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ABSTRACT

Pre-training followed by full fine-tuning has gradually been substituted by
Parameter-Efficient Tuning (PET) in the field of computer vision. PET has gained
popularity, especially in the context of large-scale models, due to its ability to
reduce transfer learning costs and conserve hardware resources. However, exist-
ing PET approaches primarily focus on recognition tasks and typically support
uni-modal optimization, while neglecting dense prediction tasks and vision lan-
guage interactions. To address this limitation, we propose a novel PET framework
called Bi-directional Intertwined Vision Language Efficient Tuning for Referring
Image Segmentation (BarLeRIa), which leverages bi-directional intertwined vi-
sion language adapters to fully exploit the frozen pre-trained models’ potential in
cross-modal dense prediction tasks. In BarLeRlIa, two different tuning modules
are employed for efficient attention, one for global, and the other for local, along
with an intertwined vision language tuning module for efficient modal fusion. Ex-
tensive experiments conducted on RIS benchmarks demonstrate the superiority of
BarLeRIa over prior PET methods with a significant margin, i.e., achieving an
average improvement of 5.6%. Remarkably, without requiring additional training
datasets, BarLeRIa even surpasses SOTA full fine-tuning approaches. The code is
available at https://github.com/NastrondAd/BarLeRIal

1 INTRODUCTION

In recent years, large-scale models have made significant contributions to advancements in NLP and
CV, However, the cost associated with full fine-tuning of large models has become prohibitively
expensive. To address this challenge, Parameter-Efficient Tuning (PET) approaches have emerged
as a prevalent paradigm (Houlsby et al.} 2019; |Jie & Deng} [2022; |J1a et al.,2022; |Wang et al.| |2023)).
By freezing a majority of the pre-trained model and fine-tuning only a small subset of parameters,
PET approaches offer high efficiency while maintaining performance comparable to full fine-tuning,
and are increasingly favored for language dialogue (Karimi Mahabadi et al.,|2021;|Sung et al., 2021)
as well as visual recognition tasks (Chen et al.|[2022bj} Jia et al., | 2022). Despite these advancements,
limited research has explored the effectiveness of PET pipelines for adapting to dense prediction
tasks (Ding et al.} 2022; |Qian et al.,2023) or facilitating cross-modal fusion.

This paper investigates the generalization ability of Parameter-Efficient Tuning (PET) and examines
its affordability for a challenging cross-model dense prediction task Referring Image Segmenta-
tion (RIS). RIS is a fundamental segmentation task designed to segment target objects from input
images based on given text descriptions (Hu et al) |2016). Different from vanilla segmentation
tasks, RIS needs to extract not only spatial and semantic information from images, but also key
semantics from textual descriptions, and merge them in order to get the correct segmentation re-
sults. Previous studies have approached this task by either concatenating textual embeddings with
visual features and incorporating vision-language attention mechanisms to facilitate interactions (Yu
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Language: “girl standing in pink and purple shirt wearing bracelets” Language: “fourth orange on lowest row”
loU: 62.63 loU: 71.88 loU: 31.88 loU: 81.74

Language: “woman in gray shirt” Language: “fourth lime”
loU: 46.32 loU: 73.89 loU: 0.00 loU: 82.9

(a) Image (b) ETRIS (c) BarLeRla (d) GT (a) Image (b) ETRIS (c) BarLeRla (d) GT
Figure 1: Comparison between BarLeRIa and state-of-the-art PET RIS method ETRIS. We perform
experiments using two different referring expressions: detailed or abstracted. In the first row, the
expression is detailed and two methods can locate the object given sufficient knowledge, though
BarLeRIa outperforms ETRIS a lot. In the second row, only brief expressions are provided, ETRIS
locates wrong contours while BarLeRIa still segments the target objects well. Best viewed in color.

let all} 2018} [Li et al} 2018} [Chen et al., 2019), or by pursuing vision-language alignment using uni-
modal pre-trained models supplemented with additional training (Liu et al.| 2023; [Yan et al.| 2023).

More recently, leveraging the advancements in vision-language pre-training (Radford et al., [2021)),
Wang et al.| (2022)) propose to transfers multi-modal knowledge from CLIP through text-to-pixel
contrastive learning, leading to remarkable performance gains. However, these approaches rely on
computationally extensive full fine-tuning, which raises concerns about scalability and affordability.

Few works explore integrating PET into RIS task, a pioneering work (2023), intro-
duces a vision-language bridge that combines vision inductive biases and language information,
and achieves comparable performance to full fine-tuning. However, this approach primarily focuses
on alignment between the vision and language modalities, while overlooking the core aspect of PET,
namely, adapting the biased feature from pre-trained models (Jia et al.,[2022;[Wang et al.,[2023)). Be-
sides, local modal fusion is adopted in the proposed bridge network as well as the pre-trained vision
language models and the segmentation head (Wang et al.,[2022). Consequently, all components of
the model repetitively fuse local visual features with textual embeddings without incorporating a
global prior from the text input to regularize the visual features, which leading to off-target visual
information interference and sub-optimal performance.

Considering the above two issues when incorporating PET into RIS task, Firstly, we propose a novel
technique to address the feature adaption problem. The highlight is an intertwined vision language
efficient tuning framework for better modal fusion along with feature adaption as a basic design. For
both visual and textual branches, we fuse the visual and textual input in front of each frozen layer
and adapt each layer’s shortcut feature distribution via normalizing flow [2023). In this
way, we keep the backbone frozen, employ modal fusion via the original self-attention mechanism,
and are able to adapt the biased features for segmentation tasks.

