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Abstract001

Developing agents capable of fluid gameplay002
in first/third-person games without API access003
remains a critical challenge in Artificial Gen-004
eral Intelligence (AGI). Recent efforts leverage005
Vision Language Models (VLMs) as direct con-006
trollers, frequently pausing the game to ana-007
lyze screens and plan action through language008
reasoning. However, this inefficient paradigm009
fundamentally restricts agents to basic and non-010
fluent interactions: relying on isolated VLM011
reasoning for each action makes it impossi-012
ble to handle tasks requiring high reactivity013
(e.g., FPS shooting) or dynamic adaptability014
(e.g., ACT combat). To handle this, we pro-015
pose a paradigm shift in gameplay agent de-016
sign: instead of directly controlling gameplay,017
VLM develops specialized execution modules018
tailored for tasks like shooting and combat.019
These modules handle real-time game inter-020
actions, elevating VLM to a high-level devel-021
oper. Building upon this paradigm, we intro-022
duce GameSense, a gameplay agent framework023
where VLM develops task-specific game sense024
modules by observing task execution and lever-025
aging vision tools and neural network training026
pipelines. These modules encapsulate action-027
feedback logic, ranging from direct action rules028
to neural network-based decisions. Experi-029
ments demonstrate that our framework is the030
first to achieve fluent gameplay in diverse gen-031
res, including ACT, FPS, and Flappy Bird, set-032
ting a new benchmark for game-playing agents.033

1 Introduction034

Developing agents that fluidly play first/third-035

person games without API access remains a critical036

challenge in AGI, where complexity mirrors real-037

world embodied tasks (Lu et al., 2024; Wang et al.,038

2024). Agents must navigate diverse tasks, ranging039

from combat encounters to environmental naviga-040

tion, while executing precise real-time actions (Hu041

et al., 2024). Traditional reinforcement learning042

(RL) approaches struggle to handle such a broad043

Figure 1: The ‘thinking time’ of direct VLM control
becomes a critical vulnerability in real-time games, high-
lighting the need for a paradigm shift on VLM use: from
direct controller to execution module developer

spectrum of demands due to their limited task gen- 044

eralization (de Woillemont et al., 2022; Justesen 045

et al., 2019). Recently, the emergence of Vision 046

Language Models (VLMs) has opened new possi- 047

bilities in this domain. With their strengths in vi- 048

sual understanding and decision-making, VLMs in- 049

teract with games purely through visual understand- 050

ing of game screens. This ability offers a promising 051

direction for developing non-API-dependent game- 052

play agents (Tan et al., 2024; Liu et al., 2024a; 053

Wang et al., 2023b). 054

Recent VLM-based approaches leverage VLMs 055

as direct game controllers through a pause-and-plan 056

paradigm (Tan et al., 2024; Chen et al., 2024): the 057

agent periodically pauses gameplay, using VLM 058

and vision tools (e.g., OCR, segmentation) together 059

to analyze game screens, plan actions and then di- 060

rectly output key-mouse command to control game. 061

However, this paradigm suffers from fundamental 062

limitations: (1) it heavily depends on the game’s 063

support to pause at any moment, which disrupts 064

the gameplay flow and limits its applicability to 065

1



a narrow range of games that support such inter-066

ruptions; (2) Requiring VLM reasoning for every067

action makes it unsuitable for tasks demanding high068

reactivity (e.g., FPS shooting); (3) VLM outputs069

simple key-mouse control commands without real-070

time interactive logic for game environments, mak-071

ing it hard solve tasks demanding dynamic adapta-072

tion (e.g., action game combat). These limitations073

reflect a fundamental mismatch: VLMs excel at074

time-consuming deliberate reasoning (scene under-075

standing and planning) but struggle with rapid, con-076

tinuous game interactions requiring millisecond-077

level responses (shown in Figure 1).078

We observe that most human game actions rarely079

rely on deliberate reasoning, but rather flows from080

quick-fire game sense - a set of trained reflexes and081

patterns developed through practice. This observa-082

tion suggests a fundamental paradigm shift: Unlike083

using VLMs to directly control every game actions,084

we should elevate them to develop task-specific085

execution modules that can handle real-time inter-086

actions autonomously. These specialized modules,087

developed by VLM, solve specific tasks requiring088

rapid reactions or frequent environmental interac-089

tions. This paradigm shift bridges the VLM’s rea-090

soning with real-time gameplay demands, enabling091

more versatile game agents.092

Based on this new paradigm, we present Game-093

Sense, a framework that empowers VLMs to de-094

velop and optimize task-specific execution mod-095

ules, termed Game Sense Modules (GSMs). Game-096

Sense equips VLMs with essential tools, including097

vision tools and neural network training pipelines,098

to create GSMs tailored for diverse gameplay099

tasks. These modules can range from simple action-100

feedback loops (e.g., combat patterns based on101

HP bar monitoring) to complex, learned behaviors102

(e.g., boss fight strategies optimized through RL).103

These modules are seamlessly integrated into the104

gameplay loop: when the agent identifies a spe-105

cific task, it activates the corresponding module106

and refines it based on execution feedback. By107

shifting VLMs’ role from direct controller to the108

developer of GSMs, GameSense achieves efficient109

execution and promotes continuous improvement110

in gameplay performance.111

Experiments demonstrate that GameSense is the112

first agent to achieve fluent gameplay in diverse113

game genres. In ACT/FPS games, our framework114

achieves the highest success rates in combat tasks,115

while achieving the highest exploration scores with-116

out gameplay pausing. In contrast, existing VLM-117

based methods either fail to complete such tasks or 118

rely heavily on frequent gameplay pausing, disrupt- 119

ing the flow of real-time interactions. In the reflex- 120

intensive game Flappy Bird where pausing is not 121

supported, existing VLM-based methods fail at ba- 122

sic control, and GameSense develops precise con- 123

trol modules through iterative refinement. Game- 124

Sense exhibits significantly improved real-time per- 125

formance and adaptation capabilities, setting a new 126

benchmark for game-playing agents. The contribu- 127

tions of this paper are as follows: 128

• We identify limitations of existing VLM- 129

based game-playing approaches, particularly 130

their inability to handle real-time, high- 131

reactivity tasks. 132

• We propose a novel paradigm that uses VLMs 133

to develop task-specific execution modules for 134

autonomous real-time interactions. 135

• We introduce GameSense, a framework that 136

enables VLMs to create and refine Game 137

Sense Modules (GSMs). 138

• Our experiments demonstrate that GameSense 139

outperforms existing methods and is the first 140

to master reflex-intensive games. 141

2 Related Work 142

2.1 Environment for Video Gameplay and 143

RL-based Agents 144

Researchers have made significant strides in var- 145

ious video game environments, including classic 146

games like Atari games(Bellemare et al., 2013), 147

Minecraft(Fan et al., 2022; Guss et al., 2019), Star- 148

Craft II(Ellis et al., 2023). However, these en- 149

vironments rely heavily on open-source code or 150

official APIs, requiring substantial human effort 151

for implementation. This dependency restricts AI 152

accessibility to general games. Recent RL-based 153

approaches have attempted to overcome API de- 154

pendencies by directly processing game visuals 155

and simulating keyboard-mouse inputs, including 156

DQN-play-sekiro(analoganddigital., 2021). How- 157

ever, these RL methods typically work for specific 158

tasks and exhibit poor generalization, requiring re- 159

training for new scenarios. The challenge of devel- 160

oping agents capable of generalizing across diverse 161

gaming environments without API access remains 162

largely unsolved. This limitation motivates our re- 163

search toward a more adaptable solution using only 164

visual inputs and key-mouse controls. 165
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2.2 LLM/VLM-Driven Gameplay Agent166

