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Abstract

Open-vocabulary object detection (OVD) models offer re-
markable flexibility by detecting objects from arbitrary text
queries. However, their zero-shot performance in specialized
domains like Remote Sensing (RS) is often compromised by
the inherent ambiguity of natural language, limiting critical
downstream applications. For instance, an OVD model may
struggle to distinguish between fine-grained classes such as
"fishing boat" and "yacht" since their embeddings are similar
and often inseparable. This can hamper specific user goals,
such as monitoring illegal fishing, by producing irrelevant de-
tections. To address this, we propose a cascaded approach that
couples the broad generalization of a large pre-trained OVD
model with a lightweight few-shot classifier. Our method first
employs the zero-shot model to generate high-recall object
proposals. These proposals are then refined for high precision
by a compact classifier trained in real-time on only a handful
of user-annotated examples - drastically reducing the high
costs of RS imagery annotation. The core of our framework
is FLAME, a one-step active learning strategy that selects the
most informative samples for training. FLAME identifies, on
the fly, uncertain marginal candidates near the decision bound-
ary using density estimation, followed by clustering to ensure
sample diversity. This efficient sampling technique achieves
high accuracy without costly full-model fine-tuning and en-
ables instant adaptation, within less than a minute, which
is significantly faster than state-of-the-art alternatives. Our
method consistently surpasses state-of-the-art performance on
RS benchmarks, establishing a practical and resource-efficient
framework for adapting foundation models to specific user
needs.

Introduction
The recent advancements in large-scale vision-language mod-
els (VLMs) such as CLIP (Radford et al. 2021) have catalyzed
a paradigm shift in computer vision, giving rise to Open-
Vocabulary Object Detection (OVD) (Zareian, Zolfaghari,
and Brox 2021). Unlike traditional detectors limited to prede-
fined categories, OVD models can identify objects described
by arbitrary natural language text, offering unprecedented
flexibility. This is particularly transformative for remote sens-
ing (RS), where cataloging every possible class is intractable.
Early OVD methods adapted standard detectors by replacing
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the classifier head with text embeddings (Gu et al. 2021),
leveraging the semantic richness of VLMs to generalize to
unseen categories. However, the inherent ambiguity of text
queries often leads to significant drops in precision, limiting
the utility of pure zero-shot systems.

To overcome the limitations of pure zero-shot systems, one
alternative is Few-Shot Object Detection (FSOD) (Kang et al.
2019), which adapts models to novel categories using only a
handful of annotated examples. In RS, FSOD is critical due
to the difficulty and cost of acquiring dense labels(Barzilai
et al. 2025). While effective, common FSOD strategies like
meta-learning or fine-tuning (Wang et al. 2020) can be com-
putationally intensive. To address this, Parameter-Efficient
Fine-Tuning (PEFT) techniques such as LoRA (Hu et al.
2021) have emerged to alleviate these costs by reducing the
number of trainable parameters.

These FSOD and PEFT strategies are primarily designed
to create specialized detectors optimized for a new, specific
set of target classes, for example (Bou et al. 2024; Jeune and
Mokraoui 2023; Le Jeune and Mokraoui 2022) are tailored
for RS. However, these more efficient adaptation methods
still involve a computationally demanding fine-tuning step.
Even some recent prototype-based methods (Bou et al. 2024)
require tuning for hundreds of epochs, a process that can take
hours and necessitates an accelerator like a GPU (a phase our
proposed method eliminates, as we demonstrate later in this
study).

A distinct paradigm explores a hybrid approach that
merges OVD and FSOD, using few-shot supervision to en-
hance and expand an open-vocabulary detector’s existing
knowledge within a single, unified framework (Cheng, Jiang
et al. 2024). Several strategies explore this hybrid model:
prompt-based methods (Feng et al. 2022; Zhang et al. 2022)
learn continuous prompts from support sets to improve cate-
gory alignment, while Transformer-based methods like OV-
DETR (Zang et al. 2022) and OWL-ViT (Minderer et al.
2023) show strong generalization.

