
On Exact Bit-level Reversible Transformers Without Changing Architecture

Guoqiang Zhang 1 J.P. Lewis 2 W. Bastiaan Kleijn 3

Abstract

In this work we present the BDIA-transformer,
which is an exact bit-level reversible transformer
that uses an unchanged standard architecture for
inference. The basic idea is to first treat each
transformer block as the Euler integration approx-
imation for solving an ordinary differential equa-
tion (ODE) and then incorporate the technique of
bidirectional integration approximation (BDIA)
(originally designed for diffusion inversion) into
the neural architecture, together with activation
quantization to make it exactly bit-level reversible.
In the training process, we let a hyper-parameter
γ in BDIA-transformer randomly take one of the
two values {0.5,−0.5} per training sample per
transformer block for averaging every two con-
secutive integration approximations. As a result,
BDIA-transformer can be viewed as training an
ensemble of ODE solvers parameterized by a set
of binary random variables, which regularizes the
model and results in improved validation accu-
racy. Lightweight side information is required to
be stored in the forward process to account for
binary quantization loss to enable exact bit-level
reversibility. In the inference procedure, the ex-
pectation E(γ) = 0 is taken to make the resulting
architecture identical to transformer up to acti-
vation quantization. Our experiments in natural
language generation, image classification, and lan-
guage translation show that BDIA-transformers
outperform their conventional counterparts signif-
icantly in terms of validation performance while
also requiring considerably less training memory.
Thanks to the regularizing effect of the ensemble,
the BDIA-transformer is particularly suitable for
fine-tuning with limited data. Source-code can be
found via this link.

1Department of Computer Science, University of Exeter, UK
2NVDIA, USA 3 School of Engineering and Computer Science,
Victoria University of Wellington, New Zealand. Correspondence
to: Guoqiang Zhang <guoqiang.x.zhang@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
An active research trend in deep learning is to scale up
the size of both the deep neural networks (DNNs) and the
training data, with the aim of obtaining universal machine-
learning models that are capable of accomplishing vari-
ous tasks. Examples are large language models (LLMs)
such as GPT-4 (Achiam et al., 2023) and Llama 2 (Tou-
vron et al., 2023), which can, for example, have informative
and friendly conversations with humans, solve mathemat-
ical problems, and produce high-quality source codes for
programming tasks. A major bottleneck for training those
large DNNs is that they often require large on-chip memory
and large inter-chip communication bandwidth across many
chips to accommodate both the DNN model and the interme-
diate activations of the input data-batch in back-propagation
(Gholami et al., 2024), which is referred to as memory wall
in the literature.

One promising technique to alleviate the issue of memory
wall is to design and train reversible DNNs (Dinh et al.,
2014; 2016; Behrmann et al., 2019; Mangalam et al., 2023).
By doing so, the intermediate activations in the forward
pass do not have to be stored in the memory to allow for
back-propagation. Instead, they can be recomputed on-
the-fly in the backward pass by exploiting the reversibility
of the DNN, thus saving memory consumption by a large
margin for deep DNNs. The procedure essentially reduces
memory consumption at the cost of a reasonable amount of
additional computation. The reduction in memory also has
the potential to improve throughput by increasing the batch
size.

Early reversible DNNs, such as NICE (Dinh et al., 2014), the
methods of (Rezende & Mohamed, 2015), Real NVP (Dinh
et al., 2016), and Inverse Autoregressive Flow (Kingma
et al., 2016) are differentiable transformations that were
aimed at facilitating generative modeling. For an overview
of such early normalizing flows see (Kobyzev et al., 2020).
Inspired by these works, a range of reversible residual
models were proposed subsequently, including RevNet
(Gomez et al., 2017), Glow (Kingma & Dhariwal, 2018),
i-RevNet (Jacobsen et al., 2018), i-ResNet (Behrmann et al.,
2019), layerwise inversion (Hascoet et al., 2019), Fourier-
transformation based CNN inversion (Finzi et al., 2019),
and Mintnet (Song et al., 2019). Another line of research
enforces reversibility in deep learning from the perspec-

1

https://github.com/guoqiang-zhang-x/BDIA-Transformer


On Exact Bit-level Reversible Transformers Without Changing Architecture

tive of ordinary differential equations (ODEs), which in-
cludes FFJORD (Grathwohl et al., 2018), leapfrog networks
(Chang et al., 2017), momentum residual networks (Sander
et al., 2021), and neural ODE inversion (Stam, 2022).

Recently, the research on reversibility has moved to other
types of neural networks. The authors in (Mangalam et al.,
2023; Zhu & Mangalam, 2023) proposed reversible vision
transformers (referred to as RevViT) due to the popular-
ity of LLMs. (Wallace et al., 2023) utilized a reversible
diffusion sampling method for the task of diffusion based
image editing. To our best knowledge, all the above existing
reversible DNNs either require non-standard architectures
or are constructed by modifying the original DNN architec-
tures considerably to enable reversibility.

In this paper, we propose BDIA-transformer, a new type of
reversible transformer that uses an unchanged, standard ar-
chitecture for the inference procedure. It is based on the bidi-
rectional integration approximation (BDIA), which was re-
cently proposed in (Zhang et al., 2023a) to enable diffusion
inversion for round-trip image editing. To be able to incor-
porate BDIA into transformers for online back-propagation,
we follow the common practice of treating each transformer
block as an Euler integration approximation for solving an
ordinary differential equation (ODE).

We make two main contributions in this work. Firstly, we
propose BDIA-transformers by introducing a random hyper-
parameter γ ∈ {−0.5, 0.5} per transformer block per train-
ing sample to regularize the DNN models for improvement
of validation performance. Each γ parameter intends to aver-
age every two consecutive integration approximations. The
training procedure becomes training of an ensemble of ODE
solvers parameterized by a set of binary random variables.
In the inference procedure, the expectation E[γ] = 0 is uti-
lized, which reduces BDIA-transformers to conventional
transformers. As a result, our method is a good candidate
for fine-tuning existing transformer-based models such as
LLMs.1

Secondly, we perform activation quantization to allow for
exact bit-level reversibility of BDIA-transformers. Note that
the special setup of the γ values in the subset {−0.5, 0.5}
when performing activation quantization leads to a 1 bit
information loss per activation value per transformer block.
Therefore, lightweight side information per transformer
block needs to be stored during training to recover this
1 bit information loss. Despite this, the overall memory use
is significantly reduced.

Experimental results for natural language generation (NLG),
image classification, and language translation show that the
BDIA technique significantly improves the validation perfor-

1See Subsection 5.1 for full fine-tuning and Appendix E for
LoRA-based fine-tuning.

mance over that of the corresponding baseline transformers
and simultaneously reduces training memory significantly.
The improved performance results from the model regu-
larization imposed by a set of γ random variables. Our
empirical study also indicates that RevViT from (Mangalam
et al., 2023) produces either inferior or comparable valida-
tion performance to that of its original counterparts.

2. Related Works
In recent years, various quantization strategies (Yang et al.,
2019; Wu et al., 2018; Wang et al., 2018) have been pro-
posed in the training and/or inference processes of DNN
models on low-precision devices. For instance, the work
(Wu et al., 2018) successfully performed quantization on
DNN weights, activations, gradients and errors in the train-
ing and inference processes and obtained promising results.
The recent work (Ma, 2024) demonstrated that LLMs with
a quantization of 1.58 bits per model parameter exhibit com-
parable performance to non-quantized models. In summary,
it was found that the validation performance of DNN models
that incorporate those quantization operations is comparable
with that of conventional DNN models. In our work, we
only need to apply activation quantization to enable exact
bit-level reversibility in training BDIA-transformers.

