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ABSTRACT

With the rapidly growing model complexity in the state-of-the-art machine learn-
ing methods, the expensive model training process has rendered the algorithm de-
sign and computation resources allocation challenging. To tackle the challenges,
we propose the knowledge cascade (KCas), a strategy that reverses the idea of
knowledge distillation (KD). While KD compresses and transfers the knowledge
learned by a large-and-complex model (teacher model) to a small-and-simple
model (student model), KCas inversely transfer the knowledge in a student model
to a teacher model. Despite the fact that teacher models are more sophisticated
and capable than student models, we show that in KCas, student models can ef-
fectively facilitate teacher models building by taking advantage of the statistical
asymptotic theories. We demonstrate the outstanding performance of KCas on
the nonparametric multivariate functional estimation in reproducing kernel Hilbert
space. One of the crucial problems in accomplishing the estimation is the daunt-
ing computational cost of selecting smoothing parameters, whose number will
increase exponentially as the number of predictors increases. KCas transfers the
knowledge about the smoothing parameters of the target function learned from
the student model to the teacher model based on empirical and asymptotic results.
KCas significantly reduces the computational cost of the smoothing parameter se-
lection process from O(n3) to O(n3/4), while preserving excellent performance.
Theoretical analysis of asymptotic convergence rates and extensive empirical eval-
uations on simulated and real data validate the effectiveness of KCas.

1 INTRODUCTION

In recent years, the model complexity of state-of-the-art machine learning models has been growing
rapidly. In particular, super-large deep neural networks (DNN) have achieved remarkable success in
various applications (Wolf et al., 2020; Dosovitskiy et al., 2020; You et al., 2019; Goodfellow et al.,
2014; Hinton et al., 2012). Despite these impressive achievements, such complex models have also
brought significant challenges in model development and model deployment. For model develop-
ment, it usually takes enormous amounts of computation resources and manpower to develop the
complex model due to the large data volume, high dimensionality, and complicated data structure.
For model deployment, it is challenging to deploy large and complex models to small/moderate
computing devices, such as a sensor in a sensor network, due to their limited computation and stor-
age capacities. To surmount the challenges in model deployment, researchers have developed many
model compression methods, among which knowledge distillation plays a key role (Urner et al.,
2011; Urban et al., 2016; Hinton et al., 2015). The success of the knowledge distillation methods
highly depends on a well-trained teacher model, which needs to overcome the challenges of model
development. In this paper, we propose the knowledge cascade (KCas), which reverses the process
of knowledge distillation, to tackle the challenges in model development.

We shall now present a brief review of knowledge distillation (KD) methods. KD is similar to the
process in which students learn from their teachers, where a small-and-simple model (student model)
is generally supervised by a large-and-complex model (teacher model). The main idea is to com-
press knowledge learned by the teacher model to the student model. Specifically, in deep learning,
knowledge distillation targets to train a compact neural net (student) by learning the “knowledge” of
the complex DNN (teacher), to obtain competitive or even superior performances. The crucial prob-
lem is to design an effective learning mechanism. Extensive works have focused on this problem
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with various explorations on the choice of : (1) what knowledge the student model should learn from
the teacher model (Hinton et al., 2015; Romero et al., 2014; Huang & Wang, 2017; Ahn et al., 2019;
Zagoruyko & Komodakis, 2016) (2) distillation schemes (Passalis & Tefas, 2018; Mirzadeh et al.,
2020; Li et al., 2020; Asif et al., 2019; Mirzadeh et al., 2020) (3) the design of suitable structures
for the teacher and student model (Wang et al., 2018b; Zhu et al., 2018; Polino et al., 2018; Wei
et al., 2018; Howard et al., 2017; Xie et al., 2020; Zhang et al., 2018). See Gou et al. (2021) for a
comprehensive survey on the recent developments in KD methods.

Despite the success of KD on model deployment, significant challenges still lie in model develop-
ment. KD methods critically hinge on a well-trained teacher model, which usually are super-large
deep neural networks. Such super-large teacher models consume enormous computational resources
to train and may not always be available. (Vaswani et al., 2017; Devlin et al., 2018; Brown et al.,
2020; Ramesh et al., 2021; Thoppilan et al., 2022) The huge consumption of computational re-
sources also brings environmental concerns due to carbon emissions caused by fueling modern pro-
cessing hardware. (Strubell et al., 2019; Bender et al., 2021; Patterson et al., 2021). Furthermore, the
model training process may break down due to severe convergence problems, i.e., the model does not
converge or converge to a wrong one. To thoroughly tackle these challenges in model development,
we propose the reverse knowledge distillation, named knowledge cascade (KCas). By reversing the
direction of transferring knowledge, KCas lets the knowledge learned from small-and-simple models
(student) cascade to large-and-complex models (teacher). This key idea is similar to the conduction
of a pilot study in many scientific fields, where the scientists get a relatively small/limited model
from the pilot study and use it to provide information and directions for further research and the
development of a large-and-complex model.