The success of these hybrid approaches, which use only a
handful of examples, hinges on the efficient selection of the
most informative ones. This challenge is addressed by Active
Learning (AL) (Settles 2009), which queries an oracle for
the most beneficial labels. Common AL strategies include
uncertainty-based sampling (Lewis and Gale 1994), diversity-
based sampling (Sener and Savarese 2018), or their combina-



Figure 1: A visual demonstration of performance improvement from Zero-Shot to Few-Shot detection using DIOR dataset (Zhan,
Xiong, and Yuan 2023). The Zero-Shot model (center) produces noisy and unreliable results, identifying the ’chimneys’ but
with low confidence and accompanied by several false positives. Our Few-Shot method (right) refines this output, successfully
eliminating the false positives and accurately detecting all four chimneys shown in the Ground Truth (left).

tions (Choi, Kim, and Kim 2021). Building on this founda-
tion, our work proposes a cascaded OVD–FSOD framework
with a novel AL strategy specifically designed to resolve se-
mantic ambiguity in RS imagery efficiently and effectively.

Method

Theory and Motivations. Our framework lays on the ob-
servation that a binary classifier, whether an SVM (Vapnik
1995) or a positively homogeneous neural network (Polyakov
2023), can be determined entirely by its margin (support)
examples. Equivalently, if one removes all non-support train-
ing points and retrains, the resulting classifier is unchanged.
Building on this, our few-shot procedure identifies a small
set of near-boundary examples (the "few-shots"), asks the
user to label them, and trains a lightweight model on the fly.
Despite using only a handful of points, this model matches
the classifier that would have been obtained from training on
the full dataset, which may be too large or impractical for
real-time training. The Lemmas below formalizes this fact
for the SVM, soft margin SVM and for neural networks.

Lemma 1 (Support–determination for hard–margin SVM).
Let {(xi, yi)}ni=1 be linearly separable with yi ∈ {±1}. Con-
sider the hard–margin SVM

min
w,b

1
2∥w∥

2 s.t. yi (w⊤xi + b) ≥ 1, (i = 1, . . . , n). (P)

Let (w⋆, b⋆) be an optimal solution and define the support
set S :=

{
i ∈ [n] : yi (w

⋆⊤xi + b⋆) = 1
}
. Then,

1. (w⋆, b⋆) together with multipliers {α⋆
i }i∈S forms a

Karush-kuhn-tucker (KKT) (Ciano and Ferrara 2024)
pair for the reduced problem that retains only constraints
indexed by S:

min
w,b

1
2∥w∥

2 s.t. yi (w⊤xi + b) ≥ 1, (i ∈ S). (PS)

2. Conversely, if (w̃, b̃) and multipliers {µi}i∈S satisfy the
KKT system of (PS), then extending the multipliers by
α̃i := µi for i ∈ S and α̃i := 0 for i /∈ S yields a KKT
pair (w̃, b̃, α̃) for the full problem (P).

Consequently, (P) and (PS) have the same optimal solutions.
In particular, retraining the hard–margin SVM after removing
all non–support points [n] \ S leaves the classifier x 7→
sign(w⊤x+ b) unchanged.

Remark 2 (Kernel SVM). The same argument holds verbatim
for kernel SVMs by replacing xi with φ(xi) in a feature
space: at optimality w⋆ =

∑
i∈S α⋆

i yiφ(xi), so only support
vectors (α⋆

i > 0) determine the classifier.

Proof. Introduce multipliers αi ≥ 0 for the constraints in
(P). The Lagrangian is

L(w, b, α) = 1
2∥w∥

2 −
n∑

i=1

αi

(
yi(w

⊤xi + b)− 1
)
,



Figure 2: Overview of the proposed few-shot sampling method. The method is followed by the stages: (1) uncertainty-based
filtering using density estimation to identify ambiguous candidates near the decision boundary, (2) clustering-based diversity
sampling to ensure representative coverage, (3) interactive user annotation of the selected samples, (4) conditional data
augmentation with SMOTE or SVM-SMOTE to balance classes, and (5) lightweight classifier training (e.g., SVM or MLP) on
the augmented set. This cascaded process refines the zero-shot proposals from a large open-vocabulary detector into an accurate,
real-time few-shot classifier without full-model fine-tuning.

and the KKT conditions are

(stationarity) w =

n∑
i=1

αiyixi,

n∑
i=1

αiyi = 0,

(primal feas.) yi(w
⊤xi + b) ≥ 1 (∀i),

(dual feas.) αi ≥ 0 (∀i),
(comp. slackness) αi

(
yi(w

⊤xi + b)− 1
)
= 0 (∀i).

(1) Full⇒ reduced. Let (w⋆, b⋆, α⋆) be any KKT triple for
(P), and set S = {i : yi(w⋆⊤xi + b⋆) = 1}. By complemen-
tary slackness, α⋆

i = 0 for every i /∈ S. Hence stationarity
reduces to

w⋆ =
∑
i∈S

α⋆
i yixi,

∑
i∈S

α⋆
i yi = 0,

and together with feasibility and slackness on S these are

exactly the KKT conditions of the reduced problem (PS).
Thus

(
w⋆, b⋆, (α⋆

i )i∈S

)
is KKT for (PS).

