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Abstract

Precision matrix estimation is a ubiquitous task featuring numerous applications
such as rare disease diagnosis and neural connectivity exploration. However, this
task becomes challenging in small sample settings, where the number of samples
is significantly less than the number of dimensions, leading to unreliable estimates.
Previous approaches either fail to perform well in small sample settings or suffer
from inefficient estimation processes, even when incorporating meta-learning
techniques. To this end, we propose a novel approach FasMe for Fast and Sample-
efficient Meta Precision Matrix Learning, which first extracts meta-knowledge
through a multi-task learning diagram. Then, meta-knowledge constraints are
applied using a maximum determinant matrix completion algorithm for the novel
task. As a result, we reduce the sample size requirements to O(log p/K) per
meta-training task and O(log |G|) for the meta-testing task. Moreover, the hereby
proposed model only needs O(p log ϵ−1) time and O(p) memory for converging to
an ϵ-accurate solution. On multiple synthetic and biomedical datasets, FasMe is at
least ten times faster than the four baselines while promoting prediction accuracy
in small sample settings.

1 Introduction

Precision matrix estimation aims to exploit conditional dependency relationships between random
variables, which plays a vital role in high-dimensional statistical learning with a wide range of
applications in areas such as genetics [1], neuroscience [2], and social networks. For instance,
researchers are examining the gene network derived from the gene expression data of patients to
investigate a rare disease. However, in cases involving rare diseases, the analysis is hindered by
the high dimensionality of genetic datasets, where the number of features significantly exceeds the
number of samples. For example, the Cholangiocarcinoma dataset in TCGA contains only 51 samples
but thousands of genes. In this context, we define a "small sample setting" as a scenario in which
the number of samples is less than one-tenth of the number of dimensions. Although inferring such
relationship graphs in small sample settings is challenging, it can provide valuable insights into the
genetic characteristics underlying this disease and its etiology.

Precision matrix estimator inherently has the capability to handle datasets where the number of
dimensions p is equal to or greater than the number of samples n [3]. However, this capability has its
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limits, and maintaining effectiveness requires keeping the sample size at a certain level. [4] provides
the lower bound of the sample size as Ω(d2 log p) for well-performed graph recovery under the
sub-Gaussian assumption, where d is the maximum node degree of the graph. Consequently, when
the sample size is reduced to the aforementioned "small sample" levels, the sample size falls short
of this theoretical lower bound with a relatively high probability due to the uncertainty of d. This
indicates insufficient data support for most methods, like GLasso [5] (detailed in Background), to
recover the graph structure effectively, as shown in Figure 1. To address this issue, some methods
use multi-task learning, integrating heterogeneous datasets to reduce the sample size bound. For
example, the regularized methods [6] and [7] show that each task only needs O(logK + log p) and
O(K + log p) samples, respectively, for proper estimation, and K denotes the number of tasks.
Although these methods are more capable of handling small sample problems, they concurrently
introduce significant computational burdens. Specifically, integrating a new task necessitates repeated
joint retraining, thereby resulting in substantial computational inefficiencies.
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Figure 1: Frobenius norm error (↓)
and Matthews Correlation Coeffi-
cient (MCC, ↑) V.S. sample size us-
ing GLasso. We fix p = 200 and
vary n from 10 to 400 with step
10. The model performance drops
sharply around n = 20, indicating
its inadequacy for small sample.

To address these challenges, meta-learning emerges as a promis-
ing paradigm, as it equips models to efficiently learn a new task
using minimal data through the application of meta-knowledge.
Such methods are particularly attractive for precision matrix es-
timation in small sample settings, as they diminish the reliance
on extensive data and reduce computational demands. For
example, state-of-the-art approaches from the class of Model-
Agnostic Meta-Learning (MAML) [8] have achieved favorable
performance in many meta-learning tasks. The strength of
MAML lies in its ability to quickly adapt to new tasks (meta-
testing dataset) with fewer samples by optimizing initial param-
eters using data from related tasks (meta-training dataset).

However, the design of MAML often emphasizes sample effi-
ciency and fast adaptation, typically without a comprehensive
and robust theoretical guarantee for its performance. While
empirical improvements are sufficient for many neural network
applications, they may lead to incorrect predictions when ap-
plied to precision matrix estimation, where precise and reliable
results are crucial. Such empirical-only strategies typically rely
on extensive training data. However, in precision matrix es-
timation, the available data is often significantly limited. For
example, the dropout technique [9], which lacks a strict theo-
retical foundation, is frequently used in neural network training with millions of samples. In contrast,
in precision matrix estimation, the volume of available data often falls short of the number of feature
dimensions. Furthermore, MAML-based methods adapt to new tasks by performing gradient descent
from meta-learned parameters, but as noted by [10], the computation and memory demands escalate
dramatically as the number of features p increases, presenting significant challenges.

Recent studies [11, 12] have made initial attempts to successfully integrate meta-learning with preci-
sion matrix estimation. Despite achieving sample-efficiency through meta-learning, their methods
exhibit several limitations: Restrictive Data Assumptions, and Ineffective Adaption to New Tasks.
Firstly, they assume that the edges of a new task must be subsets of existing edges (where existing
edges can be seen as optimized initial parameters in MAML), thereby constraining the discovery of
novel connections in real-world applications. Besides, these works state that they use the state-of-the-
art algorithm BigQuic, which speeds up the gradient calculation step with a block-coordinate descent
Newton method, to solve a new task. The algorithm uses between O(p) and O(p3) time and O(p2)
and O(p) memory per iteration. When the number of samples is extremely small, it takes a large
number of iterations to converge to an accurate solution, leading to poor generalization performance.

Herein, we propose a novel approach for Fast and Sample-efficient Meta Precision Matrix Learning,
FasMe. Our approach first extracts meta-knowledge as the shared pattern across auxiliary tasks
through a multi-task learning diagram. We then adopt a maximum determinant matrix completion
algorithm with meta-knowledge constraints to achieve fast adaptation in high-dimensional settings.
In detail, our contributions can be summarized as follows:
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• A novel meta-learning-based model: We propose a multi-task precision matrix estimator
that extracts the meta-knowledge from the auxiliary tasks. We then utilize the maximum
determinant matrix completion algorithm to learn a new precision matrix in the meta-testing.

• Efficient adaptation: We design a recursive closed-form algorithm to speed up the adaptation
in the novel task. Our model converges to an ϵ-accurate solution in O(p log ϵ−1) time and
O(p) memory. It significantly outperforms the state-of-the-art ones.

• Theoretical guarantee: We also theoretically prove that for p-dimensional multivariate
sub-Gaussian random vectors and K auxiliary tasks with meta-knowledge θ, the sam-
ple complexity of our method is O(log p/K) per auxiliary task for meta-knowledge and
O(log |G|) for the new task. It relaxes sample size requirements with the application of
meta-learning, equipping FasMe with the ability to handle small sample settings.

• Experimental evaluation: On multiple synthetic datasets, FasMe outperforms the other
baselines. Specifically, FasMe is at least ten times faster than the four baselines while
promoting prediction accuracy. In the real-world experiment, FasMe obtains the minimum
log-determinant Bregman divergence and performs better than the other baselines.

2 Background

2.1 Meta-Learning

The last years have witnessed a tremendous interest in methods for meta-learning, especially in
a wide range of data-limited applications including medical image analysis [13, 14], language
modeling [15, 16], and object detection [17, 18, 19]. Meta-learning is a machine learning technique
that allows a model to learn from prior knowledge, or meta-knowledge, to improve its performance
on new tasks and speed up the learning process [20, 21]. The process typically involves two stages:
1) Meta-training: In this stage, the model is trained on a set of related tasks, also known as auxiliary
tasks [8]. The goal of this step is to extract meta-knowledge from these tasks, which can be used
to improve the performance of the model on new tasks. This step helps the model to learn how to
quickly and effectively adapt to new tasks by identifying the shared patterns or features across the
auxiliary tasks [22]. 2) Meta-testing: In this stage, the model is tested on a new task, also known
as the target task [23]. The goal of this step is to apply the meta-knowledge learned during the
meta-training step to improve the model’s performance on the target task. Meta-knowledge is used
to quickly and effectively adapt the model to the new task, without the need for additional training
data. Overall, meta-learning allows a model to better generalize to new tasks by leveraging prior
knowledge, thereby making it more sample-efficient and fast.

2.2 Precision Matrix Estimation

Precision matrix estimation is the problem of finding the inverse of the covariance matrix of a
multivariate random variable Ω = Σ−1. It is particularly useful in scenarios where the number
of samples is equal to or smaller than the number of variables since the covariance matrix is not
invertible. The graphical lasso, namely GLasso [5], is a typical penalized maximum likelihood
estimator for precision matrix Ω inference under the Gaussian assumption on the dataset X ∈ Rn×p.
The popular estimator can be written as:

Ω̂ = argmin
Ω≻0

− log det(Ω)+ < Ω,Σ > +λ∥Ω∥1, (1)

where λ ≥ 0, Σ = 1
n

∑n
i=1(Xi − X̄)(Xi − X̄)⊤, X̄ = 1

n

∑n
i=1 Xi, and Ω ≻ 0 denotes that Ω is

positive definite and symmetric. ∥Ω∥1 is the ℓ1-norm of matrix Ω. However, [24] proved that this
estimator is sensible even for non-Gaussian X, since it corresponds to minimizing an ℓ1-regularized
log-determinant Bregman divergence. To solve the problem Eq. (1), we take the derivative of it
Ω−1 − Σ = λ∂∥Ω∥1/∂Ω. Inspired by this derivative, [25] proposed the constrained ℓ1 minimization
method for inverse matrix estimation (CLIME) estimator. This estimator can be used to estimate the
precision matrix Ω via an ℓ1 constrained optimization:

argmin
Ω≻0

∥Ω∥1, s.t. ∥ΣΩ− I∥∞ ≤ λ. (2)

CLIME can be solved column-by-column. Compared with GLasso, CLIME has presented more
favorable theoretical properties and can be solved by column-wise linear programming.
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3 Method

The section elaborates on how the proposed meta-learning framework works. We begin by providing
a formal problem setting in Section 3.1, which covers the task and data assumptions we consider.
Next, we formulate the two stages of our meta-learning framework in Section 3.2.

3.1 Problem Setting

Notations {X(k)} =
{
X(1),X(2), . . . ,X(K)

}
denotes K datasets generated by K auxiliary tasks.

