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a b s t r a c t 

The inherent relations among multiple face analysis tasks, such as landmark detection, head pose estima- 

tion, gender recognition and face attribute estimation are crucial to boost the performance of each task, 

but have not been thoroughly explored since typically these multiple face analysis tasks are handled as 

separate tasks. In this paper, we propose a novel deep multi-task adversarial learning method to localize 

facial landmark, estimate head pose and recognize gender jointly or estimate multiple face attributes si- 

multaneously through exploring their dependencies from both image representation-level and label-level. 

Specifically, the proposed method consists of a deep recognition network R and a discriminator D. The 

deep recognition network is used to learn the shared middle-level image representation and conducts 

multiple face analysis tasks simultaneously. Through multi-task learning mechanism, the recognition net- 

work explores the dependencies among multiple face analysis tasks from image representation-level. The 

discriminator is introduced to enforce the distribution of the multiple face analysis tasks to converge to 

that inherent in the ground-truth labels. During training, the recognizer tries to confuse the discriminator, 

while the discriminator competes with the recognizer through distinguishing the predicted label com- 

bination from the ground-truth one. Though adversarial learning, we explore the dependencies among 

multiple face analysis tasks from label-level. Experimental results on benchmark databases demonstrate 

the effectiveness of the proposed method for multi-task face analyses. 

© 2021 Elsevier Ltd. All rights reserved. 

1

d

a

h

c

T

F

t  

w

l

h

c

m

b

t

d

e

[

t

t

t

s

[

n

l

a  

t

t

l

m

o

t

t

l

a

c

h

0

. Introduction 

Face analyses have attracted increasing attention in recent years 

ue to their wide applications in human computer interaction. Face 

nalyses include several tasks, such as facial landmark detection, 

ead pose estimation, face identification, facial expression classifi- 

ation, gender recognition and multiple face attribute estimation. 

hese tasks are related to each other. For example, as shown in 

ig. 1 , a person who wears necklace and earrings is more likely 

o be a female, and is less likely to be a male; and a person

ith sideburns and goatee is more likely to be a male, and is less 

ikely to be a female; the locations of landmark are affected by 

ead poses; facial expression variations obviously influence the lo- 

ation of landmarks. Such inherent connections among facial land- 

arks, head poses and expressions or multiple face attributes can 

e leveraged for multiple face analysis tasks, but have not been 

horoughly explored yet, since typically face analysis tasks are han- 

led separately. 

Only very recently, a few works have turned to solve sev- 

ral face analysis tasks jointly. Zhang et al. [1] and Ranjan et al. 
∗ Corresponding author. 
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2] modeled dependencies among several face analysis tasks from 

he learned representation-level. Zhang et al. [3] proposed a multi- 

ask convolutional neural network (CNN) consisting of shared fea- 

ures for heterogeneous face attributes. But they failed to con- 

ider task dependencies inherent in label-level. Zhu and Ramanan 

4] considered the task dependencies from the label-level, but ig- 

ored their dependencies in facial appearance. Instead of jointly 

earning multiple face analysis tasks in a parallel way, like the 

bove work, Wu et al. [5] and Honari et al. [6] tried to leverage

ask dependencies in a serial manner, and mainly captured multi- 

ask dependencies in representation-level. 

To the best of our knowledge, although both representation- 

evel dependencies and label-level dependencies are critical for 

ultiple face analysis tasks, little work addresses them simultane- 

usly till now. Therefore, in this paper, we propose a deep multi- 

ask adversarial learning method for multiple face analysis tasks 

hrough exploring their dependencies from both representation- 

evel and label-level. Specifically, we construct a deep network as 

 multi-task recognizer to explore connections among multiple fa- 

ial analysis tasks through representation-level. These tasks include 

acial landmark related multi-task face analyses, which predict fa- 

ial landmark lovisibilitiescations, landmark visibilities, face poses 

nd genders jointly; and facial attribute estimation, which make 

redictions on multiple facial attributes, e.g., whether the subject 

https://doi.org/10.1016/j.patcog.2021.107837
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.107837&domain=pdf
mailto:sfwang@ustc.edu.cn
https://doi.org/10.1016/j.patcog.2021.107837
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Fig. 1. The dependencies among multiple face analysis tasks. 
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s wearing hat, earrings or lipstick. Then, the recognizer competes 

ith a discriminator under the adversarial learning framework, 

nd the joint distribution of the labels predicted by the multi-task 

ecognizer are converged to that inherent in the ground-truth la- 

els. Thus, multi-task dependencies from the label-level are also 

aptured. Experimental results on benchmark databases demon- 

trate that the proposed method successfully leverages task de- 

endencies inherent in both representation and target label and 

hus achieves state of the art performance on multiple face analy- 

is tasks. 

The rest of this paper is organized in the following manner. 

ection 2 gives an overview of the related work on multi-task face 

nalyses. Section 3 briefly gives the problem statement for our 

ethod. Section 4 elaborates on the proposed method for multi- 

ask face analyses. Section 5 presents the experimental results and 

nalyses on benchmark databases, and makes the comparison to 

elated works. Section 6 concludes our work. 

. Related work 

In this section, we summarize and analyze recent face analysis 

orks. We divide these works into three categories: facial land- 

ark detection, facial landmark related multi-task face analyses 

nd multiple face attribute estimation. Furthermore, we discuss re- 

ent work on adversarial multi-task learning. 

.1. Facial landmark detection 

Facial landmark detection is crucial for many face analysis 

asks, such as head pose estimation, face recognition, facial expres- 

ion recognition and gender recognition. Facial landmark detec- 

ion methods can be classified into two types, template based and 

egression based method. Template based methods model facial 

hape by a parametric model, such as Active Appearance Model 

AAM) [7] , ASM [8] and Constrained Local Model (CLM) [9] . These 

ethods assume an explicit form of facial parameters, which may 

ave difficulty in handling “in the wild” facial appearances. Regres- 

ion based methods train a regressor to precit landmark positions. 

hese methods can be further divided into two types, i.e., coor- 

inate regression methods [10,11] and heatmap regression meth- 

ds [12–16] . The former directly maps facial appearances to land- 

ark coordinates, while the latter outputs a spatial distribution for 

ach landmark. Despite many works on landmark detection, most 

f them take locating landmarks as a single task, and the inher- 

nt dependencies among multiple facial analysis tasks are not ex- 

lored thoroughly. To address this, the proposed method captures 

oint distributions among multiple tasks by an adversarial learning 

ramework to assist each single task. 

.2. Facial landmark related multi-task face analyses 

In this section, we discuss several recent works of landmark re- 

ated multi-task face analyses. Zhang et al. [1] proposed a task- 
2 
onstrained deep convolutional network (TCDCN) to jointly opti- 

ize facial landmark detection with a set of related tasks, such as 

ose estimation, gender recognition, glasses detection, and smiling 

lassification. They further systematically demonstrated that the 

epresentations learned from related tasks facilitate the learning 

f facial landmark detector. Zhang et al. [17] combined landmarks 

ocalization, pose estimation and 3D reconstruction in a multi- 

ask learning framework. Ranjan et al. [2] strategically designed 

he network architecture to exploit both low-level and high-level 

eatures of the network. They proposed HyperFace and HF-Resnet, 

eep multi-task learning methods for simultaneous face detection, 

andmarks localization, pose estimation and gender recognition. 

Unlike Zhang et al. [1] ’s, Zhang et al. [17] ’s and Ranjan et al.

2] ’s works, which explored the inherent dependencies among 

ultiple face analysis tasks from the learned representation-level, 

hu and Ramanan [4] considered the dependencies from the label- 

evel, i.e. the topological changes due to related factors. They pro- 

osed a method for face detection, pose estimation, and land- 

ark localization (FPLL) simultaneously. Specifically, they proposed 

 mixtures of trees with a shared pool of parts. Every facial land- 

ark is modeled as a part, and the topological changes due to 

iewpoint are captured by the global mixtures. 

