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ABSTRACT

As the context limits of Large Language Models (LLMs) increase, the range of
possible applications and downstream functions broadens. In many real-world
tasks, decisions depend on details scattered across collections of often disparate
documents containing mostly irrelevant information. Long-context LLMs appear
well-suited to this form of complex information retrieval and reasoning, which has
traditionally proven costly and time-consuming. However, although the develop-
ment of longer context models has seen rapid gains in recent years, our under-
standing of how effectively LLMs use their context has not kept pace. To address
this, we conduct a set of retrieval experiments designed to evaluate the capabilities
of 17 leading LLMs, such as their ability to follow threads of information through
the context window. Strikingly, we find that many models are remarkably thread-
safe: capable of simultaneously following multiple threads without significant loss
in performance. Still, for many models, we find the effective context limit is sig-
nificantly shorter than the supported context length, with accuracy decreasing as
the context window grows. Our study also highlights the important point that to-
ken counts from different tokenizers should not be directly compared—they often
correspond to substantially different numbers of written characters. We release
our code and long context experimental data.

1 INTRODUCTION
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Figure 1: Contextualising context lengths of
LLMs and classic literature1. Books sourced from
Project Gutenberg (2024).

In recent years, LLMs and multimodal LLMs
have been shown to possess remarkable ca-
pabilities (Bubeck et al., 2023) across tasks
including software engineering (Hou et al.,
2023), geospatial reasoning (Roberts et al.,
2023a;b), medicine (Wu et al., 2023), mathe-
matical and scientific figure understanding (Yue
et al., 2024) and finance (Liu et al., 2023b).
An expansion of compute resources, coupled
with technical innovations (Liu et al., 2023a),
is enabling contemporary frontier models to be
trained on ever increasing volumes of data and
longer context limits—the maximum number of
tokens they can process at once. To contextu-
alise the number of tokens leading models can
process simultaneously, at just over 300k to-
kens1, the classic novel Moby-Dick (Melville,
1851) could fit into the reported 2M token con-
text window of Gemini 1.5 Pro (Reid et al.,
2024) almost 5 times. As shown in Fig. 1, most books and even book series contain fewer tokens
than the longest model context windows.

1Using the LLaMA-3.1 tokenizer (Dubey et al., 2024).
Emails: jdr53@cam.ac.uk, kaihanx@hku.hk, samuel.albanie.academic@gmail.com
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A longer context offers potential benefits to performance, for example, many-shot in-context learn-
ing (Agarwal et al., 2024) in which hundreds or thousands of examples are appended to the model
input. Another consequence is the wider range of possible applications and attainable downstream
tasks. In particular, with a longer context, models can better perform real-world scenarios, such
as legal document retrieval, academic research, understanding tax frameworks, and solving crimes
and puzzles. In these cases, decisions are made and conclusions drawn based on large quantities
of information distributed across many sources and formats. The ability to hold information – on
the scale of multiple full-length novels or hundreds of academic papers and documents – in-context,
makes models well-suited to this type of task.

The rate of development of longer context models has outpaced the understanding of how well they
use their long context and can navigate it. Moreover, current benchmarks are considered inadequate
and lacking (Bai et al., 2023; Zhang et al., 2024). Specifically, we identify three limitations of the
extant literature related to long context understanding. (1) Performance saturation: Building on the
‘needle in a haystack’ test (Kamradt, 2023), numerous benchmarks focus on simple retrieval-based
experiments. Frontier models can perform these tasks excellently, achieving perfect or near-perfect
scores (Reid et al., 2024; Anthropic, 2024a; Dubey et al., 2024), leaving little headroom and useful
insights to be gained. (2) Limited context length: In most long-context benchmarks, evaluations
are limited to sub-100k contexts, falling short of the context limit of frontier LLMs by an order
of magnitude. (3) Lack of granular takeaways: Due to the use of real documents or tendency to
aggregate multiple tasks into an overall metric in most works, isolating specific trends is challenging
other than the macro-trend that performance degrades as context length increases.

As such, there is opportunity for a set of challenging experiments, suitable to reach the limits of fron-
tier models. To this end, we design and conduct a series of retrieval-based long context experiments
of varying degrees of difficulty, across a range of context sizes up to 900k (Gemini 1.5) tokens. Our
investigation includes novel needle threading tasks, which entail following a thread of linked pieces
of information across different parts of the context and retrieving the final value. We also explore
a more difficult multi-threading variation, which requires tracking multiple threads simultaneously,
and assess whether the LLMs are thread-safe. We evaluate a suite of 17 LLMs on these tasks and
observe performance decreases in longer contexts. Coupled with the finding that tokenization differs
significantly between models, we introduce a task-specific effective context limit metric.

In summary, our core contributions are: (1) We introduce challenging multi-step threading and
multi-threading retrieval tasks and evaluate 17 leading LLMs. (2) For simple needle retrieval tasks,
we show that increased context length reduces performance, while increasing the number of needles
retrieved concurrently has relatively limited impact on stronger models. (3) We show that leading
LLMs are remarkably thread-safe - their thread following performance is largely unaffected by con-
current queries. (4) We compare tokenizers, highlighting significant differences in token counting.
(5) We propose a task-specific and configurable model-agnostic effective context limit metric.

2 RELATED WORK

Evaluation of the long context capabilities of large language models is a recent yet burgeoning field
of research. Numerous works focus on evaluating LLMs at long-document understanding tasks,
such as question answering (An et al., 2023; Bai et al., 2023; Dong et al., 2023; Kuratov et al., 2024;
Shaham et al., 2023; Li et al., 2023; Yuan et al., 2024), in which performance is generally found
to decrease with increasing context length. Related tasks involve the summarisation and citation of
insights across documents (Laban et al., 2024) and claim verification (Karpinska et al., 2024), which
proves challenging for frontier models. While these benchmarks provide robust evaluations across
a variety of tasks, they typically focus on smaller context lengths, with most including only limited
explorations beyond 100k. Although there are benefits to realism by using real documents for these
tasks, there are drawbacks. Specifically, timely annotation and curation are required, making it
difficult to decompose performance as a function of variables such as context depth and length.

Other works focus on more abstract retrieval tasks (e.g., Kamradt (2023)), allowing clearer take-
aways at the cost of real-world relevance. An influential work is Liu et al. (2024), which empirically
demonstrated that the position of relevant information within an LLM’s context significantly impacts
performance, with the best performances attained when information is at the beginning or end of the
context. Similar behaviour is reported in some subsequent works (Xu et al., 2023; An et al., 2024;
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Dong et al., 2023; Hsieh et al., 2024b; Laban et al., 2024) (and in some cases (Levy et al., 2024)) but
others have failed to replicate the findings (Zhang et al., 2024; Song et al., 2024). Song et al. (2024)
introduces a retrieval paradigm involving the accumulation of information throughout the context
window, along with a more challenging variant that includes misleading information. Despite re-
vealing interesting behaviour, there is limited headroom for frontier models on these tasks. Some
recent related works include more challenging retrieval experiments, involving multiple steps. One
example is the Ancestral Trace Challenge (Li et al., 2024), which proves challenging but is evaluated
to relatively modest context lengths (up to 2k tokens). Another example is Variable Tracking (Hsieh
et al., 2024a), however, results on these tasks are included as part of a wider set of experiments rather
than being analysed in detail separately. We evaluate our difficult needle threading tasks to context
lengths up to 630k tokens and comprehensively ablate and decompose the results.