(2) Reduced⇒ full. Conversely, let (w̃, b̃, (µi)i∈S) satisfy
the KKT system for (PS), and define α̃i := µi for i ∈ S
and α̃i := 0 for i /∈ S. Then stationarity, dual feasibility,
and complementary slackness for (P) hold immediately. To
check the remaining primal feasibility on [n] \ S, compare
duals: the dual of (PS) is the dual of (P) restricted to indices
S. Since an optimal dual solution of (P) has α⋆

i = 0 for
i /∈ S, the restricted dual attains the same optimal value; by
strong duality, (P) and (PS) share the same optimal objective
value. Because the primal objective is strictly convex in w,
any optimal reduced solution must satisfy w̃ = w⋆, and the
equalities on S then fix b̃ = b⋆. Hence yi(w̃⊤xi + b̃) ≥ 1 for
all i ∈ [n], i.e., primal feasibility for the full problem. Thus
(w̃, b̃, α̃) is KKT for (P).



Algorithm 1: FLAME: Few-shot Localization via Active Marginal-Samples Exploration

Require: Unlabeled pool of embeddings X = {xi}Ni=1 ⊂ Rd, text embedding t ∈ Rd; number of target shots K; PCA
dimension ℓ; Hyperparameters: Gaussian KDE bandwidth h, ratios 0 < rl < ru < 1, imbalance threshold τ .

Ensure: Selected shots X̂ := {x̂k}Kk=1
1: for i = 1 to N do

2: Compute cosine similarities: ci ←
x⊤
i t

∥xi∥ ∥t∥
3: Augment examples: x̃i ← [xi, ci]
4: end for

# Marginal samples identification
5: Project {x̃i} to ℓ dimensions via PCA to get S = {si}Ni=1

6: Fit Gaussian KDE f̂ (bandwidth h) on S: s⋆ ← argmaxs f̂(s)

7: Find samples density boundaries sL, sU s.t. f̂(sL) = rlf̂(s
⋆), and f̂(sU ) = ruf̂(s

⋆)
# Promote information diversity

8: Set Imarginal ← {i | si ∈ [sL, sU ]}, Xmarginal ← {xi | i ∈ Imarginal}
9: Run k-means clustering on Xmarginal into K clusters {Ck}Kk=1

10: Find examples closest to each centers X̂ ← {x̂k}Kk=1
11: # User few shot labeling
12: User labels the few-shots X̂ to obtain Dlabeled = {(x̂k, yk)}Kk=1, yk ∈ {0, 1}

# Imbalance handling

13: Compute imbalance ratio ρ←
maxc∈{0,1} |{yk = c}|
minc∈{0,1} |{yk = c}|

14: if ρ > τ then
15: X̂ ← SMOTE(Dlabeled)
16: end if
17: return X̂

Parts (1)–(2) imply that (P) and (PS) have the same op-
timal solutions. In particular, removing non–support points
leaves the classifier x 7→ sign(w⊤x+ b) unchanged. □

Our claim for the non-separable embeddings case, which
is the soft marginal SVM, is stated in the following lemma.
Lemma 2 (Support-determination for soft-margin SVM).
Let {(xi, yi)}ni=1 be possibly non-separable with yi ∈ {±1}.
Consider a penalty parameter C > 0, then the soft-margin
SVM is formulated by

min
w,b,ξ

1

2
∥w∥2 + C

n∑
i=1

ξi

s.t. yi(w
⊤xi + b) ≥ 1− ξi, (i = 1, . . . , n) (P )

Let (w∗, b∗, ξ∗) be an optimal solution to the soft-margin
problem (P) with corresponding dual multipliers {α∗

i }ni=1
and {β∗

i }ni=1. Define the support set S as the set of indices
with non-zero multipliers α∗

i , S := {i ∈ [n] | α∗
i > 0} .