Current LLM/VLM-driven gameplay agents fol-167

low two main approaches. The first relies on168

game APIs for state observation and control, as169

seen in Minecraft(Wang et al., 2023a; Liu et al.,170

2024a) and Starcraft II agents(Ma et al., 2023).171

While effective, this API dependency limits their172

application to closed-source commercial games.173

The second approach uses VLMs to directly pro-174

cess screen information and generate keyboard-175

mouse controls, as demonstrated by Cradle(Tan176

et al., 2024). Though eliminating API require-177

ments, this method’s frame-by-frame analysis and178

decision-making process introduce significant la-179

tency. This makes such agents unsuitable for tasks180

requiring quick reactions or dynamic adaptation.181

While recent works like SIMA(Raad et al., 2024)182

and VARP(Chen et al., 2024) attempt to improve183

performance through behavior cloning, they re-184

quire extensive human gameplay data for training.185

The challenge of achieving real-time and adaptive186

gameplay in VLM-driven agents remains unsolved,187

motivating our research toward a new paradigm.188

3 Method189

3.1 Problem Formulation and Motivation190

This work aims to develop a real-time gameplay191

agent that operates without relying on game APIs192

or pausing the game for action reasoning. The193

agent solely depends on real-time game screens and194

outputs key-mouse control commands to interact195

with the game. This approach aims to create a196

truly in-game agent, mirroring how human players197

experience and interact with the game environment.198

Existing gameplay agents rely on the "pause and199

plan for each action" paradigm, which exhibits lim-200

itations in fast-paced and dynamic game scenarios.201

In contrast, most human gameplay actions do not202

stem from deliberate reasoning over each move203

but from game sense—an intuitive ability to react204

swiftly based on experience. Motivated by this205

observation, we propose an agent system capable206

of developing its form of "game sense," enabling207

more natural and efficient interaction in gameplay.208

3.2 Overview of GameSense209

GameSense introduces a paradigm shift by ele-210

vating the VLM from direct controller to devel-211

oper of task-specific execution modules, termed212

Game Sense Modules (GSMs). The agent inte-213

grates a High-Level VLM Agent and GSMs: the214

High-Level VLM Agent is responsible for real-time 215

game screen analysis, historical reflection, and task 216

and action planning. The GSMs, independently 217

developed by the VLM itself, handle tasks requir- 218

ing rapid response (e.g., combat, shooting, rapid 219

clicks). As shown in Figure 2, the agent operates 220

in a continuous loop: it analyzes real-time game 221

screens, reflects on history, and plans tasks and 222

actions. Depending on the action requirements, 223

the agent either directly generates key-mouse con- 224

trol codes (VLM-executed actions) for straight- 225

forward actions or invokes GSMs (GSM actions) 226

for high-speed processing. This process ensures 227

efficient and natural interaction with the game, mir- 228

roring human-like gameplay. 229

3.3 High-Level VLM Agent 230

The High-Level VLM Agent serves as the brain 231

of the system, responsible for understanding the 232

game environment, reflecting on past experiences, 233

and planning future tasks and actions (both VLM- 234

executed and GSM actions). This module is struc- 235

tured into several core components: 236

Game Environment Analysis: This module 237

leverages VLM’s visual understanding capabili- 238

ties to generate a textual description of the current 239

game screens. It identifies key elements such as the 240

presence of enemies, bosses, interactable objects, 241

potential threats, and the player character’s status. 242

This textual description is then used for historical 243

reflection and task planning. 244

Historical Data Reflection: This module per- 245

forms three parallel types of reflection to learn from 246

the past: (1) Previous Task Reflection: evaluate 247

the success of the previous task and suggesting 248

optimizations; (2) Historical Task Summary: sum- 249

marize the last 10 task executions to extract long- 250

term patterns; and (3) Action Design Reflection: 251

assess VLM-executed actions’ effectiveness and 252

generating refinements. This mechanism ensures 253

continuous self-assessment and refinement. 254

Memory: This module serves as a structured 255

repository for Historical Data Reflection and Game 256

Environment Analysis, which consists of episodic 257

memory and procedural memory. Episodic mem- 258

ory stores the Game Environment Analysis, Pre- 259

vious Task Reflection and Historical Task Sum- 260

mary, providing temporal context for the agent’s 261

understanding of game progression and task out- 262

comes. This memory directly passed to the Task 263

and Action Plan module, enabling the VLM to 264

make context-aware decisions. Procedural mem- 265

3



Figure 2: The overall architecture of GameSense. The main loop is governed by the VLM, which analyzes the game
environment, reflects on history, plans tasks and actions, and constructs the code for each action (both VLM-executed
and GSM actions). The VLM acts as a developer to refine GSMs through analysis GSM’s execution process.

ory, implemented as a RAG database, specializes266

in storing and retrieving action implementation ex-267

periences for VLM-executed actions. It stores268

action names, the corresponding action code, and269

the associated reflection results from Action Design270

Reflection. When planning a new VLM-executed271

action, the agent queries the procedural memory272

using the action name as the key, retrieving relevant273

historical data to guide action construction.274

Task Plan: Based on the Episodic Memory, this275

module determines the next task the agent should276

undertake. It considers the overall current situa-277

tion and past experiences to generate a high-level278

task description, including the key goal, success279

criteria, and locations (if needed).280

Action Plan: Given the task description and the281

Episodic Memory, this module plans a sequence282

of action names required to complete the task.283

This planning is grounded in a predefined action284

mapping table that provides a comprehensive and285

conflict-free set of actions, including both VLM-286

executed actions (single key-mouse operation, e.g.,287

"move forward": "use [key] to move") and GSM288

actions (calls to specialized GSMs, e.g., "Fight289

mobs": "invoke [Fight GSM] to fight mobs"). Each290

action in the table is accompanied by a clear tex-291

tual description, enabling the VLM to leverage its292

language understanding capabilities to connect the293

task’s semantic meaning with appropriate actions. 294

For instance, when tasked with "engage the mobs 295

ahead," the VLM references the mapping table to 296

retrieve possible actions. By analyzing the action 297

descriptions, the VLM constructs an ordered se- 298

quence of action names such as ["move forward" 299

(VLM-executed), "Fight mobs" (GSM action)]. 300

Action Construction: This module translates 301

the planned action names into executable code, ref- 302

erencing the action mapping table and procedural 303

memory. For VLM-executed actions, the VLM 304

generates the key-mouse code (including both the 305

specific key and its duration), leveraging the pro- 306

cedural memory for guidance. For GSM actions, 307

this module simply outputs the code to call the 308

appropriate GSM. 309

The High-Level VLM Agent operates in a 310

closed-loop process. It begins by analyzing the 311

game screen to understand the current state. Then, 312

it reflects on past experiences through the three re- 313

flection mechanisms. Based on the current state 314

and reflections, it plans the next task and the se- 315

quence of actions. Finally, it constructs the code 316

for each action (both VLM-executed and GSM ac- 317

tions). This process is driven by the VLM’s rea- 318

soning and code-generation capabilities, with each 319

cycle potentially contributing to improving future 320

decision-making through memory and reflection. 321
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Further details are availabel in AppendixA.322