Instead of jointly learning multiple face analysis tasks in a par- 

llel way, like the above works, Wu et al. [5] proposed an iter- 

tive cascade method to simultaneously perform facial landmark 

etection, pose and deformation estimation. Their method itera- 

ively updated the facial landmark locations, facial occlusion, head 

ose and facial deformation until convergence. Although the iter- 

tive cascade procedure can capture connections among multiple 

ace analysis tasks at representation-level, the errors caused in the 

revious iteration may be propagated to the next iteration. There- 

ore, we prefer to jointly learning multiple face analysis tasks in a 

arallel way. 

Other than exploring task dependencies in supervised learning 

cenarios, Honari et al. [6] leveraged task dependencies to improve 

andmark localization in semi-supervised learning scenarios. They 

roposed a framework of sequential multi-task learning for land- 

ark localization and related face analysis tasks, such as expres- 

ion recognition. Specifically, their proposed method first detected 

andmarks, and then the detected landmarks are the input of the 

elated face analysis tasks, which are acted as an auxiliary signal 

o guide the landmark localization on unlabeled data. Although 

heir proposed sequential multi-task learning framework success- 

ully explores related face analysis tasks to boost facial landmark 

etection under partially labeled data, the dependencies among 

asks are mainly exploited in the learned representation-level, not 

n the label-level. Furthermore, the errors caused by the first stage 

ould be propagated to the next stage, and vice versa. 

To the best of our knowledge, few works leverage inherent de- 

endencies among landmark-related multiple face analysis tasks 

rom both representation-level and label-level. Therefore, we pro- 

ose a deep multi-task adversarial learning method for facial land- 

ark detection enhanced by multiple face analysis tasks through 
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xploring their dependencies from both representation-level and 

abel-level. Specifically, we first construct a deep network as a 

ulti-task recognizer R to jointly detect facial landmarks, esti- 

ate landmark visibility, recognize head pose and classify gender. 

hrough multi-task learning, the designed deep network can ex- 

lore connections among multiple tasks through representation- 

evel. Then, we introduce a discriminator D to distinguish the 

round-truth label combination from the output of the recognizer 

 . During training, R maximums the probability of mistake made 

y D, while D does the opposite. Through such adversarial learn- 

ng, the proposed method enforces the joint distribution of the la- 

els predicted by R converge to that inherent in the ground-truth 

abels, and thus leverages multi-task dependencies from the label- 

evel. 

.3. Multiple face attribute estimation 

Face attribute estimation has attracted increasing attentions, 

ince face attributes are middle-level abstraction between the low- 

evel facial features and the high-level labels. FaceTacker [18] used 

 combination of support vector machines and Adaboost to select 

he optimal features for each attribute, and train each attribute 

lassifier separately. It ignores the relations among multiple face 

ttributes, which can be leveraged to boost the performance of 

ultiple face attribute estimation. Zhang et al. [3] proposed Pose 

lignment Networks for Deep Attribute modeling (PANDA) to ob- 

ain a pose-normalized deep representation for multiple face at- 

ribute estimation. Liu et al. [19] believed that face localization 

an improve the performance of multiple face attribute estimation, 

nd thus cascaded face localization networks (LNets) and the at- 

ribute network (ANet). Mao et al. [20] proposed DMM-CNN, which 

earns facial landmark detection and facial attributes classification 

ointly with shared representations. DMM-CNN also splits facial at- 

ributes as two group of attributes, i.e., objective attributes and 

ubjective attributes, and adopts different networks as well as a 

ynamic weighting strategy to learn attribute-specific representa- 

ions for them. Zhong et al. [21] combined several off-the-shelf 

onvolutional neural networks (i.e., CTS-CNN), which are trained 

or face recognition to estimate multiple face attributes simultane- 

usly. These above works explore representation-level connections 

or multiple face attributes, but ignore the dependencies among 

ultiple face attributes from the label-level. 

Han et al. [22] tried to model both representation-level 

nd label-level dependencies. They proposed a CNN to capture 

epresentation-level dependencies through the shared low-level 

eatures for all attributes and task specific high-level features for 

eterogeneous attributes. They further proposed constraints ac- 

ording to prior knowledge to capture the fixed label-level de- 

endencies. Instead of using constrains to model fixed dependen- 

ies, Hand et al. [23] proposed a multi-task CNN (MCNN-AUX) to 

earn the label-level dependencies through an auxiliary network 

tacked on the top. Cao et al. [24] considered the identity informa- 

ion and attribute relationships jointly. They proposed a partially 

hared Multi-task CNN (PS-MCNN) to learn the task specific and 

hared features, and then utilized the identity information to im- 

rove the performance of face attribute estimation (PS-MCNN-LC). 

lthough the above three works can explore dependencies from 

oth representation-level and label-level for multiple face attribute 

stimation, the captured label-level dependencies are either fixed 

r represented by fixed form through the structure and parameters 

f a network. 

To address the above issues, the proposed work employs an 

dversarial strategy to capture label distributions directly without 

he assumption of the distribution form. Specifically, we first con- 

truct a deep multi-task network R to estimate multiple face at- 

ributes simultaneously. Then, we introduce a discriminator D to 
3 
istinguish the ground-truth label combination from the output 

f the recognizer R . Through adversarial learning, the proposed 

ethod leverages multi-task dependencies from both label-level 

nd representation-level to facilitate multiple face attribute esti- 

ation. 

.4. Adversarial multi-task learning 

Recent years have seen a few works incorporating adversarial 

earning with multi-task learning. For example, Bai et al. [25] in- 

roduced a generator to up-sample small blurred images into fine- 

cale ones for more accurate detection, and a discriminator de- 

cribes each super-resolution image patch with multiple scores. Liu 

t al. [26] proposed to alleviate the shared and private latent fea- 

ure spaces from interfering with each other by using adversarial 

raining and orthogonality constraints. The adversarial training is 

sed to construct common and task-invariant shared latent spaces, 

hile the orthogonality constraint is used to eliminate redundant 

eatures from the private and shared spaces. Liu et al. [27] pro- 

osed an encoder to extract a disentangled feature representation 

or the factors of interest, and the discriminators to classify each 

f the factors as individual tasks. The encoder and the discrimi- 

ators are trained cooperatively on factors of interest, but in an 

dversarial way on factors of distraction. All above works lever- 

ge adversarial learning for better input data or representations 

or multi-task learning, but ignore the dependencies among target 

abels. We are the first to explore dependencies among multiple 

asks from both representation and label-level through adversarial 

echanism. In our method, both the recognizer and the discrim- 

nator are deep networks with the capability to model complex 

istributions. Through adversarial training, the discriminator and 

he recognizer are improved together on capturing label patterns 

y their competition with each other. Hence, when the training is 

onverged, the discriminator and the recognizer can fully capture 

he joint distributions among these labels. 

. Problem statement 

Let T = { x , y} N denotes N training samples, where x represents 

he facial image, y = { t 1 , t 2 , . . . , t n } represents the ground-truth la-

els, such as facial landmark locations, visibility of each land- 

ark, head pose angle and gender information or multiple face 

ttributes. The purpose of the paper is to learn a multi-task rec- 

gnizer R : x → y through optimizing the following formula: 

in 

�R 
α1 ∗ L s (R (x ;�) , y) + α2 ∗ L d (P y , P y ′ ) , (1) 

here L s is the supervised loss of multiple tasks, �R 

are pa- 

ameters of multi-task recognizer R , y ′ = R (x ) , P y and P y ′ are the

istribution of the ground-truth label and the distribution of the 

redicted labels from R , respectively, L d is the distance between 

wo distributions. The first term minimizes the recognition errors 

f multi-tasks that sharing common representations, and the sec- 

nd term closes the joint distribution of the predicted label com- 

ination to the ground-truth label combination. α1 and α2 balance 

hese two terms. Therefore, the proposed method can successfully 

xplore connections among multiple face analysis tasks through 

oth representation-level and label-level. 