Then,
1. (w∗, b∗, {ξ∗i }i∈S) together with multipliers {α∗

i , β
∗
i }i∈S

forms a Karush-kuhn-tucker (KKT) (Ciano and Ferrara
2024) pair for the reduced problem that retains only con-
straints indexed by S:

min
w,b,ξ

1

2
∥w∥2 + C

n∑
i=1

ξi

s.t. yi(w
⊤xi + b) ≥ 1− ξi, (i ∈ S) (PS)

2. Conversely, if (w̃, b̃, {ξ̃i}i∈S) and multipliers {α̃i, β̃i}i∈S

satisfy the KKT system for (PS), then extending the solu-
tion by setting α̃i = 0, ξ̃i = 0, and β̃i = C for all i /∈ S
yields a full KKT pair (w̃, b̃, ξ̃, α̃, β̃) for the full problem
(P ).

Consequently, (P ) and (PS) have the same optimal solu-
tions (w, b). Retraining the soft-margin SVM after remov-
ing all non-support points (i /∈ S) leaves the classifier
x 7→ sign(w⊤x+ b) unchanged.

Proof. Let (w∗, b∗, ξ∗;α∗, β∗) be a KKT pair of (P), where
the Lagrangian isL = 1

2∥w∥
2+C

∑
i ξi−

∑
i αi

(
yi(w

⊤xi+

b) − 1 + ξi
)
−

∑
i βiξi with αi, βi ≥ 0 and the im-

plicit constraints ξi ≥ 0. The KKT conditions read: (i)
w =

∑
i αiyixi,

∑
i αiyi = 0, and αi + βi = C; (ii)

yi(w
⊤xi + b) ≥ 1− ξi, ξi ≥ 0; (iii) αi(1− ξi − yi(w

⊤xi +
b)) = 0, βiξi = 0. Define S := {i : α∗

i > 0}. Since α∗
i = 0

for i /∈ S, the stationarity equations at the starred point re-
duce to w∗ =

∑
i∈S α∗

i yixi and
∑

i∈S α∗
i yi = 0, while

α∗
i + β∗

i = C holds for i ∈ S. Together with primal/dual fea-
sibility and complementary slackness restricted to i ∈ S, this
shows that (w∗, b∗, {ξ∗i }i∈S ; {α∗

i , β
∗
i }i∈S) satisfies the KKT

system of the reduced problem (PS). Moreover, for i /∈ S we
have α∗

i = 0 and thus β∗
i = C, which by β∗

i ξ
∗
i = 0 forces

ξ∗i = 0 and hence yi((w
∗)⊤xi + b∗) ≥ 1, i.e., the dropped

constraints are strictly satisfied at (w∗, b∗). Conversely, take
any KKT pair (w̃, b̃, {ξ̃i}i∈S ; {α̃i, β̃i}i∈S) for (PS) and ex-
tend by setting α̃i := 0, β̃i := C, ξ̃i := 0 for i /∈ S. Then



w̃ =
∑

i∈S α̃iyixi =
∑n

i=1 α̃iyixi and
∑n

i=1 α̃iyi = 0,
while α̃i + β̃i = C and the complementary slackness equali-
ties hold for all i; if yi(w̃⊤xi + b̃) ≥ 1 for i /∈ S (as occurs
at any optimum of the full problem), the extension is a full
KKT pair for (P). Finally, letting vP and vS be the optimal
values of (P) and (PS), the restriction above shows vS ≤ vP ,
while any feasible (w, b, {ξi}i∈S) of (PS) can be augmented
by ξ↑i := max{0, 1− yi(w

⊤xi + b)} for i /∈ S to give a fea-
sible point of (P) with no smaller objective, hence vP ≤ vS .
Thus vP = vS , and since the objective is strictly convex in
w, both problems share the same optimal w (and a consistent
b), so removing non-support points and retraining leaves the
classifier sign(w⊤x+ b) unchanged. □

Lemma 3 (Support examples–determination for homo-
geneous networks). Let Φ(θ; ·) be binary classifier L-
homogeneous1 in the weights parameters θ (e.g., ReLU,
Leaky ReLU, sigmoid etc), and let the binary training set
{(xi, yi)}ni=1 be linearly separable by Φ(θ; ·). Consider gra-
dient flow on logistic loss and assume it converges in direction
to a KKT point (θ⋆, λ⋆) of the maximum–margin program

min
θ

1
2∥θ∥

2 s.t. yi Φ(θ;xi) ≥ 1 (i = 1, . . . , n). (1)

Let the (margin/support) set be S := { i ∈ [n] :
yi Φ(θ

⋆;xi) = 1 }. Then,
1. (θ⋆, {λ⋆

i }i∈S) satisfies the KKT system of the reduced
problem that keeps only constraints with indices in S:

min
θ

1
2∥θ∥

2 s.t. yi Φ(θ;xi) ≥ 1 (i ∈ S). (2)

2. Conversely, if (θ̃, {µi}i∈S) is a KKT pair for (2) and we
define λ̃i := µi for i ∈ S and λ̃i := 0 for i /∈ S, then
(θ̃, λ̃) is a KKT pair for the full problem (1).