We note that in general, model quantization and design of
reversible DNN models are two complimentary strategies
for reducing memory consumption in the training process,
where the first strategy operates on the model parameters
and the second one operates on the activation values. With
the development of new model quantization methods such
as (Ma, 2024), advancing the research frontier of reversible
DNN models has become of great interest.

In addition to reversible DNNs, other memory-saving tech-
niques have been proposed in recent years, such as gradient
checkpointing (Feng & Huang, 2021), and activation of-
floading (Wu et al., 2024). At least in principle, the above
techniques can be combined with the BDIA algorithm to
save training memory for a broad class of residual-type
neural architectures.

3. Preliminary
Neural networks as ODEs: (Chen et al., 2018) highlighted
the interpretation that passing a hidden state across layers
that add a correction to that state can be viewed as Euler inte-
gration. While that paper identified architectures including
residual nets and normalizing flows as following this pat-
tern, it is equally true of diffusion models and transformers.
This interpretation emphasizes the importance of consider-
ing more accurate integration schemes (Karras et al., 2022).
The need for improved integration is particularly apparent
in round-trip image editing in diffusion models, where sig-
nificant integration error will result in unintended visible

2



On Exact Bit-level Reversible Transformers Without Changing Architecture

alterations to the image.

Diffusion sampling via solving ODE: Recently, the work
(Zhang et al., 2023a) proposed the BDIA technique to enable
diffusion inversion for effective round-trip image editing.
From a high level point of view, BDIA can be viewed as a
time-reversible ODE solver. Given an initial diffusion state
zT at time step T , the diffusion-based sampling process
for generating realisic images zϵ at time t = ϵ > 0 can
be realized by solving a probability ordinary differential
equation (ODE)

dz = d(z, t)dt (1)

over the time interval t ∈ [T, ϵ]. The gradient vector d(z, t)
includes the output of a pre-trained DNN model with (zt, t)
as its input. The common practice for solving the above
ODE is to first discretize the continuous time interval [T, ϵ]
properly into a set of timesteps {ti|i = 0, . . . , N} with
t0 = T and tN = ϵ, and then perform certain integration ap-
proximation per small time-interval sequentially to compute
the final diffusion state zN = zϵ.

BDIA: Suppose we would like to estimate the next diffu-
sion state zi+1 = zti+1 by solving (1) based on the re-
cent information (zi, ti) and (zi−1, ti−1), where zj = ztj

for j = i − 1, i. The basic idea of BDIA is to com-
pute zi+1 by performing both the forward integration ap-
proximation ∆(ti → ti+1|zi)

(
≈

∫ ti+1

ti
d(z, t)dt

)
and

the backward integration approximation ∆(ti → ti−1|zi)(
≈ −

∫ ti
ti−1

d(z, t)dt
)

conditioned on zi. One popular
method for implementing ∆(ti → ti+1|zi) and ∆(ti →
ti−1|zi) in the literature of diffusion models is by employ-
ing the DDIM update expression (see (Song et al., 2021;
Zhang et al., 2023b;a) for details). With the above two
integration approximations, zi+1 can be expressed as

zi+1 =zi−1−(1− γ)(zi−1 − zi)− γ∆(ti → ti−1|zi)︸ ︷︷ ︸
≈
∫ ti
ti−1

d(z,t)dt

+∆(ti → ti+1|zi)︸ ︷︷ ︸
≈
∫ ti+1
ti

d(z,t)dt

(2)

=γzi−1 + (1− γ)zi − γ∆(ti → ti−1|zi)

+ ∆(ti → ti+1|zi), (3)

where γ = (0, 1] averages ∆(ti → ti−1|zi) and (zi−1−zi)
for the time-slot [ti−1, ti]. The minus sign in front of the
two quantities are due to the reverse integration direction.
The quantity −(zi−1 − zi) is the previously computed in-
tegration approximation for

∫ ti
ti−1

d(z, t)dt. We note that
negative γ values are not applicable to the diffusion models
considered in (Zhang et al., 2023a).

On reversibility of BDIA: The update expression (3) is care-
fully designed in (Zhang et al., 2023a) to enable diffusion

inversion for round-trip image editing. By reformulating
(3), zi−1 can be easily computed in terms of (zi, zi+1). We
note that due to the nature of the floating-point datatype,
there might be error accumulation in round-trip image re-
construction, where the corresponding diffusion states in the
forward and reverse process are not identical. In practice,
error accumulation of BDIA in diffusion inversion is not
a big issue (Zhang et al., 2023a) due to the fact that the
number of timesteps is generally set to be small (e.g., 50
timesteps in either forward or reverse process) to make the
time complexity reasonable.

One main difference between diffusion inversion and re-
versible transformers is that no gradient needs to be back-
propagated in diffusion inversion for updating the DNN
model. As a result, even if there is error accumulation in dif-
fusion inversion, it is less severe than in reversible transform-
ers where error accumulation in online back-propagation
would slow down the training convergence or even make the
training fail especially for very deep models like LLMs. In
next section, we will explain how to design exact bit-level
reversible transformers in the training process to avoid any
error-accumulation while at the same time, maintaining the
architectures of the transformer in the inference procedure.

4. Exact Bit-Level Reversible Transformers via
BDIA

In this section, we first briefly review the transformer update
expressions from the ODE viewpoint. We then propose the
BDIA-transformer that enables exact bit-level reversibility
with activation quantization. Specially, we will demonstrate
how each of the two γ values {−0.5, 0.5} averages consec-
utive integration approximations. The training of a BDIA-
transformer can then be interpreted as employing different
ODE solvers for different training samples in a random
manner. In addition, we explain why additional lightweight
side-information is required to be stored to account for the
binary quantization loss in online back-propagation.

4.1. Revisiting transformer update expression

A typical transformer block consists of the attention function
(denoted as f(·)) and the function of feed-forward network
(FFN) (denoted as g(·)), of which the trainable parameters
are generally different for different block indices. Accord-
ingly, the output xk+1 of the kth transformer block can be
mathematically represented in terms of the input xk as

xk+1 = xk + fk(xk) + gk(xk + fk(xk))︸ ︷︷ ︸
hk(xk)

, (4)

where we use hk(xk) to denote the overall residual quan-
tity that includes both the attention and FFN functions.
For simplicity, we omit the pre-normalisation operations

3



On Exact Bit-level Reversible Transformers Without Changing Architecture

in (4), since these in fact do not affect the design of BDIA-
transformers later on.

It is well known from the literature (Chen et al., 2018) that
the kth forward step in (4) can be roughly viewed as the
Euler integration approximation of an ODE at timestep tk:

xk+1=xk + hk(xk)=xk +

∆(tk→tk+1|xk)︷ ︸︸ ︷
d̃(xk, tk)(tk+1 − tk) (5)

≈ xk +

∫ tk+1

tk

d̃(x, t)dt,

where d̃(xk, tk) denotes the gradient vector with (xk, tk)
as the input. Both d̃(xk, tk) and (tk+1 − tk) are implic-
itly learned via the composite function hk(xk), which is
alternatively denoted as ∆(tk → tk+1|xk).

As explained later on, we will introduce BDIA into the up-
date expression of (5). Note that (5) is a general update
expression that not only includes the transformer but also
ResNet (He et al., 2015) and its variants. It is noted in
(Dupont et al., 2019) that ResNet can represent more func-
tions than neural ODEs. Despite the less powerfulness of
the ODE framework, we employ the framework to facilitate
the design of reversible transformer and obtain promising
empirical results.

