
Compliant Residual DAgger: Improving Real-World
Contact-Rich Manipulation with Human Corrections

Anonymous Author(s)
Affiliation
Address
email

Abstract:1

We address key challenges in Dataset Aggregation (DAgger) for real-world contact-2

rich manipulation: how to collect informative human correction data and how to3

effectively update policies with this new data. We introduce Compliant Residual4

DAgger (CR-DAgger), which contains two novel components: 1) a Compliant5

Intervention Interface that leverages compliance control, allowing humans to pro-6

vide gentle, accurate delta action corrections without interrupting the ongoing7

robot policy execution; and 2) a Compliant Residual Policy formulation that learns8

from human corrections while incorporating force feedback and force control.9

Our system significantly enhances performance on precise contact-rich manipu-10

lation tasks using minimal correction data, improving base policy success rates11

by over 50% on two challenging tasks (book flipping and belt assembly) while12

outperforming both retraining-from-scratch and finetuning approaches. Through13

extensive real-world experiments, we provide practical guidance for implementing14

effective DAgger in real-world robot learning tasks. Result videos are available at:15

https://compliant-residual-dagger.github.io/16
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Figure 1: CR-DAgger. To improve a robot manipulation policy, we propose a compliant intervention interface (a)
for collecting human correction data, and use this data to update a compliant residual policy (b), and thoroughly
study their effects by deploying the updated policy on two contact-rich manipulation tasks in the real world (c).

1 Introduction17

Learning from human demonstrations has seen many recent successes in real-world robotic tasks [1–18

4]. However, to obtain a successful policy, human demonstrators often have to repeatedly deploy19

a policy and observe its failure cases, then collect more data to update the policy until it succeeds.20

This process is broadly referred to as Dataset Aggregation (DAgger) [5, 6]. However, doing DAgger21

effectively for real-world robotic problems still faces the following challenges:22
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How to collect informative human correction data? DAgger is most effective when the correction23

data is within the original policy’s induced state distribution [5]. In practice, the common approach24

is either (1) collecting offline demonstrations that cover the policy’s typical failure scenarios [7], or25

(2) human taking over robot control during policy deployment [8, 9]. However, in both cases, it is26

difficult for human demonstrators to gain the intuition for how to execute the corrective actions without27

deviating excessively from the original distribution. Human taking over additionally introduces force28

discontinuity when they do not instantly reproduce the exact same robot force. This is partially due29

to the lack of effective correction interfaces that support precise and instantaneous intervention.30

How to effectively update the policy with new data? Prior methods for improving a pretrained31

policy with additional data include (1) retraining the policy from scratch with the aggregated32

dataset [6], which can be computationally expensive; (2) finetuning the policy with only the additional33

data [3, 10, 11], which is sensitive to the quality of the new data [12], and (3) training a residual policy34

separately on top of the pretrained policy, which is typically done with Reinforcement Learning35

[13, 12] or Imitation Learning [14], both require a large number of samples.36

In this work, we address these questions by proposing an improved system Compliant Residual37

DAgger (CR-DAgger) consisting of two critical components:38

• Compliant Intervention Interface. We propose an on-policy correction system based on kines-39

thetic teaching to collect delta action without interrupting the current robot policy. Leveraging40

compliance control, the interface lets humans directly feel the magnitude of their instantaneous41

correction, so they can provide gentle adjustments. Unlike take-over corrections that may cause42

force discontinuity, our design allows smooth transition between correction/no correction mode,43

while maintaining distributional consistency with the original policy.44

• Compliant Residual Policy. Leveraging the force feedback from our Compliant Intervention45

