2023) annotations. Most meth-517

ods adopt approaches without specialized frame-518

works for optimizing video generation elements.519

InstanceCap (Fan et al., 2024) generates dense520

structural captions through a complex pipeline521

and suffers from significant efficiency bottlenecks522

compared to end-to-end generation methods, ulti-523

mately limiting its scalability.524

Evaluation of Video Captioning. As the ca- 525

pabilities of video captioning have advanced, 526

the associated benchmarks have evolved from 527

traditional short-caption evaluation(e.g., MSR- 528

VTT (Xu et al., 2016), VATEX (Wang et al., 529

2019)) and metrics(e.g., METEOR (Banerjee and 530

Lavie, 2005) CIDEr (Vedantam et al., 2015), 531

BLEU (Papineni et al., 2002), ROUGE-L (Lin, 532

2004)), to address long-form captioning chal- 533

lenges. Notably, AuroraCap (Chai et al., 2024) in- 534

troduced VDC (Chai et al., 2024), along with an 535

LLM-based evaluation metrics VDCScore, over- 536

coming limitations of direct caption assessment 537

through LLMs. Dream-1K (Wang et al., 2024a) 538

and CaReBench (Xu et al., 2025) focus more 539

extensively on human-annotated video captions 540

and tailored evaluation methods. However, these 541

benchmarks are primarily designed for video cap- 542

tioning in the context of video understanding 543

rather than video generation. Although VidCap- 544

Bench (Chen et al., 2025b) aligns its evaluation 545

design with the key metrics for T2V generation, its 546

training-free T2V verification mechanism inade- 547

quately demonstrates that models performing well 548

on this benchmark can effectively serve as train- 549

ing data for high-quality T2V generation. In this 550

paper, we propose a novel benchmark specifically 551

designed for T2V tasks and empirically validate its 552

consistency with actual generation quality through 553

real-world T2V training experiments. 554

5 Conclusion 555

In this paper, we introduce VC4VG, a compre- 556

hensive video caption optimization framework tai- 557

lored to the needs of T2V models. systematically 558

decompose video captioning into five key dimen- 559

sions critical to video reconstruction, providing 560

guidance for scalable caption generation. Build- 561

ing upon our dimensional decomposition, we pro- 562

pose VC4VG-Bench, a specialized video caption- 563

ing benchmark that emphasizes multi-dimensional 564

video descriptions tailored for T2V generation 565

scenarios. T2V fine-tuning experiments demon- 566

strate a correlation between improved caption 567

quality and video generation performance, validat- 568

ing the effectiveness of our approach. We hope our 569

framework will contribute to the community’s ef- 570

forts in developing better video captions for T2V 571

models and more powerful video generation mod- 572

els. 573
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Limitations574

Our VC4VG-Bench automates the evaluation of575

open-ended video captioning. While demonstrat-576

ing high correlation with human judgment, sub-577

tle biases may still exist. Furthermore, perfor-578

mance can fluctuate due to varying model configu-579

rations, including different video processing tech-580

niques and prompt engineering strategies. Conse-581

quently, the reported metrics primarily reflect cap-582

tion quality under specific experimental settings,583

rather than the fundamental performance differ-584

ences between the models.585

Ethical Considerations586

Regarding ethical considerations, it is important to587

acknowledge that Text-to-Video models may gen-588

erate biased or harmful content. Such outputs can589

potentially perpetuate stereotypes or disseminate590

misinformation. We emphasize the critical need591

for responsible model application. Developers are592

encouraged to implement robust safeguards to mit-593

igate these risks.594
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A Video Filtering Details822