We use X(k) ∈ Rnk×p to represent the k-th dataset with nk samples and p features. Ω(k) ∈ Rp×p

represents the k-th precision matrix corresponding to X(k). {Ω(k)} =
{
Ω(1), . . . ,Ω(K)

}
is the set of

the precision matrices corresponding to the auxiliary data {X(k)}. Ωnew denotes the precision matrix
of a new task Xnew ∈ Rn×p to be estimated. We use θ to represent the meta-knowledge (i.e., the
common substructure of {Ω(k)}) and θ

(k)
r to represent the rest of Ω(k) respectively.

Assumptions We consider a more general class of distributions than most previous studies, i.e.,
sub-Gaussian distributions, which cover Gaussian variables, bounded random variables, and so on.
This relaxed data assumption significantly improves the flexibility and robustness of our method. We
assume that the auxiliary tasks share some meta-knowledge θ with the target task Xnew. Specifically,
we assume that supp(θ) ⊆ supp(Ωnew). Here the meta-knowledge θ takes the form of a common
substructure among the tasks. The assumption has been widely adopted [26, 27, 28] and proved to be
feasible and applicable in the biological and genetic domains [29].

The paper aims to estimate the target precision matrix Ωnew of sub-Gaussian distribution with sparse
structure and relatively limited samples given sufficient samples from auxiliary tasks {X(k)}. The
auxiliary datasets follow a family of multivariate sub-Gaussian distributions (see Definition 2 in
Appendix F). To address the problem, we propose a novel meta-learning framework that leverages
the meta-knowledge learned from auxiliary tasks to efficiently estimate Ωnew.

3.2 A Meta-learning Framework for Small Sample Precision Matrix Estimator

This part gives more details regarding the meta-learning framework we established. Figure 2 illustrates
the pipeline of the framework in an intuitive way.
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Figure 2: The pipeline of the established framework. The entire pipeline can be divided into two
stages: meta-knowledge extraction (meta-training) and efficient adaptation (meta-testing). In Stage 1,
our meta-teacher extracts the meta-knowledge, namely the shared structure, from the related auxiliary
tasks with sufficient samples. In Stage 2, we obtain a prior sparsity pattern from the meta-knowledge
and target dataset with a few samples. Then our meta-student aims to recover the edge structure by
solving a matrix completion problem rapidly.
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3.2.1 Meta-teacher

We extract the common substructure across the tasks as the meta-knowledge. The goal of pre-training
is to extract meta-knowledge θ from auxiliary tasks {X(k)}.

To obtain the meta-knowledge, every precision matrix is modeled as

Ω(k) = θ + θ(k)r (3)

where θ ∈ Rp×p is the common substructure among all graphs and θ
(k)
r ∈ Rp×p represents the rest

for k-th graph.

We adopt ℓ1-penalization for θ and θ
(k)
r since they are expected to be sparse for better interpretability.

Therefore, we write Eq. (3) into ∥θ∥1 + ρ∥θ(k)r ∥1, where ρ > 0. The value of the hyper-parameter ρ
depends on the properties of the graphs. This hyper-parameter controls the difference of sparsity level
between θ and θ

(k)
r . Concretely, with a smaller ρ, the shared part gets denser and the rest gets sparser.

Then we apply the formulation to Eq. (2), thus obtaining the single-task recovering method:

(θ̂, θ̂(k)r ) = argmin
θ,θr

∥θ∥1 + ρ∥θ(k)r ∥1, s.t. ∥θΣ(k) − (Ip − θ(k)r Σ(k))∥∞ ≤ λ. (4)

Here Σ(k) represents the covariance matrix corresponding to X(k). This single-task method, however,
ignores the inner relationship between the auxiliary tasks. To this end, we sum up all the single-task
estimators and devise the optimization problem in the following form:(

θ̂, {θ̂(k)r }
)
= argmin

θ,{θ(k)
r }

K∥θ∥1 + ρ

K∑
k=1

∥θ(k)r ∥1, s.t. ∥θΣ(k) − (Ip − θ(k)r Σ(k))∥∞ ≤ λ, (5)

where k = 1, 2, . . . ,K.

3.2.2 Meta-student

To speed up the estimation of Ω̂new, we propose our efficient estimator, which is favorable even
with a few samples of the new task available. Additionally, we obtain a sparsity pattern from the
meta-knowledge θ and target dataset with a few samples.

Different from most ℓ1-penalized methods, our estimator aims to estimate the precision matrix by
solving a Maximum Determinant Matrix Completion (MDMC) problem. MDMC is an effective
technique that aims to pick the unique maximum determinant completion (when it exists) for a
partially observed matrix from all the possible matrices [30].

Consider a maximum determinant matrix completion problem for a covariance matrix with some
partially observed entries:

Σ̂ = argmax
Σ⪰0

log detΣ s.t. Σij = Mij , ∀(i, j) ∈ G, (6)

where M represents the partially observed matrix, and the set G contains all the observed entries.
Thus, the Lagrangian dual of this problem can be derived as:

Ω̂ = argmin
Ω⪰0

− log detΩ + ⟨Ω,M⟩+ p s.t. Ω ∈ SpG , (7)

with first-order optimality condition |sign(M)| ⊙ Ω̂−1 = M , where the operator sign(·) computes
the sign of the matrix and ⊙ denotes the Hadamard product. Herein, the set SpG refers to the p× p
symmetric matrices with sparsity pattern G. Strong duality indicates a straightforward relation back
to the primal Σ̂ = Ω̂−1. Note that while Σ̂ is (in general) a dense matrix, Ω̂ is always sparse. Instead
of solving the primal problem for a dense matrix, we choose to solve the dual problem for a sparse
matrix, which also satisfies the optimality condition.

To solve the precision matrix Ω̂new, the first step is to find a reliable sparsity pattern. Previous
works [31] obtain the pattern by thresholding the covariance matrix. However, [31] also proved the
invalidity of such a method in the case of a relatively small sample size, as the covariance matrix
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cannot be accurately estimated. To meet the challenge, our estimator combines the support set of the
thresholded covariance matrix and meta-knowledge to obtain the sparsity pattern G.

G = supp(θ) ∪ supp(Sη(Σnew)). (8)

Here, Sη denotes the element-wise soft-thresholding operator with parameter η. Note that the problem
(7) has a recursive closed-form solution whenever the graph is chordal, the embedding operation is
conducted to satisfy the chordal property. To be specific, the chordal embedding of G is represented
as G̃ and (7) is rewritten into the following formulation,:

Ω̂new = argmin
Ω≻0

− log detΩ + ⟨Ω,ΠG(Σnew)⟩ , s.t. Ωij = 0, (i, j) ∈ G̃\G. (9)

where ΠG is the projection operator from Sp onto SpE , i.e., by setting ΠG(Aij) = 0 if (i, j) /∈ E.

3.3 Optimization Algorithms

The learning steps of meta-knowledge extraction (5) is solved efficiently through a formulation of
multiple independent sub-problems of linear programming, which can be accelerated in a parallel
form. With the assistance of meta-knowledge, we solve the optimization problem (9) using Newton
Conjugate Gradient method. The key idea is to construct an inner conjugate gradients loop as a
solution to the Newton subproblem of an outer Newton’s method. The detailed description, complexity
analysis, and pseudo-code (Algorithm 1) of the full algorithm are shown in Appendix C.

4 Theoretical Analysis

To present the analysis more concisely, we first define Σtot := diag(Σ(1), . . . ,Σ(K)) = (σij)Kp×Kp,
Θ := diag(θ, . . . , θ), Θr := diag(θ

(1)
r , . . . , θ

(K)
r ), Ωtot := diag(Ω(1), . . . ,Ω(K)) = Θ + Θr,

Xtot := diag(X(1), . . . ,X(K)). We assume that the precision matrix Ω belongs to the uniformity
class of matrices,

U := U (q, s(Kp)) =
{
Ω : Ω ≻ 0, ∥Ω∥1 ≤ ν, ∥Ω∥∞ ≤ ϕ, max

1≤i≤Kp

Kp∑
j=1

|ωij |q ≤ s(Kp)
}
. (10)

Here q, ν, ϕ are some constants, 0 ≤ q < 1 and Ω := (wij)Kp×Kp. s(Kp) represents the sparsity
level of Ω in the uniformity class. Note that the sparsity level is related to p without an analytic form
of relationships between them.

Then some important conditions and definitions are stated as the following.

Exponential Tail Condition Suppose there exists a constant 0 ≤ γ ≤ 1
4 , so that log p

nk
≤ γ and

E[exp(t(Xi − µi)
2)] ≤ C ≤ ∞,∀|t| ≤ γ,∀i ∈ {1, . . . , p}, (11)

where C is a constant.

Irrepresentable Condition [4] There exists some α ∈ (0, 1] such that

9Γ∗
GcG(Γ

∗
GG)

−191 ≤ 1− α, (12)

where Γ∗ := Ω∗−1 ⊗ Ω∗−1 (⊗ represents the Kronecker matrix product) and Gc = {1, . . . , p}2\G.

We define κΓ∗ = 9(Γ∗
GG)

−19∞. Note that Γ∗
GG is a (s+ p)× (s+ p) matrix indexed by vertex pairs,

where s = |G|. We define ωnew
min = min

(i,j)∈supp(Ω∗
new)

|Ω∗
new,ij | and ωtot

min = min
(i,j)∈supp(Ω∗

tot)
|Ω∗

tot,ij |.

Definition 1. [32] Given a matrix M ∈ Sp, define GM = {(i, j) : Mij ̸= 0} as its sparsity pattern.
Then M is called inverse-consistent if there exists a matrix N ∈ Sp such that

M +N ⪰ 0, ∀(i, j) ∈ GM Nij = 0, (M +N)−1 ∈ SpGM
(13)

The matrix N is called an inverse-consistent complement of M and is denoted by M (c). Furthermore,
M is called sign-consistent if for every (i, j) ∈ GM , the (i, j)-th elements of M and (M +M (c))−1

have opposite signs.
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Then we define the β(G, α) function with respect to the sparsity pattern G and scalar α > 0

β(G, α) = max
M≻0

∥M (c)∥max s.t. M ∈ SnG and ∥M∥max ≤ α,Mi,i = 1,M is inverse-consistent.

Here i = 1, 2, . . . , n, ∥ · ∥max denotes the ℓmax-norm, e.g., ∥A∥max = maxi ̸=j |Aij |.
The Appendix F provides all the detailed proofs of the lemmas, theorems, and corollaries.