Interface, we propose a residual policy formulation that takes in an extra force modality and46

predicts both residual motions and target forces, which can fully describe the human correction47

behavior. The Compliant Residual Policy is force-aware, even when the base policy is position-48

only. We show that our residual policy formulation learns effective correction strategies using the49

data collected from our Compliant Intervention Interface.50

Together, our system significantly improves the success rate of precise contact-rich robot manipulation51

tasks using a small amount of additional data. We demonstrate the efficacy of our method on two52

challenging tasks with long horizons and sequences of contacts: book flipping and belt assembly. We53

improve over the base policy success rate by over 50% using less than 50 intervention episodes, while54

also outperforming retrain-from-scratch and finetuning under the same data budgets. In summary,55

our contributions are:56

• A Compliant Intervention Interface, a system that allows human to provide accurate, gentle, and57

smooth corrections in both position and force to a running robot policy without interrupting it.58

• A Compliant Residual Policy, a policy formulation that seamlessly integrates additional force59

modality inputs and predicts residual motions and forces.60

• A practical guidance for efficient DAgger based on extensive real-world studies for critical but61

often overlooked design choices such as batch size and sampling strategy. Our hardware design,62

training data, and policy code will be made publicly available.63

2 Related Work64

Human-in-the-Loop Corrections for Robot Policy Learning. The original DAgger work [5]65

requires the demonstrator to directly label actions generated by the policy. In robotics, a practical66

variation is to let the human take over the robot control and provide correct action directly [6]. Such67

human correction motion can be recorded with spacemouse [11, 15], joystick [8], smartphone [9], or68

arm-based teleoperation system [16, 17, 3]. We instead proposes a novel kinesthetic teaching system69

with compliance controller that allows the demonstrator to apply delta corrections while the robot70
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Figure 2: Compliant Intervention Interface characterized by a kinesthetic correction hardware setup where
humans hold on the handle and apply forces to correct robot execution, providing on-policy delta corrections.

policy is still running, and additionally records force feedback. Our results show that both the delta71

correction data and the force data are crucial to the success of the learned policy.72

Improving Pretrained Robot Policies with New Data. The most direct approach to improving a73

pretrained policy with new correction data is to retrain the policy on the aggregated dataset, combining74

prior demonstrations with new feedback [9, 8]. Alternatively, Reinforcement Learning (RL) offers a75

framework to incorporate both offline and online data, either by warm-starting replay buffers [18, 19]76

or by using offline data to guide online fine-tuning [20, 21]. When policies are trained on large-scale77

human demonstration datasets [22–28], retraining becomes impractical, especially when the original78

data is inaccessible. In such cases, fine-tuning with only the new data is a common solution, using79

either imitation learning [15, 10, 3] or RL [29, 11]. Another line of work introduces an additional80

residual model on top of the original policy. These residual policies can be trained with RL in81

simulation [12, 13, 30], but suffers from sim-to-real challenges. Training residual policy in the real82

world usually requires a large number of samples [14, 31], intermediate scene representation [32],83

or consistent visual observations between training and testing [33, 34], making the approach hard84

to adopt in practice. In this work, we introduce a practical data collection system and an efficient85

residual policy learning algorithm for long-horizon, contact-rich manipulation tasks. Our approach86

requires only a small amount of real-world correction data and supports integration of additional87

sensory modalities not present in the original model, leading to improved policy performance.88

3 CR-DAgger Method89

Our goal is to improve a pretrained robot policy with a small amount of human correction data. To90

achieve this, we propose a Compliant Intervention Interface (§ 3.1) that enables precise and intuitive91

on-policy human correction data collection, and a Compliant Residual Policy (§ 3.2) that efficiently92

learns the correction behaviors to be used on top of the pretrained policy. Throughout the paper, we93

use the term base policy to refer to the pretrained policy without online improvements.94