3.4 Game Sense Modules (GSMs)323

3.4.1 Motivation and Design Philosophy324

Our goal is to achieve a “game sense” similar to325

that of human players—the ability to respond to326

gameplay dynamically, which is key to a success-327

ful real-time gaming experience. Specifically, we328

reposition VLM from a direct controller to a de-329

veloper and optimizer, creating and continuously330

optimizing Game Sense Modules (GSMs). We re-331

quire VLM design to follow a “from start to finish”332

design, which means each GSM is designed as a333

complete execution equipped with adaptive execu-334

tion loops and termination criteria, rather than a335

mere sequence of actions. This design ensures both336

real-time performance and dynamic adaptability.337

3.4.2 GSM Types and Application Scope338

Our approach categorizes GSM into two types: (1)339

RL-based GSM, which is designed for scenarios340

requiring high dynamic adaptability where task pat-341

terns are difficult to model with fixed rules (e.g.,342

boss fights and Flappy Bird control); (2) Rule-343

based GSM targets tasks with well-defined rules344

that demand rapid, efficient responses (e.g., mob345

fights and shooting in FPS games).346

In each game, the tasks handled by GSMs are347

predefined during Agent initialization. In ACT348

games, GSMs handle mob fights and boss fights.349

In FPS games, GSMs manage shooting. In Flappy350

Bird, GSMs control the bird’s flight. This design is351

based on the following reasons: (1) Limited Game352

Sense Requirements: For a specific type of game,353

a limited number of game sense modules are suf-354

ficient to support smooth gameplay (e.g., fight for355

ACT, shoot for FPS). (2) Experimental Valida-356

tion: Experiments 4.5.3 have shown that allowing357

the VLM to autonomously generate GSM mod-358

ules is counterproductive. Excessive autonomy can359

lead to frequent and redundant GSM creation and360

low reusability of GSM, increasing computational361

overhead and management complexity.362

3.4.3 GSM Toolset363

GSM relies on the following general-purpose tools364

for task execution. We argue that the use of such365

tools is well-justified: (1) it mimics humans’ direct366

understanding of game visuals; (2) existing meth-367

ods (Tan et al., 2024; Liu et al., 2024a) commonly368

depend on general-purpose visual tools.369

The key tools include: (1) State Reader: An 370

OpenCV-based game frame analyzer for extract- 371

ing game states (e.g., HP bars, death status).(2) 372

Vision Processors: Including ResNet50 (He et al., 373

2016) or CNN for feature extraction and Ground- 374

ing Dino (Liu et al., 2024b) for object detection. 375

These are standard computer vision models. (3) RL 376

Training Parent Class: A standard RL training 377

parent class implementation for building RL-based 378

GSMs, which requires VLM to instantiate it. (4) 379

Training Analyzer: For analyzing training pro- 380

cess data, including reward curves and behavior 381

statistics, providing optimization insights for VLM. 382

Further details of toolset and case presentation are 383

available in Appendix B.1. 384

These tools are standard components in com- 385

puter vision and RL. The key innovation of GSM 386

innovation lies in how VLM develops GSMs rather 387

than the tools themselves. 388

3.4.4 RL-based and Rule-based GSMs 389

RL-based GSM designed for tasks requiring dy- 390

namic adaptation (e.g., boss fights, Flappy Bird). 391

VLM firstly designs the state space (by selecting 392

relevant states from the output of State Reader, 393

like HP state of character/boss), action space (by 394

selecting task-relevant controls from key-mouse 395

mappings) and constructs initial reward functions 396

based on task objectives. Based on the above, RL 397

Training Parent Class is instantiated, and then RL 398

training is initiated. As training begins, VLM opti- 399

mizes reward function through Training Analyzer. 400

This process establishes a "train-analyze-optimize" 401

loop, enabling GSM to progressively master com- 402

plex task execution strategies. 403

Rule-based GSM focuses on tasks with clear 404

logic but demanding quick reactions (e.g., FPS 405

shooting, mob fights). During creation, VLM first 406

analyzes task objectives and selects necessary vi- 407

sual processing tools (e.g., Grounding Dino for 408

shooting), then designs a complete control loop 409

with execution logic and end conditions. Dur- 410

ing execution, VLM optimizes the execution logic 411

through screen analysis, such as adjusting the 412

Grounding Dino label list for more precise shooting 413

target detection. This "execute-analyze-optimize" 414

loop ensures GSM maintains continuously im- 415

proved execution precision. 416

Both GSM approaches have a “from start to fin- 417

ish” design. And we suggest setting the max opti- 418

mization iterations of GSMs to 3 (Show in 4.5.2). 419

Further details are available in Appendix B.2. 420
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3.5 System Integration421

Before the agent begins gameplay, the system is ini-422

tialized with the following components: (1) Game423

Mechanics and Objectives: A detailed description424

of the game mechanics, including rules, objectives,425

and success criteria; (2) Predefined action mapping426

table: serves as the foundation for agent-game in-427

teraction, containing both basic key-mouse control428

mappings and predefined GSM action, each with429

detailed functional descriptions; (3) GSM Module430

Initialization: initialization based on the predefined431

GSM actions’ description and tool instructions. RL-432

based GSM initializes action space, state space, and433

reward function. Rule-based GSM initializes ex-434

ecution logic and end conditions. Then the agent435

operates in a continuous loop (High-Level VLM436

Agent) and the GSM module continuously opti-437

mizes its performance in a parallel process.438

4 Experiment439

4.1 Implementation Details440

To ensure reproducibility, we adopt an open-source441

VLM with Qwen 2.5 VL as the backbone. All442

games are run on a single Windows machine443

equipped with an NVIDIA 4060 GPU. This setup444

guarantees that the experimental results can be reli-445

ably reproduced and provides a clear reference for446

the hardware environment used in our evaluations.447

4.2 Evaluation Methods448

Our evaluation focuses on two aspects: (1)Single-449

Task Performance: We select important tasks450

within each game to assess the agent’s task com-451

pletion rate. For instance, in the ACT game (e.g.,452

combat with minor monsters and boss battles), in453

the FPS game (e.g., shooting and movement), we454

evaluate how effectively the agent handles these455

critical tasks that demand high real-time respon-456

siveness. (2) Complete Game Flow Evaluation:457

We let all agents independently engage with and458

adapt to the game using a fixed initial scenario. The459

evaluation metrics include max exploration scores460

(how comprehensively the agent navigates the envi-461

ronment) and the average exploration scores, which462

validate the agent’s overall gameplay capabilities.463

4.3 Baselines464

We compare our approach, GameSense, with Cra-465

dle—the only general game agent specifically de-466

signed for video games (Tan et al., 2024). For a467

comprehensive comparison, we evaluate both the468

standard Cradle and its variant without the stop 469

mechanism (Cradle without stop). It is important 470

to note that GameSense does not require any paus- 471

ing, thereby offering significant advantages in real- 472

time performance and seamless gameplay. 473

4.4 Result of Single-Task 474

In our experiments on the ACT game “Black Myth: 475

Wukong”, the following tasks were defined: (1) 476

UI Operation: Using the in-game UI to restore 477

blood volume. (2) Map Escape: Resolving issues 478

where the character gets stuck at the map boundary, 479

by adjusting the camera view. (3) Approach to 480

Item Interaction: Moving close to the shrine for 481

interaction. (4) Normal Mob Battle: A combat 482

task where a monster can be defeated with three 483

hits. (5) Harder Mob Battle: A more challenging 484

combat task requiring six or seven hits. (6) Boss 485

Battle: A high-difficulty combat task. In our exper- 486

iments on the FPS game “DOOM”, the following 487

tasks were defined: (1) UI Operation: Using the 488

UI to enter the game. (2) Map Escape: Make the 489

character turn correctly at the right angle of the 490

road, by adjusting the camera view. (3) Interact 491

with Door: Moving close to the interactive door 492

and open it. (4) Normal Mob Battle: A shot task 493

where the monster has slow movement speed. (5) 494

Harder Mob Battle: A more challenging shot task 495

where the monster has fast movement speed. The 496

experiment for each task was repeated 20 times. 497

Note on Pause Mechanism: Black Myth: 498

Wukong does not support an immediate pause dur- 499

ing combat or under attack. To run Cradle, we 500

had to implement a mechanism where a pause is 501

attempted up to 5 times; if pausing still fails, the 502

system abandons the pause. This increases the risk 503

of the character being attacked during the VLM’s 504

reasoning, highlighting a significant compatibility 505

issue with Cradle. DOOM supports pausing at any 506

moment, which enables Cradle to run normally. 507

Table 1 summarizes the success rates for each 508

task. In non-real-time tasks, all three methods 509

demonstrated similar performance (typically rang- 510

ing from 50% to 95%). However, Cradle (with- 511

out stop) showed a significant decrease to 30% in 512

DOOM’s map escape task due to potential unex- 513

pected monster encounters, where its inferior reac- 514

tion capability renders it completely ineffective. In 515

combat scenarios, GameSense demonstrated over- 516

whelming superiority, achieving success rates of 517

60%-95% in Black Myth: Wukong and 65%-85% 518

in DOOM, while other methods were practically 519
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Black Myth: Wukong (not support an immediate pause during combat or under attack)
UI Operation Map Escape Item Interaction Normal Mob Battle Harder Mob Battle Boss Battle

Cradle 95% 55% 75% 25% 10% 0
Cradle w/o stop 95% 50% 70% 0 0 0
GameSense 100% 60% 70% 95% 70% 60%

DOOM (supports pausing at any moment)
UI Operation Map Escape Interact with Door Normal Mob Shot Harder Mob Shot

Cradle 95% 45% 35% 10% 5%
Cradle w/o stop 100% 30% 35% 0 0
GameSense 95% 50% 40% 85% 65%

Table 1: Single-task experiment on Black Myth: Wukong and DOOM. Before testing, we let Cradle run 10 steps
in specific scenarios to adapt to the situation. For GameSense, we run 10 steps in specific scenarios and optimize
the GSM through three iterations. For GSMs, Mob battle/shot corresponds to rule-based GSMs and Boss battle
corresponds to RL-based GSMs.

unusable in combat situations (with success rates520

of only 0-25%). These results convincingly demon-521

strate the exceptional capabilities of the Game-522

Sense framework in handling complex real-time523

interaction scenarios.524

4.4.1 Result of Complete Game Flow525

Map of "Black Myth: Wukong" and "DOOM", as526

shown in Figure 3. To evaluate the complete game527

flow, we use the exploration progress in games as528

a performance metric, with different criteria de-529

fined for each game. For "Black Myth: Wukong,"530

considering its open-world map, we score based531

on the consecutive tasks completed by the Agent:532

defeating a normal mob scores 1 point, success-533

fully navigating a junction scores 1 point, defeating534

a harder mob scores 2 points, and successful in-535

teraction with items (such as collecting herbs or536

treasures) scores 1 point. For "DOOM," given its537

linear map, we have marked key points on the map,538

including turning, shooting enemies, and interact-539

ing with doors, with each key point passed scoring540

1 point. For "Flappy Bird," we measure how many541

pipes the bird passes, with each pipe scoring 1 point.542

For all games, we calculate the total score from the543

starting point to the character’s death. In our exper-544

imental setup, each game was run 20 times from a545

fixed initial position, and two primary metrics were546

recorded: the average number of explored scores547

and the maximum score achieved by the agent.548

As shown in figure 3, the experimental results549

clearly demonstrate the superior performance of550

GameSense in-game exploration tasks: in the551

open-world ACT game "Black Myth: Wukong," it552

achieved an average exploration score of 4.5 and553

a maximum score of 6.0; in the linear level game554

"DOOM," it reached an average score of 3.5 and a 555

maximum score of 5.0; and in the continuous reac- 556

tion game "Flappy Bird," it impressively scored an 557

average of 28.3 and a maximum of 35. In contrast, 558

Cradle performed poorly or failed to effectively 559

play the games at all, strongly validating Game- 560

Sense’s significant advantages in achieving authen- 561

tic gameplay experiences and its versatility across 562

different game genres. 563

4.5 Ablation Study 564

4.5.1 RL-based GSM 565

Although our RL-based GSM utilizes a general- 566

purpose RL Training Parent Class rather than one 567

specifically tailored for individual game scenarios, 568

the stringent requirements for training RL models 569

still make it challenging to establish complete train- 570

ing protocols across all gaming environments. This 571

raised concerns about whether Rule-based GSM 572

alone could enhance agent capabilities, when RL 573

training is prohibited. Therefore, we conducted 574

experiments in boss battle scenarios, where VLM 575

solely develop Rule-based GSM. As shown in Ta- 576

ble2, Rule-based GSM still managed to reduce 577

the boss’s health to 34.6% and achieve a success 578

rate of 10%. These results indicate that rule-based 579

GSM also significantly enhance the Agent’s com- 580

bat capabilities. Furthermore, this indicates that 581

our paradigm shift, which transforms VLM from 582

a direct controller to a GSM observer, is the key to 583

enhancing agent capabilities. Detailed analysis and 584

experiment setting can be seen in appendix C.1. 585

4.5.2 Optimization Iterations of GSM 586

We investigated the impact of GSM optimization 587

iterations on its performance by extracting multiple 588
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Figure 3: Complete game flow performance on Black Myth: Wukong, DOOM, and Flappy Bird.