Second, in order to address the global regularization issue, we extract a global prior from the text
input to regulate the vision features. This regularization is achieved with a limited number of pa-
rameters in an end-to-end manner. Our proposed method consists of a bi-directional efficient tuning
framework, which comprises a global prior module and a global tuning network. The global prior
module leverages the cosine similarity between visual features and textual embeddings to enforce
regularization. Moreover, to ensure that the global prior regularization does not conflict with the
local intertwined vision language tuning, we introduce global shortcut tuning modules that are de-
tached from the pre-trained backbone. By doing so, we establish a parallel shortcut tuning network
alongside the backbone. Similarly, we extend the intertwined vision language tuning to the shortcut
tuning network to facilitate better fusion of the models.

Incorporating the proposed intertwined vision language efficient tuning and the bi-directional effi-
cient tuning modules, we produce a novel PET framework, namely Bi-directional Intertwined Vi-
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sion Language Efficient Tuning for Referring Image Segmentation (BarLeRIa), to fully exploit the
potential of frozen pre-trained vision-language models. BarLeRIa exhibits remarkable performance
improvement with only 0.4% to 2.5% tuning parameters compared with the backbone when utilizing
CLIP ViT-B as the pre-trained model. Compared to the state-of-the-art PET approach ETRIS (Xu
et al.,2023)), BarLeRIa shows a significant improvement, e.g., +2.01 IoU on RefCOCO, +5.19 IoU
on RefCOCO+, and +3.74 IoU on G-Ref, respectively. Compared with the fully fine-tuned large
visual language model LISA-7B (Lai et al., 2023), BarLeRIa achieves comparable performance
with only about 2M learnable backbone parameters and significantly outperforms the untuned 7B
model. Besides, BarLeRlIa also outperforms full fine-tuning state-of-the-art approaches, e.g., Poly-
Former (Liu et al.|[2023) and UNINEXT (Yan et al.|[2023), which need pre-training on extra region-
level datasets. As comparison, without extra pre-training, BarLeRIa achieves a new SOTA perfor-
mance when adopting EVA-CLIP (Radford et al., 2021) as the pre-trained vision language model.

In a nutshell, our contributions can be summarized as follows:

* We find that previous PET methods for RIS task focus on modal fusion and ignore feature dis-
tribution adaptation and propose a novel intertwined vision language efficient tuning algorithm
for both feature adaptation and modal fusion with only 0.4M (ViT-B) learnable parameters.

* We reveal that repeating fusing the local visual features with the textual embeddings is another
problem for previous approaches and propose a bi-directional efficient tuning framework that
enables both local feature fusion and global prior regularization.

* We design a novel global shortcut tuning module that tunes only 1.8M (ViT-B) parameters and
learns the global prior regularization in parallel with the backbone to avoid conflicts with our
proposed local intertwined vision language efficient tuning.

2 METHODOLOGY

2.1 PRELIMINARIES

Adapting Shortcut with Normalizing Flow (SNF) (Wang et al.,[2023) adjusts the shortcut to adapt
pre-trained models into downstream tasks. For a given skip connection inside the transformer, it can
be depicted as y = x+ f (x) where z is the input feature, f is a certain architecture of the transformer
and y is the output. During fine-tuning, SNF only operates on the shortcut = while keeping other
parts frozen, i.e., y = s(x) + f(x). For a given feature z € RV*, the transformation imposed by
SNF is given by:

s(r) =2+ A h(y" 2+ p) (1)
where )\, 7, 3 € RY, - is the Hadamard product and h(-) is a smooth non-parameteric non-linearity.
Note that SNF allows for multiple concatenated transformations, i.e., y = s(s(---s(z))) + f(x).
The number of transformations is denoted as the depth of SNF.

2.2 FRAMEWORK OVERVIEW

The framework of BarLeRla is depicted in Fig. The fundamental design of BarLeRlIa is the
proposed intertwined vision language efficient tuning algorithm, which is used to enhance modal
fusion. Along with it, we employ a bi-directional efficient tuning framework that simultaneously
adjusts local features and extracts global priors from the text input, thereby regularizing the visual
features. This framework consists of two distinct efficient tuning modules. The first module, known
as the local intertwined module, utilizes the intertwined vision language efficient tuning approach to
enable efficient modal fusion and multi-modal feature adaptation. The second module, referred to as
the global shortcut tuning module, incorporates a parallel shortcut module and leverages the global
prior generated from the global prior module to complement the local vision features. Finally, the
complete vision features, alongside the textual embeddings, are inputted into the learnable referring
image segmentation head and generate the corresponding segmentation masks.

2.3 INTERTWINED VISION LANGUAGE EFFICIENT TUNING

For an input tokenized referring expression T € RZ*P and an input tokenized image I €
REXWXC " along with a visual encoder ¢ : {¢y,--- ,¢xn} composed of N transformer blocks, we
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Figure 2: The framework of BarLeRIa. GST is the abbreviation of global shortcut tuning. For
the visual branch, we fuse the textual embeddings with the visual input in the frozen visual block
and further adapt the feature distribution with the normalizing flow. For the language branch, we
concatenate the visual class token to the textual input and achieve modal fusion and feature adaption
similarly. Besides, a global shortcut tuning module along with a global prior module is proposed in
parallel with the backbone for global visual regularization.

begin by projecting the tokenized expression T" as: T' <— TW,,,;, where W,,.,; € RP*C. Next,
we concatenate the projected expression 7", the tokenized image I (we reshape it into R(-W)xC
before), and the class token cls as [cls, T, I]. These intertwined embeddings are then fed into the
frozen visual encoder ¢ , and the output is given as:

[cls, embed] = F([cls, T}_,, embed]) + ¢;([cls, T]_,, embed)) ()

where F = f; o--- o fj represents a chain of J invertible feature mappings: f;(z) = z + A; -
h(y¥ - 2+ B;), and T]_, represents the output from the (i — 1)-th textual block. Note that we take
the projected expression 7" as input for the frist layer. With the Multi-Head Self-Attention (MHSA)
module employed in each visual block for information interaction between tokens, we successfully
achieve modal fusion through these frozen visual blocks. Additionally, the shortcut normalizing
flow F is applied in each visual block for feature adaptation.  As for the textual block ;, we
project the visual class token cls into cls’ to align its feature dimension with the textual embeddings
T. Then, we concatenate the textual embedding 7" with the projected class token cls;_; from the
previous visual block to form the input. Furthermore, we leverage the shortcut normalizing flow to
adapt the shortcut textual embeddings and employ the frozen transformer block to fuse the textual
and visual features. Consequently, we obtain the output of the textual block v; as follows:

[T] = Flels; 1, T1) + i([els; . T1) 3)

2.4 BI-DIRECTIONAL EFFICIENT TUNING

As discussed in Sec. [T} bi-direction refers to the combination of local efficient tuning and global
prior regularization, and the bi-directional efficient tuning framework consists of two modules: the
Global Prior Module and the Global Shortcut Tuning Network.

Global Prior Module. As language is more semantic-rich, the produced language embeddings
tend to be more robust compared to the visual ones. Therefore, we propose regularizing visual
features through the global prior generated by the language embeddings. Specifically, given the
visual encoder ¢ and its output vision feature F,,, as well as the language encoder v and its output
language embeddings F;, we concatenate the vision features with the language embeddings to obtain
intertwined features: [F, F},]. Next, we calculate the cosine similarity between the intertwined
feature [F}, F,] and the language embeddings F;. This cosine similarity serves as an attention mask,
which is then multiplied with the intertwined feature to produce the global prior p:

p:COS([E7Fv]aFl)'[ﬂaF’U] (4)



Published as a conference paper at ICLR 2024

Global Shortcut Tuning Network. To ensure that the global prior regularization does not con-
flict with our local intertwined vision language efficient tuning and to achieve an end-to-end PET
pipeline, we introduce a global shortcut tuning network G that operates in parallel with the vision
encoder. This network consists of M modules {Gy,--- ,Gar}, each following the design of the
transformer block with MHSA and MLP, but with smaller feature dimensions (default setting: 144).
Firstly, we transform the global prior p using M linear transformations to obtain adapted priors
p1,- - ,pa for each global shortcut tuning module. Then, given the tokenized input image I and
the language embedding Fj, we concatenate them with learnable query tokens q as [g, Fj, I], which
serves as the input for the global shortcut tuning network. For the first global shortcut tuning module
G, we feed these concatenated tokens along with the global prior p; as follows:

Ilzgl([unhI]?pl) (5)

where I; represents the output of the first module, and G; (1, p) utilizes the global prior p to regu-
larize the MHSA feed-forward in the global shortcut tuning module. In elaboration, we project the
input I into query, key, and value tokens using projection matrices W, Wy, and W, respectively.
Additionally, we project the global prior p into complementary value tokens using learnable projec-
tion matrices I¥,,. The two sets of value tokens are then added together, resulting in the new value
tokens I'W,, + IW,. Consequently, we redefine the self-attention mechanism as:

IW,IW,
VG

Here, C denotes the feature dimension, and for simplicity, we omit the multi-head division. By mod-
ifying the value tokens in the MHSA block, we successfully incorporate global prior regularization
into the global shortcut tuning module through the introduced global attention. For the remaining
M — 1 modules, we repeat the global prior regularization process as follows:

IZ:gz(szlva%Z:Zv 7M (7)

MHSA(I) = Softmax ( > {IWy +1IWp) (6)

The global shortcut tuning network comprises very few parameters and is primarily employed for
parameter-efficient tuning. Subsequently, we proceed to fuse the output shortcut features 11, - - - , Ips
from each global shortcut tuning module with the corresponding vision features F;,. For a given ¢-th
output shortcut feature I; and its corresponding vision features F!, we first interpolate I; to match
the height and width of the original vision features F!. Subsequently, we add these two sets of vision
features to obtain the output feature F,,; as follows:

F!, = Interpolate(I;) + F! 8)

out —

To prevent conflicts with the local intertwined module, we detach F! during fine-tuning.

2.5 FINAL OBJECTIVE

Following |Wang et al.| (2022) and |Xu et al.[| (2023)), we incorporate a learnable referring image
segmentation head composed of a cross-modal neck, vision-language decoder, and an up-sample
projector to extract the cross-modal intertwined feature F; and the transformed textual feature Fj:

F.i, F, = Head(F,,, F,, FY) ©)

out?

where FM, represents the output from the last global shortcut tuning module, while F; and F,, denote
the textual embeddings and the vision encoder features adapted by the local intertwined modules.
To train our model, we employ a text-to-pixel contrastive loss (Wang et al., [2022)) as our training
objective, which encourages the alignment of textual embeddings with their corresponding visual
pixels, while pushing textual embeddings away from other irrelevant visual pixels. The text-to-pixel

contrastive loss is formulated as follows:

i i _ _IOg(U(Fcii‘Ft))v ieP
Enp (FCi’Ft) B {_bg (1_0(F21'Ft))7 ieN (10)
1 ) )
Lup (Fei, Fy) = PUN| Z Liy (Fi Fr)
1€EPUN

where o denotes the sigmoid function, P and N represent the classes of 1 and 0, respectively.
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Table 1: Comparison with SOTA RIS methods and the PET RIS SOTA method without additional
datasets evaluated using the IoU metric on RefCOCO-related datasets.