A natural question is whether reversing the distillation direction is possible, i.e., can a teacher model
effectively learn knowledge from a student model? In general, this may not be realistic since a
teacher model has a much more complex structure and is capable of capturing more information.
In this paper, we show that it is feasible to reverse the distillation direction using our proposed
KCas framework, which takes advantage of the statistical asymptotic theories. Specifically, we
demonstrate the outstanding performance of KCas on the nonparametric multivariate functional es-
timation in reproducing kernel Hilbert space (RKHS). In nonparametric functional estimation, the
model complexity (number of parameters) scales with the sample size (Gu, 2013b). Thus, the model
trained on a large sample is the complex teacher model and a model trained on a small sample is
the simple student model. This coincides with the general definition of teacher and student mod-
els in the sense that the former is more powerful but more expensive to train. We aim to facilitate
the training of the teacher model by transferring knowledge from student models. In the estima-
tion procedure, RKHS is constructed on each dimension of the multivariate function, and then all
RKHSs scaled by smoothing parameters are combined together to form the final RKHS. One of the
crucial problems in accomplishing this is the daunting computational cost of selecting smoothing
parameters, the number of which increases exponentially as the number of predictors (dimension of
multivariate function) increases. In KCas, the asymptotic theorem describes the large-sample be-
havior of the optimal smoothing parameters, which builds a bridge (by a formula) between student
and teacher models. Instead of selecting the smoothing parameters on the full sample, we only need
to plug in the optimal smoothing parameters estimated by the student model and solve the formula
to extrapolate the optimal smoothing parameters to the teacher model. KCas method significantly
reduces the computational burden of selecting smoothing parameters in high-dimensional and large
samples. Moreover, we demonstrate an amazing fact that the estimators under KCas often perform
better than the full-sample estimator, which is supposed to utilize all the available information and
takes much more computation time. This fact suggests that KCas can utilize the information more
efficiently and is able to avoid possible over-fitting of the full sample estimator.

An idea related to KCas is self-distillation (SD), which is also developed for the effective deployment
of complex models. SD methods use the same architecture for both the teacher and student models,
and facilitate the training procedure by letting the knowledge be transferred/exchanged among a
group of models or within a single model (Zhang & Sabuncu, 2020; Mobahi et al., 2020; Zhang
et al., 2019; Phuong & Lampert, 2019; Yang et al., 2019; Hou et al., 2019; Liu et al., 2018; Lan
et al., 2018). However, models in standard SD methods are relatively large, and the model training
procedure is accelerated and improved by distilling knowledge from itself. In this sense, KCas
differs from SD by utilizing information from some ‘actually small’ student models that are much
easier to train. In scientific scenarios where the pilot study is needed to determine the design of

2



Under review as a conference paper at ICLR 2023

extensive and detailed experiments, KCas can use the pilot data to construct student models to
avoid wasting valuable knowledge learned from them. Thus, KCas is highly desirable in these
settings. Note that in Yuan et al. (2020), the authors also discussed the possibility of reversing the
knowledge distillation procedure, but their methodology is still under the SD framework. Yuan
et al. (2020) reversed the KD procedure as a motivating example for proposing the Teacher-free
Knowledge Distillation (Tf-KD) framework. They prove the equivalence between KD and label
smoothing regularization in a certain sense, and using this fact, Tf-KD lets a student model learn
from itself or manually designed regularization distribution. Therefore, the student model in Tf-KD
serves the purpose of regularization, while the student model in KCas serves the role of extracting
information, and KCas amplifies this information to help the teacher model. Therefore, our proposed
KCas and the associated theories are significantly different from Yuan et al. (2020) and various self-
distillation methods.

Our contributions:
1. We introduce a novel concept of knowledge cascade—a reverse knowledge distillation, where
the teacher models learn knowledge from the student models. 2. We demonstrate that the reverse
knowledge distillation is feasible by integrating the asymptotic theory of nonparametric functional
estimation to enable the extrapolation from student models to teacher models. 3. We develop the
KCas method in the context of multivariate nonparametric function estimation, design the asso-
ciated algorithm and establish the consistency theory. The estimation by KCas reduces the time
complexity of the smoothing parameter estimation process from O(n3) to O(n3/4). 4. With exten-
sive simulation study and real data analysis, we empirically show the effectiveness of KCas, which
even outperforms the gold standard in some cases.

2 PRELIMINARIES

2.1 NONPARAMETRIC FUNCTIONAL ESTIMATION IN REPRODUCING KERNEL HILBERT SPACE

To estimate a function of interest η on a generic domain X , we consider the nonparametric penalized
loss function,

PL = L(η) + λJ(η), (1)

where L(η) is the goodness-of-fit (loss) functional, e.g., likelihood function in regression and hinge
loss in support vector machine, J(η) is the smoothness (penalty) functional, and λ is a Lagrange
multiplier, controlling the trade-off between the smoothness of η(x) and its fidelity to the data.