GSM Type Success Rate Avg Blood
RL-based 60% 12.3%
Rule-based 15% 34.6%
Cradle 0 90.2%
Cradle w/o Stop 0 95.8%

Table 2: Avg Blood means the average remaining health
of the boss, which also represents the combat ability of
different agents.

Opt Number 0 1 2 3
Normal Mob Battle 70% 90% 100% 90%
Boss Battle 10% 40% 50% 60%
Flappy bird 18.3 28.1 27.3 28.2

Table 3: Impact of GSM optimization iterations. Opt
Number means optimization iterations of GSM.

iterative versions of GSM and testing their perfor-589

mance. As shown in table3, while one to two opti-590

mization iterations are sufficient for simpler tasks,591

more complex challenges like boss battles benefit592

from additional optimization cycles, highlighting593

the importance of iterative refinement in GSM’s594

performance. Detailed analysis and experiment595

setting can be seen in appendix C.2.596

Additionally, we found that there is a certain597

probability of degradation occurring when the num-598

ber of GSM optimizations is too high. This is due to599

the accumulation during the optimization process,600

with more bad cases and optimization case-by-case601

analysis as shown in the appendixC.4. So we sug-602

gest setting the maximum number of iterations for603

optimization to 3.604

4.5.3 Unfixed GSM 605

Although we have emphasized that the fixed GSMs 606

are sufficient for specific gaming scenarios, we re- 607

main concerned about whether allowing the VLM 608

to autonomously develop GSMs could broaden 609

their applicability. Therefore, we integrated an 610

additional step in the high-level VLM agent, per- 611

mitting the VLM to independently reason about and 612

design GSMs. Unfortunately, we observed that the 613

GSMs autonomously generated by the VLM were 614

often repetitive, with the VLM designing duplicate 615

GSMs for each encountered mob. This frequent 616

construction of GSMs not only places extra opera- 617

tional demands on the Agent but also necessitates 618

prolonged decision-making times, compelling us 619

to pause the game frequently, contrary to our initial 620

objectives. Appendix C shows more details. 621

5 Conclusion 622

In this paper, we first identify a common issue with 623

existing VLM-based gameplay agents: the VLM 624

infers each action individually, resulting in signifi- 625

cant "thinking delays", which limits their capabil- 626

ity to handle real-time and dynamically adaptive 627

tasks. To address this issue, we propose a paradigm 628

shift, transforming the VLM’s role from a direct 629

controller to a developer of game action execution 630

modules. Furthermore, we developed the Game- 631

Sense, which is the first agent capable of perform- 632

ing tasks such as shooting in FPS games and boss 633

fights in ACT games without game’s pause func- 634

tion. This provides a new paradigm for construct 635

VLM-based gameplay agents. 636

8



6 Limitation637

This paper introduces a paradigm shift in the design638

of VLM gameplay agents: transforming VLMs639

from direct action controllers to developers of640

Game Sense Modules (GSMs). Although our ex-641

periments have proven the effectiveness of this ap-642

proach, there remains an issue. For each game, the643

types and functions of GSMs are fixed. While we644

have discussed that this fixed nature is sufficient for645

gameplay and that complete autonomy in design646

by the VLM would introduce catastrophic delays,647

exploring how to enable VLMs to autonomously648

recognize and reuse GSMs is still worthwhile, as649

it could broaden the applicability of Gameplay650

Agents.651
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A Detail for High-Level VLM Agent748

A.1 Detailed Input/Output for Each Module749

1. Game Environment Analysis750

• Input: Real-time game screen images cap-751

tured directly from the game.752

• Output: A detailed textual description that753

identifies key elements in the scene—such as754

enemies, bosses, interactable objects, poten-755

tial threats, and the current state of the player.756

2.1 Previous Task Reflection (Historical Data757

Reflection)758

• Input: Data from the most recent task execu-759

tion (screenshots), description of the previous760

task, and action design. description.761

• Output: A detailed evaluation of the latest762

task’s performance that highlights immediate763

strengths, weaknesses, and suggestions for the764

next task design.765

2.2 Historical Task Summary (Historical Data766

Reflection)767

• Input: Aggregated data from a sliding win-768

dow of recent tasks (e.g., the last 10 tasks),769

including task description, logs, and task re-770

flection.771

• Output: A synthesized summary that iden-772

tifies long-term trends, and recurring pat-773

terns, providing broader context for decision-774

making.775

2.3 Action Design Reflection (Historical Data776

Reflection)777

• Input: Data related to VLM-generated action778

executions including screenshots, design of779

task and action.780

• Output: A detailed evaluation of the action781

design of the latest task that highlights imme-782

diate strengths, weaknesses, and suggestions783

for optimization.784

3. Memory:785

• Input: Reflection outputs from the Historical786

Data Reflection module.787

• Output: Two types of stored memory:788

– Episodic Memory: Time-indexed 789

records of past task outcomes (both 790

Previous Task Reflection and Historical 791

Task Summary). 792

– Procedural Memory: A RAG database 793

mapping action names to their corre- 794

sponding key-mouse control codes and 795

associated reflection data. 796

4. Task Planning: 797

• Input: The textual description from Game 798

Environment Analysis along with contextual 799

insights from Episodic Memory. 800

• Output: A high-level task description that 801

specifies the core objective, success criteria, 802

and any relevant spatial or situational details 803

for the current game scenario. 804

5. Action Planning: 805

• Input: The high-level task description gener- 806

ated by Task Planning. 807

• Output: An ordered list of action names de- 808

rived from a predefined action mapping table. 809

6. Action Construction: 810

• Input: The ordered list of action names from 811

Action Planning, along with reference data 812

from Procedural Memory and the action map- 813

ping table. 814

• Output: Executable control codes that trans- 815

late into either detailed key-mouse commands 816

(for VLM-executed actions) or invocation in- 817

structions that trigger the corresponding Game 818

Sense Modules (for GSM actions), enabling 819

real-time game control. 820

A.2 Implementation Details of FPS Game 821

FPS games have a unique mechanism where at- 822

tacks are primarily executed through shooting. This 823

means that players can open fire as soon as they 824

spot an enemy, and similarly, enemies will shoot 825

upon detecting the player. To cater to the game’s 826

demand for shooting at any moment, we have au- 827

tomated the invocation of the Shooting GSM after 828

each module in the high-level VLM agent for FPS 829

games, significantly reducing the risk of the agent 830

being attacked by enemies. During the design pro- 831

cess of the GSMs by the VLM, termination and exit 832

mechanisms were also considered. For instance, if 833
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the Grounding Dino fails to detect enemies multi-834