M RefCOCO RefCOCO+ G-Ref
ethod Av
val [testA]testB| val [testA ] testB |val(u)]test(u)]val(g) &
Traditional Full Fine-tuning
MAttNet (Yu et al., 2018)) 56.5 | 62.4 | 51.7 | 46.7 | 52.4 | 40.1 | 47.6 | 48.6 50.5

RRN (Li et al., |2018]) 55.3 | 57.3 | 54.0 | 39.8 | 42.2 | 36.1 - - 36.5 |43.8
CMSA (Ye et al.,[2019) 583 | 60.6 | 55.1 | 43.8 | 47.6 | 37.9 - - 40.0 | 47.0
CAC (Chen et al.,[2019) 58.9 | 61.8 | 53.8 - - - 46.4 | 47.0 | 443 -
BRINet (Hu et al., 2020) 61.4 | 63.4 | 59.6 | 48.6 | 52.9 | 42.1 - - 48.0 | 52.5

CMPC+ (L et al[2021a) | 61.4 | 64.5 | 59.6 | 49.6 | 53.4 | 43.2 - - - -
CGAN (Luo et al.,2020) 64.9 | 68.0 | 62.1 | 51.0 | 55.5 | 44.1 | 51.0 | 51.7 - 1555
LTS (Jing et al., [2021) 654 | 67.8 | 63.1 | 54.2 | 58.3 | 48.0 - -

VLT (Ding et al.,|2021) 65.7 | 68.3 | 62.7 | 55.5|59.2 | 494 - - 49.8 | 56.7
PCAN (Chen et al.|[2022a) | 69.5 | 71.6 | 64.2 | 58.3 | 63.7 | 48.9 | 60.0 | 60.8 | 57.5 | 61.6

ReSTR (Kmm et al.,2022) | 67.2 | 69.3 | 64.5 | 55.8 | 60.4 | 48.3 | 54.5 - 54.5 | 58.8
CRIS (Wang et al.||[2022) 70.5 | 732 | 66.1 | 623 | 68.1 | 53.7 1 599 | 604 | - |63.8
LAVT (Yang et al., 2021) 7271758 | 68.8 | 62.1 | 68.4 | 55.1 - - 60.5 | 64.9
WiCo (Cheng et al.l|2023) | 73.5 | 76.9 | 68.1 | 63.4 | 69.2 | 55.8 - - 60.2 | 65.3

Parameter Efficient-Tuning
ETRIS (Xu et al.,[2023) 70.5 | 73.5 | 66.6 | 60.1 | 66.9 | 50.2 | 59.8 | 59.9 | 57.9 | 62.8
Ours 724|759 | 68.3 | 65.0 | 70.8 | 56.9 | 63.4 | 63.8 | 61.6 | 66.5

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. We employ three challenging referring image segmentation benchmarks in our experi-
ments: RefCOCO (Kazemzadeh et al.,[2014)), RefCOCO+ (Kazemzadeh et al.,2014), and G-Ref (Yu
et al| [2016). Please refer to the appendix [A.T|for details.

Implementation Details. We train the whole network in an end-to-end manner for 50 epochs using
the Adam optimizer with a learning rate of 0.0001. A learning rate decay is employed at the 35th
epoch with a decay factor of 0.1. We train the model using 2 Tesla V100 GPUs with a batch size of
32. For ViT-L/14, we train the model using 8 Tesla V100 GPUs with a batch size of 64 and an initial
learning rate of 0.0002. Following previous works (Ding et al., [2021} |[Liu et al., 2017; /Wang et al.,
2022;|Xu et al., 2023)), we adopt IoU as the metric to evaluate the performance. More details can be
referred to in the appendix[A.2]

3.2 MAIN RESULTS

We conducted a comprehensive comparison between our BarLeRIa and a series of previous RIS ap-
proaches. The results, presented in Tab. [I] demonstrate that our approach significantly outperforms
state-of-the-art RIS methods on three commonly used datasets, achieving 6 SOTA and 3 sub-sub-
SOTA performance across 9 evaluation tasks. In particular, we surpass the performance of WiCo
(Cheng et al., [2023)), which utilizes an additional ResNet-50 to extract top-down segmentation pro-
posals as a pre-stage. In contrast, our BarLeRIa model achieves superior results using only 2.2M
parameters and is trained in an end-to-end manner.

Furthermore, we compare our proposed approach with the state-of-the-art parameter-efficient tuning
RIS method, ETRIS (Xu et al. |2023). To ensure a fair comparison, we employ the same CLIP
pre-trained vision language model of ViT-B/16 as used in ETRIS and freeze the visual and textual
encoders. The tuning backbone parameters in BarLeRIa are only 2.2M, which is comparable to
ETRIS. It is worth noting that we can achieve superior performance to ETRIS only using the local
intertwined module with much fewer tuning parameters, and more details are shown in Sec. [3.5]

Overall, BarLeRIa achieves a significant improvement of +3.7 IoU on average across the three
RefCOCO-related datasets, demonstrating its superiority over existing RIS methods.
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Table 2: Comparison with full fine-tuning SOTA RIS methods and these methods either utilize large
language models or are pre-trained with additional datasets. IoU is utilized as the metric. T denotes
that the model is tuned using the mixed RefCOCO datasets.