4.2. BDIA-transformer without quantization

In this subsection, we first derive the update expressions of
BDIA-transformer without quantization as an extension of
(5), and then study the impact of the γ values in {0.5,−0.5}.
When k = 0, x1 can be computed by following (5) as

x1 = x0 + h0(x0) = x0 +∆(t0 → t1|x0). (6)

The update expression for xk+1 in the training process,
K − 1 ≥ k ≥ 1, can be obtained by utilizing (2)-(3). Based
on (5), we let

∆(tk → tk−1|xk) = −hk(xk) (7)
∆(tk → tk+1|xk) = hk(xk). (8)

By combining (7)-(8) and (2)-(3) with i = k, the update
expression xk+1, K − 1 ≥ k ≥ 1, can be represented as

xk+1 = xk−1+(1−γ)(xk−xk−1)+(1 + γ)hk(xk) (9)
= γxk−1+(1−γ)xk+(1+γ)hk(xk), (10)

where γ is recommended to take values from {0.5,−0.5}
with equal probability per training sample per transform
block, the impact of which will be explained in detail in the
following. This is different from the work of BDIA-based
diffusion inversion (Zhang et al., 2023a) where γ has to be
positive.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

82

84

86

88

90

v
a
l.
 a

c
c
.

ViT

BDIA-ViT

Figure 1. Validation performance of different ODE solvers param-
eterized by a single γ parameter after training ViT and BDIA-ViT
over CIFAR10. See Subsection 5.2 on how ViT and BDIA-ViT
were trained. Each ODE solver in the inference procedure is re-
alized by selecting γ from [−0.5, 0.5], which is fixed across all
the transformer blocks for the same input image. The validation
performance of BDIA-ViT is more robust than that of ViT.

In the inference stage, E(γ) = 0 is taken to replace γ in
(10), which leads to a simpler update expression that only
involves (xk,xk+1):

xk+1 = xk + hk(xk), (11)

which is identical to the original transformer update expres-
sion (4)-(5).

The above analysis suggests that the BDIA training tech-
nique is a good candidate for fine-tuning transformer-based
models because BDIA retains the standard architecture in
the inference procedure. Fine-tuning a pre-trained model
is typically performed on a small or intermediate-sized
dataset, which is prone to overfitting. Subsection 5.1 and
Appendix E demonstrate successfully applying BDIA to
fine-tune GPT2 medium using a small dataset.

Impact of γ parameter: We now study the impact of the
γ parameter in (10). When γ = 0.5, it follows from (2)-(3)
and (7)-(8) that the two integrations

∫ tk
tk−1

d̃(xτ , τ)dτ and∫ tk+1

tk
d̃(xτ , τ)dτ of the transformer ODE are approximated

as

∫ tk

tk−1

d̃(xτ , τ)dτ ≈ 0.5(xk−xk−1)+0.5hk(xk) (12)∫ tk+1

tk

d̃(xτ , τ)dτ ≈ hk(xk), (13)

where the integration over [tk−1, tk] is computed as the
weighted average of two consecutive integration approxima-
tions: (xk − xk−1) and hk(xk).

When γ = −0.5, the two integrations
∫ tk
tk−1

d̃(xτ , τ)dτ and

4



On Exact Bit-level Reversible Transformers Without Changing Architecture∫ tk+1

tk
d̃(xτ , τ)dτ are approximated differently, given by∫ tk

tk−1

d̃(xτ , τ)dτ ≈ (xk−xk−1) (14)∫ tk+1

tk

d̃(xτ , τ)dτ ≈ 0.5hk(xk)+0.5(xk−xk−1). (15)

In this case, the integration over [tk, tk+1] is computed by
averaging (xk − xk−1) and hk(xk).

Training via an ensemble of ODE solvers: We use γk to
denote the random variable for the kth transformer block
taking values in {0.5,−0.5} with equal probability. The
above analysis of (12)-(15) implies that each training sam-
ple goes through a particular ODE solver determined by
sampling a set of K − 1 random variables {γk}K−1

k=1 , which
specifies the integration path from the bottom transformer
block until the top one. Due to randomness, different train-
ing samples will go through different ODE solvers. There
are in total 2K−1 different ODE solvers, where each one
corresponds to a unique integration path across the K trans-
former blocks. Intuitively speaking, if we assume that each
of the individual ODE solvers is well behaved (i.e., its train-
ing loss decays to a small value), then a convex combination
will also converge to a small value.

In principle, different ODE solvers can also be applied in
the inference procedure. For instance, one can set γ to be
constant within [−0.5, 0.5] in (10) across all the transformer
blocks for the same input. Fig. 1 demonstrates the vali-
dation performance of those different ODE solvers in the
inference procedure for both trained BDIA-ViT and ViT
over CIFAR10. It is clear that the validation performance of
BDIA-ViT is much more insensitive to the single γ parame-
ter than that of ViT. The reason for the sensitivity of ViT to
γ in Fig. 1 is because only a single ODE solver is trained
for ViT.

On similarity to dropout technique: From a high level
point of view, the training of BDIA-transformer is similar to
the conventional dropout technique (Srivastava et al., 2014)
to a certain extent. Dropout essentially attempts to train an
ensemble of subnetworks of the entire DNN model when
minimizing the objective function while BDIA-transformer
intends to train an ensemble of different ODE solvers. In
the inference procedure, an average of the ensemble of sub-
networks in dropout is utilized while in BDIA-transformer,
the expectation E[γk] = 0 is employed to replace γk. In
the experiments we investigated the joint impact of dropout
and BDIA for the image classification task, and obtained
positive results. See Table 5 for details.
Remark 4.1. If reversibility is not of concern, one can freely
specify the values for the random variables {γk}K−1

k=1 in the
training process for performance improvement as long as its
distribution is symmetric around 0 such that E[γk] = 0 for

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

blockwise activations

0

0.5

1

1.5

2

re
c
o

n
. 

e
rr

o
r

10-3

without quantization

with quantization and side info.

Figure 2. Demonstration of the accumulated reconstruction errors
for two scenarios when training BDIA-GPT2 with 12 transformer
blocks using the setup γk ∈ {0.5,−0.5}, k = 1, . . . , 11. The two
scenarios are BDIA without quantization by following (16), and
BDIA with quantization and side information by following (24).
See also Fig. 6 for visualization of the reconstruction errors.

maintaining the original DNN architectures in the inference
procedure. See Table 3 for ablation study of the impact
of the {γk}K−1

k=1 parameter on the validation performance
when training BDIA-transformer for image classification.

4.3. On exact bit-level reversibility of BDIA-transformer
with quantization

As explained in Section 1, one strategy for reducing memory
consumption in training transformer models like LLMs is to
perform online back-propagation. That is, the intermediate
activation outputs from the top transformer block until the
bottom one are computed online when performing back-
propagation to update the model. In this subsection, we
first discuss the reversibility issue of the update expression
(10). We then consider performing activation quantization to
enable exact bit-level reversibility. We note that lightweight
side information is required to be stored per transformer
block for lossless online back-propagation.

Limitation of the reversibility of (10): The update expres-
sion (10) is only theoretically reversible. That is, xk−1 can
be computed in terms of (xk,xk+1) as

xk−1=
1

γk
xk+1−

1− γk
γk

xk−
1+γk
γk

hk(xk), (16)

where we use γk to indicate that different transformer blocks
have their respective random variables. In practice, the setup
γk ∈ {0.5,−0.5}, k = 1, . . . ,K − 1, would lead to non-
negligible error accumulation especially for very deep trans-
former models. The factor 1

γk
= ±2 in front of xk+1 would

amplify the error when k decreases from K−1 to 1, making
the online back-propagation unstable. Fig. 2 illustrates that
the reconstruction error without quantization increases sig-
nificantly when applying the online-back-propagation from
the last transformer block back to the first.