3.1 Compliant Intervention Interface95

Correction data is collected by human demonstrators to rectify policy failures. Unlike initial demon-96

strations that establish baseline behaviors, correction data specifically targets failure modes observed97

during policy deployment. Correction data is most effective when it corrects failures in policy-induced98

state distributions [5]. The interface through which these corrections are collected significantly im-99

pacts the quality of correction data, which should be intuitive for demonstrators, capture critical100

corrective information at precise moments of failures, and help correction data maintain distributional101

consistency with base policy outputs.102

There are two types of correction collection methods: Off-policy correction is when humans observe103

failures of the base policy during deployment, and then recollect extra offline demonstrations to104

address failure cases. This approach is most commonly used for improving Behavior Cloning policy105

performance due to its simplicity - it requires no additional infrastructure beyond the original data106

collection setup. However, the resulting demonstrations may fail to cover all the failure cases or107
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deviate from the policy’s original distribution. We focus on on-policy correction instead, where108

humans can monitor policy execution and intervene on the spot when failures occur or are anticipated.109

This approach allows humans to provide corrections more targeted to the base policy’s failure cases.110

However, challenges still exist for an intervention system:111

• Non-smooth transitions. Intervention in robotics is typically implemented by take-over correction:112

letting human take complete control and overwrite robot policy. As the underlying control abruptly113

switches between robot policy and human intention, disturbances are introduced due to policy114

inference and human response latency, especially when the robot is withholding external forces.115

The recorded data thus may include undesired actions that do not reflect the human’s intention.116

• Distribution shift. The human intervention may still introduce significant distribution shifts as117

the motion deviates too much from the original policy distribution. Additionally, the non-smooth118

transition above could bring in disturbances and add to the distribution shift.119

• Indirect correction brings errors. Correction is commonly implemented via teleoperation120

interfaces such as spacemouse or joysticks [10, 11]. With spatial mismatch and teleoperation121

latency, it is hard for the demonstrator to instantly provide accurate corrections upon intervention122

starts without going through a short adjustment period.123

• Missing information. The recorded correction data need to fully describe the human’s intended124

action. Simply recording the robot’s position is not sufficient, since it may be under the influence125

of human correction force and will cause different result when testing without human.126

We propose a Compliant Intervention Interface with the following designs to solve those challenges:127

• Delta correction instead of take-over correction. Unlike take-over correction, where the demon-128

strator has no idea of the policy’s original intention once taking over, we propose a novel on-policy129

delta correction method: we let the robot policy executes continuously while the human applies130

forces to the robot with a handle mounted on the end effector, resulting in delta actions on top of131

the policy action. The human demonstrator can always sense the policy’s intention through haptic132

feedback, and easily control the magnitude of intervention by the amount of force applied to the133

handle. As a result, delta correction ensures smooth intervention data and limits the human from134

providing very large corrections that can easily lead to out-of-distribution states. The approach is135

also intuitive as the human can directly move the robot towards desired correction directions.136

• Correction interface with compliance control. In order to apply delta correction over a running137

policy, we provide a compliant interface that allows humans to safely intervene and apply force to138

the robot to affect its behaviors at any time, as shown in Fig. 2. We design a kinesthetic correction139

hardware setup with a detachable handle for human to hold when correcting, and allows easy140

tool-swapping for different tasks. We run a compliance controller (specifically admittance control)141

in the background to respond to both contact forces and human correction forces, allowing the142

human to influence but not completely override the policy execution. The admittance controller uses143

a constant stiffness ∼1000 N/m to allow easy human intervention and ensure accurate tracking.144

• Correction recording with buttons and force sensor. Our interface additionally includes an ATI145

6-D force sensor to directly measure contact forces, and a single-key keyboard placed on the handle146

to record the exact timings of correction starts/ends. Both the policy’s original commands and the147

human’s delta corrections are recorded, along with force sensor readings during the interaction.148

3.2 Compliant Residual Policy149

Given the correction data, there are multiple ways to update the policy. Common practices include150

retraining the base policy from scratch with both initial data and correction data, and finetuning the151

base policy with only the correction data. However, retraining is costly as it requires updating the152

entire base policy network from scratch with all the available data. It also requires access to the base153

policy’s initial training data, which might not be accessible for many open source pretrained models.154