RefCOCO RefCOCO+ G-Ref
Method Av
B val |[testA|testB| val [testA |testB |val(u) |test(u) g
LISA-7B (Lai et al., [2023) 74.1 1765 71.1 {624 |67.4|565| 664 | 68.5 | 67.9

LISA-7B (ft) (La1 et al.| [2023) 74.9 | 79.1 | 72.3 | 65.1 | 70.8 | 58.1 | 67.9 | 70.6 | 69.9
PolyFormer-BT (Liu et al.}[2023) | 74.8 | 76.6 | 71.1 | 67.6 | 59.3 | 729 | 67.8 | 69.1 | 69.9
UNINEXT-R50 (Yan et al.,[2023)| 77.9 | 79.7 | 75.8 | 66.2 | 71.2 | 59.0 | 70.0 | 70.5 | 71.3

ETRIS (Xu et al.;,[2023) 72.4174.6 | 693 | 645|704 | 56.9 | 62.6 | 63.1 | 66.1
BarLeRIa 75.0 | 77.1 | 71.2 | 68.6 | 73.2 | 61.2 | 65.9 | 66.4 | 69.8
BarLeRIa-Mixed' 77.6 794|753 |71.7 | 75.7 | 66.0 | 70.9 | 71.4 | 73.5

3.3 COMPARISON TO FULL FINE-TUNING METHODS

We further conducted a comparison between our proposed approach and existing SOTA full fine-
tuning methods. These methods either utilize large language models or are pre-trained with addi-
tional datasets that contain region-level information. Without using additional datasets, we select
a superior CLIP version, EVA-CLIP, which is still pre-trained using general-purpose datasets. For
fair comparisons, we also use the EVA-CLIP pre-trained vision language model as the backbone for
ETRIS. As shown in Tab. 2] BarLeRIa outperforms ETRIS by a significant margin, achieving an
average improvement of +3.7 IoU using the same EVA-CLIP pre-trained backbone.

Compared to LISA-7B (Lai et al. |2023), a large vision language model with 7 billion parameters,
our approach demonstrates a significant improvement when LISA-7B is not fine-tuned and achieves
comparable performance when LISA-7B is fully fine-tuned. Compared with PolyFormer-B (Liu
et al.,[2023)) that utilizes Swin-B (Liu et al.,[2021b)) as the visual encoder and the BERT transformer
as the textual encoder, our proposed BarLeRIa achieves comparable performance without additional
region-level pre-training and mixed fine-tuning. It is worth noting that PolyFormer introduces a sec-
ond pre-training phase to incorporate region-level information using additional datasets, including
Visual Genome, three RefCOCO-related datasets, and Flickr30k-entities. Furthermore, BarLeRIa
achieves a +3.6 IoU improvement over PolyFormer-B when we additionally employ mixed fine-
tuning. UNINEXT (Yan et al., 2023) leverages pre-training on Objects365 to learn region-level
information and also employs mixed fine-tuning. BarLeRIa achieves a +2.2 IoU improvement over
UNINEXT-R50 when we also employ mixed fine-tuning with much fewer tuning parameters.

We also conduct experiments using the ViT-Large visual encoder to verify the generalization abil-
ity of our method across different architectures. As shown in Tab. [3] BarLeRIa-L outperforms
PolyFormer-L without additional region-level pre-training and mixed fine-tuning. Moreover, com-
pared to the best-performing RIS method, UNINEXT, BarLeRIa-L-Mixed achieves a clear margin of
+1.0 IoU averaged improvement across RefCOCO-related datasets, demonstrating its effectiveness.

3.4 VISUALIZATION

As illustrated in Fig.[3] we present visualization results with different settings under easy scenarios
and hard scenarios, respectively. In the figure, (d) SNF means we just use normalizing flow to adapt
the visual features without the bridge used in ETRIS, and (e) SNF+ETRIS means we combine SNF
with ETRIS. We use these two settings to determine whether SNF is the key to PET RIS approaches.
We find that both (d) and (e) lag much compared with our BarLeRIa and prove that our proposed
two PET modules provide great improvement (more details of the ablation are shown in Sec. [3.5).

The first two rows of Fig. [3] represent the easy scenario and all methods can segment objects cor-
rectly. The difference is only in the detail and the finesse of the contours. BarLeRIa and BarLeRIa-
L-mixed achieve the best segmentation IoU while ETRIS performs worst. For the hard scenario,
i.e., the last two rows of Fig.[3] ETRIS fails to locate the object correctly, SNF and SNF+ETRIS in-
troduce overly large outlines, indicating that they do not fully understand the text description, while
our BarLeRIa fully understands the meaning of the text and accurately segments the target objects.
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Table 3: Comparison with full fine-tuning SOTA RIS methods using ViT-Large as the visual back-
bone. These methods either utilize large language models or are pre-trained with additional datasets.
IoU is utilized as the metric. T denotes that the model is tuned using the mixed RefCOCO datasets.