. Proposed method 

The framework of the proposed deep multi-task adversarial 

earning method is shown in Fig. 2 . It consists of a deep multi- 

ask recognizer R and a discriminator D. The goal of R is to learn 

hared image representation and predict landmark location, land- 

ark visibility, pose and gender simultaneously or multiple face 
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Fig. 2. Framework for the proposed method. For the multi-task recognizer R , we use FAN network [13] to encode facial representations and use CNN and FC networks to 

convert the representations as the predicted labels. For the detailed structure of FAN, please refer to the source codes in the following website: https://www.adrianbulat. 

com/face-alignment . The discriminator D distinguishes the ground-truth label combination from the output of R by FC networks. 
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ttributes simultaneously. D is to distinguish the ground-truth la- 

el combination from the label combination predicted by R . With 

he supervisory information of the ground-truth label combina- 

ions, the recognizer R can successfully capture the connections 

mong multiple face analysis tasks by sharing feature represen- 

ations. Through the competition between R and D, the distribu- 

ion of the predicted label combination could converge to the label 

istribution of the ground-truth. Thus, the proposed method can 

odel the dependencies among landmark, visibility, pose, gender 

nd the dependencies among multiple face attributes. 

WGAN [28] is adopted by our adversarial learning method for 

ts better convergence. Through adversarial learning, we can min- 

mize the distance of two distributions, i.e., the second term of 

q. (1) , but do not need to model P y and P y ′ directly, which are

omplex and error prone processes. We replace L d (P y , P y ′ ) as the

ollowing adversarial loss: 

in 

R 

max 
D 

L adv = E y [ D(y)] + E ˆ y [ −D( ̂  y )] , (2) 

here ˆ y = R (x ) is the predicted label combination of facial image 

 that is regard as “fake”, y is the ground-truth label combination 

egarded as “real”. It’s hard to optimize the above problem directly. 

e seek individual objective for R and D and utilize an alternate 

raining procedure as described in the following sections. 

.1. Recognizer 

One objective of recognizer R is to minimize L adv in Eq. (2) . It

eans recognizer R tries to ‘fool’ discriminator D and let it clas- 

ify the predicted label combination ˆ y as “real”. Therefore, the ad- 

ersarial objective for recognizer R is as follows: 

 

R 

adv = −D( ̂  y ) . (3) 

We construct a multi-task recognizer R to learn the sharing 

epresentation and explore dependencies among these multiple 

asks, i.e., landmark detection, visibility recognition, head pose es- 

imation and gender recognition, or multiple face attribute estima- 

ion. The supervised loss L s for multi-task recognizer R contains 

he following losses: 

Landmark Detection: The supervised loss for landmark detec- 

or is described as Eq. (4) . 

 

L 
s = 

1 

2 m 

m ∑ 

i =1 

v i (( ̂  x i − x i ) 
2 + ( ̂  y i − y i ) 

2 ) , (4) 

here (x i , y i ) is the location of i th landmark, ( ̂  x i , ˆ y i ) is correspond-

ng estimation, m is the total number of landmark points in one 

mage. The visibility factor v i is 1 if the i th landmark is visible,

therwise is 0, which implies that the ground-truth location for 

 th landmark is not provided. 

Visibility Recognition: We learn the visibility recognizer to 

redict the visibility of all landmarks. v is a multiple binary-value 
4 
abel vector. Hence, the supervised loss for visibility recognizer is 

hown as in Eq. (5) : 

 

V 
s = − 1 

m 

m ∑ 

i =1 

(v i log ˆ v i + (1 − v i ) log (1 − ˆ v i )) , (5) 

here ˆ v i and v i are the predicted visibility and the ground-truth 

isibility of the i th landmark, respectively. 

Pose Estimation: Since the pose information provided by 

atabase constructors are either continuous or discrete, the form 

f loss for pose estimator varies by databases. For continuous pose 

nformation (i.e., roll, pitch and yaw), the L2 loss function is used: 

 

P 
s = 

1 

3 

[
( ˆ p 1 − p 1 ) 

2 + ( ˆ p 2 − p 2 ) 
2 + ( ˆ p 3 − p 3 ) 

2 
]
, (6) 

here (p 1 , p 2 , p 3 ) are the ground-truth roll, pitch and yaw respec-

ively, and ( ˆ p 1 , ˆ p 2 , ˆ p 3 ) are the estimated pose angles. For discrete 

ose information, we view the pose estimation as a multi-class 

lassification problem and the cross-entropy loss is used. 

 

P 
s = −

K ∑ 

i =1 

p i log ( ̂  p i ) , (7) 

here (p 1 , p 2 , . . . , p K ) is the one-hot code of the ground-truth

ose angle and ( ˆ p 1 , ˆ p 2 , . . . , ˆ p K ) is the one-hot code of correspond- 

ng estimated angle. K is the number of angles. 

Gender Classification: Gender classification is a binary classifi- 

ation problem. Hence, the supervised loss for gender classifier is 

s shown in Eq. (8) . 

 

G 
s = −

[
g log ( ̂  g ) + (1 − g) log (1 − ˆ g ) 

]
, (8) 

here ˆ g and g are the predicted gender and the ground-truth gen- 

er, respectively. 

Face Attribute Estimation: The face attributes are all binary. 

herefore, the supervised loss for multiple face attribute estimator 

s shown as Eq. (9) : 

 

A 
s = −1 

n 

n ∑ 

i =1 

a i log ˆ a i + (1 − a i ) log (1 − ˆ a i ) , (9) 

here ˆ a i and a i are the i th predicted face attribute and the ground- 

ruth attribute, respectively. n is the number of attributes. 

Finally, the full supervised loss L s can be written as follows: 

 s = αL ∗ L 

L 
s + αV ∗ L 

V 
s + αP ∗ L 

P 
s + αG ∗ L 

G 
s , (10) 

r 

 s = αat t r ∗ L 

A 
s . (11) 

We combine the supervised loss L s and the adversarial loss 

 

R 

adv as the full objective of multi-task recognizer R , shown as 

q. (12) : 

 

R = L s + αA ∗ L 

R , (12) 
adv 

https://www.adrianbulat.com/face-alignment
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(

here αL , αV , αP , αG , αat t r and αA are weight coefficients of su- 

ervised losses of the corresponding subtasks and adversarial loss, 

espectively. 

.2. Discriminator 

As shown in the right part of Fig. 2 , we construct a discrimina-

or D. The purpose of the discriminator is to classify the ground- 

ruth label combination as “real” and the predicted label combi- 

ation as “fake”. Therefore, the adversarial loss for D is shown as 

q. (13) : 

 

D = −[ D(y) − D( ̂  y )] (13) 

The multi-task recognizer R and the discriminator D are up- 

ated with an alternate procedure: fix R , update D according to 

q. (13) , and then fix D, update R according to Eq. (12) . This pro-

ess repeats until convergence. The detailed training procedure is 

escribed in Algorithm 1 . 

lgorithm 1 Training algorithm of the proposed multi-task adver- 

arial learning. 

nput The training set T , the batch size s , the number of training

step K and the hyper parameter k . 

utput The multi-task recognizer R . 

1: Initialize the parameters �R 

and �D of R and D, respectively. 

2: for i = 1 → K do 

3: for j = 1 → k do 

4: Randomly sample mini-batch of s facial images { x } s 
i =1 

from feature space and sample mini-batch of s labels 

{ y} s 
i =1 

from label space. 

5: Update the parameters of discriminator D according to: 

∇ �D 

( 

−1 

s 

s ∑ 

i =1 

[ D(y) − D(R (x ))] 

) 

6: Clip the absolute value of D’s weights to not more than δ. 