4.1 Main Theorems

In this section, we mainly study the theoretical properties of the meta-knowledge θ̂ in (5) and the
precision matrix Ω̂new in (7). The first theorem specifies a probability lower bound of recovering
the true meta-knowledge by our estimator in (5) for multiple random multivariate sub-Gaussian
distributions.
Theorem 1. Suppose that Ω∗

tot ∈ U and N =
∑K

k=1 nk. When the variables are sub-Gaussian, the

tail condition holds. Let λ = C0ν
√

log(Kp)
N , where the constant C0 = 2γ−2(2 + τ0 + γ−1e2C2)2

and constant τ0 > 0. If ωtot
min > 4τn, then we have

1. ∥θ̂ − θ∗∥∞ ≤ 8C0ν
2
√

log(Kp)
N + 2ϕ;

2. supp(θ̃) = supp(θ∗);

with a probability greater than 1−4p−τ0 . Here θ̃ is a threshold estimator with θ̃ij = θ̂ijI(|θ̂ij | ≥ τn),
where τn ≥ 2νλ is a tuning parameter.

According to Theorem 1, if n1 = n2 = · · · = nk, a sample complexity O( logK+log p
K ) per task is

sufficient for the recovery of the meta-knowledge. In most cases, O( logK+log p
K ) → O( log p

K ) since
p >> K.

The following theorem specifies a probability lower bound of recovering a correct precision matrix
Ω̂new by our estimator in (7) for a multivariate sub-Gaussian distribution.
Theorem 2. Suppose we have recovered the true sparsity pattern G of a family of p-dimensional
random multivariate sub-Gaussian distribution. Then for a new task of multivariate sub-Gaussian
distribution with the precision matrix Ω∗

new such that supp(θ) ⊆ supp(Ω∗
new) and satisfying irrepre-

sentable condition, consider the estimator Ω̂new with λ = C3ν
√

log |G|
n . Then we have

∥Ω̂new − Ω∗
new∥∞ ≤ 2C3ν

2κΓ∗

√
log |G|

n
, (14)

with a probability 1− p−τ1 , where τ1 > 0.

This theorem shows that n ∈ O(log |G|) is sufficient for estimating a correct precision matrix of
the new task with our estimation. Then, efforts should be made to prove that the max-det matrix
completion method guarantees the consistency of the support set of Ω̂new with G.
Theorem 3. G coincides with the sparsity pattern of the optimal solution Ω∗

new if the normal-
ized matrix Σ̃new = D−1/2ΠG(Σnew)D

−1/2 where D = diag(ΠG(Σnew)) satisfies the following
conditions:

1. Σ̃new is positive definite and sign-consistent,

2. We have

β
(
G, ∥Σ̃new∥max

)
≤ min

(k,l)/∈G

η − |(ΠG(Σnew))kl|√
(ΠG(Σnew))kk · (ΠG(Σnew))ll

. (15)

We set the diagonal elements of Σ̃new to 1 and its off-diagonal elements between -1 and 1. The
projection operation ΠG(·) leads to many zero elements in Σ̃new, resulting in Σ̃new being positive
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definite or even diagonally dominant in most cases. As shown by [32], when G induces an acyclic
structure, condition 2 is automatically satisfied by condition 1. More generally, [33] shows that Σ̃new

is sign-consistent if (Σ̃new + Σ̃
(c)
new)−1 is close to its first order Taylor expansion. This assumption

holds in practice due to the fact that the magnitude of the off-diagonal elements of Σ̃new + Σ̃
(c)
new

is small. Moreover, [32] shows that the left side of (50) is upper bounded by a · ∥Σ̃new∥2max for
some a > 0. That implies that when ∥Σ̃new∥max is small, or equivalently η is large, condition 3
is automatically satisfied. If the conditions in Theorem 3 are satisfied, the support set of Ω̂new is
consistent with G according to (7).

5 Related Work

There have been several methods proposed to estimate precision matrices, among which, three state-
of-the-art methods, QUIC [10], Neighborhood Selection [34], Meta-IE [11] and gRankLasso [35]
are chosen as baselines in the experiments (See reasons in Appendix E). These approaches all
consider high-dimensional settings which are similar to our work. QUIC: This approach utilizes a
quadratic approximation of the negative log-likelihood function to estimate sparse inverse covariance
matrices to accelerate computation speed, which reduces the computational cost from O(p2) to
O(p) at each iteration. Neighborhood Selection: This method is a type of regularized maximum
likelihood estimation method for estimating precision matrices. Given some i.i.d. observations,
it estimates the conditional independence restrictions separately for each node in the graph. The
complexity of the neighborhood selection for one node with the Lasso is O(npmin{n, p}) using
LARS algorithm [36]. Meta-IE (BigQuic): [11] first proposes a meta-learning-based method that is
composed of two steps. First, Meta-IE takes the support union of all the precision matrices of the
auxiliary tasks as prior knowledge. Then the method states that the testing step can be solved by an
interior point method [37] in polynomial time O(p3.5 log ϵ−1) or BigQuic [38] with a better time
complexity around O(p2 log ϵ−1) (See analysis in Appendix). gRankLasso: gRankLasso [35] is
a method for sparse precision matrix estimation that realizes automatic parameter tuning, making
it completely tuning-free. It achieves robustness and accuracy by integrating a group penalty with
Lasso regularization, effectively estimating sparse structures in high-dimensional data.

6 Experiment

6.1 Synthetic Experiment

Baselines: We compare our method with the following baselines mentioned in Section 5: 1) The
QUIC baseline, 2) the Neighborhood Selection (NS) baseline, 3) Meta-IE (BigQuic) baseline that is
accelerated with 32 threads and 4) gRankLasso baseline.

Metric: We use the Frobenuis-norm ∥Ω̂new−Ω∗
new∥F and Mathews correlation coefficient (MCC) as

metrics to evaluate the performance. MCC is widely used in machine learning as a measure of binary
classifiers, defined as MCC = (TP×TN−FP×FN)/

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN).

Here the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) values
indicate the number of true non-zero entries, true-zero entries, false non-zero entries, and false zero
entries, respectively. It produces a high score if the classifier generates desirable estimations.

Simulated Datasets: Each graph model contains a new task and K = 4 prior learning tasks. The
sample matrices follow multivariate normal distributions where the corresponding precision matrices
are generated using two sparse models: (1) Random graph and (2) Tree graph. More details about the
data simulation are moved into Appendix B.

Time Comparison The time-complexity experiment on simulated datasets is conducted to observe
the changes of all the estimators in computation time with the varying p and n. As shown in Fig. 3
and Table 1 &2, FasMe performs better than all the baselines. Using our method, we solve a sparse
inverse covariance estimation problem containing 2500 variables, with time cost around 1 second.
By comparing all the subfigures in Fig. 3, we find that all the methods except the neighborhood
selection approach are insensitive to the change of n. This is because the neighborhood selection
deals with the sample matrix Xnew ∈ Rn×p directly instead of the covariance matrix Σnew ∈ Rp×p.
However, it remains computationally costly compared to FasMe when the sample size is much
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Figure 3: Time cost of FasMe vs. baselines on simulated datasets with the feature dimension p
varying in {500, 1000, 1500, 2000, 2500}. Subfigure (a)(b)(c)(d) records the time required for each
method to be implemented on a series of datasets with different sample sizes n = p/20, p/10, p/5, p,
respectively. Note that the missing points of the baselines mean the time cost is out of range.

smaller than the number of features. Interestingly, despite Meta-IE (BigQuic) method can speed up by
parallelizing multiple threads, it is less time-efficient because of the time assumption of the I/O reads
and writes. Moreover, BigQuic cannot converge within the maximum iterations (maxiter = 100),
especially when only a few samples are provided (n = p/20, p/10). Regarding gRankLasso, its
tuning mechanism requires a substantial amount of time, leading to significant time costs in high-
dimensional scenarios. In contrast, our method converges significantly faster within 20 iterations,
regardless of small sample setting.

Table 1: Comparison of estimation error (in terms of MCC and F-norm= ∥Ω̂new −Ω∗
new∥F ) and

running time (seconds) on synthetic dataset. Ω∗ is generated from a Random graph. ∗ means that the
time exceeds 30 minutes.

n = 50, p = 1000 n = 100, p = 1000 n = 100, p = 2000 n = 200, p = 2000
Methods MCC(↑) F-norm(↓) Time(↓) MCC(↑) F-norm(↓) Time(↓) MCC(↑) F-norm(↓) Time(↓) MCC(↑) F-norm(↓) Time(↓)

QUIC 0.043 23.02 3.028 0.065 22.46 3.676 0.039 33.87 64.062 0.065 31.65 22.925
NS 0.287 66.08 8.724 0.436 54.21 10.829 0.388 88.98 43.003 0.624 67.02 87.193

Meta-IE (BigQuic) 0.403 29.10 27.370 0.460 22.42 16.655 0.281 41.92 96.850 0.310 32.10 87.140
gRankLasso 0.008 198.56 ∗ 0.012 176.99 ∗ 0.005 218.12 ∗ 0.008 212.43 ∗

Ours 0.659 22.63 0.061 0.708 19.37 0.063 0.661 26.01 0.994 0.716 23.13 0.965

Table 2: Comparison of estimation error (in terms of MCC and F-norm= ∥Ω̂new −Ω∗
new∥F ) and

running time (seconds) on synthetic dataset. Ω∗ is generated from Tree graph.
n = 50, p = 1000 n = 100, p = 1000 n = 100, p = 2000 n = 200, p = 2000

Methods MCC(↑) F-norm(↓) Time(↓) MCC(↑) F-norm(↓) Time(↓) MCC(↑) F-norm(↓) Time(↓) MCC(↑) F-norm(↓) Time(↓)

QUIC 0.038 22.98 3.212 0.071 20.69 3.541 0.036 35.07 58.972 0.070 31.48 31.625
NS 0.306 66.02 8.701 0.485 56.21 11.147 0.396 87.87 50.601 0.655 66.08 89.237

Meta-IE (BigQuic) 0.451 28.64 26.321 0.482 20.88 17.632 0.305 39.97 99.789 0.340 31.52 85.176
gRankLasso 0.007 201.89 ∗ 0.013 185.60 ∗ 0.006 223.45 ∗ 0.008 205.77 ∗

Ours 0.668 22.05 0.058 0.712 15.98 0.064 0.681 24.24 1.002 0.745 24.02 0.996

Accuracy Comparison We conduct several experiments on the simulated datasets to compare the
prediction power of all methods with four different small sample settings n < p/10. Table 1&2
indicates that FasMe obtains lower Frobenius-norm and higher MCC under all the conditions. It
suggests that FasMe outperforms the other baselines in high-dimensional settings. The comparison
of the two tables shows that FasMe can effectively recover the special structure from the data. In
addition, the MCC of Meta-IE becomes small as the feature dimension increases. This is because the
predicted edges must be a subset of the support union. As p increases, the estimation of the support
union is not relatively accurate, thus significantly reducing the prediction accuracy of Meta-IE. The
poor performance of gRankLasso can be attributed to the inefficacy of its automatic tuning mechanism
in small sample settings, which degrades the model performance. We draw one subnetwork for the
experimental result of every method and compare them with the ground truth in Fig. 4 (a)(b). They
show that our method bears the highest similarity with the ground truth. The results are consistent
with the MCC value of every method shown in Table 1 &2.