BDIA-transformer with quantization: To allow for loss-
less online back-propagation, we propose to perform acti-
vation quantization. In particular, we use Ql[·] to denote

5



On Exact Bit-level Reversible Transformers Without Changing Architecture

quantization to the bit-level precision of 2−l, given by

Ql[y] = round[y/2−l]2−l. (17)

Upon introducing Ql[·], the new update expression for
BDIA-transformer can be represented as

x0 ← Ql[x0], (18)
x1 = x0 +Ql[h0(x0)] (19)

sk−1[m]=

{
1 if mod(xk−1[m]/2−l, 2)=1
0 otherwise k ≥ 1 (20)

xk+1 = Ql[γk(xk−1 + sk−12
−l)]

+Ql[(1−γk)xk+(1+γk)hk(xk)] k ≥ 1, (21)

where γk ∈ {0.5,−0.5}, and xk−1[m] denotes the mth
element of xk−1. The mth element sk−1[m] indicates if the
integer value xk−1[m]/2−l is odd or not.
Lemma 4.2. Suppose {xk}Kk=0 are computed sequentially
by following (18)-(21). Then the intermediate activation
output xk has fixed-point precision of 2−l:

xk = Ql[xk] K ≥ k ≥ 0. (22)

We refer to the binary vector sk−1 in (20) as the lightweight
side information computed based on xk−1. The vector
sk−1 essentially captures the 1-bit quantization loss of
Ql[γkxk−1] per element, and is crucial for recovering xk−1

exactly from (xk,xk+1). We now characterize the first
quantization operation on the right hand side (RHS) of (21)
with the following proposition:
Proposition 4.3. Suppose the conditions in Lemma 4.2 hold.
Then for any k ≥ 1, we have

Ql[γk(xk−1 + sk−12
−l)] = γk(xk−1 + sk−12

−l). (23)

The proof for Proposition 4.3 can be found in Appendix B.
Equ. (23) indicates that the quantization operation has no
effect on γk(xk−1 + sk−12

−l), which naturally facilitates
the exact reconstruction of xk−1 from (xk,xk+1).

On reversibility of (21) by storing lightweight side in-
formation: Suppose in each forward pass in the training
process, all the side information {sk−1}k=K−1

k=1 is stored in
the memory. Then exact bit-level reversibility is guaranteed:
Proposition 4.4. Suppose the conditions in Lemma 4.2 hold
and the side information {sk−1}k=K−1

k=1 is available. Then
{xk−1}K−1

k=1 can be reconstructed exactly in the reverse
order with the initial state-pair (xK−1,xK):

xk−1 =
1

γk
xk+1−sk−12

−l

− 1

γk
Ql[(1−γk)xk+(1+γk)hk(xk)], (24)

where k = K − 1, . . . , 1.

See Appendix C for the proof. The lossless reconstruc-
tion (24) ensures that the computed gradients in the online
back-propagation would not deviate from those in conven-
tional back-propagation, which is desirable in very deep
transformer models. In Fig. 2, the blue line shows the ex-
act reconstruction of the intermediate activation values, as
enabled by (24) during online back-propagation.

Finally we briefly consider the inference procedure. Again
we replace γk in (21) by E(γk) = 0. As a result, the update
expression (21) can be simplified to be

xk+1 = Ql[xk + hk(xk)] k ≥ 1. (25)

The only difference of (25) w.r.t. the original transformer
update expression (4) is that the quantization operationQl[·]
is performed for each activation output.
Remark 4.5. The particular choice of γk ∈ {0.5,−0.5} is
also motivated by exact bit-level reversibility. When γ is
a power of two such as 0.5 = 2−1, the result of a product
γ · x is equivalent to shifting the mantissa of x by one bit
or decrementing its exponent, so at most exactly one bit is
lost. This property is not true for arbitrary (non-power-of-2)
values of γ.

Limitations of BDIA-transformer: To our best knowledge,
all existing reversible DNN models do not need to store any
lightweight side information in the forward process. The pri-
mary objective of most existing works is to design reversible
DNN models (e.g., RevViT) that produce comparable vali-
dation performance as the original counterparts. From the
perspective of memory reduction, existing reversible DNN
models are more efficient than BDIA-transformer.

On the other hand, BDIA-transformer is designed to not only
save training memory but also improve the generalization
performance via model regularization. Our method is the
first of its kind that attempts to maintain the transformer
architecture in the inference procedure.

5. Experiments
We evaluated BDIA-transformer for four different tasks:
(1) fine-tuning GPT2 using the BDIA training technique
for natural language generation (NLG); (2) training BDIA-
ViT for image classification; (3) training BDIA-transformer
for language translation; (4) training BDIA-GPT2 for text
generation. The hyper-parameter l for quantization in all
four tasks was set to l = 9. Four open-source repositories
were used in the experiments (see Table 7 in Appendix G).
Due to the space constraint, we put the experimental results
for the fourth task in Appendix F.

In brief, the obtained results from the first three tasks in-
dicate that the BDIA technique significantly improves the
validation performance of the original counterparts due to

6



On Exact Bit-level Reversible Transformers Without Changing Architecture

Table 1. Performance for fine-tunning GPT-2 medium (M) on the
E2E NLG Challenge. For all metrics, higher is better.

Method trainable
param. BLEU NIST MET ROUGE-L CIDEr

LoRA 0.35M 69.0 8.70 46.4 71.3 2.51

FT 354.92M 66.8 8.52 46.3 70.3 2.37

FT-BDIA 354.92M 68.6 8.65 46.6 71.3 2.49

0.5 1 1.5 2 2.5

iterations 10
4

1.8

2

2.2

2.4

2.6

tr
a

in
 l
o

s
s

LoRA

FT

FT-BDIA

0.5 1 1.5 2 2.5

iterations 10
4

1.05

1.1

1.15

1.2

1.25

1.3

1.35

v
a

l 
lo

s
s

LoRA

FT

FT-BDIA

Figure 3. Performance comparison when fine-tuning GPT2
Medium for the E2E challenge. {γk}K−1

k=1 in the BDIA training
procedure were randomly drawn from {±0.5} per training sam-
ple. FT-BDIA refers to “fine-tuning via BDIA training technique”
while FT refers to “fine-tuning directly”.

the model regularization effect of the random {γk}K−1
k=1 vari-

ables. The results for the 4th task demonstrate that BDIA-
GPT2 alleviates the overfitting issue of GPT2 significantly
for limited training data. RevViT from (Mangalam et al.,
2023) was also tested for the second task. It was found that
RevViT does not always improve the performance of ViT.

5.1. On fine-tuning GPT2 medium (M) for NLG
In the first experiment, we consider fully fine-tuning GPT2
medium (354.92M parameters in total) for the natural lan-
guage generation (NLG) task by using the E2E dataset
(Novikova et al., 2017). We adopt the open-source for GPT2
(LoRA) in (Hu et al., 2021) (the second github link of Ta-
ble 7) to evaluate the BDIA training technique. For com-
parison, we also fine-tune GPT2 directly and via the LoRA
technique with the default setup of (rank, α) = (4, 32). It
is worth noting that the LoRA technique only needs to train
a very small number of parameters.

It is clear from Fig. 3 that the BDIA training technique leads
to the best validation performance in the end of training
while direct fine-tuning of GPT2 exhibits the over-fitting
issue. It is plausible that the validation losses for LoRA are
larger than those for FT-BDIA because LoRA only trains a
small number of parameters.

Table 1 summarizes results for 5 metrics. It is seen from

the table that results for FT-BDIA are consistently better
than those for FT. On the other hand, even though the LoRA
technique is light-weight, its performance is promising.

Remark 5.1. We have also investigated the joint impact of
LoRA and BDIA when fine-tuning GPT2 M for NLG, and
again we obtained positive results. See Appendix E for
details. In brief, BDIA helps with improving the validation
performance for LoRA based fine-tuning for the considered
task. To enhance the impact of BDIA in the fine-tuning
process, it is recommended to set a high value for the α
parameter in LoRA.