7: end for 

8: Randomly sample a mini-batch of s samples { x , y} s 
i =1 

from 

training set T 

9: Update multi-task recognizer R according to Equation (12). 

0: end for 

The adopted WGAN framework is an improved version of GAN 

29] with three significant modifications. First, WGAN uses linear 

ctivation instead of the Sigmoid activation in the last layer of D, 

s shown in the right part of Fig. 2 . Second, WGAN directly takes

he difference between D’s outputs on the “real” and “fake” in- 

uts as the training loss without using a log function, as shown in 

q. (13) . Third, each time D is updated, the absolute values of its 

arameters are clipped to not more than a threshold ( δ), as shown 

n the sixth line of Algorithm 1 . According to Arjovsky et al. [28] ,

uch modifications improve the convergence of adversarial learn- 

ng. 

. Experiments 

.1. Experimental conditions 

The Annotated Facial Landmark in the Wild (AFLW) 

atabase [30] and the CMU Multi-PIE Face (Multi-PIE) 

atabase [31] contain facial landmarks, corresponding visibil- 

ty, head poses and gender information simultaneously. The IBUG 

atabase [32] contains facial landmark labels. We evaluate the pro- 

osed adversarial multi-task learning approach for facial landmark 

elated multi-task face analyses on the AFLW and the Multi-PLE 
5 
atabases, and for landmark detection on the IBUG database. Fur- 

hermore, CelebA database and the LFWA database [19] are used 

o evaluate the proposed adversarial multi-task learning approach 

or multiple face attribute estimation. 

The AFLW [30] database contains 25, 993 faces in 21, 997 real- 

orld images with full pose, expression, ethnicity, age and gender 

ariations. It provides annotations for 21 landmark points per face, 

long with the face bounding-box, face pose (i.e., roll, pitch and 

aw) and gender. We follow the same strategy as Ranjan et al.’s 

2] to divide training and testing sets, i.e., 10 0 0 images for test- 

ng and the other for training. The testing set is divided into three 

ubsets by their absolute yaw angles. 

The Multi-PIE database contains 337 subjects, captured under 

3 yaw angles and 19 illuminations in four recording sessions for 

 total of more than 750,0 0 0 images. Among them, 6152 images 

re labeled with landmarks, whose number varies from 39 to 68, 

epending on their visibility. Following the same sample selecting 

trategy as Wu et al.’s [5] work, we use the facial images from the 

rst 150 subjects as training data and use the subjects with IDs 

etween 151 and 200 as testing data. 

The IBUG [32] database contains 135 images, each of them an- 

otated with 68 facial landmarks. The landmark definition of the 

BUG database is the same as the Multi-PIE database. All of the 

mages in the IBUG database are used as testing samples. 

The CelebA database is a large scale unconstrained face at- 

ribute database and contains more than 10, 0 0 0 identities, each 

f which has twenty images. There are more than 20 0, 0 0 0 im-

ges total. The LFWA database has 13, 233 images of 5749 iden- 

ities. Each image in the CelebA database and LFWA database is 

nnotated with forty face attributes. Both databases are challeng- 

ng for attribute estimation, with large variations in expressions, 

oses, races, illumination, background, etc. Following Liu et al. [19] , 

or the CelebA database, we use the images of first 8,0 0 0 identities 

s the training set and the images of the last 1,0 0 0 identities as

he testing set; for the LFWA database, we randomly split images 

nto half and half as the training and testing set. 

The facial images are cropped from their bounding boxes and 

esized to 256 × 256 × 3 . In order to obtain enough data and im- 

rove their generalization performance, for the AFLW, the IBUG 

nd the Multi-PIE databases, we augment the training data through 

andom shifting bounding box, resizing bounding box and jittering 

he color of facial images. For the CelebA and LFWA databases, the 

mages are processed through resizing and color jittering. For each 

mage in the training set, we generate one augmented sample by 

 combination of the data augmentation operations. Therefore, the 

umber of images obtained by data augmentations is as the same 

s the size of the training set. 

On the AFLW and the IBUG databases, we adopt the normalized 

ean error (NME) as the accuracy metric. For the AFLW database, 

ollowing Jourabloo et al. [33] , face size is used to normalize the 

rediction error. For the IBUG database, the inter-ocular distance is 

sed to normalize the prediction error. On the Multi-PIE database, 

he absolute pixel distance (APD) [34] is adopted for landmark 

etection. For pose estimation, the average degree error (ADE) is 

dopted on the AFLW database and the accuracy is adopted on 

he Multi-PIE database. For visibility and gender, the accuracy is 

dopted. For the multiple face attribute estimation, the accuracy is 

dopted. 

To validate the effectiveness of the proposed adversarial multi- 

ask network for landmark-related multi-task face analyses, six 

ethods are compared: the method considering task dependen- 

ies from representation-level only ( Ours no ), which employs the 

rst term of Eq. (1) ; the method considering landmark dependen- 

ies ( Ours l ), where only the landmark is fed into discriminator; the 

ethod considering joint distribution of landmark and visibility 

 Ours lv ), where the landmark and visibility are fed into discrimi- 
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ator; the method considering joint distribution of landmark, visi- 

ility, and gender ( Ours lvg ), where the landmark, visibility and gen- 

er are fed into discriminator; the method considering joint distri- 

ution of landmark, visibility, and pose ( Ours lvp ), where the land- 

ark, visibility, and pose are fed into discriminator; and the pro- 

osed method considering joint distribution of landmark, visibility, 

ender and pose ( Ours all ), where the landmark, visibility, gender 

nd pose are all fed into discriminator. For multiple face attribute 

stimation on the CelebA and LFWA databases, we compare Ours no 

nd Ours gan . Ours gan considers the joint distribution of all facial at- 

ributes by feeding all of them into the discriminator. 

We conduct within-database experiments for the AFLW, the 

ulti-PIE, the CelebA, and the LFWA databases. Since the IBUG 

atabase only contains 135 images, we do not conduct within- 

atabase experiment for it. To further validate the generalization 

erformance of our method, we also conduct cross-database exper- 

ments. For landmark related face analyses, since the AFLW and the 

ulti-PIE databases have different landmark definitions, we could 

ot conduct cross-database experiments between them. We just 

rain our method on the Multi-PIE database and evaluate it on the 

BUG database. For facial attribute estimation, we conduct cross- 

atabase experiments between the CelebA and the LFWA database 

y training our method on one database and evaluate it on the 

ther database. For the experiment on each database, the training 

et is firstly splitted as 10 folds to conduct cross validation and 

elect optimal values for all hyper-parameters. Then, these hyper- 

arameters are assigned with their optimal values and the method 

s re-trained on the whole training set. Since randomly sampling 

mages and labels in the training process may cause randomness 

n the experimental results, we repeat each experiment ten times 

ndependently and reported their average results in our paper to 

ffset the randomness. 

.2. Implementation details 

For the multi-task recognizer R , we follow Yin et al. [35] to use

AN network as the feature encoder, as shown in the left part of 

ig. 2 . FAN [13] is a kind of stacked hourglass network which cap-

ures both global and local patterns from a facial image by fusing 

eatures at different down-sampling and up-sampling stages with a 

esidual mechanism. FAN further improves the original version of 

tacked hourglass network [12] by using hierarchical parallel and 

ulti-scale convolutional bottleneck blocks. The learned represen- 

ation from FAN is compressed by CNN networks as a feature vec- 

or, then converted to the predicted labels by fully connected (FC) 

etworks. All convolution layers are followed by a Batch normal- 

zation layer [36] and ReLU activation unit. FC networks are used 

o convert the facial representations to the output labels for each 

ask. For the regression tasks, i.e., landmark detection and pose 

egression, we adopt linear activation unit as the activation func- 

ion for the last FC layer. For the gender classification and facial 

ttribute estimation tasks, we adopt Sigmoid activation unit; For 

ose classification, we adopt Softmax activation. 