3 TASKS

Taking inspiration from prior works (Liu et al., 2024; Hsieh et al., 2024a; Zhang et al., 2024), we fo-
cus our experimentation on abstract tasks containing synthetically generated data. By using synthetic
data, (1) we avoid potentially expensive question-and-answer curation and annotation, (2) we ensure
high-quality and noise-free data, and (3) we gain fine-grained control over the sequence length and
other task parameters, allowing direct influence on difficulty. The abstract setting removes almost all
natural language semantics, enabling the derivation of insights more closely linked to the parameters
of the context window. We use string-serialised JSON objects containing key-value pairs of random
UUIDs for our core experiments. Each UUID is a unique 32-character, 128-bit value string. The
prompts used for each task follow this general structure:

<Task description>
{“9a159850-2f26-2bab-a114-4eefdeb0859f”: “5de8eca9-8fd4-80b8-bf16-bd4397034f54”,

“d64b2470-8749-3be3-e6e8-11291f2dd06e”: “1f22fcdb-9001-05ab-91f1-e7914b66a4ea”,
. . .,
“bae328a1-44f3-7da1-d323-4bd9782beca1”: “1183e29c-db7a-dccf-6ce8-c0a462d9942c”,
“5d88d112-e4ec-79a1-d038-8f1c58a240e4”: “ea8bf5c3-1ede-7de0-ba05-d8cd69393423”}
<Output format instructions>
Key(s): “d64b2470-8749-3be3-e6e8-11291f2dd06e”
Corresponding value(s):

In the following subsections, we outline our long-context understanding tasks. To complement the
textual descriptions, we also include a schematic of each task in Fig 2. We conduct each experiment
on a set of ‘haystacks’ of different sequence lengths, m, where each haystack (H) is a set of key-
value pairs: H = {(Ki, Vi) | i ∈ {1, 2, 3, ...m}}.
Single Needle. In this simple, motivating task the goal is to provide the corresponding value (Vi) to
a single specified key (Ki). For each haystack, we place needles at a fixed set of placement depths.

Multiple Needles. Building on the previous task, the goal of this task is to provide all the corre-
sponding values to a specified set of between 2 and 25 keys. We consider two different placement
methods: (1) Random - keys are randomly sampled (without replacement). (2) Clustered - after
randomly sampling an initial key, all subsequent keys are sampled adjacently (motivated by the
observation that informative cues for a given query often cluster together in real world applications).

Conditional Needles. Rather than providing specific keys, the goal of this task is to retrieve the
values corresponding to all keys matching a specified criteria. In this case, we modify target keys by
replacing a randomly selected character with a special character such as ‘*’ or ‘&’. The expected
values are those corresponding to keys containing the special character.

Threading. We define a Threading Task by initially selecting a subset of n indices j =
{j1, j2, ..., jn} from H , where jk ∈ {1, 2, ...,m}. We then iterate over the indices j for k > 1,
replacing in H , Kjk ← Vjk−1

, to form a thread. Given a single start key (Kj1 ), the end goal is
to find the value at the end of the thread (Vjn ). We evaluate thread lengths up to n=25 steps and
experiment with different thread directions: (i) Forward - where the position of each subsequent
pair in the thread occurs later in H (i.e., j1 < j2 < ... < jn), (ii) Backward - where the positions
of subsequent pairs occurs earlier in H (i.e., j1 > j2 > ... > jn) and (iii) Random - where each
subsequent pair in the thread can occur at any available position in H , regardless of direction.
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Multi-Threading. For this task, we modify H to include more than one thread. The goal is to
determine the final value of each thread, given only the starting keys. We investigate different
combinations of thread lengths, number of threads and thread direction.

Branched Threading. In this variation, we add branching to the threads. Specifically, at each index
in the thread (except the first key), we modify 2 or more keys (number based on the specified branch-
ing factor, b) to equal one of the previous values. At each step, there are b possible continuations,
only one of which continues. The overall goal is to determine the final value of the longest thread.

4 EXPERIMENTS

Baselines. To build a comprehensive characterisation of the capabilities of current frontier long con-
text models, we evaluated a set of 17 LLMs on our challenging long context retrieval experiments.
Since the majority of frontier long context models are closed-source, we centre our evaluation on
closed-source baselines. However, we also evaluate a subset of open-source models as a comparison.
Where possible, we focus on chat or instruction-tuned variants of each LLM as their greater tendency
to follow instructions enables a broader range of tasks and eases automatic evaluation. Specifically,
we evaluate models from the closed-source GPT-4 (OpenAI, 2023; 2024), Gemini 1.0 (Gemini Team
et al., 2023) and 1.5 (Reid et al., 2024), Claude 3 (Anthropic, 2024a) and 3.5 (Anthropic, 2024b),
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Figure 2: Schematics for our long-context key-value retrieval tasks. See §3 for descriptions.
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and Reka (Ormazabal et al., 2024) series and the open-source Jamba 1.5 (Team et al., 2024), Mistral
(AI, 2024a), and LLaMA 3.1 (Dubey et al., 2024) model series. Reported context lengths for each
model are shown in Fig. 1.

Prompting. We used a simple prompting strategy throughout our experimentation that consisted of
a single basic user prompt containing the question and output format instructions for each task. In
keeping with prior works (Roberts et al., 2024a;b; OpenAI, 2024b), we do not modify the system
prompt or tailor the prompt for each model. With the exception of providing examples of the desired
output format, we do not use few-shot examples or explicitly encourage reasoning. We include the
specific prompts used in each task in the .

Inference. All inference was carried out in a zero-shot setting. To aid reproducibility, we set model
hyperparameters that encourage as deterministic generation as possible. Concretely, we use greedy
search decoding strategies in which the most probable token is selected from the model vocabulary V
at each step, conditional on the preceding tokens i.e., wn+1 = argmaxw∈V P (w|w1, w2, . . . , wn).
We achieve this by specifying random seeds and setting the temperature parameter to zero. We
evaluate the LLMs via the VertexAI (Google, 2024) {Gemini, Claude, Jamba, LLaMA 3.1, and
Mistral}, OpenAI (OpenAI, 2024a) {GPT}, and Reka (AI, 2024b) {Reka} APIs. We aimed to
evaluate each model as close to their context limits as possible, however, due to API restrictions this
was not always feasible. More inference details can be found in the .

Evaluation. Following recent work (Roberts et al., 2024b), we use a strong LLM (Gemini 1.5
Flash) to parse the output from the evaluated LLMs into a specific format before evaluation via
exact matching with the expected answer. As most models exhibit strong output following abilities,
this LLM-based reformatting and evaluation has been demonstrated to correlate strongly with other
evaluation measures in (Roberts et al., 2024a). For most models, this was only necessary for tasks
requiring multiple values as the answer. For tasks requiring k values as answers, we only evaluate
the top k answers provided by the models, any other additional answers were disregarded.
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Figure 3: Tokenization. LLMs tokenize UUIDs at sig-
nificantly different granularities.