Consequently, the sets of KKT solutions of (1) and (2)
coincide. In particular, retraining after removing all non-
support points [n] \ S produces the same limiting classifier
x 7→ sign(Φ(θ;x)).

Proof of Lemma 3. Introduce multipliers λi ≥ 0 for the con-
straints in (1). The Lagrangian is

L(θ, λ) = 1
2∥θ∥

2 −
n∑

i=1

λi yi Φ(θ;xi),

and the KKT conditions read

(stationarity) θ −
n∑

i=1

λi yi∇θΦ(θ;xi) = 0,

(primal feasibility) yi Φ(θ;xi) ≥ 1 (∀i),
(dual feasibility) λi ≥ 0 (∀i),
(complementary slackness) λi

(
yi Φ(θ;xi)− 1

)
= 0 (∀i).

(1) Full⇒ reduced. Let (θ⋆, λ⋆) be a KKT pair for (1) and
S = {i : yi Φ(θ

⋆;xi) = 1}. By complementary slackness,
1A network Φ(θ;x) is called homogeneous of degree c > 0 if

for all b > 0 and all θ, x, it holds that Φ(b, θ;x) = bc Φ(θ;x).

λ⋆
i = 0 for every i /∈ S, so the stationarity condition reduces

to
θ⋆ −

∑
i∈S

λ⋆
i yi∇θΦ(θ

⋆;xi) = 0.

Together with primal/dual feasibility and complementary
slackness restricted to i ∈ S, these are precisely the KKT
conditions of the reduced problem (2). Hence (θ⋆, (λ⋆

i )i∈S)
is KKT for (2).

(2) Reduced ⇒ full. Conversely, let (θ̃, (µi)i∈S) satisfy
the KKT system for (2) and define λ̃i := µi for i ∈ S
and λ̃i := 0 for i /∈ S. Dual feasibility and complementary
slackness for (1) are immediate. The stationarity condition
for (1) at (θ̃, λ̃) is

θ̃ −
∑
i∈S

µi yi∇θΦ(θ̃;xi) = 0,

which coincides with the reduced stationarity condition. Pri-
mal feasibility on S holds by assumption. For i /∈ S, the
constraints are nonbinding at the full KKT point (θ⋆, λ⋆)
used to define S; hence, at that scale of the homogeneous
model, they are redundant. In particular, any KKT pair of the
reduced problem that satisfies the above stationarity (which
matches the full one with λ̃i = 0 on Sc) and the inequalities
on S also satisfies yi Φ(θ̃;xi) ≥ 1 for all i /∈ S (the added
constraints remain inactive), and therefore (θ̃, λ̃) is KKT for
(1).

Combining (1)–(2), the KKT solution sets of (1) and (2)
coincide. Consequently, removing all non–support points
leaves the limiting classifier x 7→ sign(Φ(θ;x)) unchanged.
□

Marginal Samples Retrieval. We propose a one-stage ac-
tive learning strategy that pinpoints the most informative
samples for training a lightweight, class-specific binary clas-
sifier. This algorithm 1 allows a large-scale, zero-shot OVD
model to be adapted to a new target class efficiently, in real-
time, and with minimal human supervision. The method is
illustrated in Figure 2. First, we identify uncertain candidates
by augmenting image embeddings with their zero-shot sim-
ilarity to the text query and applying density estimation in
a projected (PCA) augmented-embedding-space. Samples
at the distribution’s margins are retained as they carry the
most informative ambiguity. From this pool, we promote
diversity by clustering and selecting one representative per
cluster, yielding K candidate shots for annotation. The user
then labels these few informative samples, forming an initial
dataset. To mitigate imbalance, we apply Synthetic Minority
Over-sampling Technique (SMOTE) (Chawla et al. 2002)
for extremely fast augmentation. This procedure would con-
tribute to a balanced, representative, and efficiently training
to take place shortly after.

Finally, using the (augmented) few-shots returned by Al-
gorithm 1, we train a compact classifier, by default an Radial
Basis kernel (RBF) SVM (Schölkopf, Burges, and Smola
1999), which is trained to find a non-linear separating hyper-
plane. Note that our efficient framework could support many



Table 1: Comparison of few-shot object detection performance on the DOTA and DIOR datasets, based on 30-shot examples. The
metric used is Average Precision (AP). Our proposed method achieves state-of-the-art results while demonstrating a significantly
faster adaptation time.