As for the structure of discriminator D, we adopt a FC net- 

ork. For facial landmark related multi-task face analyses, the in- 

ut dimensionality of D is the total size of labels from each in- 

ividual task. On the AFLW database, the input dimensionality is 

1+21+3+1 = 46. On the Multi-PIE database, the input dimensional- 

ty is 6 8+6 8+13+1 = 150. For multiple face attribute estimation, the 

nput dimensionality of the discriminator is the number (40) of all 

acial attributes. The size of the hidden states for the FC network 

f D is half of its input size. 

The recognizer R only outputs continuous values, whereas 

ome of their ground truth labels are discrete. To prevent D from 

earning something trivial rather than the real label distributions, 

e add a fractional Gaussian perturbation onto these discrete la- 
6 
els to convert them as continuous values, then fed them into the 

iscriminator. For the continuous labels, i.e., values of landmark co- 

rdinates and head poses, we normalize them into [ −1 , 1] , then 

ed them into the discriminator. 

.3. Experimental results and analyses of facial landmark related 

ulti-task face analyses 

Experimental results of landmark detection, visibility recogni- 

ion and gender recognition on the AFLW, the Multi-PIE, and the 

BUG databases are shown in Tables 1–3 , respectively. On the AFLW 

nd the Multi-PIE databases, we display the results of multi-task 

ace analyses grouped by the absolute value of head’s yaw angle. 

n the IBUG database, since it only provides landmark annotations, 

e just display the results of landmark detection. 

From Tables 1–3 , we observe the following: 

First, the experimental results for near frontal faces are better 

han those for other poses for all methods. Specifically, the exper- 

mental results for [0, 30] yaw angle on the AFLW database and 

he experimental results for 0 angle on the Multi-PIE database are 

he best, with the lowest error and the highest accuracy in the 

ost cases. It is reasonable since face analyses from facial images 

ith extreme head pose are more changeling than those from near 

rontal views. 

Second, the proposed method considering both shared repre- 

entation and label-level connection significantly outperforms the 

roposed method only exploiting representation-level connection. 

pecifically, on the AFLW database, compared to the proposed 

ethod only exploiting representation-level constraint, Ours l de- 

reases the average NME(%) of the landmark detection by 0.18, 

nd increases the accuracy of visibility and gender recognition 

y 2% and 2%, respectively. On the Multi-PIE database, Ours l de- 

reases the average APD of the landmark detection by 0.16, and in- 

reases the accuracy of visibility and gender recognition by 1% and 

%. Ours l also decreases the standard deviation of performances 

mong different intervals of yaw angle on both the AFLW and 

he Multi-PIE databases. On the IBUG database, Ours l decreases 

he average NME of the landmark detection by 0.36. It is reason- 

ble, since the method considering both shared representation and 

abel-level constraint models the inherent dependencies among 

ultiple face analysis tasks more faithfully and completely than 

he method only exploiting shared representation. 

Third, more label-level constraints may achieve better perfor- 

ance. Specifically, Ours all performs best among the six methods, 

ith the lowest NME or APD for landmark detection, and the high- 

st accuracy for visibility, gender recognition and pose estimation 

n both databases. It indicates that capturing more task relations 

rom label-level can boost the performance of multiple tasks bet- 

er. 

Fourth, different label combinations lead to different effects. 

or instance, compared to Ours lvg , Ours lvp achieves lower error for 

andmark detection on both databases. The possible reason is that 

here exist more close relations between landmark and head poses 

han landmark and genders. 

Fifth, the proposed multi-task adversarial learning method 

rained on the Multi-PIE database can improve the performance for 

andmark detection on the IBUG database. This result demonstrates 

he generalization performance of our method. 

Visualization techniques are used to demonstrate the effective- 

ess of the proposed method ( Ours all ). First, we visualize the fea- 

ures of CNN filters trained on the AFLW database in Fig. 3 . Each

ample in Fig. 3 is the channel-wise average of feature maps from 

he fifth convolutional layer in the FAN encoder. The value of each 

ixel in a feature map is normalized between 0 and 256 for visu- 

lization. From Fig. 3 , we find that our method can effectively cap- 

ure the spatial patterns of facial boundaries and encode them as 
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Table 1 

Results for within-database experiments on the AFLW database grouped by the absolute value of yaw angle. 

Methods Tasks Metrics [0, 30] [30, 60] [60, 90] mean std 

Ours no landmark NME( ↓ ) 2.63 2.74 3.02 2.80 0.201 

visibility Acc( ↑ ) 0.95 0.92 0.91 0.93 0.021 

gender Acc( ↑ ) 0.93 0.91 0.86 0.90 0.036 

R/P/Y ADE( ↓ ) 3.38/3.62/5.14 3.64/4.19/5.32 4.26/4.28/5.79 3.76/4.03/5.42 0.452/0.358/0.336 

Ours l landmark NME( ↓ ) 2.48 2.61 2.76 2.62 0.140 

visibility Acc( ↑ ) 0.97 0.94 0.94 0.95 0.017 

gender Acc( ↑ ) 0.95 0.91 0.89 0.92 0.031 

R/P/Y ADE( ↓ ) 3.16/3.42/4.76 3.40/3.84/4.93 3.92/3.97/5.35 3.49/3.74/5.01 0.389/0.287/0.304 

Ours lv landmark NME( ↓ ) 2.42 2.47 2.68 2.52 0.138 

visibility Acc( ↑ ) 0.97 0.95 0.94 0.95 0.015 

gender Acc( ↑ ) 0.97 0.96 0.94 0.96 0.015 

R/P/Y ADE( ↓ ) 3.09/3.28/4.72 3.31/3.43/4.88 3.68/3.77/5.27 3.36/3.49/4.96 0.298/0.251/0.283 

Ours lvg landmark NME( ↓ ) 2.36 2.40 2.61 2.46 0.134 

visibility Acc( ↑ ) 0.98 0.98 0.96 0.97 0.012 

gender Acc( ↑ ) 0.97 0.96 0.95 0.96 0.010 

R/P/Y ADE( ↓ ) 3.01/3.04/4.64 3.22/3.17/4.86 3.50/3.52/5.18 3.24/3.24/4.89 0.246/0.248/0.271 

Ours lvp landmark NME( ↓ ) 2.33 2.35 2.55 2.41 0.122 

visibility Acc( ↑ ) 0.98 0.98 0.97 0.98 0.006 

gender Acc( ↑ ) 0.97 0.95 0.95 0.96 0.012 

R/P/Y ADE( ↓ ) 2.97/2.92/4.58 3.16/3.00/4.78 3.42/3.29/5.11 3.18/3.07/4.82 0.226/0.195/0.268 

Ours all landmark NME( ↓ ) 2.28 2.30 2.49 2.36 0.116 

visibility Acc( ↑ ) 0.98 0.98 0.98 0.98 0.000 

gender Acc( ↑ ) 0.99 0.99 0.98 0.99 0.006 

R/P/Y ADE( ↓ ) 2.92/2.83/4.49 3.04/2.95/4.61 3.25/3.06/4.94 3.07/2.95/4.68 0.167/0.115/0.233 

Note: ↑ represents that the higher value indicates better performance and ↓ represents that the smaller value indicates better performance. R, P, Y are the abbreviations of 

roll, pitch and yaw, respectively. 

Table 2 

Results for within-database experiments on the Multi-PIE database grouped by the absolute value of yaw angle. 