Tokenization. Context limits are typically
reported in tokens and models are com-
pared as though this is a consistent, model-
agnostic metric. However, although minor
variations in tokenization schemes might
be expected across tokenizers, our prelim-
inary experiments revealed significant dif-
ferences, as outlined in Fig. 3. A UUID
pair is represented by∼50 tokens by GPT-
4o while Gemini 1.5 uses 75. Over longer
contexts this difference is notable: Gem-
ini 1.5 Flash’s reported context limit of 1M
tokens is equivalent to ∼700k GPT-4o to-
kens. References to token counts through-
out this section refer to text tokenized us-
ing the LLaMA 3.1 tokenizer.

In the following subsections, we report the
results on the tasks outlined in §3. Experi-
ments were carried out on haystacks of 12 different sizes ranging from 1k to 630k tokens (measured
in LLaMA 3.1 tokens). For most models, we repeat each experiment on 5 different sets of haystacks
and report the average performance, however, in some cases, only 1 repeat was feasible due to rate
limit restrictions. More details, full results, and branched threading results can be found in the .

4.1 SINGLE NEEDLE

As a motivating task, we evaluate the ability of the models to accurately retrieve values correspond-
ing to keys at fixed depths in 10% increments in the haystacks. We show heatmaps for a subset
of the models in Fig. 4 and overall depth-averaged model performance on this task in the . At
shorter contexts, the models perform this simple task well. However, in most cases, the retrieval
accuracy decreases for longer context lengths. This suggests that while the models can perform
inference on inputs up to their context limits, most have a smaller ‘effective’ limit from which they
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Figure 4: Single Needle heatmaps. For most models, the effective context length is less than the
context limit. At longer contexts, retrieval precision decreases towards the middle of the context.
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Figure 5: Multiple Needles heatmaps. Context length has a substantially greater effect on perfor-
mance than needle placement positions or the number of needles.

1 2 5 10 20 32 64 12
8

1

3

5

15

25

Nu
mb

er
of

Ne
ed

le
s

GPT-4o, Clustered

1 2 5 10 20 32 64 12
8

GPT-4o, Random

1 2 5 10 20 32 64 12
8
18
0
25
0
50
0
63
0

Gemini 1.5 Flash, Clustered

1 2 5 10 20 32 64 12
8
18
0
25
0
50
0
63
0

Gemini 1.5 Flash, Random

Context Length (1k LLaMA 3.1 tokens)

Figure 6: Conditional Needles heatmaps. Needles prove easier to retrieve when clustered.

can accurately extract information. Notable exceptions are GPT-4o and Jamba-1.5 Large, which
attain perfect scores throughout. From the heatmaps, it is apparent that for the majority of models,
accuracy decreases towards the middle of the context, supporting the findings of Liu et al. (2024).

4.2 MULTIPLE NEEDLES

Building on the previous task, we evaluate the capability to simultaneously retrieve values corre-
sponding to [1,2,3,4,5,10,15,20,25] input keys from the haystacks. We report overall results aver-
aged over all numbers of needles for each context size in Fig. 7 and heatmaps for selected models
in Fig. 5, which show a decomposition of performance as a function of the number of needles and
needle placement (randomly placed or clustered). Considering the overall result, we observe a sim-
ilar macro-average trend as in the single needle task, where performance decreases at larger context
sizes. However, in this case, owing to the higher degree of difficulty the performance drop-off is
steeper, with several models’ accuracy reduced to below 20% as their context limits are approached.
This faster performance degradation suggests the effective context limits for this task are even shorter
than when retrieving a single needle. As before, GPT-4o achieves a near-perfect score. The heatmaps
for Gemini 1.5 Flash show retrieval accuracy is unaffected by the relative placement of the nee-
dles. Furthermore, context length has a far larger impact on performance than the number of
needles which has very limited impact on performance for the stronger models.

4.3 CONDITIONAL NEEDLES

Sharing a similar structure to the multiple needles tasks, the conditional needles task assesses the
ability to retrieve the values corresponding to [1,2,3,4,5,10,15,20,25] unspecified input keys that
meet the condition of containing the ‘*’ character. Compared to the multiple needles task, a similar
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Figure 7: Overall accuracy for Multiple Needles (left) and Conditional Needles (right). Shaded
regions show 95% confidence intervals.

overall trend is observed. Fig. 7 shows an arguably steeper initial performance decrease at shorter
context lengths followed by a shallower decline towards the longer context lengths, resulting in lower
overall scores. More differences between the tasks can be seen in the heatmaps in Fig. 6. One clear
observation is that the placement of the conditional needles directly impacts the ability of the models
to retrieve the corresponding values: retrieval accuracy is higher when the relevant key-value
pairs are clustered rather than randomly placed. Also, when randomly placed, performance
noticeably decreases when the number of needles increases. We found similar model performance
with different conditional characters, though it was notably lower for ‘.’.

4.4 THREADING
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Figure 8: Overall accuracy for Threading (left) and Multi-threading (right). Shaded regions
show 95% confidence intervals.
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Figure 9: Threading. For most models, forward-travelling threads are easier to follow.

Having demonstrated the models’ capabilities to perform single-step retrieval-based tasks (at least
at shorter context lengths), we now move towards challenging multi-step reasoning-based retrieval.
Concretely, at each context size, we test how accurately each model can retrieve the final value from
threads of length: [2,3,4,5,6,7,8,9,10,15,20,25]. Threading introduces directionality – the relative
position in the context window of subsequent pieces of the thread. We repeat each evaluation on
threads going in forward, backward and random directions (see Fig. 2). Overall results are displayed
in Fig. 8 and example heatmaps are shown in Fig. 9. Average accuracies are significantly lower
for this task reflecting the added difficulty of following the thread through the context. For many
models, e.g., Gemini 1.5 Flash (darker red) and Claude 3 Haiku (darker blue), the accuracy plateaus
to nearly zero at higher context lengths. The heatmaps reveal two clear trends. Firstly, performance
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decreases both with increasing context length and thread length. Second, the direction of the
thread matters. Except for Claude 3.5 Sonnet, all models achieve much better accuracies on
threads moving forward through the context compared to threads travelling backwards.

4.5 MULTI-THREADING

We extend the threading task by adding extra threads for the models to simultaneously retrieve
final values from. We evaluate on thread lengths of [2,3,4,5,10] for [2,3,4,5] separate threads and
repeat for ‘forwards’, ‘backwards’, ‘random directions’, and ‘all random’ directions. The averaged
accuracies for each context size are shown in Fig. 8. The lack of clear differences between the
heatmaps for 2 vs 5 threads suggests that within the experimental range of thread lengths, the models
are thread-safe and performance is not significantly degraded by simultaneously following
additional threads. This is further illustrated in Fig. 10, in which Claude 3.5 Sonnet shows no
performance degradation up to 25 threads and GPT-4o and Gemini 1.5 Pro show a gradual decline.
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Figure 10: Frontier LLMs are thread-safe. Each point represents an average over 10 repeats
retrieving randomly directed threads with a length of 3 in a 20k LLaMA 3.1 token haystack.

4.6 AGGREGATING HAYSTACK METRICS

To directly compare the overall performance of the models, we take an equally weighted average
over the Single Needle, Multiple Needles, Conditional Needles, Threading and Multi-threading task
scores. The results are presented in Tab. 1. We find that the best model depends on the context
size: for the smallest contexts GPT-4o is best, at the longer contexts Gemini 1.5 Pro is superior,
and Claude 3.5 Sonnet is the best performing from 2.5 to 32k. Across the board, the closed-source
models outperform the open-source models.