6.2 Real-world Experiment: Application to Gene and fMRI Data

We further evaluate our method for estimating precision matrices on two real-world datasets: ChIP-
Seq dataset (ENCODE project [39]) and fMRI dataset (OpenfMRI project [40], accession number:
ds000002). Regarding the ChIP-Seq dataset, we aim to exploit the gene network of transcription
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factors (TFs). We randomly selected 300 gene features. 27 samples of H1-hESC (embryonic stem
cells) and GM12878 (Blymphocyte) are chosen as two auxiliary tasks for meta-knowledge and 20
samples of K562 (leukemia) are chosen as a novel task. Regarding the fMRI dataset, we aim to
exploit brain connectivity among different brain regions. We randomly selected 200 regions of
interest (ROI) as features. 34 samples of PCL and DCL datasets are chosen as the auxiliary tasks
for meta-knowledge and 20 samples of Mixed-Event dataset are chosen as a novel task. Additional
experimental details including configuration choices and extended experiments in the economic
domain are provided in Appendix B.

Common Edges Meta-knowledge

Our method Meta-IE QUIC Neighborhood SelectionGround Truth

Our method Meta-IE QUIC Neighborhood SelectionGround Truth

(b) Tree Graph

(a) Random Graph

gRankLasso

gRankLasso

(c) Gene Network

(d) Brain Connectome

Figure 4: Subfigure (a)(b) display graph recovery results on two synthetic datasets for different
methods compared with the ground truth. Subfigure (c) shows the gene network predicted by our
proposed method for 300 genes on ChIP-Seq dataset. Subfigure (d) shows the brain connectome
recovered by our proposed method for 200 regions on fMRI dataset. Positive and negative correlations
are represented by orange and green edges, respectively.

In Subfigure (c)(d) of Fig. 4 , we visualize the experimental results on the two real-world datasets
respectively. The predicted gene network exhibits scale-free and clustering behaviors, which is
consistent with its biological properties. In another experiment, the majority of brain connections are
found in the left ROIs. Besides, the left brain has positive connections, while the cross-hemisphere
ones are negative. In this case, the subjects are asked to solve a classification problem, which mainly
relies on their left brain’s analysis function. The results align with our expectations.

7 Conclusion

In this work, we introduced FasMe, a Fast and Sample-efficient Meta Estimator designed to address
the challenges of precision matrix learning in small sample settings. Under a novel meta-learning-
based framework, our approach first leverages a multi-task precision matrix estimator to extract shared
meta-knowledge from auxiliary tasks, enabling efficient adaptation to new tasks with minimal data.
FasMe then incorporates a maximum determinant matrix completion strategy to enhance precision
matrix estimation, ensuring both computational efficiency and theoretical robustness. Our experiments
on synthetic and real-world datasets demonstrate that FasMe significantly outperforms state-of-the-art
baselines in terms of accuracy and speed. These results highlight the potential of FasMe to address
real-world challenges in high-dimensional settings, such as genetics and neuroscience, where data is
scarce. Moving forward, we plan to extend our work by relaxing the sub-Gaussian data assumption
and further reducing the sample size requirements for training meta-knowledge. This will extend the
framework to other domains and improve scalability for even larger datasets.
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made in the paper.
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to reproduce that algorithm.
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the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have uploaded the relevant code on our GitHub (https://github.com/
MahjongGod-Saki/FasMe).
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we provide comprehensive documentation on all training and testing de-
tails, including data generation methods, hyperparameter selection, reasons for configuration
choices, and the complete optimization algorithm.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the error bound of our estimators in Theorem 2 and 3 of the main
page.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We analyze computational complexity in Appendix C and compare the execu-
tion time of our method with other baselines in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [NA]

Justification: We have no such risk.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss them in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We have no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the corresponding source for all the real-world dataset we use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have submitted our code in our GitHub.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We have no such risk.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We have no such risk.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Impact Statements

This paper proposes a novel approach for fast and sample-efficient meta precision matrix learning,
which can leverage prior knowledge from related tasks to improve the estimation of conditional
dependency relationships between random variables. This approach has potential applications
in various domains such as genetics, neuroscience, and social networks, where sparse and high-
dimensional data are common. The ethical aspects and future societal consequences of this work
depend on the specific contexts and purposes of applying this approach, which are beyond the scope
of this paper. However, we encourage researchers and practitioners to consider the possible benefits
and risks of using this approach, such as enhancing disease diagnosis or enabling authoritarian
surveillance, and to adopt appropriate measures to ensure its responsible and beneficial use.

B More Experimental Details

All experiments are performed on a machine with an Intel Core i9-10910 ten-core 3.6 GHz CPU and
64 GB RAM.

B.1 Simulation Experiment

For each prior task k = 1, 2, . . . ,K, we generate nk = p/2 independently and identically distributed
observations from a multivariate normal distribution with mean 0 and precision matrix Ω(k). For
the new task, we generate n = p/10 i.i.d. samples from a Gaussian distribution with mean 0 and
precision matrix Ωnew = Ω(k+1). This model assumes that the graph is composed of two parts,
namely the common substructure θ and the rest θ(k)r . The entire precision matrix is parameterized as
Ω(k) = θ + θ

(k)
r .

Random Graph Each off-diagonal entry of θ is generated independently and equals 0.5 with a
probability p0 = 1/(p−1) and 0 with a probability 1−p0. Each off-diagonal entry of θ(k)r is generated
independently and equals 0.5 with probability 0.2kp0 and 0 with probability 1− 0.2kp0. Then we
add every diagonal element by a fixed value large enough to guarantee the positive definiteness of the
precision matrix.

Tree Graph We generate K + 1 networks each consisting of c unconnected subnetworks with a
tree structure. All the networks share one common subnetwork with p/10 dimensions. We randomly
generate the dimension of the other c− 1 subnetworks that range from 1 to p/10. Every subnetwork
follows a tree structure. Most subnetworks consist of only one node because we choose a relatively
large value for c. Each off-diagonal entry corresponding to the edge equals 0.5. Then we add every
diagonal element by a fixed value large enough to guarantee the positive definiteness of the precision
matrix.

B.2 Real-world Experiment

ChIP-Seq dataset ENCODE project is a widely used database for human genome research. For
our experiment, we select the ChIP-Seq data for transcription factors (TFs). The ChIP-Seq dataset has
been widely utilized as the benchmark dataset in other research papers in this domain [41, 42, 43, 44].
TFs are proteins that can control how genes work. The function of TFs is to regulate turn-on and off
genes in order to make sure that they are expressed in the desired cells at the right time and in the
right amount throughout the life of the cell and the organism. This experiment aims to exploit the
gene network of transcription factors (TFs).

There are three kinds of human cells involved in the dataset: (1) H1-hESC(embryonic stem cells:
primary tissue), (2) GM12878 (B-lymphocyte: normal tissue) and (3) K562 (leukemia: cancerous
tissue). The dataset provides simultaneous binding measurements of TFs to thousands of gene targets,
each file contains 27 samples(TFs) and each sample has 25185 features(gene targets). We randomly
selected 300 features for our experiment. The exact shape of the used data in our experiment is (27
TF samples, 300 TF features) for each kind of human cell. H1-hESC and GM12878 are chosen as
two auxiliary tasks for meta- knowledge and 20 samples of K562 are chosen as a new task.
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Note that the choice to utilize H1-hESC and GM12878 as auxiliary tasks, with K562 as the primary
prediction task, was made with deliberate consideration of their biological significance. H1-hESC
represents primary tissue, GM12878 represents normal tissue, and K562 represents cancer tissue.
Given the heightened research focus on cancer cell gene networks, which are more likely to be the
subject of predictive modeling and have rare cases, we opted for this configuration to use K562 as the
test set.

Figure 5: Gene network result of FasMe. Examples of discovered gene relationships that are consistent
with other biological research: MYL6-GAA [45], HIF1A-ATP6V1G1 [46], WDR6-RBM4 [47].

fMRI dataset OpenfMRI is a task-based fMRI database, we chose a dataset about the task Classifi-
cation learning (accession number: ds000002). This database has been widely used in other research
papers in this domain [48, 49, 50, 51]. This dataset contains three different tasks, participants were
instructed to perform probabilistic classification learning (PCL), deterministic classification learning
(DCL), and mixed-up classification learning on Weather Prediction Task(WPT). WPT is commonly
used to assess striatal or procedural learning capacities in different populations. This fMRI dataset ef-
fectively records neural responses to stimuli, delays, and negative and positive feedback components,
and studying this dataset aims to address a fundamental question of whether and how the brain’s
memory systems interact.

In our experiment, the 4D fMRI brain image is divided into spatial regions of size 2 × 2 × 2,
so the original scan data in spatial shape 64 × 64 × 30 is divided into 15360 regions. And the
activation of each region during the task (the temporal dimension) is added up to represent the average
activation situation of corresponding regions. We randomly selected 200 active regions to lower the
computational burden. By training on the tasks of PCL and DCL, the common key brain regions and
the interaction between the tasks are obtained, that is, a common substructure.