5.2. On training BDIA-ViT
In this experiment, we trained BDIA-ViT with K=6 trans-
former blocks on CIFAR10 and CIFAR100 by using a single
2080 Ti GPU. The performance of ViT and RevViT (Man-
galam et al., 2023) was also evaluated to facilitate compari-
son. When implementing BDIA-ViT, the {γk}K−1

k=1 param-
eters were drawn from {−0.5, 0.5} with equal probability
per training sample. In addition, we utilized the SET-Adam
optimizer (Zhang, 2024) in the training process with the
configuration (η0, β1, β2, ϵ) = (1e−4, 0.9, 0.999, 1e−18),
where η0 denotes the initial learning rate. The dropout rate
was set to 0.1 to reduce over-fitting. The remaining training
setups follow directly from the original open source (i.e., the
first github link of Table 7). Three experimental repetitions
were performed for each training setup to mitigate the effect
of the random seed.

Performance comparison: Table 2 summarizes the ob-
tained validation accuracy, the peak memory usages, and
the average training time per epoch. It is clear that BDIA-
ViT produces significantly higher validation accuracy than
ViT and RevViT for both CIFAR10 and CIFAR100. Fig. 4
further visualizes the training and validation curves. It is
seen that even though the training loss of BDIA-ViT is
higher than the other two models across all the epochs, the
validation accuracy improves remarkably in the end of train-
ing. This indicates that training an ensemble of ODE solvers
parameterized (see Subsection 4.2) by {γk}K−1

k=1 indeed reg-
ularizes BDIA-transformer properly.

In contrast, RevViT yields either inferior or comparable val-
idation performance to ViT (Table 2). This may be because
RevViT modifies the architectures of ViT considerably to
enable reversibility and therefore implicitly imposes uncon-
trolled regularization on the original transformer model.
On the other hand, the regularisation introduced in our
technique is motivated by averaging consecutive integra-
tion approximations of an ODE in the original transformer,
which leads to consistent performance gain across different
datasets.

It is also clear from Table 2 that RevViT is most memory-
efficient. BDIA-ViT improves on the validation perfor-

7



On Exact Bit-level Reversible Transformers Without Changing Architecture

Table 2. Validation accuracy (in percentage), peak memory consumption, and average training time per epoch for training three models
over CIFAR10 and CIFAR100. {γk}K−1

k=1 in the BDIA training procedure were drawn from {±0.5} per training sample. The peak
memory includes both the model parameters and the training states for a batchsize of 128. The dropout rate was set to 0.1. See also Fig. 7
for training curves on CIFAR-10 plotted against wall-clock time.

RevViT (Mangalam et al., 2023) ViT BDIA-ViT

val. acc. peak memory train. time
per epoch val. acc. peak memory train. time

per epoch val. acc. peak memory train. time
per epoch

CIFAR10 86.22±0.42 572.7MB 41.8 s 88.15±0.55 1570.6MB 30.6 s 89.10±0.38 693.4MB 47.0 s

CIFAR100 61.89±0.31 572.7MB 41.8 s 61.86±0.47 1570.6MB 30.6 s 66.09±0.80 693.4MB 47.0 s

100 200 300 400

epochs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ta
in

in
g
 l
o
s
s

ViT

RevVit

BDIA-ViT

100 200 300 400

epochs

82

83

84

85

86

87

88

89

90
v
a
l.
 a

c
c

ViT

RevVit

BDIA-ViT

100 200 300 400

epochs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ta
in

in
g
 l
o
s
s

ViT

RevVit

BDIA-ViT

100 200 300 400

epochs

56

57

58

59

60

61

62

63

64

65

66

67

v
a
l.
 a

c
c

ViT

RevVit

BDIA-ViT

for CIFAR10 for CIFAR100

Figure 4. Performance comparison of ViT, RevViT (Mangalam et al., 2023), and BDIA-ViT for image classification over CIFAR10 and
CIFAR100. {γk}K−1

k=1 in the training procedure of BDIA-ViT were drawn from {±0.5} per training sample. The dropout rate was 0.1.

mance of RevViT at the cost of slightly more memory,
needed to store the lightweight side information {sk}3k=0

of the first 4 transformer blocks. We can also conclude
from the table that online back-propagation does indeed
significantly reduce the training memory.

Lastly, we briefly discuss the average training time per
epoch. It is clear from the table that both ReViT and BDIA-
ViT require additional training time for recomputation of the
intermediate activation values in online-backpropagation.
BDIA-ViT needs slightly more time than ReViT because
the method needs to handle the side information, the binary
random variables, and quantization. See Fig. 7 for training
curves on CIFAR-10 plotted against wall-clock time.

Ablation study regarding the {γk}K−1
k=1 parameters:

As we mentioned in Remark 4.1, if reversibility is
not of primary concern, different values for {γk}K−1

k=1

can be employed for model regularisation. We con-
ducted ablation study by evaluating the impact of γk ∈
{0.0,±0.25,±0.5,±0.6}, k = 1, . . . ,K−1, on the valida-
tion performance of BDIA-transformer for CIFAR10. For
doing so, both the quantization and online back-propagation

operations were turned off in BDIA-transformer. We em-
phasize that the non-zero γk values were only utilized in
the training process. At the inference stage, E[γk] = 0 was
used for computing the validation accuracy, which in fact
reduces to the standard transformer architecture.

Table 3. Impact of the {γk}K−1
k=1 parameter in BDIA-ViT (w.o.

quantization and w.o. online back-propagation) on the validation
accuracy in percentage over CIFAR10. The dropout rate was 0.1.
{γk}K−1

k=1 0.0 {±0.25} {±0.5} {±0.6}

CIFAR10 88.15±0.55 88.79±0.29 89.12±0.22 88.89±0.15

Table 2 summarizes the obtained validation accuracy for
different setups of the {γk}K−1

k=1 parameters. It is clear
that when {|γk| > 0}K−1

k=1 , the performance of BDIA-
transformer improves considerably in comparison to that
of the conventional ViT (i.e., corresponding to BDIA-ViT
with {γk = 0.0}K−1

k=1 ). The setup of {γk = ±0.5}K−1
k=1

performs the best. In general, the larger the magnitude of
the {γk}K−1

k=1 parameters in [0, 0.6], the slower the training
speed (see Fig. 4). In practice, one can tune the magnitude of
the {γk}K−1

k=1 parameters within [0, 0.6] to trade-off between

8



On Exact Bit-level Reversible Transformers Without Changing Architecture

the training speed and the validation performance.

Ablation study regarding the quantization level: We have
also investigated the impact of the quantization levels of
{5, 0,−2} on the performance of both ViT and BDIA-ViT
over CIFAR10, where l = −2 corresponds to a very coarse
quantization operation. The {γk}K−1

k=1 variables in BDIA-
ViT were drawn randomly from {±0.5} per training sample.

Table 4. Impact of the quantization level in ViT and BDIA-ViT
on the validation accuracy in percentage over CIFAR10.

quantization level l 5 0 -2

ViT 87.90 87.76 84.31

BDIA-ViT 89.50 88,.47 84.16

As shown in Table 4, when the quantization level l drops
from 5 to -2, the performance of ViT and BDIA-ViT de-
creases as expected. One can also observe from the table
that when l ∈ {5, 0}, BDIA-ViT performs consistently and
significantly better than ViT. When l = −2, there is a large
performance drop in both methods due to the very coarse
quantization effect. For that case, ViT performs slightly
better than BDIA-ViT. This likely is because the very coarse
quantization dominates the performance and negatively af-
fects the BDIA-training technique.

Ablation study regarding the dropout rates: As we dis-
cussed earlier, the dropout technique trains an ensemble
of subnetworks, while BDIA trains an ensemble of ODE
solvers. It is of great interest to investigate the joint impact
of dropout and BDIA. We conducted additional experiments
by setting the dropout rate to 0.0 and 0.2 when testing BDIA-
ViT. Table 5 shows the obtained validation accuracies, where
the results for dropout rate of 0.1 are from Table 2.