Model Accuracy (%)
1.2k 2.5k 5k 10k 20k 32k 64k 128k 180k 250k 500k 630k

Gemini 1.5 Pro 87.7 81.1 76.7 78.6 74.8 72.7 69.2 65.2 - - - -
Gemini 1.5 Flash 80.7 73.3 70.1 67.5 65.7 60.1 53.9 53.3 46.1 37.4 21.3 19.7
Jamba 1.5 Large 70.8 63.5 60.2 57.5 47.1 43.9 43.4 40.4 - - - -
Jamba 1.5 Mini 55.4 50.4 44.8 39.0 33.3 30.4 27.2 20.4 - - - -
Claude 3.5 Sonnet 91.5 88.7 84.9 80.9 79.4 75.9 63.2 50.6 48.0 - - -
Claude 3 Sonnet 82.0 73.7 67.9 52.0 44.6 44.7 39.9 38.8 37.6 - - -
Claude 3 Haiku 71.8 65.7 62.8 59.3 53.3 50.3 43.0 37.2 37.4 - - -
GPT-4o 93.2 86.1 81.6 74.1 71.9 68.6 64.9 60.9 - - - -
GPT-4o mini 75.7 67.9 64.7 61.8 58.3 56.3 51.3 42.9 - - - -
Reka Core 59.8 53.8 17.0 33.5 29.6 27.0 24.9 - - - - -
Reka Flash 58.8 43.5 31.2 29.8 26.8 25.4 20.4 14.1 - - - -
LLaMA 3.1 8b 54.9 49.8 45.3 40.9 33.6 29.0 26.0 13.7 - - - -
LLaMA 3.1 70b 78.1 68.9 66.0 61.9 57.1 52.5 38.5 4.5 - - - -
LLaMA 3.1 405b 76.7 77.1 70.5 69.8 62.8 55.2 39.3 19.6 - - - -
Gemini 1.0 Pro 59.7 46.9 42.5 40.9 27.8 - - - - - - -

Table 1: Overall results averaged across the Single Needle, Multiple Needles, Conditional Needles,
Threading and Multi-threading tasks. The highest scoring models at each context size is bold.

4.7 EFFECTIVE CONTEXT LENGTH

The observed macro-trend of reduced performance at longer context windows implies the models’
ability to fully use their context window weakens as it grows. In short, there is a context size
beyond which the models cannot effectively reason over and retrieve from. We propose an effective
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Figure 11: Contour plots showing ‘effective context length frontiers’ for the Single Needle (left)
and Multiple Needles (right) tasks. Raw contours were used for the determination of the effective
context lengths in Tab. 2. To improve visual clarity, the contours displayed have been smoothed
using a Gaussian filter with σ=1.5.

Model Context Limit Effective Context Size (1k chars) (proportion of limit, %)
(1k chars) Single Needle Multiple Needles Conditional Needles Threading Multi-threading

@10 needles @10 needles @5 steps @5 steps
Gemini 1.5 Pro 2472 315 (13%) 430 (17%) 220 (9%) 0 (0%) 0 (0%)
Gemini 1.5 Flash 1236 132 (11%) 294 (24%) 44 (4%) 0 (0%) 0 (0%)
Jamba 1.5 Large 295 295 (100%) 295 (100%) 10 (3%) 0 (0%) 0 (0%)
Jamba 1.5 Mini 295 87 (29%) 17 (6%) 10 (3%) 0 (0%) 0 (0%)
Claude 3.5 Sonnet 309 169 (55%) 309 (100%) 121 (39%) 4 (1%) 3 (1%)
Claude 3 Sonnet 309 309 (100%) 309 (100%) 14 (5%) 0 (0%) 0 (0%)
Claude 3 Haiku 309 87 (28%) 201 (65%) 18 (6%) 0 (0%) 0 (0%)
GPT-4o 214 214 (100%) 214 (100%) 14 (7%) 7 (3%) 3 (1%)
GPT-4o mini 214 120 (56%) 176 (82%) 43 (20%) 0 (0%) 0 (0%)
Reka Core 214 5 (2%) 5 (2%) 3 (1%) 0 (0%) 0 (0%)
Reka Flash 214 5 (2%) 9 (4%) 3 (1%) 0 (0%) 0 (0%)
LLaMA 3.1 8b 214 14 (7%) 22 (10%) 34 (16%) 0 (0%) 0 (0%)
LLaMA 3.1 70b 214 22 (10%) 114 (53%) 34 (16%) 0 (0%) 0 (0%)
LLaMA 3.1 405b 214 138 (64%) 124 (58%) 60 (28%) 0 (0%) 3 (1%)
Gemini 1.0 Pro 38 24 (63%) 31 (82%) 0 (0%) 0 (0%) 0 (0%)

Table 2: Effective context lengths. @X indicates the effective limit on the task when the named
parameter equals X .

context length metric for each task that leverages the granularity of our experiments rather than
simply estimating an average. For each task, we create a dense grid of points along the two key
experimental variables (see axes of heatmaps) and interpolate the average accuracy at each point.
We then determine a contour corresponding to a threshold accuracy level (taken here to be 75%).
This contour represents the effective frontier, beyond which retrieval is unreliable. For the Single
Needle task, we conservatively take the minimum value of the contour to provide a metric that is
independent of context position. For the other tasks we take the corresponding contour value at a
specific point on the x-axis, for example, where Num. Needles = 10 or Thread Length = 5. Example
contour plots are shown in Fig. 11. Tab. 2 contains the computed effective context length metrics for
each task. Given the discrepancies between tokenizers, we base our metric on the model-agnostic
number of characters in the input rather than token count. The results show that most models have
an effective context length far less than their advertised context limit.

4.8 NATURAL LANGUAGE ABLATION

To supplement the preceding experiments, we conduct natural language experiments that serve as
closer analogues to real-world applications. Initially, we take sentences from The History of the De-
cline and Fall of the Roman Empire, by Edward Gibbon (see Fig.1) as a proxy for the UUID pairs in
the abstract tasks. We prompt o1-preview (OpenAI, 2024) to generate a list of plausible yet fictional
Roman events (i.e., not included in the text). Using these events, we construct “threads” of linked
sentences of the form ‘..., Event A and then Event B.’,..., ‘Event B and then Event C.’,... and replace
sentences in the text with them. We evaluate the threading task in this setting on haystacks from
1k to 630k token context lengths with threads of 2-25 steps (see Fig. 12). As in the abstract set-
ting (Fig. 9), following threads in the natural language text proves challenging for the models, with
similar poorer performance observed at longer contexts. The preference towards forward-travelling
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Figure 12: Threading through natural text showing a clear preference for forward moving threads.
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Figure 13: Multi-threading through natural text. Each point represents an average over 5 repeats
retrieving randomly directed threads with a length of 3 in a ∼20k LLaMA 3.1 token haystack.

threads is more apparent in this setting, with almost no backward-travelling threads correctly re-
trieved. We also conduct multi-threading experiments using this approach (this time with additional
simultaneous threads) and present results in Fig. 13. Each point represents an average over 5 repeats
retrieving randomly directed threads with a length of 3 in 20k LLaMA 3.1 token haystacks. Unlike
the threading experiments – for which the results and insights are largely the same across the abstract
and natural text settings – this multi-threading task in the natural language setting proved much more
challenging for the models. Moreover, we find the task to be challenging when retrieving multiple
threads that are all forward or all randomly directed. Thus, the multi-threading results are nuanced –
with strong performance in the synthetic setting and weaker performance in the natural text setting.