Functional ANOVA decomposition. Estimating η on the product domain X =
∏d

j=1 Xj is a funda-
mental problem in statistical learning. Numerous methods have been proposed to solve this problem
over the years (Jeon & Lin, 2006a; Chen et al., 2016; Lin & Zhang, 2006; Pérez et al., 2009; Bosq,
2012). However, most of them have been challenged by the curse of dimensionality, as the esti-
mation of multivariate functions is intrinsically difficult. One method that alleviates the curse of
dimensionality is the decomposition of multivariate functions similar to the classical analysis of
variance (ANOVA) decomposition and the associated notions of the main effect and interaction (Gu
et al., 2013; Gu & Wang, 2003; Kim & Gu, 2004; Huang, 1998; Jeon & Lin, 2006b). In this func-
tional ANOVA model, higher-order interactions are often excluded in practical estimation to control
model complexity; excluding all interactions yields the popular additive models. On the product do-
main X =

∏d
j=1 Xj , the function η can be decomposed as a sum of a constant term, on-dimensional

functions (main effects), two-dimensional functions (two-way interactions), and so on:

η(x) = η (x1, . . . , xd) = η∅ +
∑
j

ηj (xj) +
∑
j<k

ηj,k (xj , xk) + . . . , (2)

with the constant in η∅, the main effects in ηj , the two-way interactions in ηj,k, etc.; higher order
interactions are eliminated to ease the curse of dimensionality.

Reproducing kernel Hilbert space. By adding the roughness penalty J(η) to L(η) in (1), we
consider the space H ⊆ {η : J(η) < ∞} in which J(η) is a square semi-norm with a finite-
dimensional null space Nη = {η : J(η) = 0}. To assist analysis and computation, a metric and
geometry should be defined in this space, and the loss (1) needs to be continuous in η under this
metric. Since the reproducing kernel Hilbert space (RKHS) adequately equips for the purpose, we
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consider the space H as a RKHS with the continuous evaluation [x]f = f(x), reproducing kernel
R(·, ·), a non-negative definite function satisfying ⟨R(x, ·), f(·)⟩ = f(x),∀η ∈ H, where ⟨·, ·⟩ is
the inner product in H. The following theorem guarantees the existence of the minimizer in RKHS.

Theorem 2.1 ((Wahba, 1990a)) Suppose L(η) is a continuous and convex functional in a Hilbert
space H and J(η) is a square (semi) norm in H with a null space NJ , of finite dimension. If L(η)
has a unique minimizer in NJ , then L(η) + λ

2J(η) has a minimizer in H.

When L(η) is the likelihood function, it is usually convex in η. The quadratic functional J(η) is
convex (Gu & Qiu, 1993). A minimizer of L(η) is unique in NJ if the convexity is strict in it, which
is often the case. Thus, the solution for (1) exists in most cases.

3 METHODOLOGY

Nonparametric penalized estimation of the function of interest η is a general question that has been
applied in lots of fields (Sun et al., 2016; Helwig et al., 2016). Numerous methods are limited to
handling large data due to the computational cost of training complex models. In this project, we
develop a knowledge cascade method for a general loss function (1), and we illustrate our method
in two important cases: density estimation and regression function estimation.

3.1 MINIMIZER OF THE LOSS FUNCTION

We then introduce the computation for the minimizer of the loss function (1). Consider a tensor
sum decomposition of the RKHS H = NJ ⊕HJ . Without loss of generality, we define J(η) with
tensor-product cubic splines in the following paper. The space HJ is an RKHS with J(η) as the
square norm. Let {ϕv}mv=1 be a basis of NJ = {η : J(η) = 0} and RJ be the reproducing kernel
in HJ , the minimizer of (1) has the following form according to the Kimeldorf–Wahba representer
theorem (Kimeldorf & Wahba, 1971; Wahba, 1990a; Wang, 2011; Gu, 2013c):

η(x) =

m∑
v=1

dvϕv(x) +

n∑
i=1

ciRJ(xi, x) = ϕTd+ ξT c, (3)

where d = (d1, · · · , dm)T , c = (c1, · · · , cn)T are unknown coefficients, ϕ = (ϕ1, · · · , ϕm)T ,
ξ = (RJ(xi, ·), · · · , RJ(xn, ·))T are vectors of functions. Taking advantage of the representer
theorem, the infinite-dimensional optimization problem is transferred into a finite-dimensional one,
thereby the estimation is facilitated.

Taking the ANOVA decomposition 2 into consideration, the RKHS HJ can be further decomposed
into HJ = ⊕g

β=1Hβ with the reproducing kernel RJ =
∑g

β=1 θβRβ , where Rβ is the reproducing
kernel in Hβ . Here the θβs are an extra set of smoothing parameters to be selected. We refer to (Gu
et al., 2013; Gu, 2013c) for the explicit forms of {Rβ}gβ=1 and J(η).