Table 5. Impact of dropout rates in ViT and BDIA-ViT on the
validation accuracy percentage. In BDIA training {γk}K−1

k=1 were
randomly drawn from {±0.5} per training sample.

dropout rate 0.0 0.1 0.2

ViT BDIA-ViT ViT BDIA-ViT ViT BDIA-ViT

CIFAR10 86.27 89.20 88.15 89.10 87.24 88.22

CIFAR100 59.13 64.45 61.86 66.09 61.68 64.24

It is seen from Table 5 that for different dropout rates and
different datasets, the BDIA training technique improves
the validation performance consistently and considerably.
In brief, the dropout and BDIA are complimentary regular-
ization techniques when training transformers.

5.3. On training BDIA-transformer for English-French
translation

Language translation is a classical natural language pro-
cessing (NLP) task where the transformer shows a large
performance gain over other DNN models. We adopted an

50 100 150 200

epochs

0.6

0.8

1

1.2

1.4

1.6

ta
in

in
g
 l
o
s
s

transformer

BDIA-transformer

50 100 150 200

epochs

1.2

1.3

1.4

1.5

1.6

v
a
l.
 l
o
s
s

transformer

BDIA-transformer

Figure 5. Performance comparison for English to French transla-
tion. {γk}K−1

k=1 in the BDIA training procedure were randomly
drawn from {±0.5} per training sample.

existing open-source repository (i.e., the third github link of
Table 7) in our experiment. The dataset being used is from
Kaggle (Kelly, 2020). The tested BDIA-transformer has six
transformer blocks in both the encoder and decoder, respec-
tively. The BDIA update expressions were implemented
in both the encoder and decoder. The performance of the
conventional transformer was tested as a reference.

Fig. 5 visualizes the training and validation losses of the
two tested models. It is clear that the obtained curves in
Fig. 5 exhibit similar properties to those in Fig. 4. That is,
even though the training loss of BDIA-transformer is higher
than the conventional transformer across all the epochs, its
validation loss is significantly lower after epoch 200.

6. Conclusions
We have proposed the BDIA training algorithm for trans-
formers. Firstly, each transformer block is taken as the Euler
integration approximation for solving an ODE. The BDIA
technique is then applied to average every two consecutive
integration approximations in a transformer as a regular-
izer via a set of random variables {γk}K−1

k=1 , one variable
per transformer block. The training process can then be
understood as training an ensemble of ODE solvers parame-
terized by {γk}K−1

k=1 . Exact reversibility for lossless online
back-propagation is achieved by activation quantization and
storing only lightweight side information. In the inference
procedure, the variables γk are replaced with their expecta-
tion E[γk] = 0, which reduces the update expression to that
of a conventional transformer up to activation quantization.

Experiments on natural language generation, translation,
and image classification show that BDIA-transformer pro-
duces significantly better validation performance than the
corresponding baseline transformers while, at the same
time, reducing training memory by performing online back-
propagation. In comparison, the experiments with RevVit
demonstrate that it yields either inferior or comparable val-
idation performance to that of ViT. BDIA-transformer is
also attractive for fine-tuning since it requires minimal ar-
chitecture changes, needs very little extra memory, and is
complementary to LoRA.

9



On Exact Bit-level Reversible Transformers Without Changing Architecture

Impact Statement
Transformer architectures are widely used in various con-
texts including, for example, LLMs for natural language pro-
cessing and diffusion models for image and video process-
ing. Fine-tuning these models with either small or interme-
diate data sizes for diverse downstream tasks is a common
practice. Our BDIA training technique offers an attractive
approach for fine-tuning. This is because BDIA trains an
ensemble of ODE solvers to reduce over-fitting and lower
training memory requirements while simultaneously retain-
ing the original transformer architecture in the inference
procedure.

References
Achiam, J., Adler, S., Agarwal, S., Lama Ahmad, Ilge Akkaya,

F. L. A., Almeida, D., Altenschmidt, J., Altman, S., Anad-
kat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom, V., Bal-
tescu, P., Bao, H., Bavarian, M., Belgum, J., Bello, I., Berdine,
J., Bernadett-Shapiro, G., Christopher Berner, L. B., Boiko,
O., Boyd, M., Brakman, A.-L., Brockman, G., Brooks, T.,
Brundage, M., Button, K., Cai, T., Campbell, R., Cann, A.,
Carey, B., Carlson, C., Carmichael, R., Chan, B., Chang, C.,
Chantzis, F., Chen, D., Chen, S., Chen, R., Chen, J., Chen, M.,
Chess, B., Cho, C., Chu, C., Chung, H. W., Cummings, D., Cur-
rier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N., Deville,
D., Dhar, A., Dohan, D., Dowling, S., Dunning, S., Ecoffet, A.,
Eleti, A., Eloundou, T., Farhi, D., Fedus, L., Felix, N., Fishman,
S. P., Forte, J., Fulford, I., Gao, L., Georges, E., Gibson, C.,
Goel, V., Gogineni, T., Goh, G., Gontijo-Lopes, R., Gordon, J.,
Grafstein, M., Gray, S., Greene, R., Gross, J., Gu, S. S., Guo,
Y., Hallacy, C., Han, J., Harris, J., He, Y., Heaton, M., Heidecke,
J., Hesse, C., Hickey, A., Hickey, W., Hoeschele, P., Houghton,
B., Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., and Jain, S.
Gpt-4 technical report. arXiv:2307.09288 [cs.CL], 2023.

Behrmann, J., Grathwohl, W., Chen, R. T. Q., Duvenaud, D., and
Jacobsen, J.-H. Invertible Residual Networks. In Proceedings
of the International Conference on Machine Learning (ICML),
2019.

Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D., and
Holtham, E. Reversible Architectures for Arbitrarily Deep
Residual Neural Networks. arXiv:1709.03698v2 [cs.CV], 2017.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D.
Neural ordinary differential equations. In 32nd Conference on
Neural Information Processing Systems (Neurips), 2018.

Dinh, L., Krueger, D., and Bengio, Y. Nice: Non-linear indepen-
dent components estimation. arXiv preprint arXiv:1410.8516,
2014.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estimation
using real nvp. arXiv preprint arXiv:1605.08803, 2016.

Dupont, E., Doucet, A., and Teh, Y. W. Augmented neural odes.
arXiv:1904.01681v3, 2019.

Feng, J. and Huang, D. Optimal gradient checkpoint search for
arbitrary computation graphs. In CVPR, 2021.

Finzi, M., Izmailov, P., Maddox, W., Kirichenko, P., and Wilson.,
A. G. Invertible convolutional networks. In Workshop on
Invertible Neural Nets and Normalizing Flows, 2019.

Gholami, A., Yao, Z., Kim, S., Hooper, C., Mahoney, M. W., and
Keutzer, K. AI and Memory Wall. IEEE Micro, 44(3):33–39,
2024.

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. The
reversible residual network: Backpropagation without storing
activations. arXiv:1707.04585v1 [cs.CV], 2017.

Grathwohl, W., Chen, I. S. R. T. Q., Bettencourt, J., and Duve-
naud, D. Ffjord: Free-form continuous dynamics for scalable
reversible generative models. arXiv:1810.01367, 2018.

Hascoet, T., Febvre, Q., W. Zhuang, Y. A., and Takiguchi, T.
Layer-wise invertibility for extreme memory cost reduction of
cnn training. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning
for Image Recognition. In IEEE conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S.,
Wang, L., and Chen, W. LoRA: Low-Rank Adaptation of Large
Language Models. arXiv:2106.09685 [cs.CL], 2021.

Jacobsen, J.-H., Smeulders, A., and Oyallon, E. i-revnet deep
invertible networks. In ICLR, 2018.