5 CONCLUSIONS

We introduce a set of retrieval experiments covering simple single-needle retrieval, more difficult
multiple-needle and conditional-needle retrieval and finally, challenging needle threading and multi-
threading retrieval. All experiments are carried out on haystacks where the distractor text is from
the same distribution as the relevant text. By curating the haystacks synthetically, we have granu-
lar control across specific independent variables enabling us to decompose key variables affecting
performance and extract the following interesting takeaways after evaluating 17 LLMs on our tasks.
(i) At long context lengths, the retrieval precision of frontier LLMs decreases towards the middle
of the context; (ii) Clustering needles has little effect when tasked with retrieving specific needles
but noticeably increases performance when retrieving all needles meeting a condition; (iii) Most
LLMs achieve higher accuracies when retrieving threads moving forwards through the context ver-
sus backward directed threads; (iv) The evaluated LLMs show proficiency at keeping track of mul-
tiple threads simultaneously. Thus, we go further than most prior long context benchmarks, which
provide only coarse, macro-trends. After revealing notable differences between tokenizers and ob-
serving poorer performances on larger haystacks, we derive an effective context limit metric. In
particular, we propose a contour-based task-specific metric that is independent of tokenization. For
a given task setting, the metric defines the maximum context size at which a model can effectively
perform. We release our code and tasks for the community to use and we hope that our findings
encourage further long context understanding research.
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APPENDIX

We structure our appendix into the following 8 parts:

A Results for the Branched Threading task: §A.
B Inference metrics such as API service response times: §B.
C Details of the prompts used for each task: §C.
D Specific API model versions used for inference: §D.
E Full per-task results for each model: §E.
F Discussion of the limitations of this work: §F
G Description of API-based restrictions encountered during this work: §G.
H Tables detailing the number of repeats carried out at different context lengths per model for

each of the 5 core tasks: §H.

A BRANCHED THREADING
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Figure 14: Branched threading. Shaded regions display 95% Wilson confidence intervals.

We carried out a branched threading investigation to evaluate the models’ ability to accurately re-
trieve the final value of threads of length [2,3,4,5,6,7,8,9,10] where there is a branch at each step. We
repeat this for branching factors of [2,3,4,5,6,7,8,9,10] and present the averaged results in Fig. 14.
Similar to the threading tasks, retrieval accuracy drops significantly as the context length increases.

B INFERENCE METRICS
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Figure 15: Mean response times for the nat-
ural text (single) threading experiment. Each
point corresponds to an average over 65 points
(13 thread lengths * 5 repeats).
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Figure 16: Mean response times for the nat-
ural text multi-threading experiment. Each
point corresponds to an average over 5 points
(from 5 repeats).

C PROMPTS

C.1 SINGLE NEEDLE

Extract the value corresponding to the specified key in the JSON object below.
{
“9a159850-2f26-2bab-a114-4eefdeb0859f”: “5de8eca9-8fd4-80b8-bf16-bd4397034f54”,
“d64b2470-8749-3be3-e6e8-11291f2dd06e”: “1f22fcdb-9001-05ab-91f1-e7914b66a4ea”,
. . .,
“bae328a1-44f3-7da1-d323-4bd9782beca1”: “1183e29c-db7a-dccf-6ce8-c0a462d9942c”,
“5d88d112-e4ec-79a1-d038-8f1c58a240e4”: “ea8bf5c3-1ede-7de0-ba05-d8cd69393423”,
}
Only write the corresponding value, nothing else. Key: “<key>”
Corresponding value:

C.2 MULTIPLE NEEDLES

Extract the values corresponding to the specified keys in the JSON object below.
{
“9a159850-2f26-2bab-a114-4eefdeb0859f”: “5de8eca9-8fd4-80b8-bf16-bd4397034f54”,
“d64b2470-8749-3be3-e6e8-11291f2dd06e”: “1f22fcdb-9001-05ab-91f1-e7914b66a4ea”,
. . .,
“bae328a1-44f3-7da1-d323-4bd9782beca1”: “1183e29c-db7a-dccf-6ce8-c0a462d9942c”,
“5d88d112-e4ec-79a1-d038-8f1c58a240e4”: “ea8bf5c3-1ede-7de0-ba05-d8cd69393423”,
}
Only write the list of corresponding values in square brackets, nothing else. Keys: [<keys>]
Corresponding values:

C.3 CONDITIONAL NEEDLES

Extract the values corresponding to the keys that contain the character “<char>” in the JSON object
below.
{
“9a159850-2f26-2bab-a114-4eefdeb0859f”: “5de8eca9-8fd4-80b8-bf16-bd4397034f54”,
“d64b2470-8749-3be3-e6e8-11291f2dd06e”: “1f22fcdb-9001-05ab-91f1-e7914b66a4ea”,
. . .,
“bae328a1-44f3-7da1-d323-4bd9782beca1”: “1183e29c-db7a-dccf-6ce8-c0a462d9942c”,
“5d88d112-e4ec-79a1-d038-8f1c58a240e4”: “ea8bf5c3-1ede-7de0-ba05-d8cd69393423”,
}
Only write the list of corresponding values in square brackets, nothing else.
Corresponding values:
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C.4 THREADING

The specified key corresponds to a value in the JSON object below. However, that value might equal
another key in the JSON object. The value corresponding to this new key might also equal another key
in the JSON object. This chain could continue beyond. Extract the final value in the chain. If the value
corresponding to the first key does not equal another key, then the final value is the value corresponding
to the first key.
{
“9a159850-2f26-2bab-a114-4eefdeb0859f”: “5de8eca9-8fd4-80b8-bf16-bd4397034f54”,
“d64b2470-8749-3be3-e6e8-11291f2dd06e”: “1f22fcdb-9001-05ab-91f1-e7914b66a4ea”,
. . .,
“bae328a1-44f3-7da1-d323-4bd9782beca1”: “1183e29c-db7a-dccf-6ce8-c0a462d9942c”,
“5d88d112-e4ec-79a1-d038-8f1c58a240e4”: “ea8bf5c3-1ede-7de0-ba05-d8cd69393423”,
}
Only write the corresponding value at the end of the chain, nothing else. Key: “<key>”
Corresponding final value:

C.5 MULTI-THREADING

The specified keys each correspond to values in the JSON object below. However, the values might equal
others key in the JSON object. The value corresponding to each new key might also equal another key in
the JSON object. This chain could continue beyond. Extract the final values in each the chain. If the value
corresponding to the first key does not equal another key, then the final value is the value corresponding
to the first key.
{
“9a159850-2f26-2bab-a114-4eefdeb0859f”: “5de8eca9-8fd4-80b8-bf16-bd4397034f54”,
“d64b2470-8749-3be3-e6e8-11291f2dd06e”: “1f22fcdb-9001-05ab-91f1-e7914b66a4ea”,
. . .,
“bae328a1-44f3-7da1-d323-4bd9782beca1”: “1183e29c-db7a-dccf-6ce8-c0a462d9942c”,
“5d88d112-e4ec-79a1-d038-8f1c58a240e4”: “ea8bf5c3-1ede-7de0-ba05-d8cd69393423”,
}
Only write the corresponding values at the end of each chain in square brackets, nothing else. Keys:
“<keys>”
Corresponding final values:

C.6 BRANCHED THREADING

The specified key corresponds to a value in the JSON object below. However, that value might equal
other keys in the JSON object. The values corresponding to these new keys might also equal other keys
in the JSON object. This branched chain could continue beyond. Follow the longest chain and extract the
final value at the end of the chain.
{
“9a159850-2f26-2bab-a114-4eefdeb0859f”: “5de8eca9-8fd4-80b8-bf16-bd4397034f54”,
“d64b2470-8749-3be3-e6e8-11291f2dd06e”: “1f22fcdb-9001-05ab-91f1-e7914b66a4ea”,
. . .,
“bae328a1-44f3-7da1-d323-4bd9782beca1”: “1183e29c-db7a-dccf-6ce8-c0a462d9942c”,
“5d88d112-e4ec-79a1-d038-8f1c58a240e4”: “ea8bf5c3-1ede-7de0-ba05-d8cd69393423”,
}
Only write the corresponding value at the end of the longest chain, nothing else. Key: “<key>”
Corresponding final value:

C.7 LLM-REFORMATTING SINGLE VALUE OUTPUT

A generative model has answered a question to which the answer is a 32-character hexadecimal string
UUID.\n The output from the model answering the question is “<unformatted model response>”.\n
Extract just the 32-character hexadecimal UUID string from the output. Keep the dashes but remove any
whitespace, other characters (such as punctuation or quotes), and any additional text and explanation.\n
Return only the extracted 32-character hexadecimal UUID, without any additional text or explanation. If
no answer is provided, return “None”.\n

16



Published as a conference paper at ICLR 2025

C.8 LLM-REFORMATTING MULTIPLE VALUE OUTPUT

A generative model has answered a question to which the answer is a list of 32-character hexadecimal
strings.\n The output from the model answering the question is “<unformatted model response>”.\n
Extract just the list of 32-character hexadecimal UUID strings from the output. Keep the dashes but
remove any whitespace, other characters (such as punctuation or quotes), and any additional text and
explanation.\n Format the list as a list of strings, with each string in the list being a 32-character hex-
adecimal UUID string. For example: [’12345678-1234-5678-1234-567812345678’, ’87654321-4321-
8765-4321-876587654321’]\n Return only the extracted list, without any additional text or explanation.
Do not include any additional syntax, like “‘python“‘, in your answer. If no answer is provided, return
“None”.\n

D MODEL VERSIONS

Closed-source model API versions

• GPT-4o mini: gpt-4o-mini-2024-07-18

• GPT-4o: gpt-4o-2024-08-06

• Gemini-Pro: gemini-1.0-pro-002

• Gemini 1.5 Flash: gemini-1.5-flash-preview-0514

• Gemini 1.5 Pro: gemini-1.5-pro-preview-0514

• Claude 3 Haiku: claude-3-haiku@20240307

• Claude 3 Sonnet: claude-3-sonnet@20240229

• Claude 3.5 Sonnet: claude-3-5-sonnet@20240620

• Reka Flash: reka-flash-20240904

• Reka Core: reka-core-20240415
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Figure 17: Single Needle overall performance with 95% Wilson confidence intervals.
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Figure 18: Multi-threading. Concurrently following N threads does not degrade performance.

Model Accuracy (%)
1.2k 2.5k 5k 10k 20k 32k 64k 128k 180k 250k 500k 630k

Gemini 1.5 Pro 100.0 100.0 100.0 100.0 100.0 98.2 98.2 96.4 94.5 76.4 45.5 30.9
Gemini 1.5 Flash 100.0 100.0 100.0 100.0 100.0 94.5 83.6 89.1 89.1 74.5 34.5 32.7
Jamba 1.5 Large 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 - - -
Jamba 1.5 Mini 100.0 100.0 98.2 98.2 96.4 100.0 94.5 78.2 72.7 - - -
Claude 3.5 Sonnet 100.0 100.0 100.0 100.0 100.0 100.0 98.2 90.9 87.3 - - -
Claude 3 Sonnet 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 94.5 - - -
Claude 3 Haiku 100.0 100.0 100.0 100.0 98.2 100.0 94.5 74.5 83.6 - - -
GPT-4o 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 - - - -
GPT-4o mini 100.0 100.0 100.0 100.0 100.0 98.2 94.5 80.0 - - - -
Reka Core 100.0 100.0 0.0 94.5 87.3 89.1 87.3 61.8 - - - -
Reka Flash 100.0 100.0 76.4 83.6 85.5 76.4 56.4 50.9 - - - -
LLaMA 3.1 8b 96.4 98.2 100.0 94.5 98.2 89.1 87.3 50.9 - - - -
LLaMA 3.1 70b 100.0 96.4 96.4 98.2 96.4 89.1 89.1 18.2 - - - -
LLaMA 3.1 405b 100.0 100.0 100.0 100.0 98.2 100.0 100.0 80.0 - - - -
Gemini 1.0 Pro 100.0 100.0 100.0 98.2 76.4 - - - - - - -
Mistral Large 100.0 100.0 100.0 100.0 98.2 - - - - - - -
Mistral Nemo 100.0 100.0 100.0 100.0 12.7 - - - - - - -

Table 3: Single Needle depth-averaged results. Reka Core 0.0 at 5k is likely due to safety restraints
(output is not generated due to ‘context’).

Model Accuracy (%)
1.2k 2.5k 5k 10k 20k 32k 64k 128k 180k 250k 500k 630k

Gemini 1.5 Pro 100.0 100.0 100.0 100.0 100.0 99.8 97.4 96.3 94.7 76.7 34.6 30.0
Gemini 1.5 Flash 100.0 98.9 100.0 100.0 99.9 86.7 86.3 84.0 67.7 46.3 18.5 10.0
Jamba 1.5 Large 99.6 99.4 99.5 98.0 95.5 92.6 88.4 83.9 - - - -
Jamba 1.5 Mini 71.9 67.0 63.0 56.6 46.4 35.0 21.4 13.5 - - - -
Claude 3.5 Sonnet 100.0 100.0 100.0 99.9 99.7 99.6 99.1 97.3 85.9 - - -
Claude 3 Sonnet 100.0 100.0 100.0 100.0 99.5 98.6 97.0 93.8 91.7 - - -
Claude 3 Haiku 99.9 100.0 99.4 99.7 98.5 96.9 94.9 80.2 67.0 - - -
GPT-4o 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.8 - - - -
GPT-4o mini 99.9 99.8 99.0 98.6 97.2 95.6 85.5 70.5 - - - -
Reka Core 97.6 82.7 64.7 50.0 54.8 42.9 31.6 0.0 - - - -
Reka Flash 94.9 77.9 68.2 55.2 48.1 49.8 45.0 19.4 - - - -
LLaMA 3.1 8b 98.0 94.7 88.1 78.3 63.6 51.8 40.9 16.8 - - - -
LLaMA 3.1 70b 100.0 100.0 100.0 99.9 97.7 91.2 73.2 1.9 - - - -
LLaMA 3.1 405b 16.7 55.6 88.2 98.6 94.0 88.2 77.3 17.7 - - - -
Gemini 1.0 Pro 99.8 99.9 98.2 97.4 58.5 - - - - - - -

Table 4: Multiple Needles overall results.
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Model Accuracy (%)
1.2k 2.5k 5k 10k 20k 32k 64k 128k 180k 250k 500k 630k