Plugging equation (3) into the penalized likelihood of density estimation (10), the estimation reduces
to the minimization of

− 1

n
1T (Qc+ Sd) + log

∫
exp

(
ϕTd+ ξT c

)
dx+

λ

2
cTQc, (4)

where Q is n × n with the (i, j)th entry RJ(xi, xj). Similarly, the estimation of the penalized
likelihood functional (12) of regression has the form:

1

n

(
Ỹ − Sd−Qc

)T

W
(
Ỹ − Sd−Qc

)
+
λ

2
cTQc, (5)

where W is the weight matrix, and the explicit form of Ỹ and W can be found in Appendix.

3.2 KNOWLEDGE CASCADE

Fixing smoothing parameters λ and θ, we can estimate the coefficients d and c in (4) or (5) using
Cholesky decomposition (Golub & Van Loan, 2013) or Newton-Raphson method (Gu & Qiu, 1993;
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Gu, 2013c). Smoothing parameters control the trade-off between the smoothness of η(x) and its
fidelity to the data. The selection of a large smoothing parameter will lead to oversmoothing, while
the selection of a small one will lead to undersmoothing. To make the estimation work in practice, a
critical aspect is the selection of λ and θ that delivers reasonable performance, since the solution of
(1) is sensitive to λ and θ (Jeon & Lin, 2006a; Gu, 2013a).

One of the most efficient criteria to select the smoothing parameters is generalized cross-validation
(GCV) (Gu, 1992; Gu et al., 2013; Gu & Wahba, 1991), which achieves the selection via cross-
validation targeting the Kullback-Leibler (KL) loss. Basically, this method consists of two steps:
(i) for fixed θ, minimize the KL loss with respect to λ; (ii) update θ according to the updated λ.
However, the parameter tuning, especially for λ is highly computationally intensive in the high
dimensional setting. With all S smoothing parameters tunable, the above iterative algorithm takes
O(Sn3) flops per iteration (Gu & Wahba, 1991) and needs tens of iterations to converge. Here
the number of smoothing parameters S increases as the number of multi-way interaction terms
grows. In particular, η(x) = η (x1, . . . , xd) = η∅ +

∑
j ηj (xj) +

∑
j<k ηj,k (xj , xk), the ANOVA

decomposition model 2 truncated at two-way interactions contains S = d+3d(d− 1)/2 smoothing
parameters. Thus, in our case of the particularly large sample size, it is impractical to apply GCV on
the full sample to accomplish the regression and density estimation tasks using the smoothing spline
ANOVA model. We propose the knowledge cascade (KCas) method to reduce the computational
burden of selecting smoothing parameters to achieve the estimation. In KCas, we aim to let student
models learn the smoothing parameters through optimization, whose computational burden is much
less than the teacher model, and then transfer the smoothing parameters to teacher models. Here the
complex teacher model is the model trained on the full sample, and the simple student model is the
model trained on a subsample with sample size b. We first illustrate the simplest version of KCas in
the regression model with additive noise

Yi = η(xi) + ϵ(xi) (6)

where ϵi is the white noise process satisfying Eϵ(xi) = 0, E(ϵ(xi)ϵ(xj)) = σ2 if xi = xj ,
E(ϵ(xi)ϵ(xj)) = 0 otherwise. For smoothing splines in H(m), defined by

H(m) =
{
f : f (v) absolutely continuous for v = 0, 1, . . . ,m− 1, f (m) ∈ L2[0, 1],

f (v)(0)− f (v)(1) = 0 for v = 0, 1, . . . ,m− 1} ,
(7)

Wahba (1977); Craven & Wahba (1978); Wahba (1985) derive that the optimal smoothing parameter
λ, ignoring o(1) terms, is

Cn−2m/(2mp+1), (8)

whereC is an unknown constant depending on unknown function η (Wahba, 1977) and p ∈ [1, 2] in-
dicates different additional smoothness conditions. The estimation ofC is infeasible since it depends
on the unknown true function η, however, KCas can infer the information of C from a well-trained
subsample model (student) and apply it to the full data model (teacher). Specifically, notice that the
asymptotically optimal λwhen sample size equals b is Cb−2m/(2mp+1) for the same C. We estimate
the optimal λsubGCV estimated on the subsample to infer the constant C, and then employ the same C
for the full data (Sun et al., 2021). That is,

λfullKCas(n; b) = λsubGCV(b)(n/b)
−2m/(2mp+1). (9)

Since the smoothing parameters are used to determine the proportion of the roughness penalty on
different terms in (2) and this proportion should be stable over different sample sizes, we directly
use the optimal θsubGCV(b) in the full sample. We then generalize the estimator (9) from the regression
model with additive noise (6) to a wide range of penalized likelihood estimation problems, including
the nonparametric regression in exponential family and density estimation, etc.