Note that we employed PCL (Probabilistic Classification Learning) and DCL (Deterministic Classifi-
cation Learning) as auxiliary datasets due to their representation of distinct learning paradigms (See
Appendix A.2). PCL captures learning under uncertainty, while DCL reflects learning from clear-cut
rules. This diversity aids in generalizing the model to novel scenarios. The Mixed-Event dataset,
embodying elements from both PCL and DCL, mirrors the intricate and multifaceted nature of human
cognition. Consequently, the Mixed-Event dataset emerged as the optimal choice for the test set,
offering a realistic and challenging environment for the model to demonstrate its predictive prowess
in brain connectivity, reflective of the complexity encountered in real-world cognitive processes.

By using the prior knowledge of common substructure, we effectively introduce the key areas of the
brain on similar tasks and the interaction between these key areas, so that we can learn how the brain
regions interact in other tasks efficiently.

In Table 3, we record the negative log-determinant Bregman divergence of our estimator for the
new task and compare it with the other baselines. The experimental results show that our method
generalizes better than all other baselines for the real-world dataset since it achieves the minimum
log-determinant Bregman divergence.

US Industry Portfolios dataset This is a well-known dataset of US industry portfolios’ monthly
returns from 1926 to 2023. It covers various economic sectors such as agriculture, healthcare, energy,
machinery, and electronics. We take each industry as a feature (p = 49) and use the records of
different financial metrics as the tasks. We use AVWR (Annual Voluntary Wage Reporting) dataset
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Table 3: Negative log-determinant Bregman divergence of the estimated precision matrices of the
new task in the real-world dataset using FasMe and other baselines. A larger value of negative
log-determinant Bregman divergence indicates better performance.

Method Negative log-determinant Bregman divergence
fMRI Data ChIP-Seq Data

QUIC -2001.26 -716.32
Neighborhood Selection -284.35 -316.21

Meta-IE -291.66 -200.45
gRankLasso -2982.78 -823.91

FasMe -56.31 -64.35

and AEWR (Adverse Effect Wage Rate) dataset (n1, n2 = 50) for meta-training, and AFS (Annual
Financial Statement) dataset for meta-testing (n = 10). With FasMe, we can extract meta-knowledge
about industry interactions from records of different financial metrics, thus resulting in a better
estimation of the hidden relationships of industries in the new task. The predicted connections, e.g.,
Steel (Steel Works)-Trans(Transportation) and ElcEq (Electrical Equipment)-Hardw(Computers), are
consistent with reality.

Figure 6: Visualization of the financial network predicted by FasMe.

B.3 Time Complexity Analysis of Meta-IE (BigQuic)

BigQuic [38], an "big-data" extension of QUIC, aims to estimate the precision matrix with thou-
sands of variables. It solves the optimization problem using a block-coordinate descent Newton
method. BigQuic divides the Newton direction into several blocks and utilizes the memory cache to
accelerate the updated process. The computation complexity of BigQuic is mainly determined by
O ((p+ |B|)hTTouter), where |B| is the number of boundary nodes, h is the number of non-zero
entries in the t-th generation estimated solution Ω̂(t), T is the average number of Conjugate Gradient
iterations and Touter is the number of computations within a block. Without loss of generality, h is
larger than p in t-th iteration. Hence, the time complexity of BigQuic is at least higher than O(p2)
time complexity. Furthermore, the performance of BigQuic depends largely on the choice of cluster
scheme. A poor partition of variables leads to many "cache misses". The challenges of choosing a
cluster schema make BigQuic harder to implement.

B.4 Difference between Meta-IE and FasMe

Based on the meta-learning framework, FasMe and Meta-IE differ in each component of this
framework, namely meta-teacher, meta-knowledge, and meta-student.

B.4.1 Meta-knowledge

Meta-IE: Meta-IE supposes the support union Ω̂ as the meta-knowledge and assumes that the edges
of the new task must be a subset of the edges of Ω̂.

FasMe: Different from Meta-IE, we assume that the new task shares a common structure, i.e.,
meta-knowledge θ̂, with the related auxiliary tasks.
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As we stated in Section Introduction, it is impossible to make startling discoveries under this
unrealistic assumption of Meta-IE. Our choice of meta-knowledge is more reasonable with biological
research and existing works as evidence.

B.4.2 Meta-teacher

Meta-IE: Meta-IE simply pools all the samples from K auxiliary tasks to learn the meta-knowledge:

Ω̂ = argmin
Ω⪰0

− log detΩ +

〈
K∑

k=1

1

K
Σ(k),Ω

〉
+ λ∥Ω∥1,

which is data-inefficient.

FasMe: By taking the inherent heterogeneity among the auxiliary tasks into consideration, FasMe
proposes a multitask-learning-based estimator to extract the common substructure θ̂ across the tasks.

B.4.3 Meta-student

Meta-IE: Meta-IE uses BigQUIC method to solve a GLasso problem with the knowledge constraint
supp(Ω) ⊆ supp(Ω̂).

FasMe: FasMe aims to estimate the precision matrix by solving the dual form of a MDMC problem
with Newton Conjugate Gradient algorithm. We also would like to emphasize that the meta-student
is not a simple application of standard MDMC. The formulation of a standard MDMC problem is:

max
X

log detX s.t. Xij = Mij ,∀i, j ∈ E.

We improve the method from two aspects: 1) able to deal with the partially observed matrices without
chordality by utilizing the chordal embedding 2) lower the time complexity by applying Newton CG
algorithm

Table 4: Comparison of standard MDMC and our improved MDMC

standard MDMC our improved MDMC

Targeted matrix partially observed matrices with chordality
partially
observed
matrices

Time complexity O(p2OINV) where OINV is the time required
for matrix inversion O(p log ϵ−1)

In summary, Meta-IE has presented a preliminary idea for applying metalearning to precision matrix
estimation with much potential for improvement. Compared to Meta-IE, FasMe exhibits better
theoretical properties and superior performance.

B.5 Accuracy with Different Sparsity

Table 5: Random graph, n = 100, p = 1000

Sparsity MCC score (%)
1/p 70.8
10/p 70.5
20/p 71.2
30/p 70.3
40/p 72.1
50/p 71.5
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Table 6: Tree graph, n = 100, p = 1000

Sparsity MCC score (%)
1/p 71.2
10/p 70.9
20/p 71.6
30/p 72.1
40/p 71.7
50/p 72.3

B.6 Hyperarameter Selection

K We actually have conducted a synthetic experiment with varying K and a fixed data size
(n = 100, p = 1000). We use MCC value as a metric to measure the performance of estimating
meta-knowledge. A higher score represents better performance. By varying K = 2, 3, . . . , 6, Fig. 7
shows that the MCC value smoothly experiences a slight decline from 0.85 to 0.60.

2 3 4 5 6
K (number of tasks)

0.0

0.5

1.0

M
C

C
 (

0-
1)

Figure 7: MCC values of our methods against varying K

ρ This hyperparameter delineates the sparsity contrast between the shared and individual compo-
nents of the model. As outlined in line 200, a lower ρ (chosen as 0.8 in our experiments) enriches the
shared structure’s density while sparing the individual parts. Our preliminary investigations, spanning
ρ values from 0.1 to 0.9, indicated a stable predictive accuracy across the spectrum. We plan to enrich
the appendix with these findings to demonstrate ρ’s effect on model performance comprehensively.

λ This hyperparameter dictates the overall sparsity of both the shared and individual graph structures,
with a higher value fostering sparser outcomes. Inspired by some previous researches[1, 2], we

adopt λ = ω
√

log(Kp)
ntot

, where ω varies across 0.05× i|i = 1, 2, . . . , 30. The Bayesian Information
Criterion (BIC) assists in pinpointing the optimal λ for our model and is uniformly applied across
baseline comparisons.

η Regarding η, functioning as the soft-thresholding parameter, η’s selection leans on an empirical
estimation of the graph sparsity by the user. It aims to adjust the number of nonzero entries in the
model’s sparsity pattern, correlating closely with those in the estimated precision matrix. A higher
value of η corresponds to a more sparsely estimated graph structure.

B.7 Tables

Table 7 & 8 & 9 & 10 present the detaild of Fig. 3. They correspond to Subfigure (a)(b)(c)(d)
correspondingly, showing time cost (seconds) comparison between FasMe and other baselines on
simulated datasets, with dimension p changing from 500 to 2500.
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Table 7: The time comparisons of FasMe and the baselines on the simulated datasets varying p and
sample size n = p/20.
Dimension(p) 500 1000 1500 2000 2500

QUIC 0.33 3.03 11.38 64.06 84.50
Neighborhood Selection 3.00 8.72 18.92 43.00 76.46
Meta-IE 4.33 27.27 89.23 96.85 112.63
FasMe 0.002 0.06 0.79 0.99 1.62

Table 8: The time comparisons of FasMe and the baselines on the simulated datasets varying p and
sample size n = p/10.
Dimension(p) 500 1000 1500 2000 2500

QUIC 0.31 3.68 9.74 22.93 36.77
Neighborhood Selection 2.93 10.83 58.03 87.19 170.83
Meta-IE 2.62 16.66 39.76 87.14 96.11
FasMe 0.002 0.06 0.85 0.965 1.404

Table 9: The time comparisons of FasMe and the baselines on the simulated datasets varying p and
sample size n = p/5.
Dimension(p) 500 1000 1500 2000 2500

QUIC 0.30 3.93 11.40 26.17 46.51
Neighborhood Selection 6.17 35.70 96.74 182.92 828.97
Meta-IE 1.65 9.90 10.29 14.08 14.10
FasMe 0.002 0.06 0.96 0.99 1.54

Table 10: The time comparisons of FasMe and the baselines on the simulated datasets varying p and
sample size n = p.
Dimension(p) 500 1000 1500 2000 2500

QUIC 0.30 3.56 8.38 22.37 39.54
Neighborhood Selection 13.56 84.21 216.44 402.84 N/A
Meta-IE 0.64 6.90 7.29 9.01 9.10
FasMe 0.001 0.05 0.68 0.97 1.34
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C The full Algorithm of FasMe

Algorithm 1 FasMe

1: Input: Auxiliary datasets {X(k)}, New task Xnew, hyper-parameter λ, ρ, γ, η, c, α, the
maximum iteration T , two thresholds ϵ1 and ϵ2, and a linear programming solver LP(·) that
solves (18).