Karras, T., Aittala, M., Alia, T., and Laine, S. Elucidating the De-
sign Space of Diffusion-Based Generative Models. In 36th Con-
ference on Nueral Information Processing Systems (NeurIPS),
2022.

Kelly, C. Language translation (english-french), 2020. URL
https://www.kaggle.com/dsv/1067156.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow with
invertible 1x1 convolutions. In Advances in neural information
processing systems, 2018.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever,
I., and Welling, M. Improved variational inference with inverse
autoregressive flow. Advances in neural information processing
systems, 29, 2016.

Kobyzev, I., Prince, S. J., and Brubaker, M. A. Normalizing Flows:
An Introduction and Review of Current Methods. PAMI, (11):
3964–3979, 2020.

Lin, Y., Ma, X., Chu, X., Jin, Y., Yang, Z., Wang, Y., and Mei, H.
LoRA dropout as a sparsity regularizer for overfitting control.
arXiv:2404.09610 [cs.LG], 2024.

Ma, S. The Era of 1-bit LLMs: All Large Language Models are in
1.58 Bits. arXiv:2402.17764v1, 2024.

Mangalam, K., adn Y. Li, H. F., Qu, C.-Y., Xiong, B., Feicht-
enhofer, C., and Malik, J. Reversible vision transformers.
arXiv:2302.04869v1 [cs.CV], 2023.

Novikova, J., Dusek, O., and Rieser, V. The e2e dataset:
New challenges for end-to-end generation. arXiv preprint
arXiv:1706.09254, 2017.

10

https://www.kaggle.com/dsv/1067156


On Exact Bit-level Reversible Transformers Without Changing Architecture

Rezende, D. and Mohamed, S. Variational inference with normal-
izing flows. In International conference on machine learning,
pp. 1530–1538. PMLR, 2015.

Sander, M. E., P. Ablin, M. B., and Peyre, G. Momentum residual
neural networks. arXiv:2102.07870, 2021.

Song, J., Meng, C., and Ermon, S. Denoising Diffusion Implicit
Models. In ICLR, 2021.

Song, Y., Meng, C., and Ermon, S. Mintnet: Building invertible
neural networks with masked convolutions. arXiv:1907.07945,
2019.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. Dropout: A Simple Way to Prevent Neu-
ral Networks from Overfitting. Journal of Machine Learning
Research, pp. 1929–1958, 2014.

Stam, J. An exact bitwise reversible integrator. arXiv:2207.07695
[cs.GR], 2022.

Touvron, H., Martin, L., K. Stone, P. A., Almahairi, A., Babaei,
Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel,
D., Blecher, L., Ferrer, C. C., Chen, M., Cucurull, G., Es-
iobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C.,
Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R.,
Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I.,
Korenev, A., Koura, P. S., Lachaux, M.-A., Lavril, T., Lee, J.,
Diana Liskovich, Y. L., Mao, Y., Martinet, X., Mihaylov, T.,
Mishra, P., Molybog, I., Yixin Nie, A. P., Reizenstein, J., Rungta,
R., Saladi, K., Schelten, A., Silva, R., Smith, E. M., Subrama-
nian, R., Tan, X. E., Tang, B., Taylor, R., Adina Williams, J.
X. K., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kam-
badur, M., Sharan Narang, A. R., Stojnic, R., Edunov, S., and
Scialom, T. Llama 2: Open foundation and fine-tuned chat
models. arXiv:2307.09288 [cs.CL], 2023.

Wallace, B., Gokul, A., Ermon, S., and Naik, N. End-to-End
Diffusion Latent Optimization Improves Classifier Guidance.
arXiv:2303.13703v2 [cs.CV], 2023.

Wang, N., Choi, J., Brand, D., Chen, C.-Y., and Gopalakrishnan, K.
Training deep neural networks with 8-bit floating point numbers.
In NeurIPS, 2018.

Wu, K., Park, J. B., Zhang, X., Hidayetoglu, M., Mailthody, V. S.,
Huang, S., Lumetta, S. S., and Hwu, W. Ssdtrain: An activation
offloading framework to ssds for faster large language model
training. arXiv:2408.10013 [cs.DC], 2024.

Wu, S., Li, G., Chen, F., and Shi, L. Training and inference
with integers in deep neural networks. In ICLR, 2018. URL
https://openreview.net/forum?id=HJGXzmspb.

Yang, G., Zhang, T., Kirichenko, P., Bai, J., Wilson, A. G., and Sa,
C. D. SWALP: Stochastic Weight Averaging in Low-Precision
Training. In ICML, 2019.

Zhang, G. On Suppressing Range of Adaptive Stepsizes of Adam
to Improve Generalisation Performance. In ECML, 2024.

Zhang, G., Lewis, J. P., and Kleijn, W. B. Exact diffusion inversion
via bidirectional integration approximation. arXiv:2307.10829
[cs.CV], 2023a.

Zhang, G., Niwa, K., and Kleijn, W. B. On Accelerating Diffusion-
Based Sampling Processes by Improved Integration Approxi-
mation. arXiv:2304.11328 [cs.LG], 2023b.

Zhu, T. and Mangalam, K. Pareprop: Fast parallelized reversible
backpropagation. arXiv:2306.09342v1 [cs.LG], 2023.

11

https://openreview.net/forum?id=HJGXzmspb


On Exact Bit-level Reversible Transformers Without Changing Architecture

A. Demonstration of Reversibility Issue of BDIA Without Quantization on a Log Scale
We note that the reconstruction errors in Fig. 2 are plotted on a linear-scale. To better visualize the results, we include Fig. 6
for the case of BDIA without quantization by following (16). The errors are plotted on a log scale.

blockwise activations

10
-15

10
-10

10
-5

10
0

re
c
o

n
. 

e
rr

o
r

Figure 6. Demonstration of the accumulated reconstruction error in log-scale by following (16) with the setup γk ∈ {0.5,−0.5},
k = 1, . . . ,K−1, when training BDIA-GPT2 with 12 transformer blocks.

B. Proof of Proposition 4.3
Proof. Equation (23) in Proposition 4.3 can be proved by simple algebra. It is known from Lemma 4.2 thatQl[xk−1] = xk−1

holds for any k ≥ 1. For each element of the expression on the left hand side (LHS) of (23), we have

Ql[γk(xk−1[m] + sk−1[m]2−l)]

= round
[
γk(xk−1[m]/2−l + sk−1[m])

]
2−l. (26)

By using (17) and the definition of sk−1[m] from (20), it is immediate that the scalar (xk−1[m]/2−l + sk−1[m]) in (26)
is an even integer number. Since γk ∈ {−0.5, 0.5}, the round operation in (26) has no real effect and can be removed.
Therefore, (26) can be rewritten as

Ql[γk(xk−1[m] + sk−1[m]2−l)]

=
[
γk(xk−1[m]/2−l + sk−1[m])

]
2−l

= γk(xk−1[m] + sk−1[m]2−l). (27)

The proof is complete.

C. Proof of Proposition 4.4
Proof. Also (24) in Proposition 4.4 can be proved by simple algebra. Firstly, plugging (23) into (21) produces

xk+1︸ ︷︷ ︸
1st term

= γk (xk−1 + sk−12
−l)︸ ︷︷ ︸

2nd term

+Ql[(1−γk)xk+(1+γk)hk(xk)]︸ ︷︷ ︸
3rd term

. (28)

It is known from Lemma 4.2 and (20) that all three terms in (28) have a fixed-point precision of 2−l. As a result, the equality
in (28) holds without any error. Multiplying with 1

γ k
= ±2 on both sides of (28) and rearranging the quantities produces

xk−1 =
1

γk
xk+1 − sk−12

−l − 1

γk
Ql[(1−γk)xk+(1+γk)hk(xk)], (29)

which again holds without any error. The proof is complete.