The amount of correction data is significantly smaller than the initial training data, thus simply mixing155

them together makes the policy hard to gain effective corrective behaviors. While finetuning allows156
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Figure 3: Policy Update Methods. Left: Common policy update methods - retraining and finetuning. Right:
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updating partial policy network parameters with new data only, its training stability can be easily157

affected by the distribution mismatch between the correction data and initial training data. Moreover,158

both retraining and finetuning can only update the policy with its fixed network architecture while159

being unable to incorporate new inputs and outputs. We propose a compliant residual policy trained160

only on the correction data to refine base policy’s position actions and predict additional force actions.161

Compliant residual policy formulation. Our policy directly learns corrective behavior from the162

human delta correction data, as shown in Fig. 3. It takes as input the same visual and proprioceptive163

feedback as the base policy but with a shorter horizon. It also takes in an extra force modality,164

which is available using our Compliant Intervention Interface. The policy outputs five frames of165

actions at a time, corresponding to 0.1 s of execution time when running at 50 Hz. The action space is166

15-dimensional: the first nine dimensions represent the SE3 delta pose from the base policy action to167

the robot pose command [7], while the later six dimensions represent the expected wrench (force and168

torque) the robot should feel from external contacts. Both the robot pose command and the expected169

wrench are sent to a standard admittance controller for execution with compliance.170

The residual policy directly uses the base policy’s frozen image encoder to extract an image embed-171

ding, a temporal convolution network [35] to encode the force vectors, followed by fully-connected172

layers to decode actions.173

Advantages. This formulation provides the following advantages:174

• Sample-efficient learning. The residual policy’s network is light-weight (∼2MB trainable weights)175

and only requires a small amount of correction data to train (∼50 demonstrations).176

• Incorporating new sensor modality. Compared to retraining and finetuning methods that are limited177

to the base policy’s network architecture, residual policy can incorporate new sensor modality. This178

allows taking any position-based pretrained policy and turning it force-aware simply by collecting179

a small amount of correction data with force modality.180

• High-frequency inference. The light-weight residual policy runs at a higher frequency than the base181

policy, incorporating high-frequency force feedback and enabling reactive corrective behaviors.182

This reactivity is particular important for error correction during contact events.183

Training strategy. In prior work, a residual policy is trained either in simulation with RL [13, 12] to184

give it sufficient coverage of the input distribution, or in the real world with pre-collected behavior185

cloning data [18]. In this work, we train the Compliant Residual Policy completely on the small186

amount of new real-world correction data with the following strategies:187

• Ensure sufficient coverage of in-distribution data. Human correction tends to be frequent around a188

few key moments of the task. A residual trained on correction data alone can extrapolate badly189

around states where no correction is provided. To help the residual policy understand when not to190

provide corrections, we: (1) include the no correction data for training but label it as zero residual191
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(c) Base Policy Failure Cases(b) Test Configs

(a) Base + Compliant Residual Policy Rollout

Figure 4: Book Flipping Task. (a) Policy rollout of [Compliant Residual] policy trained with [On-Policy Delta]
data, demonstrating accurate insertion motions and forceful pushing strategy. (b) Different test scenarios. (c)
Typical failure cases of the base policy: inserting too high above the book and missing the gap; retracting the
fingers before the books can steadily stand.