Methods Tasks Metrics 0 15 30 45 60 75 90 mean std 

Ours no landmark APD( ↓ ) 2.42 2.51 2.53 2.71 2.66 2.86 3.08 2.68 0.228 

visibility Acc( ↑ ) 0.99 0.98 0.97 0.94 0.92 0.92 0.83 0.94 0.054 

pose Acc( ↑ ) 0.97 0.98 0.98 0.96 0.93 0.95 0.93 0.96 0.021 

gender Acc( ↑ ) 0.95 0.96 0.92 0.83 0.82 0.79 0.73 0.86 0.088 

Ours l landmark APD( ↓ ) 2.33 2.42 2.40 2.58 2.52 2.60 2.82 2.52 0.163 

visibility Acc( ↑ ) 0.99 1.00 0.97 0.96 0.97 0.91 0.88 0.95 0.044 

pose Acc( ↑ ) 0.98 0.98 0.97 0.97 0.94 0.95 0.93 0.96 0.020 

gender Acc( ↑ ) 0.97 0.96 0.94 0.91 0.88 0.86 0.83 0.91 0.053 

Ours lv landmark APD( ↓ ) 2.23 2.26 2.34 2.38 2.46 2.56 2.64 2.41 0.152 

visibility Acc( ↑ ) 1.00 0.99 0.96 0.98 0.95 0.93 0.92 0.96 0.030 

pose Acc( ↑ ) 0.99 1.00 0.97 0.99 0.97 0.97 0.95 0.98 0.017 

gender Acc( ↑ ) 0.97 0.96 0.95 0.91 0.89 0.91 0.85 0.92 0.043 

Ours lvg landmark APD( ↓ ) 2.18 2.24 2.29 2.31 2.36 2.50 2.57 2.35 0.140 

visibility Acc( ↑ ) 1.00 0.99 0.98 0.98 0.96 0.95 0.94 0.97 0.022 

pose Acc( ↑ ) 1.00 1.00 0.98 0.99 0.98 0.97 0.96 0.98 0.015 

gender Acc( ↑ ) 0.97 0.97 0.96 0.93 0.92 0.92 0.91 0.94 0.026 

Ours lvp landmark APD( ↓ ) 2.13 2.19 2.26 2.30 2.33 2.48 2.46 2.31 0.130 

visibility Acc( ↑ ) 1.00 0.99 1.00 0.98 0.98 0.97 0.96 0.98 0.015 

pose Acc( ↑ ) 1.00 1.00 0.99 0.99 0.98 0.97 0.97 0.99 0.013 

gender Acc( ↑ ) 0.96 0.96 0.97 0.94 0.94 0.93 0.91 0.94 0.021 

Ours all landmark APD( ↓ ) 2.09 2.10 2.14 2.24 2.28 2.34 2.41 2.23 0.124 

visibility Acc( ↑ ) 1.00 0.99 1.00 0.99 0.98 0.97 0.97 0.99 0.013 

pose Acc( ↑ ) 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.99 0.008 

gender Acc( ↑ ) 0.97 0.97 0.97 0.96 0.95 0.94 0.94 0.96 0.014 

Note: ↑ represents that the higher value indicates better performance and ↓ represents that the smaller value indicates better performance. 

Fig. 3. Visualization of the representations learned by the CNN filters on the AFLW database. 

7 
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Fig. 4. Visualization for recognition results of landmark coordinates, landmark visibilities, poses, and genders on some new facial videos and images. For landmarks predicted 

as visible, their positions are visualized as red dots. For landmarks predicted as invisible, their positions are not depicted. The predicted poses are visualized as the blue 

normal lines of faces. The predicted genders are shown in the top left corners of these figures. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Table 3 

Experimental results for landmark detection on the IBUG database. The method is 

trained on the Multi-PIE database and evaluate on the IBUG database. 

Methods Ours no Ours l Ours lv Ours lvg Ours lvp Ours all 

NME 7.24 6.88 6.72 6.68 6.65 6.59 

i

m

d

o

t  

p

f

5

e

C

T

s

d

t

w

a

O

F

a

t

T

t

T

a

t

d

a

t

p

[

p

t

t

Table 4 

NME(%) performance of the proposed method and the related works for landmark 

detection on the AFLW database. 

Methods [0, 30] [30, 60] [60, 90] mean std 

CDM [37] 8.15 13.02 16.17 12.44 4.04 

RCPR [38] 5.43 6.58 11.53 7.85 3.24 

ESR [11] 5.66 7.12 11.94 8.24 3.29 

SDM [10] 4.75 5.55 9.34 6.55 2.45 

3DDFA [39] 5.00 5.06 6.74 5.60 0.99 

3DDFA + SDM [39] 4.75 4.83 6.38 5.32 0.92 

Zhang et al. [17] 3.90 4.10 4.70 4.24 0.42 

FAN [13] 3.45 3.06 4.24 3.58 0.60 

SAN [14] 2.80 2.92 3.32 3.01 0.27 

FHR [15] 2.75 2.96 3.18 2.96 0.22 

HyperFace no [2] 3.93 4.14 4.71 4.26 0.40 

HyperFace all 3.19 3.28 3.49 3.32 0.15 

HF − Resnet no [2] 2.71 2.88 3.19 2.93 0.24 

HF − Resnet all 2.34 2.45 2.61 2.47 0.14 

Ours no 2.63 2.74 3.02 2.80 0.20 

Ours all 2.28 2.30 2.49 2.36 0.12 
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n

nformative features. Second, to validate the generalization of our 

ethod, we adopt the proposed method trained on AFLW to pre- 

ict landmark coordinates, landmark visibilities, poses, and genders 

n some new facial videos and images, and visualize the recogni- 

ion results in Fig. 4 . From Fig. 4 , we could observe that the pro-

osed method can well generalize to new face samples under dif- 

erent imaging conditions. 

.4. Experimental results and analyses of multiple face attribute 

stimation 

The experimental results of face attribute estimation on the 

elebA database and LFWA database are listed in Table 8 . From 

able 8 , we have the following observations. 

First, we find that compared to Ours no , Ours gan brings a con- 

istent accuracy improvement for both within-database and cross- 

atabase experiments on the two databases. For the 40 face at- 

ributes, there exist complex correlations. For instance, a person 

ho wears lipstick and necklace is less likely to be a male, while 

 person with mustache or goatee is more likely to be a male. 

n the other hand, some face attributes are mutually exclusive. 

or instance, at most one of black hair, blond hair, brown hair 

nd gray hair appears. These correlations are crucial for improving 

he performance on multiple attribute estimation simultaneously. 

he proposed method Ours gan considers the distribution among 

he predicted face attributes and the ground-truth face attributes. 

hrough this way, the positive correlation and negative correlation 

mong attributes can be exploited. The improvement demonstrates 

hat the proposed method can successfully capture the label-level 

ependencies and results in better performance. 

Second, we find that the results of cross-database experiments 

re lower than the results of within-database experiments on the 

wo databases. This observation is also consistent with the ex- 

erimental results of Han et al. [22] . According to Han et al. 

22] , the reason of the performance drop in cross-database ex- 

eriments compared to within-database experiments may be that 

he attribute distributions and image styles are different between 

he LFWA and the CelebA databases, bringing some difficulties to 
8 
dapting the learned model in one database to the other. Despite 

hese difficulties, Ours gan (cross) still outperforms Ours no (cross) on 

rediction accuracy, demonstrating a better generalization perfor- 

ance of the proposed adversarial learning method. 

To validate the effectiveness of the proposed method in cap- 

uring relationships among multiple face attributes, we graphically 

llustrate the captured dependencies in Fig. 5 . The values are the 

utput of the last layer of the proposed multi-task recognizer R . A 

arger output value indicates a high confidence of the occurrence 

or the attribute, and a smaller output value indicates a high con- 

dence of the absence for the attribute. The first figure shows that 

he sample, which encodes a pattern for a person who is likely to 

e with sideburns, 5 o’clock shadow and without wearing earrings. 

his combination is more likely to represent the attribute relation- 

hips for a male. The second figure shows that the sample, which 

ncodes a pattern for a person who is likely to wear lipstick and 

arrings and with no beard. This combination is more likely to rep- 

esent the attribute relationships for a heavy makeup female. The 

wo figures show that the proposed method is able to effectively 

apture the relationships among multiple face attributes. 