Method RefCOCO RefCOCO+ G-Ref

Avg
val testA testB val testA testB val(u) test(u)

PolyFormer-L' (Liu etall[2023) 76.0 78.3 733 693 619 746 692 702 71.6
UNINEXT-L' (Yanetal[2023) 80.3 82.6 77.8 700 749 626 734 737 744

BarLeRIa-L 76.8 79.0 740 715 762 654 68.7 69.7 72.7
BarLeRIa-L-Mixed! 79.0 80.8 77.0 742 778 683 727 733 754
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(a) Image (b) GT (c) ETRIS (d) SNF (e) SNF+ETRIS (f) BarLeRla (g) BarLeRla-L*
Figure 3: Qualitative results with different settings. (a) the input image. (b) the ground truth. (c)

ETRIS. (d) SNF without local intertwined module. () SNF+ETRIS. (f) our proposed BarLeRIa. (g)
BarLeRIa-L using mixed datasets. Best viewed in color.

3.5 ABLATION STUDY

To establish the efficacy of our proposed approach, we perform ablation studies on the components
of our proposed BarLeRIa. We only briefly document the averaged performance of different test
splits for RefCOCO, RefCOCO+, and G-Ref respectively (please refer to the appendix [B]for detailed
results). Ilustrated in Tab.[d SNF means we use the normalizing flow to adjust the feature, LIM is
the abbreviation of Local Intertwined Module, GST denotes Global Shortcut Tuning, and No Global
means we just use the Local Intertwined Module without the Global Shortcut Tuning. As we can
see, just employing existing SNF or combining SNF with ETRIS does not improve segmentation
performance. Besides, if we only use the local intertwined module (No Global in the table), we
can outperform ETRIS with +2.6 averaged IoU improvement with nearly one-tenth the number of
tuning parameters. This result demonstrates that BarLeRIa can greatly surpass existing PET state-
of-the-art with fewer learnable parameters and showcases its superiority. Finally, with the proposed
Global Shortcut Tuning, BarLeRIa achieves further enhancements to +1.1 averaged IoU.

4 RELATED WORK

Parameter Efficient Tuning (PET) adjust only a fraction of the parameters and alleviate the compu-
tational challenges associated with fine-tuning the entire model. One prominent research direction
focuses on incorporating lightweight architectures into the frozen backbone and updating only these
newly added architectures during fine-tuning (Houlsby et al.| [2019; [Mahabadi et all, 2021}, [Lester]
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Table 4: Ablation study on the components of BarLeRIa. LIM is the abbreviation of Local Inter-
twined Module, GST denotes Global Shortcut Tuning, and No Global means we just use the Local
Intertwined Module without the Global Shortcut Tuning.

Method SNF LIM GST Params(M) RefCOCO RefCOCO+  G-Ref Avg
ReSTR - - - 86.19 67.0 54.8 54.5 58.8
ETRIS X X X 1.39 70.2 59.1 59.2 62.8
SNF v X X 0.18 70.6 59.6 59.3 63.2
SNF+ETRIS v X X 1.57 70.2 59.9 60.1 63.4
No Global v v X 0.39 71.4 63.1 61.6 65.4
BarLeRIa v v v 2.21 72.2 64.2 62.9 66.5

et al., 2021; |Li & Liang| [2021; [Karimi Mahabadi et al., 2021} [Chen et al., [2022b} Jie & Deng,
2022; J1a et al.} 2022). For instance, AdaptFormer (Chen et al., 2022b)) and ConvPass (Jie & Deng],
2022) introduce bottleneck or convolution modules along the skip connections within transformer
layers and adapt the residuals for downstream tasks. Recently, Wang et al.| (2023) proposed lever-
aging normalizing flows to adjust the shortcuts rather than the residuals within transformer layers,
offering an easily implementable and accessible approach for various architectures. Another line
of the PET method involves updating only a subset of the parameters in the original model (Sung
et al., 2021; |Zaken et al., 2021). Zaken et al. (Zaken et al.| [2021), for example, demonstrate that
updating only the bias terms can achieve competitive or even superior performance compared to full
fine-tuning. Additionally, some researchers have explored matrix decomposition techniques to re-
duce the number of learnable parameters by factorizing the weights of pre-trained models (Hu et al.}
2021} Jie & Dengl| [2023)), which also yield satisfactory performance. Unfortunately, PET approaches
for referring image segmentation are less investigated. Recently, Xu et al.| (2023) introduced PET
to referring image segmentation by leveraging the bridge module for information fusion between
visual and textual modalities. However, their proposed ETRIS lacks feature adaption and global vi-
sual regularization, resulting in unsatisfactory performance. Besides these works, some researchers
factorize weights of the pre-trained model based on the low-rank assumption, such that parameters
that need to be tuned can be largely reduced |Hu et al.[(2021)).

Referring Image Segmentation (RIS) aims to segment a target instance or region referred by the
given text query and is initially introduced by Hu et al.| (2016). Early methods were predominantly
based on the CNN+LSTM approach (Liu et al., 2017 [Li et al.| [2018), where the image and text
inputs were encoded separately using their respective backbones. However, in recent years, trans-
former architectures have gained popularity due to their flexibility and scalability(Vaswani et al.,
2017; Dosovitskiy et al., 2020), allowing RIS methods to employ a unified architecture across dif-
ferent modalities (Kim et al.,2022;|Yang et al.,|2021}; [Liu et al.,[2023}; 'Yan et al.,[2023)). Additionally,
the advent of multi-modal pre-training (Radford et al.,[2021) has provided RIS models with the ad-
vantage of leveraging large-scale pre-training data (Wang et al.,[2022). Besides, recent work (Cheng
et al.,|2023) has proven that the global prior can help the referring segmentation. However, these
methods require full fine-tuning of an additional over-parameterized model and divide the segmen-
tation process into two stages without end-to-end training.