ple times, it will exit the Shooting GSM, ensuring835

that this mechanism does not interfere with other836

processes of the high-level VLM agent. Addition-837

ally, the Action Planning module is still allowed838

to invoke the Shooting GSM to handle a variety of839

game scenarios.840

B Detail for Game Sense Modules841

B.1 Detailed Introduce for Part of Tool Set842

The RL Training Parent Class is a universal RL843

training class that defines a complete RL training844

workflow skeleton. At its core is the QNetwork845

neural architecture, which employs a triple-branch846

parallel processing design: a vision model (normal847

CNN for Flappy Bird, Resnet50 for ACT Boss Bat-848

tle) branch for visual feature processing, a state849

branch for state information processing, and an ac-850

tion history branch using LSTM for processing his-851

torical action sequences. These three branches ul-852

timately merge their features for decision-making,853

making it particularly suitable for handling com-854

plex state spaces and action sequences in video855

games.856

The parent class includes the DoubleDQN Train-857

ing Module, which implements core DoubleDQN858

algorithm functionalities, featuring experience re-859

play memory, exploration strategy, and soft tar-860

get network updates. The parent class also pro-861

vides interfaces for model saving and loading,862

supporting training interruption and resumption.863

The training process is uniformly managed by864

the train() method, supporting multiple training865

episodes, with each episode executing standard op-866

erations such as environment interaction, experi-867

ence collection, parameter updates, and training868

log recording.869

To utilize this training parent class, specific870

scene subclasses need to be instantiated through871

VLM, primarily customizing state space, action872

space, and reward functions. Once the subclass873

is instantiated, training can be initiated directly874

using the parent class’s train() method. During875

training, the framework automatically manages876

model checkpoint saving and training log recording.877

Through VLMs overriding of the reward function878

method, reward strategies can be flexibly adjusted.879

This design pattern allows VLM to focus on strat-880

egy optimization for specific games while reusing881

standard training workflows, making it applicable882

to various video games requiring visual input and883

continuous action decision-making. 884

Training Analyzer analyzes the training record 885

data generated during the RL training process. Its 886

purpose is to analyze and compile training statis- 887

tics, which are then submitted to the VLM to as- 888

sess whether the RL training meets expectations 889

and optimize the reward accordingly. The mod- 890

ule analyzes character state data (including health, 891

mana, stamina, etc.) and action data, calculates 892

key metrics such as total training steps, average 893

rewards, and action usage frequency, and generates 894

visualization charts including cumulative reward 895

curves and state variable trends. These comprehen- 896

sive statistical results enable the VLM to evaluate 897

the model’s training effectiveness and optimize the 898

reward design accordingly. Based on these com- 899

prehensive statistical results, VLM can evaluate 900

whether the RL model has learned to use various 901

actions reasonably, whether the training process is 902

stable, whether it has achieved the expected game 903

goals (such as reducing Boss health), and whether 904

the reward design is reasonable. 905

B.2 Detailed Pipeline for RL-base GSM 906

B.2.1 Overview 907

The RL Training Parent Class can be instantiated 908

by VLM through a systematic process tailored to 909

different game environments. The implementation 910

consists of several key components and processes. 911

The RL Training Parent Class can be instanti- 912

ated by VLM through a systematic process tailored 913

to different game environments. First, we provide 914

an RL training environment restart functionality to 915

VLM. For ACT games, we leverage in-game tele- 916

portation cheats to enable precise character repo- 917

sitioning after respawn. For Flappy Bird, where 918

revival requires a simple click, we implement a 919

game-over detection module. 920

In instantiating the RL Training Parent Class, 921

VLM employs the state reader to design the state 922

space (e.g., character/boss status) and action space. 923

Based on task objectives, VLM constructs an initial 924

reward function. For example, in ACT games, the 925

state space might include character health, boss 926

health percentage, and relative positions, while in 927

Flappy Bird, it might track bird height and scores 928

achieved. 929

As training commences, VLM utilizes its Train- 930

ing Analyzer to optimize the reward function. 931

This creates a "train-analyze-optimize" loop where 932

VLM: (1) Monitors agent performance through 933
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training logs; (2) Adjusts reward signals to encour-934

age desired behaviors; (3) Updates the reward func-935

tion implementation.936

This iterative process enables GSM to progres-937

sively master complex task execution strategies,938

adapting to different game scenarios while main-939

taining the fundamental training structure defined940

in the parent class. The flexibility of this approach941

allows for continuous refinement of the training942

process while ensuring consistency in the underly-943

ing RL framework.944

B.2.2 Details of Initialization945

For the state space, we provide the VLM game946

task description (e.g. your task is to defeat the boss947

in the scene) and the State Reader. VLM selects948

task-related states to form a state space. This state949

space would be used to design the reward function.950

Example of State Space Design

Boss Blood (idx: 0)
Player Blood (idx: 1)
Potion Percentage (idx: 2)

951

For the action space, we provide the VLM952

game task description and the game’s action and953

key mode mapping table. VLM selects task-related954

actions from the mapping table to form an action955

space.956

Example of Action Space Design

• Move Forward (idx: 0)
Basic movement action, no resource
consumption or attack behavior in-
volved.

• Move Backward (idx: 1)
Basic movement action, no resource
consumption or attack behavior in-
volved.

• Move Left (idx: 2)
Basic movement action, no resource
consumption or attack behavior in-
volved.

• Move Right (idx: 3)
Basic movement action, no resource
consumption or attack behavior in-
volved

• Light Attack (idx: 4)
957

Light attack deals damage to the Boss
but consumes some stamina.

• Heavy Attack (idx: 5)
Heavy attack requires charging time
and can be interrupted, but deals higher
damage. Best used when opportunity
arises.

• Dodge (idx: 6)
Dodge is used to avoid attacks, pre-
venting HP loss when successful, but
consumes stamina.

• Drink Health Potion (idx: 7)
Drinking potion recovers HP but con-
sumes potion stock. Suitable to use
when HP is low.

• Cast Body Fixing (idx: 8)
Casting immobilization spell requires
mana, can control the Boss for a pe-
riod of time, creating opportunity for
damage output.

958

For the initial reward function, we provide the 959

VLM game task description, the state space, the 960

action space, and Reward Function Template (stan- 961

dardizes input and output to ensure correct invoca- 962

tion by RL training classes, providing basic design 963

ideas). Then, VLM independently designed reward 964

function. 965

Reward Function Template: 966

1 def reward_function(prev_state , 967
next_state , action_idx , done , 968
action_history , action_state_changes 969
, episode_start_time , step_time , 970
step): 971

2 # Initialize reward 972
3 reward = 0.0 973
4 974
5 # Game over logic 975
6 if done: 976
7 # Reward based on boss health 977

reduction 978
8 boss_health_reduction = 1- 979

prev_state["boss_percentage" 980
] 981

9 # Design your reward logic 982
10 ...... 983
11 return reward 984
12 985
13 # Boss health change reward; Suggest 986

giving linear rewards 987
14 boss_health_change = prev_state[" 988

boss_percentage"] - next_state[" 989
boss_percentage"] 990

15 # Design your reward logic 991
16 ...... 992
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17 reward+ = ......993
18994
19 # Player health change reward;995

Suggest giving linear rewards996
20 player_health_change = next_state["997

blood_percentage"] - prev_state[998
"blood_percentage"]999

21 # Design your reward logic1000
22 reward -= ......1001
231002
241003
25 # Dodge -specific reward1004
26 action = action_state_changes[1005

action_idx]1006
27 if action["action_name"] == "Dodge":1007
28 # Design your reward logic1008
29 ......1009
30 reward+ = ......1010
311011
32 # Combo rewards/penalties1012
33 def calculate_combo_reward(1013

action_history):1014
34 combo_reward = 01015
35 # Reward for consecutive light1016

attacks1017
361018
37 if action_history [-4:] ==1019

......:1020
38 # Design your reward logic1021
39 combo_reward += ......1022
40 # Penalty for excessive dodging1023
41 if action_history.count (6)1024

......:1025
42 # Design your reward logic1026
43 combo_reward += ......1027
44 # Penalty for excessive potion1028

use1029
45 if action_history.count (7)1030

.....:1031
46 # Design your reward logic1032
47 combo_reward += ......1033
48 return combo_reward1034
491035
50 reward += calculate_combo_reward(1036

action_history)1037
511038
52 return reward1039

Example of reward function designed by VLM1040

1 def reward_function(prev_state ,1041
next_state , action_idx , done ,1042
action_history , action_state_changes1043
, episode_start_time , step_time ,1044
step):1045

2 # Initialize reward1046
3 reward = 0.01047
41048
5 # Game over logic1049
6 if done:1050
7 # Reward based on boss health1051

reduction1052
8 boss_health_reduction = 1-1053

prev_state["boss_percentage"1054
]1055

9 if boss_health_reduction >= 0.5:1056
10 reward += 150 # Major1057

reduction bonus1058
11 elif boss_health_reduction >=1059

0.2:1060

12 reward += 75 # Medium 1061
reduction bonus 1062

13 elif boss_health_reduction >= 1063
0.1: 1064

14 reward += 30 # Minor 1065
reduction bonus 1066

15 else: 1067
16 reward -= 5 # Penalty for 1068

insignificant reduction 1069
17 return reward 1070
18 1071
19 # Boss health change reward 1072
20 boss_health_change = prev_state[" 1073

boss_percentage"] - next_state[" 1074
boss_percentage"] 1075

21 if boss_health_change > 0.02: 1076
22 reward += 100 * 1077

boss_health_change 1078
23 else: 1079
24 reward -= 2 1080
25 1081
26 # Player health change reward 1082
27 player_health_change = next_state[" 1083

blood_percentage"] - prev_state[ 1084
"blood_percentage"] 1085

28 reward += 10 * 1086
player_health_change 1087

29 1088
30 1089
31 # Dodge -specific reward 1090
32 action = action_state_changes[ 1091

action_idx] 1092
33 if action["action_name"] == "Dodge": 1093
34 if player_health_change == 0: 1094
35 reward += 2 1095
36 else: 1096
37 reward -= 0.5 1097
38 1098
39 # Combo rewards/penalties 1099
40 def calculate_combo_reward( 1100

action_history): 1101
41 combo_reward = 0 1102
42 # Reward for 4 consecutive light 1103

attacks 1104
43 if action_history [-4:] == [4, 4, 1105

4, 4]: 1106
44 combo_reward += 5 1107
45 # Penalty for excessive dodging 1108
46 if action_history.count (6) > 15: 1109
47 combo_reward -= 5 1110
48 # Penalty for excessive potion 1111

use 1112
49 if action_history.count (7) > 3: 1113
50 combo_reward -= 5 1114
51 return combo_reward 1115
52 1116
53 reward += calculate_combo_reward( 1117

action_history) 1118
54 1119
55 return reward 1120

C Detial of Ablation Study 1121

C.1 RL-based GSM 1122

Both Rule-based and RL-based GSM underwent 1123

three iterations of optimization and the experiment 1124

for each GSM was repeated 20 times. Rule-based 1125
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Figure 4: Case analysis for GSM’s Optimization.