Method DOTA DIOR

Zero-shot OWL-ViT-v2 (Baseline) 13.774% 14.982%

Zero-shot RS-OWL-ViT-v2 31.827% 29.387%

Jeune et. al (Le Jeune and Mokraoui 2022) 37.1% 35.6%

SIoU (Jeune and Mokraoui 2023) 45.88% 52.85%

Prototype-based FSOD with DINOv2 (Bou et al. 2024) 41.40% 26.46%

FLAME cascaded on RS-OWL-ViT-v2 53.96% 53.21%

Table 2: Detailed per-class Average Precision (AP) comparison of our few-shot method against a zero-shot baseline (OWL-ViT-v2
fine-tuned on RS-WebLI) on the DIOR (left) and DOTA (right) datasets. The ’–’ symbol denotes a failure case for our method,
occurring when the initial zero-shot step retrieved no relevant candidate images for a given class, thereby preventing the few-shot
selection process. The results highlight the substantial AP gains achieved by our approach across a diverse range of object
categories.

DIOR Dataset
Class Zero Shot Few Shot
expressway service area 0.03 0.82
expressway toll station 0 0.99
airplane 0.84 0.99
airport 0 –
baseball field 0.62 0.93
basketball court 0.66 0.87
bridge 0.21 0.49
chimney 0.11 0.94
dam 0.04 0.71
golf field 0.01 0.72
ground track field 0.5 0.79
harbor 0.33 0.64
overpass 0.1 0.75
ship 0.72 0.93
stadium 0.57 0.86
storage tank 0.73 0.68
tennis court 0.8 0.57
train station 0.01 –
vehicle 0.25 0.79
windmill 0.67 1

DOTADataset
Class Zero Shot Few Shot
Baseball Diamond 0.32 0.88
Basketball Court 0.56 0.83
Bridge 0.09 0.28
Container Crane 0.03 0.95
Ground Track Field 0.4 0.68
Harbor 0.36 0.82
Helicopter 0.39 0.73
Large Vehicle 0.32 0.87
Plane 0.78 0.54
Roundabout 0.24 0.91
Ship 0.71 0.82
Small Vehicle 0.28 0.77
Soccer Ball Field 0.48 0.77
Storage Tank 0.79 0.55
Swimming Pool 0.71 0.58
Tennis Court 0.77 –

lightweight alternatives such as: Two-Layer Multi-Layer Per-
ceptron (MLP) under binary cross-entropy loss function, or
encoder-classifier with Triplet Loss (Dong and Shen 2018).
Illustration schema of the algorithm is presented in Figure 2.

Experiments
To evaluate its performance, our few-shot method is bench-
marked against a zero-shot baseline and leading state-of-the-
art approaches, as summarized in Table 1. To that end, we
leverage the following two RS datasets: (1) DOTA (Xia et al.
2018) (Dataset for Object Detection in Aerial Images): A

large-scale RS dataset with multi-class, multi-oriented ob-
jects annotated in high-resolution aerial images for object
detection. (2) DIOR(Li et al. 2020) (Dataset for Object De-
tection in Optical RS Images): A diverse large-scale dataset
of optical RS images containing numerous object categories
across varying conditions and resolutions for robust detec-
tion.

We first evaluate the zero-shot performance of the base-
line OWL-ViT-v2 model (Minderer, Gritsenko, and Houlsby
2024), which was pre-trained on the vast, generic multilin-
gual WebLI dataset (Chen et al. 2023). We then consider
the RS-OWL-ViT-v2 model (Barzilai et al. 2025), a remote



sensing variant of OWL-ViT-v2 fine-tuned on the RS-WebLI
dataset (Barzilai et al. 2025), which consists of three million
aerial and satellite images from the original WebLI dataset
and on a collection of 67, 000 aerial images annotated for
remote sensing object detection across 34 categories. This
improved zero-shot performance model serves as the starting
point for FLAME.

This Table 1 demonstrates that the FLAME cascaded on
RS-OWL-VIT-v2 method achieves the highest Average Preci-
sion (AP) on both the DOTA (53.96%) and DIOR (53.21%)
datasets among all compared Few-Shot Object Detection
(FSOD) models.This superior performance is coupled with a
significantly faster adaptation time (approximately 1 minute
per label on a CPU) compared to competing fine-tuning ap-
proaches that typically require a GPU and several hours.