Density estimation. Consider the situation that we have independently identically distributed (iid)
data points Xi, i = 1, · · ·n, from an underlying data distribution p(x) on a bounded domain X =∏d

j=1 Xj . We aim to estimate p(x) based on observations Xi. For the nonparametric setting, a
naive maximum likelihood density estimation is meaningless without any nonintrinsic constraint,
since it will fit a sum of delta function spikes at the sample points Xi, which is apparently not an
appealing estimate when the domain X is continuous. Thus, a penalized likelihood estimate (PLE)
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is a good candidate. Two intrinsic constraints coming from the definition of a probability density
that p(·) ≥ 0 and

∫
X pdx = 1, As the two constraints are not computationally amicable, a typical

approach (Silverman, 1982; Gu & Qiu, 1993) is to estimate the log-density η(·), which is free of the
constraints through the transformation p(x) = eη(x)/

∫
X e

η(x)dx. Silverman (1982) proposed and
studied the theoretical properties of the penalized likelihood over a Hilbert space H:

− 1

n

n∑
i=1

η (Xi) +

∫
X
eη(x)dx+

λ

2
J(η). (10)

Nonparametric regression. Consider the exponential family with the densities of the form

f(y | x) = exp{(yη(x)− b(η(x)))/a(ϕ) + c(y, ϕ)}, (11)

where a(·) > 0, b, and c are known functions, η(x) is the regression function via the link η, and ϕ
is the parameter that is independent of x. Observing Yi | xi ∼ f(y | xi), i = 1, · · · , n, we estimate
η(x) via penalized likelihood functional

− 1

n

n∑
i=1

{Yiη (xi)− b (η (xi))}+
λ

2
J(η). (12)

where the term c(y, ϕ) is dropped as it is independent of η(x), and absorbing a(ϕ) into λ.

We propose to use KCas to transfer the knowledge smoothing parameters in (10) or (12) to the
teacher model. The KCas algorithm is summarized in the following Algorithm 1.

Algorithm 1 KCas for nonparametric function estimation
Input: Data X , subsample size b

1: Select a subsampleXb of size b from the full sample of size n using uniform sampling and apply
GCV on Xb to estimate the smoothing parameters.

2: Find the solution of (1) for the full sample of size n using the fixed smoothing parameter
λfullKCas(n; b) = λsubGCV(b)(n/b)

−2m/(2mp+1) and θfullKCas(n; b) = θsubGCV(b).
3: Fit smoothing splines via penalized likelihood on X with λfullKCas(n; b) and θfullKCas(n; b), to get

the function estimator η̂.
Output: Estimator η̂.

In the first step, we apply uniform sampling to select subsample and show that uniform sampling can
achieve good performance. Other more dedicated sampling methods can also be applied to improve
the performance further (Wang et al., 2018a; Meng et al., 2020; Daszykowski et al., 2002). The total
number of operations required for each iteration is generally 4n3/3+O(n2), in which the selection
of smoothing parameter takes the major burden. The GCV algorithm for the student model takes
O(Sb3) flops per iteration and thus KCas algorithm reduces the computational cost from O(Sn3) to
O(Sb3). As suggested by our simulation study, it is sufficient to take b = O(n1/4) to obtain excellent
performance as good as the full-sample estimator. Therefore, Algorithm 1 can significantly reduce
the computational cost of the smoothing parameter estimation process to O(Sn3/4). Thus the vital
role of KCas is further demonstrated.

3.3 THEORETICAL ANALYSIS

In this section, we present the theoretical properties of the smoothing parameters λ selected accord-
ing to Algorithm 1. For notational simplicity, in the following, we will use λ to represent all the
smoothing parameters, not just the λ in front of J(η). Please see Appendix B for the proofs.

Theorem 3.1 (convergence rate of the estimation) For the regression in exponential families as in
(11), such that

∑
ν ρ

p
νη

2
ν,0 < ∞ for some p ∈ [1, 2], under the regularity conditions A.1 to A.4 in

Appendix A, assuming λsubGCV(b) → 0 and b(λsubGCV(b))
2/r → ∞ as b→ ∞ , we have

(V + λfullKCas(n; b)J) (η̂ − η) = Op

(
n−1λfullKCas(n; b)

−1/r + λfullKCas(n; b)
p
)
. (13)

where V (·) is a interpretable metric such that a small V (η̂ − η) indicates a good estimate.
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With theorem 3.1, the consistency is ensured and the convergence rate is specified for the esti-
mation η̂ based on KCas. For the density estimation problem, the GCV score does not have an
explicit form and is expensive to compute. Thus, we use the well-accepted generalized approxi-
mate cross-validation (GACV) method (Gu & Xiang, 2001) to release the computational burden.
The convergence rate of the KCas estimation based on GACV has not been approved rigorously,
however, we demonstrate in numerical examples that the KCas empirically works very well for the
density estimation problems, as it can outperform the full sample GACV.