(a) Base + Compliant Residual Policy Rollout

(b) Test Configs (c) Base Policy Failure Cases

Miss second pulley

Start Thread on 1st pulley Thread on 2nd pulley Rotate around 2nd pulley Release

Stuck on base Blocked by button Missed the slot

Figure 5: Belt Assembly Task. (a) Policy rollout of [Compliant Residual] policy trained with [On-Policy Delta]
data, demonstrating accurate force-position coordination and adaptation. (b) Different test scenarios. (c) Typical
failure cases of the base policy: getting stuck on base next to the small pulley; blocked by the the button on the
large pulley; and missing the slot by going too high above the pulley.

actions; (2) collect a few trajectories where the demonstrator always holds the handle and marks192

the whole trajectory as correction even when the correction is small or zero. Details are in § A.3.193

• Prioritize correction data over no-correction (zero residual action) data. Similar to [15], we alter194

the sample frequency of intervention data during training based on whether they have human195

correction or not. Specifically, since the moment of correction start indicates where the current196

policy performs badly followed by immediate action to fix it, we sample data more frequently for a197

short period immediately after correction starts. Our real-world ablations (§ 4.5) demonstrate that198

our training strategies improve the quality of the residual policy and the overall success rate.199

4 Evaluation200

For each task, we train a diffusion policy [7] with 150 demonstrations as the base policy. We first201

deploy the base policy and observe its performance and failure modes. Next, from the same base202

policy, we collect 50 correction episodes with each data collection method. Then, we update the203

policy using each network updating method and training procedure. Finally, we deploy the updated204

policies and evaluate their performance under the same test cases. Each data & policy combination is205

evaluated on each task for 20 trials. Details of tasks and comparisons are described below.206
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4.1 Contact-Rich Manipulation Tasks207

Book Flipping: As shown in Fig. 4 (a), this task is to flip up books on a shelf. Starting with one or208

more books lying flat on the shelf, the robot first insert fingers below the book, then rotate the book209

up and push them firmly against the shelf to let them stand on their own.210

This task is challenging as it involves rich use of physical contacts and forceful strategies [36]. A211

position-only strategy always fails immediately by triggering large forces, so we execute all policies212

through the same admittance controller. The task success requires high precision in both motion and213

force to accurately align the fingers with the gap upon insertion, and to provide enough force to rotate214

heavy books and make the books stand firmly.215

Each evaluation includes 20 rollouts on 4 test cases (5 rollouts each), as shown in Fig. 4 (b): 1)216

flipping a single book (three seen and two unseen books), initially far from the shelf edge; 2) flipping217

a single book close to the shelf edge; 3) flipping two books together (combinations of three seen and218

three unseen books), initially far from the shelf edge; 4) flipping two books close to the shelf edge.219

We use the same initial configurations for all evaluations.220

Belt Assembly: As shown in Fig. 5 (a), this task is to assemble a thin belt onto two pulleys, which is221

part of the NIST board assembly challenge [37]. Starting with the belt grasped by the gripper, the222

robot needs to first thread the belt over the small pulley, next move down while stretching the belt to223

thread its other side on the big pulley, then rotate 180◦ around the big pulley to tighten the belt, and224

finally pull up to release the belt from the gripper.225

The task is challenging as it requires both position and force accuracy throughout the process.226

Specifically, the belt is thin and soft so the initial alignments onto the pulleys are visually ambiguous.227

Also, since the belt is not stretchable, there is more resistance force and less position tolerance as228

the belt approaches the second pulley, requiring a policy with good force-position coordination and229

adaptation. We ran 20 rollouts across 4 different initial board positions for all methods (Fig. 5 (b)).230

We use the same test cases and initial robot configuration for all evaluations.231

4.2 Base Policy and its Failure Modes232

We trained a diffusion policy [7] that takes in past images from a wrist-mounted camera and robot233

proprioception observations, and predicts a future position-based action trajectory. We collected 150234

successful demonstrations on both tasks, with five different books for the book flipping task, and235

randomized initial robot and object configurations for both tasks.236

The book flipping base policy achieves a 40% success rate with the following common failure cases237

(Fig. 4 (c)): (1) Missed insertion. The fingers initially go too high above the book or aims for the gap238

between the two books, failing to properly insert beneath the books. (2) Incomplete flipping. At the239

last stage, the policy retracts the blade before the book can stand stably, causing it to fall back.240