2: for k = 1 to K do
3: Calculate the covariance matrices Σ(k) = 1

nk

nk∑
i=1

(X− X̄)(X− X̄)⊤

4: Initialize θ = θ
(k)
r = 0p×p

5: Initialize B(k) =
[
0, . . . ,Σ(k), . . . ,0, 1

ϵKΣ(k)
]

6: end for
7: for i = 1 to p do
8: b = ei, β = LP(B(k),b), k = 1, . . . ,K
9: for k = 1 to K do

10: θ
(k)
r,i = β(k−1)p+1:kp

11: end for
12: θi = β(Kp+1):(K+1)p

13: end for
14: Calculate the sparsity pattern G by (8) and its chordal embedding G̃ by Cholesky factorization
15: Initialize y1 = 0
16: for t = 1 to T do
17: ∆y = −∇2l(yt)

−1∇l(yt)
18: α = 1
19: if l(y + α∆y) > l(y) + γα∆y⊤∇l(y) then
20: α := α · c
21: end if
22: Calculate the Newton decrement δk = |∆y⊤t ∇l(yt)|
23: if δt < ϵ1 or |∆yt| < ϵ2 then
24: Break
25: else
26: yt+1 = yt + α∆yt
27: end if
28: end for
29: Output: Precision matrix Ωnew.

Similar to CLIME, (5) can also be solved column by column:

(
β̂, {β̂(k)

r }
)
= argmin

β,{β(k)
r }

K∥β∥1 + ρ

K∑
k=1

∥β(k)
r ∥1,

s.t. ∥βΣ(k) − (ej − β(k)
r Σ(k))∥∞ ≤ λ,

(16)

where k = 1, 2, . . . ,K. Here β represents the corresponding column vector in the meta-knowledge θ
and β

(k)
r represents the k-th column vector in the rest θ(k)r .

To solve (16), we can rewrite it as the following

β̂ = argmin
β

∥β∥1,

s.t. ∥B(k)β − b∥∞ ≤ λ, k = 1, . . . ,K.

(17)

Here, B(k) =
[
0, . . . ,Σ(k), . . . ,0, 1

ϵKΣ(k)
]
, β =

[
(β(1))⊤, . . . , (β(k))⊤, . . . , (β(K))⊤, ϵK(βW )⊤

]⊤
and b = ej .
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Through relaxation, we can convert (17) to the following linear programming formulation:

âj = argmin
aj

(K+1)p∑
j=1

aj ,

s.t. − θj ≤ aj , j = 1, . . . , (K + 1)p,

θj ≤ aj , j = 1, . . . , (K + 1)p,

− (B
(k)
i )⊤θ + bi ≤ c, i = 1, . . . , p; k = 1, . . . ,K,

(B
(k)
i )⊤θ − bi ≤ c, i = 1, . . . , p; k = 1, . . . ,K.

(18)

Here aj are the slack variables. B(k)
i represents the i-th row of B(k) and bi is the i-th entry of b.

According to [25], we can apply the same symmetric operators on Ω(k) = θ + θ
(k)
r obtained from

Algorithm 1.

Then we combined the support set of the thresholded covariance and meta-knowledge to obtain the
sparsity pattern:

G = supp(θ) ∪ supp (Sη(Σnew)) . (19)

To solve the optimization problem (9), we first need to obtain the chordal embedding G̃ by Cholesky
factorization. We compute the unique lower triangular Cholesky factor L satisfying ΠG(Σnew) =
LL⊤. After ignoring perfect numerical cancellation, we have the adjacency matrix of the chordal
embedding L+ L⊤ using symbolic Cholesky algorithm.

We define the cone of sparse positive semidefinite matrices P , and the cone of sparse matrices with
positive semidefinite completions P∗ as the following:

P = Sp+ ∩ SpG̃ , P∗ = {⟨S,Ω⟩ ≥ 0 : S ∈ SpG̃}.

The primal and dual problem of Eq. (9) can be written as:

argmin
Ω∈P

⟨ΠG(Σ),Ω⟩+ g(Ω) s.t. P⊤(Ω) = 0, (20)

argmax
S∈P,y∈Rm

− g∗(S) s.t. S = Σ̂− P (y), (21)

where P (·) : Rm → SpG̃\G represents a linear map that converts a list of m variables into the

corresponding matrix in G̃\G. g and g∗ are the "log-det" barrier functions on P and P∗:

g(Ω) = − log detΩ, g∗(S) = −min
Ω∈P

⟨S,Ω⟩ − log detΩ.

Under the sparsity and chordal assumption, the gradient evaluations and Hessian matrix-vector
products can be efficiently evaluated in O(p) time and O(p) memory, using the numerical recipes
described in [52].

To solve the dual problem (21), we rewrite it into the following unconstrained optimization problem:

ŷ ≡ argmin
y∈Rm

l(y) ≡ g∗(ΠG(Σnew)− P (y)). (22)

After obtaining the solution ŷ, we can recover the optimal estimator for the primal problem through
Ω̂ = −∇g∗(ΠG(Σnew) − P (y)). The dual problem is easier to solve than the primal because the
initial point y = 0 tends to lie close to the solution ŷ. Starting from this point, we can use Newton’s
method to converge rapidly.

We then solve the Newton direction ∆y via the m×m system of equations

∇2l(y)∆y = −∇l(y). (23)

Starting from the origin y1 = 0, the method converges to an ϵ-accurate search direction y1 satisfying

(y1 −∆y)⊤∇2l(y)(y1 −∆y) ≤ ϵ|∆y⊤∇l(y)| (24)

in at most
√
∥∇2l(y)∥∥∇2l(y)−1∥ log( 2ϵ ) conjugate gradient iterations.
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Computational Complexity In this section, we mainly analyze the time and memory complexity of
our estimator in the meta-testing step. The time and memory cost of our estimator can be divided into
two parts. The first part is to threshold the covariance matrix. This step is quadratic O(p2) time and
memory but embarrassingly parallelizable. The second part is to solve (7) using Newton Conjugate
Gradient methods. If the prior sparsity pattern G is sparse and chordal, then the second part can
be performed using our algorithm in linear O(p) time and memory. This significantly outperforms
QUIC [10], Neighborhood Selection method [34] and Bigquic used in [11].

D Limitations

As discussed earlier, the biological and genetic domains have adopted and validated the common
structure assumption based on some biological evidence. For other domains, if the edges are sparse
and the data are high-dimensional, it may be difficult to recover the common structure from the data
without some prior evidence. In the worst case, the meta-teacher can learn the knowledge that there
is no common edge among the tasks. The meta-student has to learn from scratch. The optimization
problem in the meta-testing process can be seen as a graphical lasso problem (introduced in Section
2.2). The neighborhood selection baseline is one type of algorithm that solves the graphical lasso.
Consequently, our proposed method remains at least as good as the baseline, if not stronger, in
handling such challenges.

E Explanations about the Choices of the Baselines

We chose QUIC and Neighborhood Selection since they continue to be widely utilized in current
research and serve as critical benchmarks for new methodologies within the realm of state-of-the-art
works.

We take QUIC as an example. [53] utilizes the QUIC method to detect structural changes in high-
dimensional Gaussian graphical models. QUIC’s ability to perform fast and accurate estimation
underpins the methodology for identifying change-points in the graphical model structure over time.
Similarly, studies like those in recent works like [54, 55] also employ QUIC for various analytical
tasks downstream.

Additionally, while both [56] and [57] utilize QUIC as a baseline for comparison, [56] relies on a
structural assumption of Kronecker-sum-structured inverse covariance, and [57] operates under a
general missing dependency assumption. These specific premises limit their applicability, rendering
them less generalizable to our scenario.

Parallel to QUIC’s applicability, Neighborhood Selection is similarly employed in contemporary
studies, demonstrating its ongoing relevance and utility [58, 59, 60, 61].

As mentioned above, we observed two main categories. The first category of recent works did not
propose improvements to QUIC; instead, they applied it to more specific tasks. The second category,
while outperforming QUIC as a baseline and demonstrating improvements, often relied on stricter
structural assumptions not compatible with our problem context. Consequently, both categories were
not suitable as baselines for our study.

We specifically chose Meta-IE method due to its closeness to our work. Meta-IE represents the
latest advancement in meta-learning applied to sparse precision matrix estimation, making it an ideal
candidate for direct comparison.

To this end, we have decided to incorporate an evaluation against gRankLasso [35], a recent devel-
opment in graph learning, into our revised manuscript. With a completely tuning-free technique,
gRankLasso shows better accuracy performance than CLIME, GLasso, and TIGER. However, its
extensive time consumption for hyperparameter simulations and rank calculations poses a drawback,
particularly underperforming with small datasets.

F Proof of Theorems

Definition 2. Let X(k)
1 , . . . ,X

(k)
nk ∈ Rp be i.i.d. random vectors for 1 ≤ k ≤ K. Let Xij be the

j-th entry of X(k)
i for 1 ≤ j ≤ p. We use (Σ(k))∗, (Ω(k))∗, θ∗ to represent the real covariance
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matrix, precision matrix, and meta-knowledge, respectively. {X(k)} follows a family of random
p-dimensional multivariate sub-Gaussian distributions with parameter σ if
(1)
{
X

(k)
i

}
1≤i≤nk,1≤k≤K

are conditionally independent given {(Ω(k))∗}Kk=1;

(2)
X

(k)
ij√
σ
(k)
jj

conditioned on (Ω(k))∗ is sub-Gaussian with parameter σ for 1 ≤ i ≤ nk, 1 ≤ j ≤ p, 1 ≤

k ≤ K;
(3) E[X(k)

i |(Σ(k))∗] = 0,Cov
(
X

(k)
i |(Σ(k))∗

)
=
(
Σ(k)

)∗
=
(
(Ω(k))∗

)−1
for 1 ≤ i ≤ nk, 1 ≤ k ≤

K.
Then we remove the assumption on the support set of θ(k)r , thus relaxing the data assumption of [11]:
(4) (Ωk)∗ = θ∗ + θ

(k)
r with θ, θ

(k)
r ∈ Rp×p. The meta-knowledge θ is deterministic, and θ

(k)
r , 1 ≤

k ≤ K, are i.i.d. random matrices.
Lemma 1. Given a simple optimization problem, x̂ and ŷ are the optimal solution.

x̂+ ŷ = argmin
x,y

|x|+ ρ|y|

s.t. x+ y = C
(25)

where ρ > 0 and C is a constant. Then we have x̂ · ŷ ≥ 0.