GSM still managed to reduce the boss’s health to1126

34.6% and achieve a success rate of 10%. In con-1127

trast, Cradle completely failed to achieve any vic-1128

tories (zero success rate) and could barely inflict1129

meaningful damage to the boss (remaining health1130

at 90.2% and 95.8% respectively). These results1131

indicate that rule-based GSM also significantly en-1132

hance the Agent’s combat capabilities.1133

C.2 Optimization Iterations of GSM1134

Each GSM version was tested 10 times. The ex-1135

perimental results are shown in table3. Starting1136

from the unoptimized version (0 iterations), each1137

optimization step generally improved performance1138

until reaching optimal levels. These results indicate1139

that while one to two optimization iterations are1140

sufficient for simpler tasks like normal mob battles,1141

more complex challenges like boss battles benefit1142

from additional optimization cycles, highlighting1143

the importance of iterative refinement in GSM’s1144

performance.1145

C.3 Unfixed GSM1146

We incorporated an additional step in the high-level1147

VLM agent, enabling it to independently concep-1148

tualize and develop GSMs. However, we observed1149

that the GSMs spontaneously created by the VLM1150

exhibited significant repetition, often designing du-1151

plicate GSMs for each encountered mob. This re-1152

dundancy severely undermines the reusability of1153

the GSMs, leading to the production of numer-1154

ous low-quality, unoptimized GSMs. Table 4 has1155

shown this phenomenon.1156

Num of GSM Avg Opt
Unfixed GSM 12 0.17
fixed GSM 2 3(Max)

Table 4: Avg Opt means average optimization iterations
of GSM. We set the max optimization iterations to 3.

C.4 Case-by-case Analysis for GSM’s 1157

Optimization 1158

The figure 4 demonstrates how the VLM optimizes 1159

the shooting GSM. The shooting GSM is designed 1160

based on the target detection capabilities of Ground- 1161

ing Dino, and thus the labels input by Grounding 1162

Dino directly impact performance. Initially, the 1163

VLM could only generate broad labels such as 1164

"people" and "hand." However, after observing the 1165

images detected during the execution process, the 1166

VLM enriched the list of labels, leading to perfor- 1167

mance optimization. 1168

The following code example shows a reward op- 1169

timization case. VLM found through analysis of 1170

training data that the proportion of dodge usage 1171

is too high, which is due to the excessive reward 1172

value for dodge behavior. This will cause the player 1173

to frequently dodge without attacking, so VLM 1174

has lowered the reward for dodging behavior and 1175

lowered the threshold for frequent dodging punish- 1176

ment. 1177

Code before optimization 1178

1 ...... 1179
2 # Dodge -specific reward 1180
3 action = action_state_changes[ 1181

action_idx] 1182
4 if action["action_name"] == "Dodge": 1183
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5 if player_health_change == 0:1184
6 reward += 21185
7 else:1186
8 reward -= 0.51187
9 ......1188

10 # Combo rewards/penalties1189
11 def calculate_combo_reward(1190

action_history):1191
12 ......1192
13 # Penalty for excessive dodging1193
14 if action_history.count (6) > 15:1194
15 combo_reward -= 51195
16 ......1196
17 return combo_reward1197
181198
19 reward += calculate_combo_reward(1199

action_history)1200
201201
21 return reward1202

Code after optimization1203

1 ......1204
2 # Dodge -specific reward1205
3 action = action_state_changes[1206

action_idx]1207
4 if action["action_name"] == "Dodge":1208
5 if player_health_change == 0:1209
6 reward += 0.51210
7 else:1211
8 reward -= 0.11212
9 ......1213

10 # Combo rewards/penalties1214
11 def calculate_combo_reward(1215

action_history):1216
12 ......1217
13 # Penalty for excessive dodging1218
14 if action_history.count (6) > 10:1219
15 combo_reward -= 51220
16 ......1221
17 return combo_reward1222
181223
19 reward += calculate_combo_reward(1224

action_history)1225
201226
21 return reward1227

We also found that VLM does not always opti-1228

mize the reward logic. There is also a low probabil-1229

ity of misunderstanding, such as making a mistake1230

in the calculation logic of boss health during the1231

optimization process, as shown in the following1232

example:1233

1 ......1234
2 # Boss health change reward1235
3 boss_health_reduction = 1-prev_state1236

["boss_percentage"]1237
4 if boss_health_change > 0.02:1238
5 reward +=1239
6 ......1240

D Prompts We Used1241

Game Environment Analysis1242

1 env_sys_prompt='''1243

2 You are a specialized game environment 1244
analyzer with expertise in 1245
processing and interpreting video 1246
game screenshots. 1247

3 Your core capabilities include: 1248
4 1. Precise scene classification between 1249

UI and gameplay environments 1250
5 2. Detailed visual element extraction 1251

and spatial relationship analysis 1252
6 3. Gameplay situation assessment 1253
7 1254
8 Your analysis must be accurate , concise , 1255

and focus on actionable information 1256
that would be relevant for game AI 1257

decision -making.''' 1258
9 1259

10 def generate_prompt(game_info): 1260
11 prompt = f""" 1261
12 You are a game AI assistant responsible 1262

for analyzing in-game screenshots. 1263
Your task is to identify the type of 1264
the current screenshot and 1265

summarize the key information within 1266
it. 1267

13 1268
14 There are two types of screenshots: 1269
15 1. **UI Screen **: Refers to screenshots 1270

displaying menus or user interfaces. 1271
16 2. ** Gameplay Screen **: Refers to actual 1272

gameplay screenshots , showing 1273
characters , enemies , items , and 1274
other scene elements. 1275

17 1276
18 You need to follow these steps: 1277
19 1. Determine the screenshot type: Is it 1278

a "UI Screen" or a "Gameplay Screen 1279
"? 1280

20 2. If it's a **UI Screen**, 1281
21 - extract and summarize the text 1282

from the UI, such as options , 1283
buttons , etc. 1284

22 3. If it's a ** Gameplay Screen ** 1285
23 - First assess the Camera View 1286

state: Check if view is too high 1287
(excessive sky/trees visible); 1288

too low (excessive ground 1289
visible); left/right (incomplete 1290
road visibility) and road 1291

features are clearly visible 1292
24 - extract the key information based 1293

on the following elements: { 1294
game_info.get('Frame_attention ') 1295
} 1296

25 - For enemy detection , use EXACTLY 1297
one of these formats: 1298

26 * If enemies present: "Enemy 1299
detected: [number] enemies 1300
at [position ]" 1301

27 * If no enemies: "No enemy 1302
detected" 1303

28 - summarize the environment or Point 1304
out potential dangers or 1305

opportunities 1306
29 1307
30 Output a your result in the following 1308

format: 1309
31 screen type is: "<UI Screen or 1310

Gameplay Screen >", 1311
32 observation is: "<Summary of the 1312

content >" 1313

16



331314
34 Example output for Gameplay Screen:1315
35 screen type is: "Gameplay Screen",1316
36 observation is: "1317
37 1. camera view state is: (1) View1318

angle slightly too high - excess1319
sky visible; (2) Road1320

visibility partially blocked on1321
right side1322

38 2. Path details is: Main path1323
heading north through forest1324

39 3. Enemy detected: 2 enemies at1325
front1326

40 4. environment summarize is: Forest1327
path blocked by two enemies with1328
dense vegetation on both sides"1329

411330
42 "1331
43 """1332
44 return prompt1333

Historical Task Summary1334

1 history_summary_sys_prompt = '''1335
2 You are an expert game historian. Your1336

role is to synthesize gameplay1337
history into a concise , informative1338
narrative paragraph that captures1339
key events , strategies , and insights1340
relevant for future decision -making1341

.1342
3 '''1343
4 def history_summary_prompt(history_logs)1344

:1345
5 base_prompt = f"""1346
6 Based on the following game history logs1347

, generate a single coherent1348
paragraph (approximately 150 words)1349
that:1350