The belt assembly base policy achieves a 20% success rate with the following common failure cases241

(Fig. 5 (c)): (1) Missed small pulley assembly: the robot moves with an improper height, causing the242

belt to get stuck at the base of the board next to the small pulley. (2) Missed big pulley assembly: the243

fingertip goes too high or too low, causing the belt to miss the slot on the big pulley.244

4.3 Comparisons245

We compare CR-DAgger with baselines across two dimensions: correction method and policy update246

method. We present the quantitative results in Fig. 6, and explain key findings in § 4.4.247

Correction data collection methods. We compare our Compliant Intervention Interface with the248

two most commonly used correction data collection strategies:249

• Observe-then-Collect includes two steps: first, the policy is deployed and human demonstrators250

observe the initial settings that could cause failures; then, demonstrators provide completely new251

demonstrations starting from similar initial settings. As explained in § 3.1, this type of offline252
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Figure 6: Results. We compare CR-DAgger across two dimensions: correction method and policy update
method. The result shows that our [Compliant Residual (CR)] policy trained with [On-Policy Delta] data is able
to improve upon base policies on both tasks and outperforms other variations.

correction potentially misses critical timing information, and the resulting demonstrations may253

deviate from the policy’s original behavior distribution.254

• Take-over-Correction (HG-DAgger) [6] is another common correction strategy where human255

demonstrators monitor policy execution and take complete control when failures are anticipated.256

We implement Take-over-Correction on our Compliant Intervention Interface by cleaning up257

command buffer to the compliance controller and switching stiffness to zero upon correction starts,258

so the robot policy does not affect the robot during correction. However, as explained in § 3.1,259

take-over correction introduces an abrupt transition around control authority switching, which may260

cause distributional discontinuities in the training data.261

• On-Policy Delta (Ours): the details are described in § 3.1.262

Policy update methods. We compare with two common policy update methods:263

• Retrain Policy: Retrain the base policy using both the original training data and the correction data264

from scratch. As explained in § 3.2, this approach is reliable but may require access to the orignal265

data and large amount of new data to work well.266

• Finetune Policy: Finetune the base policy using only the correction data (freezing visual encoders).267

As explained in § 3.2, this approach can be sensitive to data quality and distribution shifts.268

• Residual Policy: an ablation of our method where force is removed from both input and outputs.269

• Compliant Residual Policy (Ours): Residual policy update with additional force input and outputs,270

see details in § 3.2.271

4.4 Key Findings272

Finding 1: Compliant Residual Policy is able to improve base policy by a large margin. As273

shown in Fig. 6, [Compliant Residual] policy trained with [On-Policy Delta] data improves the274

base policy success rate by 60% and 50% on the two tasks respectively. It effectively learns275

useful corrective strategies from the limited demonstrations. For example, in the book flipping task,276

the policy learns to pitch the fingers down more before finger insertion to increase the insertion277

success; in the belt assembly task, the policy learns to correct the height of the belt when misaligning278

to the pulley slot. Results are best viewed in our supplementary video.279

Finding 2: Residual policy allows additional useful modality to be added during correc-280

tion. [Compliant Residual] policy performs significantly better than other methods without force281

(45% higher success rate than the best position-only baseline on the book task and 20% higher282

on the belt task) as it can both take in force feedback that indicates critical task information and283

predict adequate contact forces to apply. For example, the last stage of the book flipping task requires284

the robot to firmly push the book against the shelf wall to let it stand on its own. [Compliant Residual]285

policy predicts large pushing forces at this stage to make the books stand stably with a 100% success286

rate, while [Residual]’s success rate drops from 70% to 35% (§ A.1). The second stage of the belt287

assembly task (threading the belt on the large pulley) requires delicate belt height adjustments under288

ambiguous visual information due to occlusions and the lack of depth. [Compliant Residual] policy289

learns to move along the pulley to find the slot when the finger touches the top of the pulley.290
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Finding 3: Smooth On-Policy Delta data enables stable residual policy. [Compliant Residual]291

policy trained with [On-Policy Delta] data has 45% and 30% higher success rates than [Compliant292