Proof. If x̂ · ŷ < 0, let x′ = x̂+ ŷ and y′ = 0. Without loss of generality, we assume that |x̂| ≥ |ŷ|.
It follows that

|x′|+ ρ|y′| = |x̂+ ŷ| < |x̂| < |x̂|+ ρ|ŷ|, (26)
which means that the pair x′, y′ is a better solution. This contradicts the earlier stated premise that
x̂, ŷ are the optimal solution. The proof is completed by contradiction.

Lemma 2. If each θ
(k)
r + θ satisfies (10), then Ωtot also satisfies (10). Thus Ω̂tot satisfies the

condition Ω̂tot ≻ 0, with a high probability.

Corollary 1. We assume that θ̂ is the optimal solution of Eq. (5) and θ̂
(k)
r = Ω̂(k) − θ̂. Based on

Lemma 1, it follows that θ̂(k)r,ij · θ̂ij ≥ 0. Then it is simple to see that

∥Θ̂r∥∞ ≤ ∥Θ̂r∥∞ + ∥Θ̂∥∞ = ∥Θ̂r + Θ̂∥∞ = ∥Ω̂tot∥∞. (27)

Theorem 1. We use Θ̂,Θ∗ to represent the estimated precision matrix and real precision matrix,
respectively. Suppose that Ω∗

tot ∈ U . If λ ≥ ν(max
ij

|σ̂ij − σ∗
ij |), we have that

∥Θ̂−Θ∗∥∞ ≤ 8νλ+ 2ϕ. (28)

where ν = ∥Ω∗
tot∥1 and ϕ = ∥Ω∗

tot∥∞.

Proof. According to the condition in Theorem 1,

∥Σ̂tot − Σ∗
tot∥∞ ≤ λ

∥Ω∗
tot∥1

. (29)

Then we can show that

∥I − Σ̂totΩ
∗
tot∥∞ = ∥(Σ∗

tot − Σ̂tot)Ω
∗
tot∥∞ ≤ ∥Ω∗

tot∥1∥Σ∗
tot − Σ̂tot∥∞ ≤ λ, (30)

where |AB|∞ ≤ |A|∞|B|1 for any matrices A,B of appropriate sizes.

Then we can rewrite (5) as:(
Θ̂r, Ω̂tot

)
= argmin

{θ(k)
r },Ωtot

∥Ωtot∥1 + (1− ρ)∥Θr∥1

s.t. ∥ΣtotΩtot − I∥∞ ≤ λ.

(31)

This is because ∥Ωtot∥1 + (1 − ρ)
∑K

k=1 ∥θ
(k)
r ∥1 =

∑K
k=1 ∥θ + θ

(k)
r ∥1 + (1 − ρ)

∑K
k=1 ∥θ

(k)
r ∥1.

Notice that the constraint is not related to Θr. Therefore Ω̂tot is also the solution of the following
optimization problem:

Ω̂tot = argmin
Ωtot

∥Ωtot∥1 s.t.∥ΣtotΩtot − I∥∞ ≤ λ. (32)
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Since Ω∗
tot and Ω̂tot satisfy (32), we have

∥Ω̂tot∥1 ≤ ∥Ω∗
tot∥1. (33)

It suggests that

∥Σ̂tot(Ω̂tot − Ω∗
tot)∥∞ ≤ ∥Σ̂totΩ̂tot − I∥∞ + ∥I − Σ̂totΩ

∗
tot∥∞ ≤ 2λ. (34)

Consequently, it is straightforward to show that

∥Σ∗
tot(Ω̂tot − Ω∗

tot)∥∞ ≤∥Σ̂tot(Ω̂tot − Ω∗
tot)∥1 + ∥(Σ̂tot − Σ∗

tot)(Ω̂tot − Ω∗
tot)∥∞

≤ 2λ+ ∥Ω̂tot − Ω∗
tot∥1∥Σ̂tot − Σ∗

tot∥∞ ≤ 4λ.
(35)

Then, it follows that
∥Ω̂tot − Ω∗

tot∥∞ ≤ ∥Ω∗
tot∥1∥Σ∗

tot(Ω̂tot − Ω∗
tot)∥∞ ≤ 4∥Ω∗

tot∥1λ = 4νλ, (36)
where ∥Ω∗

tot∥1 = ν. Based on the triangle inequality for norm, we have that

∥Θ̂−Θ∗∥∞ = ∥Ω̂tot − Θ̂r − (Ω∗
tot −Θ∗

r)∥∞
≤ ∥Ω̂tot − Ω∗

tot∥∞ + ∥Θ̂r −Θ∗
r∥∞

≤ ∥Ω̂tot − Ω∗
tot∥∞ + ∥Θ̂r∥∞ + ∥Θ∗

r∥∞.

(37)

In terms of Θ∗,Θ∗
r , we assume W ∗

tot,ij ·Ω∗
I,ij = 0 and W ∗

tot,ij +Ω∗
I,ij = 0 iff W ∗

tot,ij = Ω∗
I,ij = 0.

Thus we can derive that ∥Θ∗∥∞ ≤ ∥Ω∗
tot∥∞. We are now turning to the proof of Eq. (37). Combining

Corollary 1 and Theorem 1, we can show that

∥Θ̂−Θ∗∥∞ ≤ ∥Ω̂tot − Ω∗
tot∥∞ + ∥Ω̂tot∥∞ + ∥Ω∗

tot∥∞
≤ ∥Ω̂tot − Ω∗

tot∥∞ + ∥Ω̂tot − Ω∗
tot∥∞ + 2∥Ω∗

tot∥∞
≤ 2∥Ω̂tot − Ω∗

tot∥∞ + 2∥Ω∗
tot∥∞

≤ 8∥Ω∗
tot∥1λ+ 2∥Ω∗

tot∥∞
= 8νλ+ 2ϕ,

(38)

where ∥Ω∗
tot∥∞ = ϕ. The proof is completed.

Theorem 2. Suppose that Ω∗
tot ∈ U and N =

∑K
k=1 nk. When the variables are sub-Gaussian, the

tail condition holds. Let λ = C0ν
√

log(Kp)
N , where the constant C0 = 2γ−2(2 + τ0 + γ−1e2C2)2

and constant τ0 > 0. If ωtot
min > 2τn, then we have

1. ∥θ̂ − θ∗∥∞ ≤ 8C0ν
2
√

log(Kp)
N + 2ϕ;

2. supp(θ̃) = supp(θ∗);

with a probability greater than 1−4p−τ0 . Here θ̃ is a threshold estimator with θ̃ij = θ̂ijI(|θ̂ij | ≥ τn),
where τn ≥ 4νλ is a tuning parameter.

Proof. To obtain the first conclusion of Theorem 2, we need to prove

max
ij

|σ̂ij − σ∗
ij | ≤ C0

√
logKp

N
(39)

with a probability greater than 1 − 4p−τ0 under the exponential tail condition. Without loss of
generality, we assume that E(X(k)) = 0. Let Σ′

tot := N−1
∑N

k=1 Xtot,kX
⊤
tot,k and Ykij =

Xtot,kiXtot,kj −E(Xtot,kiXtot,kj). We then have Σ̂tot = Σ′
tot−X̄totX̄

⊤
tot. Let t = γ

√
logKp/N .

Using the inequality |es − 1− s| < s2emax(s,0) for any s ∈ R and let C1 = 2 + τ0 + γ−1C2. Then
by some basic calculations, we can get

P

(
N∑

k=1

Ykij ≥ γ−1C1

√
N logKp

)
≤ exp(−C1 logKp)(E[exp(tYkij)])

N

≤ exp(−C1 logKp+Nt2EY 2
kij exp(t|Ykij |))

≤ exp(−C1 logKp+ γ−1C2 logKd)

≤ exp(−(τ0 + 2) logKp).

(40)
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Then we obtain

P

(
∥Σ′

tot − Σ∗
tot∥∞ ≥ γ−1C1

√
logKp

N

)
≤ 2p−τ0 . (41)

Using the inequality es ≤ es
2+1 for s > 0, we have

Eet|Xj | ≤ eC, ∀t ≤ √
γ. (42)

Let
C2 = 2 + τ0 + γ−1e2C2 (43)

and an = C2
2 (logKp/N)

1
2 . As before, we can have that

P
(
∥X̄totX̄

⊤
tot∥∞ ≥ γ−2an

√
logKp/N

)
≤pmax

i
P

(
N∑

k=1

Xki ≥ γ−1C2

√
N logKp

)

+ pmax
i

P

(
−

N∑
k=1

Xki ≥ γ−1C2

√
N logKp

)
≤2p−τ0−1

(44)
By (41), (44), and the inequality C > γ−1C1 + γ−2an, we see that (39) holds. The proof of the first
inequality is completed.

To prove the sign-consistency of Θ̂, we define a threshold estimator Ω̃tot with ω̃ij = ω̂ijI{|ω̂ij | ≥ τn}
where τn ≥ 4νλ is a tuning parameter. We define ωtot

min = min
(i,j)∈supp(Ω∗

tot)
|Ω∗

tot,ij| and a threshold

estimator Θ̃ with Θ̃ij = Θ̂ijI{|Θ̂ij | ≥ τn}, where τ ≥ 4νλ. It is known that the resulting elements
in Ω̂tot will exceed the threshold level if the corresponding element in Ω∗

tot is large in magnitude. In
contrast, the entries of Ω̂tot outside the support of Ω∗

tot will remain below the threshold level with
high probability. As a result, if ωtot

min > 2τn, we have supp(Ω̃tot) = supp(Ω∗
tot). Since the nonzero

entries in θ correspond to the intersection of the nonzero entries in {Ω(k)}, it is straightforward to get
that supp(Θ̃) = supp(Θ∗) if ωtot

min > 2τn.

Lemma 3. Consider a zero-mean random vector (X1, . . . ,Xp) with covariance Σ∗ such that each
Xi√
Σ∗

ii

is sub-Gaussian with parameter σ. We define W = Σ̂new − Σ∗
new. Given n i.i.d. samples, the

associated sample covariance Σ̂ satisfies the tail bound if ∥Σ∗
new∥∞ ≤ φ:

P [∥W∥∞ > δ] ≤ 4|G| exp
{
− nδ2

128(1 + 4σ2)2φ2

}
(45)

for all δ ∈ (0, 8φ(1 + 4σ2)).
Theorem 3. Suppose we have recovered the true sparsity pattern G of a family of d-dimensional
random multivariate sub-Gaussian distribution. Then for a new task of multivariate sub-Gaussian
distribution with the precision matrix Ω∗

new such that supp(θ) ⊆ supp(Ω∗
new) and satisfying irrepre-

sentable condition, consider the estimator Ω̂new with λ = C3ν
√

log |G|
n . Then we have

∥Ω̂new − Ω∗
new∥∞ ≤ 2C3ν

2κΓ∗

√
log |G|

n
, (46)

with a probability 1− p−τ1 , where τ1 > 0.