4 SIMULATION STUDY

Simulation studies are carried on to assess the performance of the proposed KCas method on both
the density estimation problem and the regression problem for exponential families. We compare
our method with GCV/GACV(Gu et al., 2013), GCV in generalized additive models (GAM) (Wood,
2004), SKIP method (Gu, 2014), and order-based method (ORD) (Hall, 1990). For the order-based
method, we directly use n−r/(pr+1) as the smoothing parameter λ where n is the full sample size.
GCV is taken as the benchmark method to compare. SKIP method speeds up the computation
by picking a suitable starting point and skipping the subsequent iterative steps. However, SKIP
fails to converge in density estimation with relatively high dimensions, so SKIP is only included
for comparison in the nonparametric regression problem. For the density estimation problem, we
further include kernel density estimation (KDE), where we utilize the version that is proposed by
Nagler & Czado (2016) to fit high-dimensional data. Note that all relative measures in the following
content mean dividing by the performance of GCV/GACV on the full sample.

For the proposed KCas method, we use the uniform sampling scheme to select the subsample, and
the subsample size is set to be b = 50n1/4. The full sample size is set to be 5, 000, 10, 000, and
20, 000. All the results are based on 30 replications.

4.1 SIMULATION 1: DENSITY ESTIMATION

We evaluate the methods using log-transformed relative efficacy. The relative efficacy is defined as
DKL(P̂∥P )/DKL(P̃∥P ), where DKL(Q∥P ) is the Kullback–Leibler divergence from P to distri-
bution Q, P is the true distribution, P̂ is the estimator for the method being evaluated, and P̃ is the
benchmark method. The lower the log-transformed relative efficacy, the better the performance.
Scenario 1: A d-dimensional Gaussian mixture model is constructed with the density
1/d

∑d
i=1Gaussian(ei, Id), where ei is the vector with the ith entry equals to 1 and others equal to

0. We consider d = 3, 6.
Scenario 2: A d-dimensional density is constructed by independently combining a 5-dimensional
Gaussian with mean zero and variance 0.5(11′) + 1.5I , and the remaining d − 5 variables are iid
from Unif(0, 1). We consider d = 15, 20.

Figure 1: Comparison of five methods on density estimation problem using log relative efficacy.

The log-transformed relative efficacies of the proposed KCas method and the other four methods are
shown in Fig. 1. The performance of KCas compares favorably with the other four methods, with
log-transformed relative efficacies close to or even lower than 0. The negative values mean that our
proposed method performs better than the benchmark method GCV. One reasonable explanation is
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that the knowledge learned by the student model can help the teacher model get rid of the influence of
noise, thus further improving the teacher model. The SKIP method also has competitive performance
with the proposed KCas method when the dimension is low and the sample size is small. But as the
dimension and sample size increase, i.e. the model complexity increases, it will lose its power.
Specifically, in scenario 2 when the sample size is 10, 000 or 20, 000, the median of log-transformed
relative efficacies is about 2, which implies that the median KL divergence of the order-based method
is e2 ≈ 7.4 times as large as the GCV method on the full sample.

4.2 SIMULATION 2: NONPARAMETRIC REGRESSION

For the nonparametric regression problem, we consider the model: yi ∼ Ber( exp(η(xi))
1+exp(η(xi)

),

where Ber(p) is the Bernoulli distribution with probability p, xi =
(
xi⟨1⟩, . . . , xi⟨d⟩

)T
is the

d-dimensional predictor for the ith observation, where each entry is independently draw from
Unif(0, 1). η is the nonparametric function determining the success probability in the Bernoulli
trial, and yi ∈ R is the response variable for the ith observation. We evaluated the methods by
log-transformed relative efficacy RMSE =

∑n
i=1 {η̂ (xi)− η (xi)}2 /

∑n
i=1 {η̃ (xi)− η (xi)}2,

where η is the true function, η̂ is the estimator for the method being evaluated, and η̃ is the bench-
mark method. We considered two different scenarios with different dimensions.
Scenario 1: ηm1(x) =

∑3
i=1 g1

(
x⟨i⟩

)
+ g2

(
x⟨1⟩, x⟨2⟩

)
+ g2

(
x⟨1⟩, x⟨3⟩

)
+ g3

(
x⟨1⟩, x⟨2⟩, x⟨3⟩

)
Scenario 2: ηm2(x) =

∑3
i=1 αig1

(
x⟨i⟩

)
+

∑6
i=4 αig5

(
x⟨i⟩

)
+

∑9
i=7 g4

(
x⟨i⟩

)
+
∑3

i=1

∑4
j>i βig2

(
x⟨i⟩, x⟨j⟩

)
+θ1g2

(
x⟨5⟩, x⟨6⟩

)
+θ2g6

(
x⟨7⟩, x⟨8⟩

)
+θ3g3

(
x⟨1⟩, x⟨2⟩, x⟨3⟩

)
Explicit forms of functions gi(x)’s and hyper-parameters α1, β1, θi’s can be found in Appendix
D.1. Scenario 1 is widely used in the research on nonparametric multivariate functional estimation
in RKHS (Jeon & Lin, 2006a; Gu & Wahba, 1991; Sun et al., 2021; Gu & Wang, 2003). We
considered two situations: d = 3 and d = 6. When d = 3, all three variables contribute to ηm1

and thus contribute to observation y. When d = 6, we set the last three variables to have no effect
on ηm1 to mimic the real situation that some variables are irrelevant to the y. Scenario 2 is a more
complicated one in high dimensions. We considered d = 15 and d = 20.