Gemini 1.5 Pro 98.6 98.3 95.2 97.3 93.6 95.7 92.4 85.6 77.9 86.2 59.9 -
Gemini 1.5 Flash 96.3 96.9 94.6 94.3 90.2 86.8 78.8 78.8 66.7 64.1 52.2 54.8
Jamba 1.5 Large 98.0 92.4 85.4 71.0 30.7 25.0 27.1 17.1 - - - -
Jamba 1.5 Mini 80.5 66.3 46.0 30.7 19.6 15.9 20.3 10.6 - - - -
Claude 3.5 Sonnet 88.9 92.2 89.8 88.3 87.1 87.7 71.4 45.3 51.4 - - -
Claude 3 Sonnet 99.9 99.9 98.1 45.0 16.1 17.0 0.0 0.1 0.0 - - -
Claude 3 Haiku 99.2 94.3 90.2 84.9 60.9 50.8 21.8 28.9 33.5 - - -
GPT-4o 100.0 99.8 99.2 97.5 91.2 92.8 89.9 82.3 - - - -
GPT-4o mini 98.2 98.3 92.9 88.9 80.1 77.4 76.7 63.9 - - - -
Reka Core 56.9 61.2 16.9 21.7 4.7 2.8 5.6 - - - - -
Reka Flash 68.8 37.7 6.7 6.6 0.2 0.0 0.0 0.0 - - - -
LLaMA 3.1 8b 52.9 51.2 34.1 31.0 4.9 2.5 0.4 0.0 - - - -
LLaMA 3.1 70b 97.2 98.4 99.1 97.1 85.4 80.5 30.0 1.8 - - - -
LLaMA 3.1 405b 100.0 100.0 99.8 98.5 94.7 85.6 16.7 0.2 - - - -
Gemini 1.0 Pro 54.0 17.4 11.0 8.0 1.1 - - - - - - -

Table 5: Conditional Needles overall results.

Model Accuracy (%)
1.2k 2.5k 5k 10k 20k 32k 64k 128k 180k 250k 500k 630k

Gemini 1.5 Pro 57.8 42.2 35.0 37.8 29.4 25.0 23.3 23.3 - - - -
Gemini 1.5 Flash 46.7 33.9 25.6 18.3 16.7 13.9 10.0 6.7 2.8 0.0 1.1 0.6
Jamba 1.5 Large 23.9 12.2 8.3 5.6 5.6 0.6 1.1 0.0 - - - -
Jamba 1.5 Mini 5.6 7.8 3.3 1.7 1.7 0.0 0.0 0.0 - - - -
Claude 3.5 Sonnet 78.3 72.2 61.7 53.3 52.2 43.9 13.3 5.6 4.4 - - -
Claude 3 Sonnet 40.0 26.7 17.2 7.2 6.7 2.8 1.1 0.0 0.0 - - -
Claude 3 Haiku 25.6 10.0 7.2 3.3 1.7 0.0 1.7 0.6 1.1 - - -
GPT-4o 75.0 61.1 51.1 30.0 23.3 16.1 14.4 7.2 - - - -
GPT-4o mini 37.2 22.8 14.4 8.3 5.0 0.0 0.0 0.0 - - - -
Reka Core 27.8 22.2 0.0 0.0 0.0 0.0 0.0 - - - - -
Reka Flash 19.4 0.0 2.8 2.8 0.0 0.0 0.0 0.0 - - - -
LLaMA 3.1 8b 13.2 1.4 0.7 0.0 0.0 0.0 0.0 0.0 - - - -
LLaMA 3.1 70b 38.0 21.3 13.0 7.4 1.9 0.0 0.0 0.0 - - - -
LLaMA 3.1 405b 75.0 58.3 20.8 29.2 12.5 0.0 0.0 0.0 - - - -
Gemini 1.0 Pro 23.3 8.9 2.2 0.6 1.1 - - - - - - -
Mistral Large 68.9 45.0 31.1 10.6 1.1 - - - - - - -
Mistral Nemo 12.2 7.2 2.2 0.0 0.0 - - - - - - -

Table 6: Threading overall results.

Model Accuracy (%)
1.2k 2.5k 5k 10k 20k 32k 64k 128k 180k 250k 500k 630k

Gemini 1.5 Pro 82.2 65.1 53.2 57.9 50.7 44.9 34.6 24.6 - - - -
Gemini 1.5 Flash 60.5 36.9 30.4 25.1 21.9 18.5 10.5 7.8 4.0 2.2 0.3 0.5
Jamba 1.5 Large 32.5 13.5 8.0 13.0 3.8 1.2 0.6 1.2 - - - -
Jamba 1.5 Mini 18.9 10.8 13.6 7.9 2.5 1.0 0.0 0.0 - - - -
Claude 3.5 Sonnet 90.1 79.1 72.8 62.8 58.2 48.5 33.9 13.8 11.1 - - -
Claude 3 Sonnet 69.9 42.1 24.2 7.6 1.0 5.1 1.5 0.0 1.6 - - -
Claude 3 Haiku 34.1 24.2 17.4 8.7 7.4 4.0 2.3 1.6 1.6 - - -
GPT-4o 90.9 69.5 57.5 42.9 44.9 34.1 19.9 15.2 - - - -
GPT-4o mini 43.0 18.6 17.3 13.1 9.3 10.3 0.0 0.0 - - - -
Reka Core 16.8 2.9 3.5 1.5 1.3 0.0 0.2 - - - - -
Reka Flash 11.1 1.7 2.0 0.7 0.2 0.6 0.8 0.0 - - - -
LLaMA 3.1 8b 14.0 3.3 3.5 0.9 1.1 1.5 1.6 0.6 - - - -
LLaMA 3.1 70b 55.1 28.3 21.6 6.7 4.1 1.8 0.3 0.4 - - - -
LLaMA 3.1 405b 91.6 71.5 43.7 22.7 14.5 2.2 2.4 0.3 - - - -
Gemini 1.0 Pro 21.6 8.2 1.3 0.3 1.9 - - - - - - -
Mistral Large 71.3 49.2 34.9 14.4 8.7 - - - - - - -
Mistral Nemo 19.0 14.4 9.7 7.7 3.1 - - - - - - -

Table 7: Multi-Threading overall results.
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F LIMITATIONS

We note several limitations to our work. First, we restrict our study to the use of synthetic
data. While this has significant benefits (fine-grained controllability, automatic provision of per-
fect ground truth), our benchmark does not capture differences in LLM behaviour that are domain-
specific (for instance, LLMs may be more performant on some distributions than others). Second, as
discussed below, the scale of our experiments (particular the number of experimental repeats) was
limited by cost for the larger models.

G API RESTRICTIONS

The design of our experiments was guided in part by the following API-based restrictions and limi-
tations:

• Cost. For the most expensive models (e.g., Gemini 1.5 Pro, Claude 3.5 Sonnet), running
just a single repeat on one task could cost hundreds of dollars. Therefore, in some cases,
the evaluation of these models could not be repeated extensively, limiting the statistical
strength of our experiments.

• Context restrictions. Some models were only available for API-based inference in a lim-
ited capacity (e.g., Mistral), in which it was not possible to provide inputs that approach the
context limit. As such, we could only evaluate these models as close to the context limit as
we could.

• Latency. As a result of latency introduced by low server throughput or indirectly via low
rate limits at the time of writing, for some models (e.g., LLaMA 3.1), it was not possible
to extensively conduct repeats.