Residual] & [Take-over-Correction] on the two tasks respectively. Both residual policies trained with293

[Take-over-Correction] data sometimes exhibit large noisy motions that trigger task failures, such294

as retracting the fingers too early in the book flipping task, and pulling the belt forcefully above the295

large pulley in the belt assembly task. On the contrary, residual policies trained with [On-policy296

Delta] data have much smoother action trajectories and better reflect human’s correction intentions,297

providing suitable magnitudes of corrections.298

Finding 4: Retraining base policy is stable but learns correction behavior slowly. Retraining from299

scratch with the initial and correction data together leads to policies with stable motions. However,300

its behavior is less affected by the small amount of correction data compared to the dominant portion301

of initial data, leading to insignificant improvements over the base policy (1.67% success rate drop302

on the book task and 5% increase on the belt task, averaged across all data collection methods).303

Finding 5: Finetuning base policy is unstable. Policy finetuning with either correction data has304

the worst performance across all policy update methods and even underperforms the base policy305

(30% success rate drop on the book task and 15% drop on the belt task, averaged across all data306

collection methods). The finetuned policy predicts unstable and noisy motions, quickly leading to307

out-of-distribution states, such as inserting too high in the book flipping task and drifting away from308

the board in the belt assembly task. This is likely due to the distribution mismatch between the base309

policy training distribution and correction data distribution, causing training instabilities.310

4.5 Ablations311

We study two important design decisions with ablation studies on the book flipping task.312

Training frequency and batch size. One important parameter in DAgger is the batch size between313

policy updates. With a smaller batch size, the policy is updated more frequently, then new correction314

data can better reflect the most recent policy distribution. However, DAgger with small batch sizes is315

known to suffer from catastrophic forgetting [38, 39] since it finetunes neural networks on data with316

non-stationary distribution. Common solutions include retraining the residual policy at the end of317

DAgger using all available correction data collected from all the intermediate residual policies [3].318

Another way is to rely on the base policy training data as a normalizer [10]. In this work, we319

empirically found that a much simpler method works the best: single-batch training, i.e., we train the320

residual only once. All correction data is obtained when only running the base policy. We compare our321

single-batch (batch size = 50) DAgger with a small batch size version, where we warm up the residual322

with 20 episodes of initial correction data, then update every ten more episodes for three times.323
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Figure 7: Effect of Training Frequency and Sample.
Single-batch update (batch size=50) leads to more sta-
ble training and dense sampling after correction starts
achieves better performance.

324

Finding: Single-batch DAgger is more suitable325

for training Compliant Residual Policy. The326

small-batch training becomes unstable and the327

demonstrator needs to provide large magnitudes328

of corrections as the number of iterations in-329

creases. During evaluation, the final policy al-330

ways fails by inserting too high, while our single-331

batch policy achieves a 100% success rate with332

the same amount of data and training epochs.333

Sampling strategy during training. The start334

of a human intervention contains critical information of the timing and direction of correction.335

Accurate delta action predictions right after correction starts are important for reactive corrective336

behaviors and staying in distribution. We investigate three strategies for sampling from online337

correction data during training: 1. Uniform sample, where the whole episode is sampled uniformly. 2.338

Denser sample around the start of a human intervention, and 3. denser sample only after the human339

intervention starts. For 2 and 3, we uniformly increase the sample frequency four times for a fixed340

period before and/or after intervention starts.341
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Finding: Sampling denser right after intervention starts leads to more reactive and accurate cor-342

rections. As shown in Fig. 7 (right), the best performance comes from densely sampling after the343

beginning of interventions. Sampling denser around the start of a human intervention also adds more344

samples right before the intervention starts, which is where humans observe signs of failures. These345

are mostly negative data, and using them for training decreases the policy success rate.346