Figure 2: Comparison of five methods on nonparametric regression problem using log relative efficacy.

Table 1: Median computational time (min) for Simulation 2, Scenario 2, d = 20

GCV KCas GAM SUB ORD SKIP

n = 5000 42.2 6.1 1.3 5.5 16.2 2.1
n = 10000 72.9 9.4 2.5 7.0 23.1 3.3
n = 20000 102.5 8.1 3.2 5.0 30.8 3.5

Log-transformed relative efficacies over GCV are shown in Fig. 2. In scenario 1, for d = 3, the
performance of KCas and SKIP methods are comparable and are better than the other three methods.
The medians of the relative efficacies of these two methods are close to or even less than 0. This
implies that in this case KCas and SKIP perform even better than GCV using the full data, as well
as benefiting from the faster computation (computational cost is shown in Table 1). For d = 6,
KCas still shares similar results with GCV, but SKIP has poor performance with the medians of
the relative efficacies greater than 1. This phenomenon is understandable since SKIP uses the good
starting values introduced by Gu (2014) as the final estimate while skipping the following iterations.
When η is relatively simple (d = 3), SKIP may give us a good estimate by taking advantage of
the good starting value, but even the good starting value will generally not be close to the optimal
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value when η is complex (d = 6). Thus, ignoring the subsequent iteration process will make the
estimation inaccurate. Comparing the performance in scenario 2, we observe similar phenomenons
for both d = 15 and d = 20 that KCas has the best performance.

5 REAL DATA ANALYSIS

We apply KCas for density estimation on 4 benchmark datasets, and for nonparametric regression
on 2 benchmark datasets. See Appendix E for the details of the datasets. The features are scaled
through a max-min transformation and then randomly split into 80% training set and 20% test.

Density estimation. We compare KCas with GAM, SUB, ORD, and KDE. Since there is no ground
truth of the density function, we evaluate the performance by the average log-likelihood on the
test set, as suggested by (Papamakarios et al., 2017; Gao et al., 2022). We consider the ANOVA
decomposition of η including all main effects and all two-way interactions. The model terms are
selected by the model diagnosis suggested by Gu et al. (2013). Table 2 shows that the proposed
KCas outperforms all 4 benchmark methods in terms of log-likelihood on all data sets. On ESC and
MFCC datasets, KCas is even better than GCV on the full data, both in terms of log-likelihood and
computational time.

Table 2: Real data analysis: density estimation
Relative log-likelihood Relative computation time

Method KCas GAM SUB ORD KDE KCas GAM SUB ORD KDE

CD14 0.9998 0.8095 0.7642 0.9990 0.8342 0.86 0.84 0.26 0.48 7.40
AReM 0.9995 0.9657 0.9823 0.9978 0.9568 0.73 0.82 0.10 0.24 1.02
ESC 1.0475 0.5514 1.0369 1.0191 0.2503 0.53 0.87 0.42 0.44 0.69

MFCC 1.0054 0.9572 0.99084 0.9988 0.2528 0.24 0.20 0.19 0.19 1.73

Nonparametric regression. We compare KCas with GAM, SUB, ORD, and SKIP. Since we do
not know the underlying probability of each data point, as suggested by (Wang et al., 2018a), we
calculate the relative mean square error (MSE). The main effect and interaction terms are selected by
the smoothing spline ANOVA model diagnostics (Gu, 2004). Table 3 shows that KCas outperforms
all 4 benchmark methods in terms of log-likelihood. Although KCas is not the fastest among the
methods, it is faster than the full sample estimator in all studies, while obtaining the best performance
among comparing methods.

Table 3: Real data analysis: nonparametric regression
Relative MSE Relative computation time

Method KCas GAM SUB ORD SKIP KCas GAM SUB ORD SKIP

SUSY 0.7963 0.8333 1.2185 0.9385 0.8252 0.15 0.09 0.11 0.01 0.09
WFRN 1.0434 1.0535 1.3604 1.1071 1.0827 0.41 0.02 0.21 0.01 0.03

6 CONCLUSION

In this article, we propose the knowledge cascade (KCas), a reversed version of knowledge distilla-
tion. We show that although letting the teacher model learn from the student is challenging, KCas
accomplishes this task excellently by taking advantage of the statistical asymptotic theories. We
demonstrate KCas on the nonparametric functional estimation in the Hilbert space to help select
smoothing parameters. Owing to the assistance of the information learned from the student model,
the KCas method dramatically reduces the computational cost. Our simulation shows that KCas
compares favorably with other smoothing parameter selection methods targeting to reduce the com-
putational cost. It is worth emphasizing that KCas could perform better than the benchmark method
GCV in some instances. One reasonable explanation is that the knowledge learned by the student
model can help the teacher model alleviate the impact of spurious noise. Our knowledge cascade
idea offers new insights into the knowledge distillation area. It is interesting to see whether the
knowledge cascade is feasible without the aid of asymptotic theory.
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Appendix for “Knowledge Cascade: Reverse Knowledge
Distillation”

A REGULARITY CONDITIONS

We define the quadratic functional representing the mean square error of the estimator η̂ in estimating
the target function η on the domain X as

V (η̂ − η) =

∫
X
{η̂ − η(x)}2 f(x)dx,

where f(x) is the marginal density of x.