.5. Significance test for the proposes method 

Significance test is conducted to demonstrate the statistical sig- 

ificance of performance boosts brought by the proposed method. 
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Fig. 5. Example showing: some face attribute combinations are frequently observed. Each bar shows the output value from the Sigmoid unit of the recognizer. 

Table 5 

APD performance of our method and the related works for landmark detection on the Multi-PIE database. 

Methods Wu et al. [5] FAN SAN FHR HyperFace no HyperFace all HF − Resnet no HF − Resnet all Ours no Ours all 

APD 3.62 2.93 2.84 2.59 3.12 2.85 2.81 2.44 2.68 2.23 

Table 6 

ADE performance of the proposed method and the related works for pose estimation on the AFLW database. R, P, Y are 

the abbreviations of roll, pitch and yaw, respectively. 

Methods HyperFace no HyperFace all HF − Resnet no HF − Resnet all Ours no Ours all 

R 3.92 3.54 3.29 3.18 3.76 3.07 

P 6.13 3.08 5.33 3.02 4.03 2.95 

Y 7.62 4.81 6.24 4.76 5.42 4.68 

Table 7 

Pose estimation accuracy of the proposed method and the related works on the Multi-PIE database. 

Methods PCR [40] Linear PLS [40] KPLS [40] Wu et al. [5] FPLL [4] Ours all 

Accuracy 0.48 0.57 0.79 0.77 0.91 0.99 
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1 https://github.com/1adrianb/face- alignment , https://github.com/D- X- Y/SAN , 

https://github.com/tyshiwo/FHR _ alignment . 
pecifically, on the AFLW, the Multi-PIE, and the IBUG databases, 

e conduct t-test for the performance difference between Ours all 

nd Ours no . On the CelebA and LFWA databases, t-test for the per- 

ormance difference between Ours gan (within) and Ours no (within) 

s conducted, while on the AFLW database, P -values for landmark 

ocalization, visibility detection, gender classification, roll regres- 

ion, pitch regression and yaw regression are 2.30e-4, 2.62e-6, 

.40e-12, 1.56e-8, 3.43e-6, 2.90e-3, respectively. On the Multi-PIE 

atabase, P -values for landmark localization, visibility detection, 

ender classification and pose classification are 1.60e-4, 2.15e-7, 

.54e-5 and 2.42e-6, respectively. On the IBUG database, P -value 

or landmark localization is 1.83e-5. On the CelebA and LFWA 

atabases, P -values for facial attribute estimations are 1.62e-7 and 

.43e-5, respectively. All of these p-values are much less than 0.05, 

hich demonstrates the significance of the proposed adversarial 

earning method. 

.6. Comparison with related works on accuracy of facial landmark 

elated multi-task face analyses 

As mentioned in the introduction, several works handle 

andmark-related multi-task face analysis tasks jointly. Among 

hem, Ranjan et al.’s work [2] (HyperFace and HF-Resnet) and 

hang et al.’s work [17] provided landmark detection experimen- 

al results on the AFLW database. Thus, we compare our work 

n landmark detection with these methods. We also train Hyper- 

ace and HF-Resnet with the proposed adversarial learning frame- 

ork and compare our method with them. To be consistent with 

he denotation of our method, the original HyperFace and HF- 

esnet are denoted as HyperFace no and HF − Resnet no , respec- 

ively, since they were not trained in an adversarial way; while 

he networks trained by our adversarial learning framework are 

enoted as HyperFace and HF − Resnet , respectively. We com- 
all all 

9 
are Ours no with HyperFace no and HF − Resnet no ; and compare 

urs all with HyperFace all and HF − Resnet all . Furthermore, Ran- 

an et al. [2] provided landmark detection results of some facial 

andmark detection methods, i.e., CDM [37] , RCPR [38] , ESR [11] , 

DM [10] , 3DDFA [39] and 3DDFA+SDM [39] . We also compare our 

ethod with these methods, although they are not trained un- 

er a multi-task learning framework. As state-of-the-art landmark 

etection methods, FAN [13] , SAN [14] , and FHR [15] were con- 

ucted under different experimental conditions with ours, we just 

e-implement them and re-conduct experiments with our train- 

ng set. Their open source codes 1 are used to facilitate the re- 

mplementation. 

On the Multi-PIE database, we compare our method with 

u et al.’s work [5] . For landmark detection, since Wu et al. 

5] only provided the detection performance on the inner land- 

arks instead of all landmarks, we just re-implement their method 

nd compare with them on all 68 landmarks. We also imple- 

ent HyperFace no , HF − Resnet no , HyperFace all , HF − Resnet all , 

AN, SAN, and FHR on the Multi-PIE database and compare their 

esults with ours. 

The comparison of the proposed method to the related works 

n landmark detection and pose estimation accuracy is shown 

n Tables 4–7 . From this table, we have three observations. 

irst, we find HyperFace all , HF − Resnet all and Ours all outperform 

yperFace no , HF − Resnet no and Ours no respectively, which means 

dversarial learning can achieve a better performance compared 

o supervised regression for all these network structures. This 

ay be because adversarial learning well captures spatial pat- 

erns from target label-level, such that the recognizer can make 

rediction based on dependencies among all labels. Second, we 

https://github.com/1adrianb/face-alignment
https://github.com/D-X-Y/SAN
https://github.com/tyshiwo/FHR_alignment
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Table 8 

Comparison of Attribution Estimation on the CelebA and LFWA databases. For our methods, Ours no (within) and Ours gan (within) are the results of within-database experiments, while Ours no (cross) and Ours gan (cross) are the 

results of cross-database experiments. 

Database 5 Shadow 

Arch. 

Eyebrows Attractive 

Bags Un. 

Eyes Bald Bangs Big Lips Big Nose 

Black 

Hair 

Blond 

Hair Blurry 

Brown 

Hair 

Bushy 

Eyebrows Chubby 

Double 

Chin Eyeglasses Goatee 

Gray 

Hair 

Heavy 

Makeup 

H. 

Checkbones Male 

CelebA PANDA [3] 88 78 81 79 96 92 67 75 85 93 86 77 86 86 88 98 93 94 90 86 97 

LNets + ANet [19] 91 79 81 79 98 95 68 78 88 95 84 80 90 91 92 99 95 97 90 87 98 

MCNN-AUX [23] 95 83 83 85 99 96 71 85 90 96 96 89 93 96 96 90 100 97 98 99 92 

PS-MCNN-LC [24] 97 86 84 87 99 98 73 86 92 98 98 91 95 98 98 100 98 99 93 90 99 

DMM-CNN [20] 95 85 83 86 99 96 73 85 91 96 96 89 93 96 96 100 98 98 92 88 99 

DMTL (cross) [22] - - - - - - - - - - - - - - - - - - - - - 

Ours no (within) 96 85 85 87 99 96 89 89 93 97 98 92 95 96 97 100 98 98 93 91 98 

Ours gan (within) 97 87 88 92 99 99 92 93 92 97 99 97 95 98 98 100 100 99 97 98 99 

Ours no (cross) 73 69 69 66 74 77 66 72 74 73 79 67 66 62 65 72 68 78 74 72 76 

Ours gan (cross) 69 69 68 67 74 78 72 72 75 78 77 70 68 68 68 73 71 76 73 76 76 

LFWA PANDA [3] 84 79 81 80 84 84 73 79 87 94 74 74 79 69 75 89 75 81 93 86 92 

LNets + ANet [19] 84 82 83 83 88 88 75 81 90 97 74 77 82 73 78 95 78 84 95 88 94 

MCNN-AUX [23] 77 82 80 83 92 90 79 85 93 97 85 81 85 77 82 95 91 83 89 90 96 

PS-MCNN-LC [24] 78 84 82 87 93 91 83 86 93 99 87 82 86 78 87 93 84 91 97 89 95 

DMM-CNN [20] 79 83 81 83 92 91 80 84 92 97 88 82 85 78 81 93 83 89 96 88 94 

DMTL (cross) [22] - - - - - - - - - - - - - - - - - - - - - 

Ours no (within) 89 88 85 84 97 94 85 92 94 99 98 78 82 78 81 93 87 92 98 90 92 

Ours gan (within) 91 89 85 84 98 94 91 93 95 99 98 84 88 87 86 92 93 94 97 91 93 

Ours no (cross) 75 70 66 64 77 74 69 69 70 76 77 70 76 73 73 75 80 77 75 76 78 

Ours gan (cross) 74 71 74 73 79 77 72 71 78 76 79 75 74 75 79 72 79 81 82 80 79 

Mouth S. 