Following, Table 2 provides a detailed per-class breakdown
of the Average Precision (AP) on both the DIOR and DOTA
datasets, comparing our few-shot method against the zero-
shot baseline using the Zero-shot OWL-ViT-v2 fine-tuned
on RS-WebLI (which appear in second line of Table 1). The
missing values in the ’Few-Shot’ columns indicate instances
where the initial zero-shot retrieval step failed to find any rele-
vant image embeddings. Without these initial candidates, the
few-shot selection process could not proceed, resulting in a
method failure for those specific classes. The Table highlights
the substantial performance gains achieved by the Few-Shot
(FLAME) method over the Zero-Shot baseline across a wide
range of object categories on both the DIOR and DOTA
datasets. For instance, the Few-Shot method dramatically
improves AP for challenging classes like ’expressway toll
station’ on DIOR (from 0% to 99%) and ’Container Crane’
on DOTA (from 3% to 95%), showcasing its effectiveness in
resolving semantic ambiguity

Discussion

Remote sensing is a field that involves the acquisition of in-
formation about an object or area without making physical
contact with it, typically using sensors on platforms such
as satellites or aircraft. The proposed method provides a
practical and resource-efficient framework for adapting foun-
dational remote sensing OVD models to specific user needs.
The cascaded architecture combines a large, pre-trained OVD
model with a lightweight, few-shot classifier. This approach
generates initial object-embedding proposals using the frozen
weights of the zero-shot model, which are then refined by a
compact classifier trained in real-time on a handful of user-
annotated examples. This process drastically reduces anno-
tation overhead while achieving high accuracy without the
costly process of full-model fine-tuning. The core contri-
bution is an efficient one-step active learning strategy that
selects the most informative samples for user annotation.
This strategy identifies a small number of uncertain candi-
dates near the decision boundary using density estimation
and then applies clustering to ensure a diverse training set.
The method is designed to address the semantic ambiguity
of text queries that hampers the zero-shot performance of
pre-trained models.

Limitations
Our approach is powerful but has clear boundaries. As demon-
strated in our analysis of Table 2 , the performance of our cas-
caded system is fundamentally capped by the recall of the ini-
tial zero-shot model. For classes where the base OVD model
fails to retrieve any candidates (e.g., ’airport’), FLAME can-
not proceed. Our method is a high-precision refiner, not a
recall generator.

Future Work
Our one-step active learning strategy could be extended to
an iterative, multi-step process, allowing the user to progres-
sively refine the classifier by labeling more marginal samples
until a desired performance is met. Finally, the efficacy of
FLAME should be tested in other specialized domains that
suffer from fine-grained ambiguity, such as medical imagery
or manufacturing defect detection.

References
Barzilai, A.; Gigi, Y.; Helmy, A.; Silverman, V.; Refael, Y.;
Jaber, B.; Shekel, T.; Leifman, G.; and Beryozkin, G. 2025.
A Recipe for Improving Remote Sensing VLM Zero Shot
Generalization. arXiv:2503.08722.
Bou, X.; Facciolo, G.; Von Gioi, R. G.; Morel, J.-M.; and
Ehret, T. 2024. Exploring robust features for few-shot ob-
ject detection in satellite imagery. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 430–439.
Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; and Kegelmeyer,
W. P. 2002. SMOTE: synthetic minority over-sampling tech-
nique. Journal of artificial intelligence research, 16: 321–
357.
Chen, X.; Wang, X.; Changpinyo, S.; Piergiovanni, A.;
Padlewski, P.; Salz, D.; Goodman, S.; Grycner, A.; Mustafa,
B.; Beyer, L.; Kolesnikov, A.; Puigcerver, J.; Ding, N.; Rong,
K.; Akbari, H.; Mishra, G.; Xue, L.; Thapliyal, A.; Brad-
bury, J.; Kuo, W.; Seyedhosseini, M.; Jia, C.; Ayan, B. K.;
Riquelme, C.; Steiner, A.; Angelova, A.; Zhai, X.; Houlsby,
N.; and Soricut, R. 2023. PaLI: A Jointly-Scaled Multilingual
Language-Image Model. arXiv:2209.06794.
Cheng, B.; Jiang, B.; et al. 2024. Revisiting few-shot ob-
ject detection with vision-language models. arXiv preprint
arXiv:2402.12345.
Choi, J.-w.; Kim, J.; and Kim, C.-s. 2021. Active learning for
deep object detection via uncertainty and diversity. In 2021
IEEE International Conference on Image Processing (ICIP),
1454–1458. IEEE.
Ciano, T.; and Ferrara, M. 2024. Karush-kuhn-tucker con-
ditions and lagrangian approach for improving machine
learning techniques: A survey and new developments. Atti
della Accademia Peloritana dei Pericolanti-Classe di Scienze
Fisiche, Matematiche e Naturali, 102(1): 1.
Dong, X.; and Shen, J. 2018. Triplet loss in siamese net-
work for object tracking. In Proceedings of the European
conference on computer vision (ECCV), 459–474.