5 CONCLUSION

In this paper, we pay attention to parameter efficient tuning for referring image segemntation. We
reveal that previous approaches focus on vision and language modal alignment, but ignores adapting
the biased feature from pre-trained models. Besides, previous approaches fuse the local visual fea-
tures with the textual embeddings without introducing global prior from text input to regularize the
visual feature. To address these issues, we propose a novel PET framework BarL.eRIa: Bi-directional
Intertwined Vision Language Efficient Tuning for Referring Image Segmentation , which leverages
intertwined vision language adapters and bi-directional tuning framework to fully exploit the frozen
pre-trained models’ potential. We conduct extensive experiments on three RefCOCO-related bench-
marks. BarLeRlIa consistently outperforms prior parameter efficient tuning methods with a clear
margin. Moreover, BarLeRIa also surpasses full fine-tuning state-of-the-art approaches without pre-
training using additional training datasets.
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A EXPERIMENTAL SETUP

A.1 DATASETS

RefCOCO (Kazemzadeh et al.|[2014]) is a widely used benchmark for referring image segmentation
out of its large scale. It consists of 19,994 images with annotations for 142,210 referring expressions
related to 50,000 objects. These annotations were gathered through a two-player game based on the
MSCOCO dataset. The dataset is divided into four subsets: 120,624 samples for training, 10,834
for validation, 5,657 for test A, and 5,095 for test B. On average, the referring expressions are 3.6
words long, and each image contains at least two objects.

RefCOCO+ (Kazemzadeh et al., |2014) contains 141,564 referring expressions associated with
49,856 objects across 19,992 images. It is designed to be more challenging than RefCOCO by
excluding certain absolute-location words. Similar to RefCOCO, RefCOCO+ is divided into four
subsets: 120,624 samples for training, 10,758 for validation, 5,726 for test A, and 4,889 for test B.

G-Ref (Yu et al,2016)) consists of 104,560 referring expressions related to 54,822 objects in 26,711
images. The expressions in G-Ref were collected from Amazon Mechanical Turk and have an aver-
age length of 8.4 words. Compared with the previous two datasets, G-Ref contains more descriptions
of locations and appearances in the text annotations. Note that we apply both the Google and UMD
split in our experiments with the denotation G-Ref(g) and G-Ref(u) respectively.
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Language: “it all looks yummy™

(a) Image (b) SNF+ETRIS (c) BarLeRla (d) BarLeRla-L* (e) GT

Figure 4: Visualization results with different settings. (a) the input image. (b) SNF+ETRIS. (c)
BarLeRIa. (d) BarLeRIa-L using mixed datasets. (e) the ground truth. Best viewed in color.

Language: “older sheep”

(a) Image (b) SNF+ETRIS (c) BarLeRla (d) BarLeRla-L* (e) GT

Figure 5: Visualization results with different settings. (a) the input image. (b) SNF+ETRIS. (c)
BarLeRIa. (d) BarLeRIa-L using mixed datasets. (e) the ground truth. Best viewed in color.

A.2 IMPLEMENTATION DETAILS

We choose ViT-B/16 of CLIP as the pretrained vision language model in most experiments. Fol-
lowing [Wang et al (2022)), we resize the input images to 416 x 416. For the visual backbone
and textual backbone, we follow the settings of CRIS (Wang et al, [2022)) and ETRIS
2023)). For the local intertwined module, we employ SNF-deep, which has four transformations in
MHSA block and MLP block respectively, in each visual transformer layer and text transformer
layer. Following [Wang et al| (2023), the explicit log Jacobian loss is not used when calculating the
training objective. For the global shortcut tuning network that consists of 4 global shortcut tuning
modules. We set the feature dimension 144 as a default setting. We employ 128 learnable query
tokens following VPT . The output 4 global shortcut features are fused with the output from the 3,
6, 9, 12 visual encoder layers, respectively. The referring image segmentation head consists of a
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Table 5: The detailed ablation study on the components of BarL.eRIa.

Method Params(M) RefCOCO RefCOCO+ G-Ref Ave
val testA testB wval testA testB val(u) test(u) val(g)
ReSTR 86.19 672 693 645 558 604 483 545 - 545 58.8
ETRIS 1.39 70.5 735 66.6 60.1 669 502 598 599 579 628
SNF 0.18 70.8 73.8 67.2 60.5 67.1 51.1 60.0 60.0 58.0 63.2
SNF+ETRIS 1.57 70.4 733 669 60.5 66.1 53.0 60.6 60.8 59.0 634
No Global 0.39 717 746 68.0 64.0 70.2 551 622 623 602 654
BarLeRIa 2.21 724 759 68.3 65.0 70.8 569 634 638 616 66.5

transformer decoder and an up-sampling projector, and all the settings follow Wang et al.| (2022).
We train the whole network in an end-to-end manner for 50 epochs using the Adam optimizer with
a learning rate of 0.0001. A learning rate decay is employed at the 35th epoch with a decay factor
of 0.1. We train the model using 2 Tesla V100 GPUs with a batch size of 32. For ViT-L/14, we train
the model using 8 Tesla V100 GPUs with a batch size of 64 and an initial learning rate of 0.0002.
Following previous works (Ding et al., 2021} [Liu et al., |2017; [Wang et al., 2022} Xu et al., [2023)),
we adopt IoU as the metric to evaluate the performance. The IoU calculates intersection regions
over union regions of the predicted segmentation mask and the ground truth. Given the cross-modal
intertwined feature F.; and the transformed textual feature F}, the segmentation result is obtained
by reshaping o (F; - F}) into % X % and then up-sampling it back to the original image size, fol-
lowing [Wang et al.| (2022)), where o denotes the sigmoid function, H and W are the origin shape of
the input images.