7 - Summarizes the key events1351
chronologically1352

8 - Highlights critical decisions and1353
their outcomes1354

9 - Identifies important patterns or1355
strategies1356

10 - Notes any significant environmental1357
changes1358

11 - Includes relevant insights for future1359
tasks1360

121361
13 Game History Logs:1362
14 {history_logs}1363
151364
16 Your summary should be clear , concise ,1365

and focused on information that will1366
be most valuable for future task1367

reasoning.1368
17 """1369
18 return base_prompt1370

Previous Task Reflection1371

1 task_sys_prompt='''1372
2 'You are an expert game analyst1373

specializing in task reflection and1374
evaluation. Your role is to:1375

3 1. Analyze all gameplay screenshots and1376
state changes to understand what1377
happened during task execution1378

4 2. Evaluate task completion status with1379
concrete evidence1380

5 3. Identify and analyze issues at task 1381
design , action planning , and 1382
execution levels 1383

6 4. Provide specific recommendations when 1384
needed 1385

7 1386
8 Always provide detailed , objective 1387

analysis following the exact format 1388
requested in the prompt.''' 1389

9 1390
10 def generate_task_level_prompt( 1391

pass_task_info , pass_env_info , 1392
current_env_info , pass_action_code): 1393

11 base_prompt = f""" Analyze the 1394
previous task execution using 1395
the following information: 1396

12 1397
13 1. Task Information: 1398
14 {pass_task_info} 1399
15 1400
16 2. Environment States: 1401
17 - Before task execution: { 1402

pass_env_info} 1403
18 - After task execution: { 1404

current_env_info} 1405
19 1406
20 3. Action Design: 1407
21 - Planned action list and Execution 1408

code: 1409
22 {pass_action_code} 1410
23 1411
24 Please conduct your analysis in 1412

these sequential steps and 1413
provide a detailed response in 1414
the following format: 1415

25 1416
26 1. VISUAL ANALYSIS 1417
27 Provide a clear description of: 1418
28 - What happened during the task 1419

execution based on all the 1420
gameplay screenshots 1421

29 - Key UI changes (if in UI screens), 1422
character movements , 1423

interactions observed , and 1424
Notable changes in environment 1425
states 1426

30 {" - Changes between initial and 1427
final maps (The last two 1428
pictures)" if has_map else ""} 1429

31 1430
32 2. TASK COMPLETION EVALUATION 1431
33 State clearly: 1432
34 - Whether the task was successfully 1433

completed 1434
35 - Specific evidence from screenshots 1435

or state changes supporting 1436
your conclusion 1437

36 1438
37 3. ISSUE ANALYSIS (if any problems 1439

occurred) 1440
38 Analyze at three levels: 1441
39 a) Task Design Level 1442
40 - Any issues with task design 1443

given the game state 1444
41 - Problems with task objectives 1445

or prerequisites 1446
42 1447
43 b) Action Planning Level 1448
44 - Issues with the planned action 1449

sequence 1450

17



45 - Problems with action strategy1451
or logic1452

461453
47 c) Action Execution Level1454
48 - Problems with specific control1455

inputs1456
49 - ** Issues with duration of1457

actions **1458
501459
51 4. NEXT STEP RECOMMENDATION1460
52 If task failed:1461
53 - Specific suggestions to complete1462

the task in the ** CURRENT **1463
state1464

541465
55 If task succeeded:1466
56 - Simply state that the task was1467

completed successfully and no1468
modifications are needed1469

571470
58 Please provide your analysis in the1471

following format:1472
59 VISUAL ANALYSIS:1473
60 <Describe the sequence of events1474

observed in gameplay screenshots ,1475
including UI changes (if in UI1476
screens), character actions , and any1477
significant state changes >1478

61 {" <Describe any relevant changes1479
observed between initial and final1480
maps >" if has_map else ""}1481

621482
63 TASK COMPLETION EVALUATION:1483
64 Status: <SUCCESS/FAILURE >1484
65 Evidence: <List specific observations1485

from screenshots or state changes1486
that support your status1487
determination >1488

661489
67 ISSUE ANALYSIS:1490
68 Task Design Level:1491
69 <Evaluate if there are any issues with1492

how the task was designed and1493
specified. If no issues , explicitly1494
state that >1495

701496
71 Action Planning Level:1497
72 <Analyze if the planned sequence of1498

actions was appropriate and complete1499
. Identify any logical gaps or1500
problems >1501

731502
74 Action Execution Level:1503
75 <Assess if there were any issues with1504

the specific implementation of1505
actions , such as timing or input1506
problems >1507

761508
77 NEXT STEP RECOMMENDATION:1509
78 <If task failed: Provide specific1510

suggestions for task completion1511
given the current state >1512

79 <If task succeeded: Simply state that1513
the task was completed successfully1514
and no modifications are needed >1515

801516
81 """1517
821518
83 return base_prompt1519

Action Design Reflection 1520

1 action_sys_prompt=''' 1521
2 You are an expert game action analyst 1522

specializing in analyzing and 1523
improving game control 1524
implementations. Your role is to: 1525

3 1. Analyze gameplay screenshots to 1526
understand the execution effects of 1527
each action 1528

4 2. Evaluate action code design and 1529
implementation quality 1530

5 3. Provide reusable insights for similar 1531
actions in the future 1532

6 4. Suggest specific improvements for 1533
action code design 1534

7 1535
8 Always provide detailed , objective 1536

analysis following the exact format 1537
requested in the prompt. 1538

9 ''' 1539
10 1540
11 def generate_action_level_prompt( 1541

pass_task_info , pass_action_code): 1542
12 base_prompt = f""" Analyze the 1543

previous action execution using 1544
the following information: 1545

13 1546
14 1. Screenshot Sequence Rules: 1547
15 - For WASD movement actions lasting 1548

over 2 seconds: 1549
16 * Screenshots are captured every 1550

2 seconds during the 1551
movement 1552

17 - For all other key/mouse actions: 1553
18 * Only two screenshots are 1554

captured: one before and one 1555
after the action 1556

19 This helps track continuous 1557
movements and precise action 1558
effects. 1559

20 1560
21 2. Task Context: 1561
22 {pass_task_info} 1562
23 1563
24 3. Action plan and code list: 1564
25 {pass_action_code} 1565
26 1566
27 Please conduct your analysis in 1567

these sequential steps and 1568
provide a detailed response in 1569
the following format: 1570

28 1571
29 1. ACTION EXECUTION ANALYSIS 1572
30 For each action in the sequence , 1573

analyze: 1574
31 - Initial state and final state from 1575

screenshots 1576
32 - Whether the action achieved its 1577

intended effect 1578
33 - Timing and smoothness of execution 1579
34 - Any unexpected behaviors or side 1580

effects 1581
35 1582
36 2. ACTION CODE EVALUATION 1583
37 For each action implementation , 1584

evaluate: 1585
38 - Appropriateness of key/mouse 1586

mapping choices 1587
39 - Timing duration settings 1588

18



40 - Action sequence coordination1589
41 - Code efficiency and reliability1590
421591
43 3. SUCCESS/FAILURE ANALYSIS1592
44 For each action , determine:1593
45 - Whether it succeeded or failed1594
46 - Root causes of any failures:1595
47 a) Input mapping issues1596
48 b) Timing problems1597
49 c) Sequence coordination issues1598
50 d) Environmental factors1599
511600
52 4. REUSABILITY ANALYSIS1601
53 Analyze each action 's potential for1602

reuse:1603
54 - Common scenarios where this action1604

pattern could apply1605
55 - Required prerequisites and1606

conditions1607
56 - Potential adaptations needed for1608

different contexts1609
57 - Limitations and constraints1610
581611
59 5. IMPROVEMENT RECOMMENDATIONS1612
60 Provide specific suggestions for:1613
61 - Better key/mouse mapping choices1614
62 - Optimal timing parameters1615
63 - Enhanced sequence coordination1616
64 - More robust implementation1617

patterns1618
651619
66 Note that:1620
67 1. output will be directly evaluated1621

using Python eval(), so it must be a1622
valid Python list of dicts1623

68 2. No additional text or explanation1624
should be added between or after1625
these sections1626

69 After completing your analysis ,1627
output a list of dictionaries in1628
the following format:1629

701630
71 ```python1631
72 [1632
73 {{1633
74 "action_name_description ":1634

"<original action1635
description from1636
action_name_description1637
>",1638

75 "action_code ": "<1639
corresponding action1640
code tuple from1641
action_code >",1642