5 Conclusion and Discussion347

In this work, we evaluate practical design choices for DAgger in real-world robot learning, and provide348

a system, CR-DAgger, to effectively collect human correction data with a Compliant Intervention349

Interface and improve the base policy with a Compliant Residual Policy. We demonstrate the350

effectiveness of our designs by comparing them with a variety of alternatives on two contact-rich351

manipulation tasks.352

Limitations and Future Work. The base policy should have a reasonable success rate for the residual353

policy to learn effectively. From our experiments, we recommend starting to collect correction data354

for the residual policy when the base policy has at least 10% ∼ 20% success rate. A future direction355

is to derive theoretical guidelines for the trade-off between the base and residual improvements.356

Throughout this work, we use a MLP as the action head of our Compliant Residual Policy and directly357

regress the actions. Although it works well in our tasks, it may experience difficulty for tasks that358

involve more distinctive action multi-modalities. More expressive policy formulations, such as Flow359

Matching [40, 22] might be useful for these tasks.360
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A Technical Appendices and Supplementary Material491

A.1 Stage-Wise Success Rate492

Both the book flipping task and the belt assembly task can be further divided into three key stages.493

Fig. 8 below is a more detailed version of Fig. 6, which reports all the task success rates by stages.494
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Figure 8: Stage-wise Success rates. Each row represents the results for one task, while each column shows the
success rate up to the corresponding stage.

A.2 Use of Base policy Action as Input to the Residual Policy495

One design choice for the residual policy is whether to add the base policy action as an input. Both496

methods were commonly used in prior residual policy work, some report improvements when the497

base policy action is not included [12]. We tested both variations on both the book flipping and belt498

assembly task and obtained mixed results. We report the most successful versions (with base action499

for the book flipping task, without base action for the belt assembly task) in our result section.500

Table 1: The effect of whether to include base policy action as input to residual policy
w/ base action w/o base action

Book flipping 100 75
Belt assembly 25 70

A.3 Correction Data Decomposition501

As mentioned in the “Training strategy” part of § 3.2, we used two strategies to ensure the residual502

policy behaves stably around low correction data regions. The first strategy is to include the no503

correction portion of online data for training and label them with zero residual actions. The second504

strategy is to collect a few trajectories (15 out of the 50 total correction episodes) in which the505

demonstrator marks the whole trajectory as correction, even when the correction is small or zero. In506

practice, we find that the first strategy works better when the base policy is more stable and has a507

higher success rate, while the second strategy works better otherwise. In our experiments, we use the508

first strategy for the book flipping task and use the second strategy for the belt assembly task.509
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A.4 Experiments Compute Resources510

We use a desktop with a NVIDIA GeForce RTX 4090 GPU for training and deployment.511

A.5 Hardware Design512

Our kinesthetic correction hardware setup features a tool interface that allows task-specific tool513

swapping. For the book flipping task, we designed a customized fork-shaped tool that can easily514

insert under the books and flip them. For the belt assembly task, we used a standard WSG-50 gripper515

and fin-ray fingers [1]. An interesting future direction is to leverage generative models for automatic516

manipulator design [41]. Future work can also incorporate other types of force or tactile sensors,517

such as capacitive F/T sensors [42] and vision-based tactile sensors [43–45].518

15


	Introduction
	Related Work
	CR-DAgger Method
	Compliant Intervention Interface
	Compliant Residual Policy

	Evaluation
	Contact-Rich Manipulation Tasks
	Base Policy and its Failure Modes
	Comparisons
	Key Findings
	Ablations

	Conclusion and Discussion
	Acknowledgment
	Technical Appendices and Supplementary Material
	Stage-Wise Success Rate
	Use of Base policy Action as Input to the Residual Policy
	Correction Data Decomposition
	Experiments Compute Resources
	Hardware Design