B MORE EXPERIMENTAL RESULTS

B.1 DETAILED ABLATION

To establish the efficacy of our proposed approach, we perform ablation studies on the components
of our proposed BarLeRIa. In this detailed ablation, we document all the performance for different
splits respectively. Illustrated in Tab.[5} SNF means we use the normalizing flow to adjust the feature,
LIM is the abbreviation of Local Intertwined Module, GST denotes Global Shortcut Tuning, and No
Global means we just use the Local Intertwined Module without the Global Shortcut Tuning. As we
can see, just employing existing SNF or combining SNF with ETRIS does not improve segmentation
performance. Besides, if we only use the local intertwined module (No Global in the table), we can
outperform ETRIS with +2.6 averaged IoU improvement with nearly one-tenth the number of tuning
parameters. This result demonstrates that BarLLeRIa can greatly surpass existing PET state-of-the-
art with fewer learnable parameters and showcases its superiority. Finally, with the proposed Global
Shortcut Tuning, BarL.eRIa achieves further enhancements to +1.1 averaged IoU.

B.2 MORE VISUALIZATION

As illustrated in Fig. 4] [} [6} and [7] we present visualization results with different settings. In the
figure, (b) SNF+ETRIS means we combine SNF with ETRIS, and (d)) BarLeRIa-L* denotes we use
ViT-large as the visual backbone and employ mixed datasets tuning using BarLeRIa. All the results
demonstrate that our proposed intertwined vision language tuning algorithm and Bi-directional effi-
cient tuning framework successfully adapt the features, introduce a global regularization, and yield
a significant segmentation performance improvement.

C THE DETAILS OF THE REFERRING IMAGE SEGMENTATION HEAD

As we elaborated in Sec. @ we follow [Wang et al.| (2022) and [Xu et al.| (2023), and incorporate a
learnable referring image segmentation head composed of a cross-modal neck, vision-language de-
coder, and an up-sample projector to extract the cross-modal intertwined feature and the transformed
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Language: “giraffe half way from fence”

(a) Image (b) SNF+ETRIS (c) BarLeRla (d) BarLeRla-L* (e) GT

Figure 6: Visualization results with different settings. (a) the input image. (b) SNF+ETRIS. (c)
Barl.eRIa. (d) Barl.eRIa-1. usineg mixed datasets. (e) the eround truth. Best viewed in color.

Language: “donut no hole”

(a) Image (b) SNF+ETRIS (c) BarLeRla (d) BarLeRla-L*

Figure 7: Visualization results with different settings. (a) the input image. (b) SNF+ETRIS. (c)
BarLeRIa. (d) BarLeRIa-L using mixed datasets. (e) the ground truth. Best viewed in color.

textual feature. Here we introduce the referring image segmentation head in detail.

Cross-modal Neck: Following , given multiple adapted visual features F},i €
2,---, N from different stages and the adapted textual embeddings Fj, we employ MHSA with
convolution to obtain the fusion features F'y. Then, we concatenate a 2D spatial coordinate feature
Feoorq with the fused features Iy and use a 3 x 3 convolution to further fuse them as:

F. = Conv([Fy, Feoord] (11)

Vision-Language Decoder: Then, we add the feature . outputted from the cross-modal neck and
the output from the last global shortcut tuning module F/, as F,.+ F, and input the combined fea-
tures along with textual embeddings F; to a vision-language decoder following [Wang et al| (2022);
to achieve the multi-modal features F},,,,. Specifically, the decoder consists of three
layers, with each layer composed of a multi-head self-attention layer, a multi-head cross-attention
layer, and a feed-forward network. Within each decoder layer, the input combined feature is ini-
tially passed through the multi-head self-attention layer to capture global contextual information.
Subsequently, the cross-attention layer is employed to facilitate multi-modal interaction, enabling
the transmission of detailed semantic information from the textual features to the visual features.
This interaction is achieved by mapping visual features to queries and textual features to keys and
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values. Following the cross-attention layer, an MLP block comprising two layers, along with Layer
Normalization and residual connections, is utilized to further process the output features. Finally,
the output of the MLP block is employed to generate the final segmentation mask.

Up-sample Projector: To obtain mask prediction on each pixel according to the corresponding
semantic information, we follow [Wang et al.| (2022); [Xu et al.|(2023) use a projector to make trans-
formations on multi-modal features F),,,,, and sentence-level feature Fj to extract the cross-modal
intertwined feature F.; and the transformed textual feature F; as:

F.; = Conv(Up(Fynm))Fy = Linear(F,) (12)

where UpSample denotes 4x upsampling, and convolution and linear projection are used to trans-
form F,,, and Fj into a suitable dimension following [Wang et al.|(2022); | Xu et al.| (2023]).

D LIMITATION AND FUTURE WORK

Despite its ability to achieve state-of-the-art performance on referring image segmentation, Bar-
LeRIa has some limitations. The proposed global shortcut tuning network is relatively larger com-
pared with our local intertwined vision language tuning module (1.8M v.s. 0.4M). A more efficient
approach that imposes global prior back to the visual features without influencing the original fea-
ture adaption deserves future research. Besides, because it involves the processing of variable-length
sequences, our approach is not compatible with convolutional networks. How to adapt the convo-
lutional neural network to make our method more general also deserves further research. Finally,
open-vocabulary zero-shot referring image segmentation is a worthwhile direction to explore as
multi-modal large-scale models continue to evolve.
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