We implemented a proprietary data cleaning823

pipeline to rigorously process the OpenVid-824

1M (Nan et al., 2024) dataset, ultimately curating825

72K high-quality videos. The pipeline integrates826

the following critical components:827

• Text Overlay Detection: Detects excessive828

subtitles or text overlays in videos, filtering829

out frames with significant content obstruc-830

tion.831

• Aesthetic Score and DOVER++ (Wu et al.,832

2023): Evaluates visual quality by sampling833

multiple frames per video clip, applying the834

DOVER++ assesses overall video quality,835

considering technical and aesthetic factors, to836

discard low-quality videos.837

• Video Classification & Frame-level Filter-838

ing: we developed a classification model839

to detect low-quality content categories, in-840

cluding frosted-border videos and PPT-style841

slideshows. We filters videos with transi- 842

tional effects (e.g., fade-in/fade-out) through 843

per-frame analysis to ensure content consis- 844

tency. 845

• Optical Flow-based Motion Intensity Resam- 846

pling: Utilizes the RAFT (Teed and Deng, 847

2020) model to compute optical flow from 848

video frames, quantifying motion intensity 849

distribution to guide training data resam- 850

pling. 851

B VC4VG-Bench Details 852

B.1 Prompt Template 853

In the automated evaluation process, we first ex- 854

tract question-relevant content from the generated 855

captions, then assess the extracted information by 856

comparing it with reference answers. The cor- 857

responding prompt template for this evaluation 858

pipeline is demonstrated in Figure 9. We employ 859

GPT-4o-0806 version as the evaluation judge, uti- 860

lizing its reasoning capabilities to perform content 861

alignment analysis and scoring. 862

B.2 Video Collection 863

Video selection was primarily based on diver- 864

sity across caption dimensions, which inher- 865

ently ensures content diversity in the visual do- 866

main.Figure 8 presents video examples from 867

our benchmark, demonstrating the corresponding 868

video diversity across various dimensions. 869

C Other T2V Experiments Details 870

C.1 Abalation Study of Training Steps 871

As illustrated in Figure 10, we fine-tune 872

CogVideoX-5B for 5 epochs (1,600 steps) us- 873

ing captions generated by our LLaVA-Video-Gen 874

framework. Based on VBench evaluations (Huang 875

et al., 2024), which measure quality score, seman- 876

tic score, and total score through line chart analy- 877

sis, we observe peak performance at 1,200 training 878

steps. We therefore select the 1200-step check- 879

point for final evaluation. To ensure fair compar- 880

ison in Section 4.2, all baseline caption methods 881

are evaluated under identical training configura- 882

tions using their respective 1200-step checkpoints. 883

C.2 Automatic Quatitative Evaluation 884

Automatic Metrics. We employ several metrics 885

in VBench (Huang et al., 2024), a widely adopted 886
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CogVideoX-5B LLaVA-Video-Gen(ours) CogVLM2-Cap CogVideoX-5B LLaVA-Video-Gen(ours) CogVLM2-Cap

Prompt main idea: An alien with smooth light grey skin and large black 
eyes, wearing a dark blue jumpsuit, stood in front of a whiteboard in a 
brightly lit classroom, holding a black marker. The alien first drew a 
square on the whiteboard, then carefully moved to the right and drew a 
second square next to the first.

Prompt main idea: A pair of hands wearing a light grey knitted 
sweater place a kiwi fruit on a wooden cutting board. The other hand 
holds a knife with a black handle. The knife begins to slice down the 
kiwi fruit, revealing the fruit's glistening juicy texture and pattern of 
black seeds. Two whole kiwi fruits are placed next to the one being cut.

Figure 7: Qualitative comparison of CogVideoX-5B between raw checkpoint and versions trained on captions
generated by LLaVA-Video-Gen and CogVLM2-Cap. Due to space limitations, only the main idea of the prompt
is shown. The red circles highlight the main distinguishing points of the generated videos. Please zoom in for a
better view.

Captioning Models
Subject Background Temporal Motion Dynamic Aesthetic Imaging Object

Consistency Consistency Flickering Smoothness Degree Quality Quality Class

CogVideoX-5B 92.93% 94.41% 97.95% 97.76% 68.06% 61.93% 61.26% 82.20%
+CogVLM2-Caption 93.60% 95.31% 95.45% 98.73% 58.33% 63.43% 64.02% 88.37%
+LLaVA-Video-7B 93.59% 95.12% 98.53% 98.79% 59.72% 64.00% 63.47% 87.74%
+LLaVA-Video-Gen(Ours) 94.25% 95.58% 98.20% 98.56% 59.72% 65.16% 65.95% 90.98%

Captioning Models
Multiple

Color
Spatial

Scene
Temporal Appearance Overall Total

Objects Relationship Style Style Consistency Score

CogVideoX-5B 57.62% 78.63% 60.66% 51.67% 24.95% 23.99% 27.07% 79.97%
+CogVLM2-Caption 63.33% 79.58% 73.45% 56.32% 25.60% 24.68% 27.55% 81.54%
+LLaVA-Video-7B 70.88% 85.21% 71.37% 53.85% 25.78% 24.16% 27.59% 81.79%
+LLaVA-Video-Gen(Ours) 77.90% 75.84% 75.65% 59.88% 25.64% 24.56% 27.70% 82.50%

Table 4: Quantitative VBench evaluation results comparison between T2V models trained with captions generated
by different models. We use all dimension gpt enhanced prompts in vbench and sample once for each prompt. The
best results of video captioning methods are marked in bold.

benchmark for automated evaluation of T2V gen-887

eration quality, to assess models trained with dif-888

ferent captioning methods. Given that our train-889

ing utilizes extended captions containing richer890

visual details and motion descriptions, we adopt891

the official GPT-enhanced prompts from VBench892

repository for generation. As shown in Table 4,893

LLaVA-Video-Gen demonstrates superior overall894

performance in most of the metrics, especially895

for semantic understanding such as multiple ob-896

jects, spatial relationship and scene. The per-897

formance ranking aligns with our VC4VG-Bench898

scores from Section 3, validating our benchmark’s899

effectiveness for evaluating training captions. 900

C.3 Qualitative Analysis 901

We present a qualitative comparison between 902

our LLaVA-Video-Gen and CogVLM2-Caption in 903

Figure 7. 904

Additional MovieGenBench reconstruction ex- 905

ample files demonstrating various temporal dy- 906

namics and scene complexities are provided in the 907

Supplementary Material. 908
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Figure 8: Video Examples from Benchmark

Figure 9: Automated Evaluation Prompt Template

C.4 Reproducibility Statement909

We will release our benchmark and corresponding910

codes for reproducibility.911

Figure 10: Comparison of VBench score percentage on
different steps.

C.5 License 912

This work is licensed under the Creative Com- 913

mons Attribution-NonCommercial 4.0 Interna- 914

tional License (CC BY-NC 4.0). 915
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