H REPEATS

Model Num. Repeats
1.2k 2.5k 5k 10k 20k 32k 64k 128k 180k 250k 500k 630k

Gemini 1.5 Pro 5 5 5 5 5 5 5 5 5 5 5 5
Gemini 1.5 Flash 5 5 5 5 5 5 5 5 5 5 5 5
Jamba 1.5 Large 5 5 5 5 5 5 5 5 1 - - -
Jamba 1.5 Mini 5 5 5 5 5 5 5 5 1 - - -
Claude 3.5 Sonnet 5 5 5 5 5 5 5 5 5 - - -
Claude 3 Sonnet 5 5 5 5 5 5 5 5 5 - - -
Claude 3 Haiku 5 5 5 5 5 5 5 5 5 - - -
GPT-4o 5 5 5 5 5 5 5 5 - - - -
GPT-4o mini 5 5 5 5 5 5 5 5 - - - -
Reka Core 5 5 5 5 5 5 5 5 - - - -
Reka Flash 5 5 5 5 5 5 5 5 - - - -
LLaMA 3.1 8b 5 5 5 5 5 5 5 5 - - - -
LLaMA 3.1 70b 5 5 5 5 5 5 5 5 - - - -
LLaMA 3.1 405b 5 5 5 5 5 5 5 5 - - - -
Gemini 1.0 Pro 5 5 5 5 5 - - - - - - -
Mistral Large 5 5 5 5 5 - - - - - - -
Mistral Nemo 5 5 5 5 5 - - - - - - -

Table 8: Number of repeats carried out for the Single Needle task.
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Model Num. Repeats
1.2k 2.5k 5k 10k 20k 32k 64k 128k 180k 250k 500k 630k

Gemini 1.5 Pro 5 5 5 5 5 5 5 5 1 1 1 1
Gemini 1.5 Flash 5 5 5 5 5 5 5 5 5 5 5 5
Jamba 1.5 Large 5 5 5 5 5 5 5 5 - - - -
Jamba 1.5 Mini 5 5 5 5 5 5 5 5 - - - -
Claude 3.5 Sonnet 5 5 5 5 5 5 5 5 5 - - -
Claude 3 Sonnet 5 5 5 5 5 5 5 5 5 - - -
Claude 3 Haiku 5 5 5 5 5 5 5 5 5 - - -
GPT-4o 5 5 5 5 5 5 5 5 - - - -
GPT-4o mini 5 5 5 5 5 5 5 5 - - - -
Reka Core 1 1 1 1 1 1 1 1 - - - -
Reka Flash 1 1 1 1 1 1 1 1 - - - -
LLaMA 3.1 8b 2 2 2 2 2 2 2 2 - - - -
LLaMA 3.1 70b 2 2 2 2 2 2 2 2 - - - -
LLaMA 3.1 405b 1 1 1 1 1 1 1 1 - - - -
Gemini 1.0 Pro 5 5 5 5 5 - - - - - - -

Table 9: Number of repeats carried out for the Multiple Needles task.

Model Num. Repeats
1.2k 2.5k 5k 10k 20k 32k 64k 128k 180k 250k 500k 630k

Gemini 1.5 Pro 5 5 5 5 5 5 5 5 1 1 1 -
Gemini 1.5 Flash 5 5 5 5 5 5 5 5 5 5 5 5
Jamba 1.5 Large 5 5 5 5 5 5 5 5 - - - -
Jamba 1.5 Mini 5 5 5 5 5 5 5 5 - - - -
Claude 3.5 Sonnet 5 5 5 5 5 5 5 5 5 - - -
Claude 3 Sonnet 5 5 5 5 5 5 5 5 5 - - -
Claude 3 Haiku 5 5 5 5 5 5 5 5 5 - - -
GPT-4o 5 5 5 5 5 5 5 5 - - - -
GPT-4o mini 5 5 5 5 5 5 5 5 - - - -
Reka Core 1 1 1 1 1 1 1 - - - - -
Reka Flash 1 1 1 1 1 1 1 1 - - - -
LLaMA 3.1 8b 1 1 1 1 1 1 1 1 - - - -
LLaMA 3.1 70b 1 1 1 1 1 1 1 1 - - - -
LLaMA 3.1 405b 1 1 1 1 1 1 1 1 - - - -
Gemini 1.0 Pro 5 5 5 5 5 - - - - - - -

Table 10: Number of repeats carried out for the Conditional Needles task.

Model Num. Repeats
1.2k 2.5k 5k 10k 20k 32k 64k 128k 180k 250k 500k 630k

Gemini 1.5 Pro 5 5 5 5 5 5 5 5 - - - -
Gemini 1.5 Flash 5 5 5 5 5 5 5 5 5 5 5 5
Jamba 1.5 Large 5 5 5 5 5 5 5 5 - - - -
Jamba 1.5 Mini 5 5 5 5 5 5 5 5 - - - -
Claude 3.5 Sonnet 5 5 5 5 5 5 5 5 5 - - -
Claude 3 Sonnet 5 5 5 5 5 5 5 5 5 - - -
Claude 3 Haiku 5 5 5 5 5 5 5 5 5 - - -
GPT-4o 5 5 5 5 5 5 5 5 - - - -
GPT-4o mini 5 5 5 5 5 5 5 5 - - - -
Reka Core 1 1 1 1 1 1 1 - - - - -
Reka Flash 1 1 1 1 1 1 1 1 - - - -
LLaMA 3.1 8b 4 4 4 4 4 4 4 4 - - - -
LLaMA 3.1 70b 3 3 3 3 3 3 3 2 - - - -
LLaMA 3.1 405b 1 1 1 1 1 1 1 1 - - - -
Gemini 1.0 Pro 5 5 5 5 5 - - - - - - -
Mistral Large 5 5 5 5 5 - - - - - - -
Mistral Nemo 5 5 5 5 5 - - - - - - -

Table 11: Number of repeats carried out for the Threading task.

21



Published as a conference paper at ICLR 2025

Model Num. Repeats
1.2k 2.5k 5k 10k 20k 32k 64k 128k 180k 250k 500k 630k

Gemini 1.5 Pro 1 1 1 1 1 1 1 1 - - - -
Gemini 1.5 Flash 5 5 5 5 5 5 5 5 5 5 5 5
Jamba 1.5 Large 1 1 1 1 1 1 1 1 - - - -
Jamba 1.5 Mini 1 1 1 1 1 1 1 1 - - - -
Claude 3.5 Sonnet 5 5 5 5 5 5 5 5 1 - - -
Claude 3 Sonnet 1 1 1 1 1 1 1 1 1 - - -
Claude 3 Haiku 5 5 5 5 5 5 5 5 5 - - -
GPT-4o 1 1 1 1 1 1 1 1 - - - -
GPT-4o mini 1 1 1 1 1 1 1 1 - - - -
Reka Core 1 1 1 1 1 1 1 - - - - -
Reka Flash 1 1 1 1 1 1 1 1 - - - -
LLaMA 3.1 8b 1 1 1 1 1 1 1 1 - - - -
LLaMA 3.1 70b 1 1 1 1 1 1 1 1 - - - -
LLaMA 3.1 405b 1 1 1 1 1 1 1 1 - - - -
Gemini 1.0 Pro 5 5 5 5 5 - - - - - - -

Table 12: Number of repeats carried out for the Multi-threading task.
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