O. 

Mustache Narrow 

Eyes 

No Beard Oval Face Pale Skin Pointy 

Nose 

Reced. 

Hairline 

Rosy 

Cheeks 

Sideburns Smiling Straight 

Hair 

Wavy Hair Wear. 

Earrings 

Wear. 

Hat 

Wear. 

Lipstick 

Wear. 

Necklace 

Wear. 

Neck- 

tie 

Young Average 

CelebA PANDA [3] 93 93 84 93 65 91 71 85 87 93 92 69 77 78 96 93 67 91 84 85 

LNets + ANet [19] 92 95 81 95 66 91 72 89 90 96 92 73 80 82 99 93 71 93 87 87 

MCNN-AUX [23] 88 94 98 94 97 87 87 97 96 76 97 77 94 95 98 93 84 84 88 91 

PS-MCNN-LC [24] 96 99 89 98 77 99 79 96 97 98 95 86 86 93 99 96 89 99 91 93 

DMM-CNN [20] 94 97 88 96 76 97 77 94 95 98 93 85 86 91 99 94 88 97 89 92 

DMTL (cross) [22] - - - - - - - - - - - - - - - - - - - 70 

Ours no (within) 96 97 97 95 94 99 82 96 96 98 94 86 88 91 99 94 94 98 87 94 

Ours gan (within) 97 99 98 95 98 99 85 96 97 99 97 91 91 92 99 96 97 98 91 96 

Ours no (cross) 69 80 73 69 65 70 65 65 74 64 75 72 71 72 78 76 76 71 70 71 

Ours gan (cross) 69 76 74 74 71 74 70 67 77 71 74 65 72 74 77 77 71 73 69 72 

LFWA PANDA [3] 78 87 73 75 72 84 76 84 73 76 89 73 75 92 82 93 86 79 82 81 

LNets + ANet [19] 82 92 81 79 74 84 80 85 78 77 91 76 76 94 88 95 88 79 86 84 

MCNN-AUX [23] 88 95 94 84 93 83 90 81 82 77 93 84 86 88 83 92 79 82 86 86 

PS-MCNN-LC [24] 85 94 84 82 78 95 88 88 89 84 93 80 83 96 91 96 91 82 87 88 

DMM-CNN [20] 84 94 84 82 77 92 85 86 86 83 92 79 80 94 91 95 89 81 89 87 

DMTL (cross) [22] - - - - - - - - - - - - - - - - - - - 73 

Ours no (within) 86 96 88 84 85 84 87 88 96 85 90 86 82 87 95 97 94 84 93 89 

Ours gan (within) 87 98 92 86 89 84 88 89 97 88 93 84 86 88 95 98 94 86 95 91 

Ours no (cross) 79 76 80 76 77 83 68 76 73 82 73 74 73 73 78 79 74 77 71 75 

Ours gan (cross) 81 80 82 79 78 79 70 77 79 77 74 73 74 77 80 80 76 81 75 77 

1
0
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Table 9 

Comparison on parameter numbers among HyperFace all , HF − Resnet all and Ours all . 

Databases HyperFace all HF − Resnet all Ours all 

AFLW, Multi-PIE, LFWA, CelebA 35M 97M 30M 
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nd that Ours no outperforms HyperFace no and HF − Resnet no , and 

eanwhile, Ours all outperforms HyperFace all and HF − Resnet all . 

his result demonstrates the proposed recognizer network is more 

dept at the facial analysis tasks compared to the HyperFace and 

he HF − Resnet networks. The reason may be that, the adopted 

ourglass network is better at spatial modeling by its mecha- 

ism to mix global and local representations. Third, the proposed 

ethod, i.e., Ours all , performs the best on the AFLW database and 

he Multi-PIE database for landmark detection and pose estima- 

ion. The proposed method simultaneously exploits the shared rep- 

esentation and label-level constraint through multi-task network 

nd adversarial mechanism, and thus achieves the best perfor- 

ance. 

.7. Comparison with related works on accuracy of multiple face 

ttribute estimation 

We compare the proposed method with other multiple face at- 

ribute estimation works in Table 8 . For within-database experi- 

ents, we compare our method with PANDA [3] , LNets+ANet [19] , 

CNN-AUX [23] , PS-MCNN-LC [24] and DMM-CNN [20] . For cross- 

atabase experiments, we compare our method with DMTL (cross) 

22] . Compared to PANDA, LNets+ANet and DMM-CNN, which also 

stimated multiple attributes through deep convolutional neural 

etwork, the proposed method performs better. For the three 

ethods, multiple face attributes share common representation, 

nd thus the dependencies among attributes can be exploited in 

 certain. However, the dependencies on label-level are not con- 

idered. Compared to these works, the proposed method consid- 

rs the representation-level dependencies and the label-level de- 

endencies jointly, and thus achieves better experimental results. 

he proposed method also outperforms MCNN-AUX, PS-MCNN-LC 

nd DMTL (cross), which exploited both the representation-level 

nd label-level dependencies. MCNN-AUX proposed an auxiliary 

etwork to obtain relationships among multiple face attributes. 

S-MCNN-LC and DMTL (cross) grouped these multiple face at- 

ributes according to prior knowledge. Although these works ex- 

loited dependencies among multiple face attributes from both 

epresentation-level and label-level, the captured label-level rela- 

ionships are either fixed groups or fixed form. Through multi- 

ask adversarial network, the proposed method can capture the 

omplex and global relationship among multiple face attributes. 

n both databases, the proposed method achieves the best per- 

ormance. It further suggests that the proposed method has strong 

bility for multi-task analyses. 

.8. Comparison with related works on model size 

Beside comparison on the accuracy of multi-task face analy- 

es, we also compare our method ( Ours all ) with HyperFace all and 

F − Resnet all on model size. The numbers of parameters for the 

hree methods are shown in Table 9 . Sizes of the same model on

ifferent databases are almost the same, since the variance on the 

umber of output labels has little effect on the total number of pa- 

ameters. From this table, we find that our method is more light- 

eight than the two compared methods. This is because the size 

f fully connected networks in our method is smaller. With a small 

odel size, our method can well fit to the application with limited 

achine memory. 
11 
. Conclusion 

In this paper, we propose a novel multiple facial analysis 

ethod through exploiting both representation-level and label- 

evel dependencies. Specifically, we first utilize deep multi-task 

etwork as a recognizer R to capture representation-level depen- 

encies. And then, we introduce a discriminator D to distinguish 

he label combinations from the ground-truth. Through optimizing 

he two networks in an adversarial manner, the proposed method 

anages to make predicted label combination closer to the dis- 

ribution of the ground-truth. Experimental results demonstrate 

hat the proposed method successfully captures both the shared 

epresentation-level and label-level constraint and thus outper- 

orms related works. The current work models the spatial de- 

endencies among multiple facial analysis tasks on a static im- 

ge, while temporal dependencies existed in a facial video stream 

ould also be exploited. We plan to incorporate sequential model- 

ng techniques with the proposed adversarial learning framework 

o capture both spatial and temporal patterns from a facial image 

equence. 
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