Feng, C.; Zhong, Y.; Zhang, T.; and et al. 2022. Prompt-
det: Towards open-vocabulary detection using uncurated im-
ages. In European Conference on Computer Vision, 701–717.
Springer.
Gu, X.; Lin, T.-Y.; Kuo, W.; and Cui, Y. 2021. Open-
vocabulary object detection via vision and language knowl-
edge distillation. arXiv preprint arXiv:2104.13921.
Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. Lora: Low-rank adaptation
of large language models. arXiv preprint arXiv:2106.09685.
Jeune, P. L.; and Mokraoui, A. 2023. Rethinking Intersection
Over Union for Small Object Detection in Few-Shot Regime.
arXiv:2307.09562.
Kang, B.; Liu, Z.; Wang, X.; Yu, F.; Feng, J.; and Darrell,
T. 2019. Few-shot object detection. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recog-
nition, 9539–9548.
Le Jeune, P.; and Mokraoui, A. 2022. Improving few-shot
object detection through a performance analysis on aerial and
natural images. In 2022 30th European Signal Processing
Conference (EUSIPCO), 513–517. IEEE.
Lewis, D. D.; and Gale, W. A. 1994. A sequential algorithm
for training text classifiers. In Proceedings of the 17th an-
nual international ACM SIGIR conference on Research and
development in information retrieval, 3–12.
Li, K.; Wan, G.; Cheng, G.; Meng, L.; and Han, J. 2020.
Object detection in optical remote sensing images: A survey
and a new benchmark. ISPRS Journal of Photogrammetry
and Remote Sensing, 159: 296–307.
Minderer, M.; Gritsenko, A.; and Houlsby, N. 2024. Scaling
Open-Vocabulary Object Detection. arXiv:2306.09683.
Minderer, M.; Gritsenko, A.; Stone, A.; and et al. 2023. Sim-
ple open-vocabulary object detection with vision transform-
ers. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 6373–6382.
Polyakov, A. 2023. Homogeneous Artificial Neural Network.
arXiv:2311.17973.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-
ural language supervision. In International conference on
machine learning, 8748–8763. PMLR.
Schölkopf, B.; Burges, C. J.; and Smola, A. J. 1999. Advances
in kernel methods: support vector learning. MIT press.
Sener, O.; and Savarese, S. 2018. Active learning for convolu-
tional neural networks: A core-set approach. In International
Conference on Learning Representations.
Settles, B. 2009. Active learning literature survey. Technical
Report 1648, University of Wisconsin-Madison, Department
of Computer Sciences.
Vapnik, V. 1995. Support-vector networks. Machine learning,
20: 273–297.
Wang, X.; Huang, T. E.; Darrell, T.; Yu, F.; and Gonzalez,
J. E. 2020. Frustratingly simple few-shot object detection. In
International conference on machine learning, 9937–9946.
PMLR.

Xia, G.-S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo,
J.; Datcu, M.; Pelillo, M.; and Zhang, L. 2018. DOTA: A
large-scale dataset for object detection in aerial images. Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 3974–3983.
Zang, Y.; Li, L.; Wang, Z.; Li, X.; and Sun, J. 2022. Open-
vocabulary detr with conditional matching. In European
Conference on Computer Vision, 106–122. Springer.
Zareian, A.; Zolfaghari, M.; and Brox, T. 2021. Open-
vocabulary object detection using captions. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, 14575–14584.
Zhan, Y.; Xiong, Z.; and Yuan, Y. 2023. RSVG: Exploring
Data and Models for Visual Grounding on Remote Sensing
Data. IEEE Transactions on Geoscience and Remote Sensing,
61: 1–13.
Zhang, M.; Fang, H.; Wang, W.; and et al. 2022. Tip-
adapter: Training-free adaption of CLIP for few-shot clas-
sification. In European Conference on Computer Vision,
493–510. Springer.