76 "reflection ": {{1643
77 "execution_analysis ": "<1644

summary of execution1645
analysis >",1646

78 "code_evaluation ": {{1647
79 "status ": "<SUCCESS/1648

PARTIAL SUCCESS/1649
FAILURE >",1650

80 "quality_analysis ":1651
"<implementation1652
quality summary1653

>"1654
81 }},1655
82 "1656

success_failure_analysis1657
": "<detailed1658

analysis of what 1659
worked/didn't work 1660
>", 1661

83 "reusability ": {{ 1662
84 " 1663

applicable_scenarios 1664
": "<list of 1665
potential reuse 1666
cases >", 1667

85 "prerequisites ": "< 1668
required 1669
conditions >", 1670

86 "limitations ": "< 1671
known 1672
constraints >" 1673

87 }}, 1674
88 "improvements ": "< 1675

specific suggestions 1676
for implementation 1677

improvements >" 1678
89 }} 1679
90 }}, 1680
91 # ... repeat for each action 1681
92 ] 1682
93 ``` 1683
94 1684
95 Ensure your response ends with this 1685

structured list for easy parsing 1686
. Format it exactly as shown 1687
above. 1688

96 """ 1689
97 return base_prompt 1690

Task Planning 1691

1 task_planner_sys='''You are an 1692
intelligent game AI assistant 1693
specializing in strategic task 1694
planning and execution. 1695

2 1696
3 Key Responsibilities: 1697
4 1. Analyze game situations 1698

comprehensively considering: 1699
5 - Current state and environment 1700
6 - Historical context and past 1701

experiences 1702
7 - Game objectives and constraints 1703
8 1704
9 2. For ALL tasks (not just movement), 1705

provide: 1706
10 - Clear , specific , and actionable 1707

objectives 1708
11 - Precise success criteria 1709
12 - Required resources or conditions 1710
13 - Risk assessment and mitigation 1711

strategies 1712
14 1713
15 3. For movement -related tasks , MUST 1714

provide precise location 1715
descriptions using: 1716

16 - Relative position to character ( 1717
using character height as scale) 1718

17 - Directional instructions (up/down/ 1719
left/right or compass directions) 1720

18 - Safe path recommendations 1721
considering terrain 1722

19 1723
20 4. Special Considerations: 1724
21 - Prioritize agent safety and 1725

objective completion 1726

19



22 - Balance exploration with risk1727
management1728

23 - Adapt strategy based on previous1729
task outcomes1730

24 - Consider resource management and1731
efficiency1732

251733
26 Your task is to make informed decisions1734

that progress game objectives while1735
maintaining agent safety and1736
efficiency.1737

27 '''1738
281739
29 def construct_task_prompt(current_frame ,1740

pass_task_history_summary ,1741
pass_task_reflection , env_info ,1742
game_info , step):1743

301744
31 base_prompt = f"""1745
32 Analyze the current situation and plan1746

the most appropriate next task1747
considering:1748

331749
34 1. Game Objectives:1750
35 {game_info.get('Global_task ')}1751
36 2. Additional Task Context: {game_info.1752

get('additional_task_info4_task_plan1753
')}1754

371755
38 Your design task should be broken down1756

into the following specific1757
Available Controls:1758

39 {game_info.get('control_info ')}1759
401760
41 Required Analysis Steps:1761
42 1. Evaluate current environment and1762

state1763
43 2. Consider historical context and1764

lessons learned1765
44 3. Assess risks and opportunities1766
45 4. Determine priority actions """1767
461768
471769
48 current_state = f"""1770
49 Current Environment Status:1771
50 {env_info}"""1772
511773
52 if step == 1:1774
53 analysis_prompt = f"""{1775

base_prompt}1776
54 {current_state}1777
551778
56 This is the initial step. Focus on1779

understanding the current situation1780
and establishing a safe starting1781
point."""1782

571783
58 else:1784
59 history_context = f"""1785
60 Historical Context:1786
61 Task History Summary: {1787

pass_task_history_summary}1788
621789
63 Previous Task Reflection: {1790

pass_task_reflection}"""1791
64 analysis_prompt = f"""{1792

base_prompt}1793
65 {current_state}1794
66 {history_context}1795
671796

68 Consider: 1797
69 1. Previous task outcomes and lessons 1798

learned 1799
70 2. Current environmental constraints 1800
71 3. Progress toward game objectives 1801
72 4. Safety and risk management """ 1802
73 1803
74 output_format = """ 1804
75 Based on your analysis , provide your 1805

response in the following format: 1806
76 1807
77 reasoning process: 1808
78 1. Current State Analysis: "<analyze 1809

current environment and 1810
immediate situation >" 1811

79 2. Historical Context: "<analyze 1812
relevant history and reflections 1813
>" 1814

80 3. Strategic Evaluation: "<evaluate 1815
opportunities , risks , and 1816
priorities >" 1817

81 1818
82 task details: 1819
83 goal: "<specific , actionable 1820

objective >" 1821
84 1822
85 location details: 1823
86 - screen_position: "<describe 1824

target position. Example: '3 1825
meters to the right '>" 1826

87 key_requirements: "<essential 1827
conditions or resources needed >" 1828

88 success_criteria: "<main condition 1829
that must be met >" 1830

89 1831
90 1832
91 Note: 1833
92 - The direction of camera adjustment ** 1834

MUST** be consistent , and there 1835
should be no angle that switches 1836
left and then right , or up and then 1837
down 1838

93 - For movement -related tasks , always 1839
specify both screen -relative 1840
positions (using character height as 1841
scale). For non -movement tasks , 1842

mark position fields as 'N/A' if not 1843
relevant.""" 1844

94 1845
95 return analysis_prompt + 1846

output_format 1847

Action Planning 1848

1 action_prompt = f""" Based on the task 1849
you just planned , break it down into 1850
specific executable actions. 1851

2 Please list the specific actions needed 1852
to complete this task. 1853

3 1854
4 Available Controls: 1855
5 {game_info.get('control_info ')} 1856
6 1857
7 Note that: 1858
8 1. output will be directly evaluated 1859

using Python eval(), so it must be a 1860
valid Python list 1861

9 2. No additional text or explanation 1862
should be added between or after 1863
these sections 1864

10 3. Ignore actions such as' wait 'and' 1865
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observe ' that cannot be associated1866
with available controls1867

11 4. Action list is *no longer than 5!!*.1868
121869
13 Output Format MUST be exactly as follows1870

:1871
14 [" Action1: <action name > - <detailed1872

description including precise1873
measurements and requirements >","1874
Action2: <action name > - <detailed1875
description including precise1876
measurements and requirements >",1877
...]1878

151879
16 """1880

Action Construction1881

1 action_sys_prompt = '''1882
2 You are an expert game AI action planner1883

specializing in converting high -1884
level tasks into precise , executable1885
action sequences.1886

31887
4 Key Responsibilities:1888
5 1. Convert task descriptions into1889

specific control sequences1890
6 2. Ensure accurate timing and duration1891

for each action1892
7 3. Maintain action safety and efficiency1893
8 4. Generate properly formatted action1894

code that can be directly executed1895
91896

10 Important Guidelines:1897
11 1. All outputs must be in valid Python1898

dictionary list format1899
12 2. Each action must include both1900

description and corresponding1901
control code1902

13 3. Control codes must use only valid1903
game controls1904

14 4. All durations must be reasonable and1905
safe1906

15 '''1907
161908
17 def generate_action_prompt(game_info ,1909

reason_task ,action_plan):1910
18 prompt = f"""1911
19 You are an expert game AI action planner1912

specializing in converting high -1913
level action into precise ,1914
executable action sequences.1915

201916
21 Your current task:1917
22 {reason_task}1918
231919
24 The action plan for task:1920
25 {action_plan}1921
261922
27 Available Controls:1923
28 {game_info.get('control_info ')}1924
291925
30 Additional Action Information:1926
31 {game_info.get('additional_action_info ')1927

}1928
321929
33 Requirements:1930
34 1. Convert each action into specific1931

control sequences1932
35 2. Provide both action description and1933

control code1934

36 3. Ensure precise timing for each 1935
control input 1936

37 4. Consider safety in all actions 1937
38 1938
39 Output Format MUST be exactly as follows 1939

: 1940
40 [ 1941
41 {{ 1942
42 "action_name_description ": "< 1943

original action description 1944
>", 1945

43 "action_code ": [("<key >", < 1946
duration >), ...] 1947

44 }}, 1948
45 ... 1949
46 ] 1950
47 1951
48 Example Output: 1952
49 [ 1953
50 {{ 1954
51 "action_name_description ": "Move 1955

Forward - Move 3 meters 1956
forward", 1957

52 "action_code ": [("W", 3.0)] 1958
53 }}, 1959
54 {{ 1960
55 "action_name_description ": "Jump 1961

and Interact - Jump over 1962
obstacle and press button", 1963

56 "action_code ": [(" SPACE", 0.1), 1964
("E", 0.1)] 1965

57 }} 1966
58 ] 1967
59 1968
60 Note: 1969
61 1. Output will be evaluated using Python 1970

ast.literal_eval () 1971
62 2. Use only valid control keys: {list( 1972

game_info.get('Mapping_info ', {}). 1973
keys())} 1974

63 3. All durations must be positive 1975
numbers 1976

64 4. Maintain exact format with no 1977
additional text 1978

65 """ 1979
66 return prompt 1980
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