The proof is similar to Theorem 2 and will be omitted.
Definition 3. [32] Given a matrix M ∈ Sp, define GM = {(i, j) : Mij ̸= 0 as its sparsity pattern.
Then M is called inverse-consistent if there exists a matrix N ∈ Sp such that

M +N ⪰ 0

N = 0 ∀(i, j) ∈ GM

(M +N)−1 ∈ SpGM

(47)
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The matrix N is called an inverse-consistent complement of M and is denoted by M (c). Furthermore,
M is called sign-consistent if for every (i, j) ∈ GM , the (i, j)-th elements of M and (M +M (c))−1

have opposite signs.

Then we define the β(G, α) function defined with respect to the sparsity pattern G and scalar α > 0

β(G, α) = max
M≻0

∥M (c)∥max

s.t. M ∈ SpG and ∥M∥max ≤ α

Mi,i = 1 ∀i ∈ {1, . . . , p}
M is inverse-consistent.

Lemma 4. [32] Any arbitrary matrix with positive-definite completion is inverse-consistent and has
a unique inverse-consistent complement.

Lemma 5. Ω̂ is the optimal solution if and only if it satisfies the following conditions for every
(i, j) ∈ {1, . . . , p}2:

Ω̄−1
ij = Σij if i = j

Ω̄−1
ij = Σij + η × sign(Ω̄ij) if Ω̄ij ̸= 0

Σij − η ≤ Ω̄−1
ij ≤ Σij + η.

(48)

Proof. The proof is straightforward and omitted for brevity.

Then, consider the following optimization problem:

min
Ω∈Sd+

− log det(Ω) + ⟨Σ̃,Ω⟩+
∑

(i,j)∈G

η̃|Ωij |+ 2max
k

Σkk

∑
(i,j)∈Gc

|Ωij | (49)

where
Σ̃ij =

Σij√
Σii × Σjj

, η̃ =
η√

Σii × Σjj

.

We denote Ω̃ as the optimal solution of (49) and define D as a diagonal matrix with Dii = Σii for
every i = 1, . . . , p.

Lemma 6. We have Ω̄ = D− 1
2 × Ω̃×D− 1

2 .
Theorem 4. G coincides with the sparsity pattern of the optimal solution Ω∗

new if the normal-
ized matrix Σ̃new = D−1/2ΠG(Σnew)D

−1/2 where D = diag(ΠG(Σnew)) satisfies the following
conditions:

1. Σ̃new is positive definite,

2. Σ̃new is sign-consistent,

3. We have
β
(
G, ∥Σ̃new∥max

)
≤ min

(k,l)/∈G

η − |(ΠG(Σnew))kl|√
(ΠG(Σnew))kk · (ΠG(Σnew))ll

.
(50)

Proof. We define an intermediate optimization problem as the following:

Ω† = argmin
Ω∈Sp+

f(Ω) = − log detΩ + ⟨Σ,Ω⟩+
∑

(i,j)∈G

λij |Ωij |+ 2max
k

Σkk

∑
(i,j)∈Gc

|Ωij |. (51)

First, we show that Ω† = Ω̄. Trivially, Ω̄ is a feasible solution for (51) and hence f(Ω†) ≤ f(Ω̄).
Now, we prove that Ω† is a feasible solution. We show that Ω†

ij = 0 for every (i, j) ∈ Gc. By
contradiction, suppose Ω†

ij ̸= 0 for some (i, j) ∈ Gc. Note that, due to the positive definiteness of
(Ω†)−1, we obtain

(Ω†)−1
ii × (Ω†)−1

jj − ((Ω†)−1
ij )2 > 0. (52)
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Then, based on Lemma 6, it follows that

(Ω†)−1
ij = Σij + 2max

k
Σkk × sign(Ω†

ij). (53)

Considering the fact that Σ ≻ 0, we have |Σij | ≤ maxk Σkk. It implies that |(Ω†)−1
ij | ≥ maxk Σkk.

Furthermore, due to Lemma 5, we have (Ω†)−1
ii = Ωii and (Ω†)−1

jj = Ωjj . This leads to

(
Ω†)−1

ii
×
(
Ω†)−1

jj
−
((

Ω†)−1

ij

)2
= Σii × Σjj −

(
max

k
{Σkk)

)2

≤ 0, (54)

which contradicts with (52). Therefore, Ω† is a feasible solution. This implies that f(Ω†) ≥ f(Ω̄)
and hence, f(Ω̄) = f(Ω†). Due to the uniqueness of the solution of (51), we have Ω̄ = Ω†. Now,
note that (51) can be reformulated as

min
Ω∈Sp+

− log det(Ω) + ⟨Σ̃, D1/2ΩD1/2⟩+
∑

(i,j)∈G

η |Ωij |+ 2max
k

Σk,k

∑
(i,j)∈Gc

|Ωij | . (55)

Upon defining
Ω̃ = D1/2ΩD1/2 (56)

and following some algebra, one can verify that (51) is equivalent to

min
Ω̃∈Sd+

− log det(Ω̃) + ⟨Σ̃, Ω̃⟩+
∑

(i,j)∈G

η̃
∣∣∣Ω̃ij

∣∣∣+ 2max
k

{
Σ̃kk

} ∑
(i,j)∈G(c)

∣∣∣Ω̃ij

∣∣∣+ log det(D). (57)

Dropping the constant term in (57) gives rise to the (49). As a result, Ω̄ = D− 1
2 × Ω̃×D− 1

2 holds.
The proof is completed.

Next, we prove that the newton subproblem can be solved in O(1) CG iteration. Let Sp be the set of
p× p real symmetric matrices. Given a sparsity pattern V , we define SpV ⊆ S as the set of p× p real
symmetric matrices with this sparsity pattern. We consider the following minimization problem

ŷ ≡ arg min
y∈Rm

l(y) ≡ g∗(Σ− P (y)). (58)

Here, the problem data P : Rm → SpF is an orthogonal basis for a sub-sparsity pattern F ⊂ V that
excludes the matrix Σ. In other words, the operator A satisfies

P (P⊤(Ω)) = PF (Ω), ∀Ω ∈ Sp
V ,

P⊤(Σ) = 0.
(59)

The penalty function g∗ is the convex conjugate of the "log-det" barrier function on SpV :

g∗(S) = − min
Ω∈SpV

{S • Ω− log detΩ}

Assuming that V is chordal, the function g∗(S), its gradient ∇g∗(S), and its Hessian matrix-vector
product ∇2g∗(S)[Y ] can all be evaluated in closed-form [62, 63, 52]; see also [64]. Furthermore, if
the pattern is sparse, i.e. its number of elements in the pattern satisfies |V | = O(p), then all of these
operations can be performed to arbitrary accuracy in O(p) time and memory.

It is standard to solve 58 using Newton’s method. Starting from some initial point y1 ∈ dom g

yk+1 = yk + αk∆yk ∆yk ≡ −∇2l (yk)
−1 ∇l (yk) ,

in which the step-size αk is determined by backtracking line search, selecting the first instance of the
sequence

{
1, ρ, ρ2, ρ3, . . .

}
that satisfies the Armijo-Goldstein condition

l(y + α∆y) ≤ l(y) + γα∆y⊤∇l(y),
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in which γ ∈ (0, 0.5) and ρ ∈ (0, 1). The function g∗ is strongly self-concordant, and l inherits this
property from g∗. Accordingly, classical analysis shows that we require at most

[
l (y1)− l(ŷ)

0.05γρ
+ log log(1/ϵ)

]
≈ O(1) Newton steps

to an ϵ-optimal point satisfying l (yk)− l(ŷ) ≤ ϵ. The bound is very pessimistic, and in practice, no
more than 20-30 Newton steps are ever needed for convergence.

The most computationally expensive of Newton’s method is the solution of the Newton direction ∆y
via the m×m system of equations

∇2l (yk)∆y = −∇l (yk) . (60)

The main result in this section is a proof that the condition number of ∇2l(y) is independent of the
problem dimension n.

Theorem 5. At any y satisfying l(y) ≤ l (y1) and ∇l(y)⊤ (y − y1) ≤ ϕmax, the condition number
κl of the Hessian matrix ∇2l(y) is bound

κl ≤ 4

(
1 +

ϕ2
maxλmax (Ω0)

λmin(Ω̂)

)2

(61)

where:

• ϕmax = l (y1)− l(ŷ) is the suboptimality of the initial point,

• A = [vecA1, . . . , vecAm] is the vectorized version of the problem data,

• Ω0 = −∇f∗ (S0) and S0 = Σ−A (y0) are the initial primal-dual pair,

• Ω̂ = −∇f∗(Ŝ) and Ŝ = Σ−A(ŷ) are the solution primal-dual pair.

As a consequence, each Newton direction can be computed in O
(
log ϵ−1

)
iterations using conjugate

gradients, over O
(
log log ϵ−1

)
total Newton steps. The overall minimization problem is solved to

ϵ-accuracy in

O
(
log ϵ−1 log log ϵ−1

)
≈ O(1)CG iterations.

The leading constant here is dependent polynomially on the problem data and the quality of the initial
point, but independent of the problem dimensions.

Proof To prove the first bound (61), we will instead prove

λmax(Ω)

λmin(Ω)
≤ 2 +

2ϕ2
maxλmax (Ω0)

λmin(Ω̂)
, (62)

which yields the desired condition number bound on ∇2g(y). Writing λ1 = λmax(Ω) and λn =
λmin(Ω), we have from the two lemmas above:

ϕmax ≥ λmin(Ω̂)

(√
λ−1
n −

√
λ−1
1

)2

> 0,

2ϕmax ≥ λmin

(
Ω−1

0

) (√
λ1 −

√
λn

)2
> 0.

Multiplying the two upper-bounds and substituing λmin

(
Ω−1

0

)
= 1/λmax (Ω0) yields
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2ϕ2
maxλmax (Ω0)

λmin(Ω̂)
≥

(√
λ1

λn
−
√

λn

λ1

)2

=
λ1

λn
+

λn

λ1
− 2

Finally, bounding λn/λ1 ≥ 0 yields (62).
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