D. Training Time Comparison
This Appendix discuses training effort in more detail. Table 2 includes the average training time per epoch for CIFAR10
and CIFAR100 for three algorithms and that Fig. 4 shows the training and validation curves over 400 epochs. Fig. 7 in this
Appendix shows the training curves for CIFAR10 against wall-clock time for 400 epochs.

12



On Exact Bit-level Reversible Transformers Without Changing Architecture

It is seen from Fig. 7 that BDIA-ViT with online backpropagation needs slightly more time to cover 400 epochs than RevViT
with online backpropagation. This is because BDIA-ViT needs to handle the lightweight side information, binary random
variables, and quantization. ViT is most time efficient as it does not need to recompute the intermediate activation values as
the other two methods.

While the final training loss of BDIA-ViT is higher, as indicated in Fig. 7, its validation accuracy is better than those of
the other two methods (see Fig. 4). The above property can be explained by the fact that BDIA trains an ensemble of ViT
models using different ODE solvers and thus can be viewed as a complimentary regularization technique to dropout.

50 100 150 200 250 300

time (min)

0

0.05

0.1

0.15

0.2

0.25
ta

in
in

g
 l
o

s
s

ViT

RevViT with online backpropogation

BDIA-ViT with online backpropogation

Figure 7. Training time comparison of ViT, RevViT with online backpropagation (Mangalam et al., 2023), and BDIA-ViT with online
backpropagation for image classification over CIFAR10. Each training curve corresponds to 400 training epochs. Note that the BDIA
technique can outperform in validation accuracy even when the training loss is higher, as seen in Fig. 4.

E. Evaluation of Joint Impact of LoRA and BDIA
It has become common practice to adopt the LoRA adapter when fine-tuning an LLM with either small or intermediate data
sizes. One major advantage of using LoRA is that it accelerates the training process with limited computational resources as
it requires only a relatively small number of parameters to be trained. Since the original LLM model parameters are kept
frozen throughout the process, the knowledge learned in the pre-training is less likely to be forgotten. On the other hand, it
has been reported in the literature that, even with the LoRA approach, overfitting can still occur (Lin et al., 2024).

We performed an additional experiment studying the joint impact of LoRA and BDIA when fine-tuning GPT2 M for NLG.
Since the validation performance is our primary concern, the LoRA+BDIA training procedure was implemented without
online back-propagation and quantization. Differently from Subsection 5.1, {γk}K−1

k=1 in the LoRA+BDIA procedure were
randomly drawn from {0.5, 0,−0.5} per training sample.

Next we briefly discuss the setup for LoRA’s α parameter in the LoRA+BDIA procedure. In order for the BDIA approach to
have a significant effect on the performance, it is recommended to use large values for the α parameter. This is because
a large α value in LoRA resembles the full fine-tuning scenario to a certain extent. It is known from the main paper that
BDIA is designed to average every two consecutive integration approximations in a random manner via {γk}K−1

k=1 . A large
α parameter allows the averaging operations in BDIA to have a substantial effect. In the experiment, we tested a range of
configurations with α ∈ {512, 1024} and LoRA rank ∈ {32, 128}.

Fig. 8 visualizes the training and validation performance for both LoRA and LoRA+BDIA. Similarly to the results in the
main paper, the training loss of LoRA+BDIA is higher than that of LoRA alone due to the regularization effect of BDIA. On
the other hand, the validation loss of LoRA+BDIA is lower than that of LoRA at the end of training, which is consistent
with our expectation.

Table 6 summarizes the quality of the generated texts for four training setups evaluated with five different metrics. It is clear

13



On Exact Bit-level Reversible Transformers Without Changing Architecture

0.5 1 1.5 2 2.5

iterations 10
4

2.2

2.4

2.6

tr
a

in
 l
o

s
s

LoRA

LoRA+BDIA

0.5 1 1.5 2 2.5

iterations 10
4

1.1

1.15

1.2

1.25

v
a

l 
lo

s
s

LoRA

LoRA+BDIA

0.5 1 1.5 2 2.5

iterations 10
4

2.3

2.4

2.5

2.6

2.7

tr
a

in
 l
o

s
s

LoRA

LoRA+BDIA

0.5 1 1.5 2 2.5

iterations 10
4

1.1

1.15

1.2

1.25

v
a

l 
lo

s
s

LoRA

LoRA+BDIA

Figure 8. Performance comparison of LoRA nad LoRA+BDIA when fine-tuning GPT2 Medium for the E2E challenge. {γk}K−1
k=1 in the

BDIA training procedure were randomly drawn from {0.5, 0,−0.5} per training sample.

Table 6. Performance of LoRA and LoRA+BDIA for fine-tuning GPT-2 medium (M) on the E2E NLG Challenge. For all metrics, higher
is better. {γk}K−1

k=1 in the BDIA training procedure were randomly drawn from {0.5, 0,−0.5} per training sample.

Method BLEU NIST MET ROUGE-L CIDEr(
rank = 32
α = 1024

)
LoRA 68.8 8.66 46.8 71.6 2.46

LoRA+BDIA 69.9 8.79 46.7 71.9 2.53(
rank = 128
α = 512

)
LoRA 68.0 8.58 46.1 70.9 2.49

LoRA+BDIA 69.0 8.70 46.5 71.5 2.52

that for all tested scenarios, the LoRA+BDIA training procedure outperforms the LoRA procedure for almost all metrics.
This suggests that the BDIA training approach can help LoRA in fine-tuning transformer-based LLMs.

F. On Training BDIA-GPT2
In this experiment, we train BDIA-GPT2 on the openwebtext dataset utilizing the 4th github link of Table 7. Our primary
objective for this task is to find out if BDIA can help to alleviate the over-fitting issue of GPT2 (we omit the phase “nano”
for simplicity) for a very small training dataset. In doing so, we only took a small (i.e., 0.05%) subset from the entire dataset

14



On Exact Bit-level Reversible Transformers Without Changing Architecture

when training the model. The performance of GPT2 was evaluated as a reference. Both models have 12 transformer blocks.
We did not perform hyperparameter exploration and it is possible that the performance of BDIA-GPT2 would improve with
such exploration.

Fig. 9 shows the training and validation curves for the two models. Similarly to Fig.4-5, BDIA-GPT2 exhibits a slower
training speed than GPT2. Considering the validation performance, the two validation curves for the two models exhibit the
over-fitting issue. GPT2 produces the lower validation loss in the middle of the training. However, at the end of training, the
validation loss of BDIA-GPT2 is significantly lower than that of GPT2. This demonstrates that BDIA indeed alleviates the
over-fitting issue of GPT2 for a very small training dataset.

0 5000 10000 15000

iterations

0

2

4

6

8

10

12

ta
in

in
g
 l
o
s
s

GPT2

BDIA-GPT2

0 5000 10000 15000

iterations

6

7

8

9

10

11

v
a
l.
 l
o
s
s

GPT2

BDIA-GPT2

Figure 9. Performance comparison when training GPT2. {γk}K−1
k=1 in the training procedure of BDIA-ViT were randomly drawn from

{±0.5} per training sample.

G. Repositories in the Experiments

Table 7. Repositories being used in the experiments
image classification https://github.com/kentaroy47/vision-transformers-cifar10

natural language
generation (NLG) https://github.com/microsoft/LoRA/tree/main/examples/NLG

language translation https://debuggercafe.com/language-translation-using-pytorch-transformer/

nanoGPT https://github.com/karpathy/nanoGPT

15

https://github.com/kentaroy47/vision-transformers-cifar10
https://github.com/microsoft/LoRA/tree/main/examples/NLG
https://debuggercafe.com/language-translation-using-pytorch-transformer/
https://github.com/karpathy/nanoGPT