We now state four regularity conditions for Theorem 3.1.

Condition A.1 The functional V is completely continuous with respect to J.

When condition A.1 is satisfied, that is, V is completely continuous with respect to J and hence to
V + J , there exists eigenvalues λν and the corresponding eigenfunctions ψν such that

V (ψν , ψµ) = λνδν,µ, and
(V + J) (ψν , ψµ) = δν,µ,

where δν,µ is the Kronecker delta and 1 ≥ λν ↓ 0; see weinberger1974variational, silver-
man1982est.

Write ϕν = λ
−1/2
ν ψν . It follows that

V (ϕν , ϕµ) = δν,µ,

J (ϕν , ϕµ) = ρνδν,µ,

where 0 ≤ ρν = λ−1
ν − 1. We refer to ρν as the eigenvalues of J with respect to V and to ϕν as the

associated eigenfunctions. A Fourier series expansion of η satisfying J(η) <∞ is η =
∑

ν ην,0ϕν ,
where ην,0 = V (η, ϕν) are the Fourier coefficients.

Condition A.2 For ν sufficiently large and some β > 0, the eigenvalues ρν of J with respect to V
satisfy ρν > βνr, where r > 1.

Condition A.3 Let w (η;Y ) = d2l/dη2, where l (η;Y ) is the minus log likelihood of η with ob-
servations Y . For η̃ in a convex set B0 around η containing η̂, c1w (η(x);Y ) ≤ w(η̃(x);Y ) ≤
c2w (η(x);Y ) holds uniformly for some 0 < c1 < c2 <∞,∀x ∈ X ,∀Y .

Condition A.3 asks for the equivalence of the information in B0.

Condition A.4 Var [ϕν(X)ϕµ(X)w (η(X), Y )] ≤ c3 for some c3 <∞, ∀ν, µ.

Condition A.4 requires a uniform bound for the fourth moments of ϕν(X).

B PROOF OF THEOREM 3.1

Theorem 3.1 (convergence rate of the estimation) For the regression in exponential families as
in (11), such that

∑
ν ρ

p
νη

2
ν,0 < ∞ for some p ∈ [1, 2], under Conditions A.1 - A.4, assuming

λsubGCV(b) → 0 and b(λsubGCV(b))
2/r → ∞ as b→ ∞ , we have

(V + λfullKCas(n; b)J) (η̂ − η) = Op

(
n−1λfullKCas(n; b)

−1/r + λfullKCas(n; b)
p
)
. (14)

We start with summarizing the notations used in the theorem. η is the true function. η̂ is the
estimation based on λfullKCas(n; b). Note that r = 2m. Recall that

λfullKCas(n; b) = λsubGCV(b)(n/b)
−r/(rp+1).
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It suffices to show that as n→ ∞,

λfullKCas(n; b) → 0, and

n(λfullKCas(n; b))
2/r → ∞.

Since λsubGCV(b) → 0 and (n/b)−r/(rp+1) < 1, we have

λfullKCas(n; b) = λsubGCV(b)(n/b)
−r/(rp+1) → 0.

Also, since rp > 1, we have

n(λfullKCas(n; b))
2/r = n(λsubGCV(b))

2/r(n/b)−2/(rp+1)

= n(rp−1)/(rp+1)b2/(rp+1)(λsubGCV(b))
2/r

≥ b(rp−1)/(rp+1)b2/(rp+1)(λsubGCV(b))
2/r

= b(λsubGCV(b))
2/r → ∞.

Therefore, n(λfullKCas(n; b))
2/r → ∞. According to Chapter 9 of gu2013smooth , we have

(V + λfullKCas(n; b)J) (η̂ − η) = Op

(
n−1λfullKCas(n; b)

−1/r + λfullKCas(n; b)
p
)
.

Note that it has been proved rigorously that the optimal smoothing parameter λ(b) has the form
Cb−r/(rp+1) under some exponential regression problems such as regression with Gaussian-type
responses and periodic splines wahba1977practic, wahba1985compar,craven1978smooth . In such
cases, with the fact that rp > 1, as b→ 0,

λ(b) = Cb−r/(rp+1) → 0, and

bλ(b)2/r = bC2/rb−2/(rp+1)

= C2/rn(rp−1)/(rp+1) → ∞.

That is, λ(b) → 0 and b(λ(b))2/r → ∞ is naturally satisfied. In some cases, such as the density
estimation problems, there is no strict proof that the optimal λ still follows the form of Cb−r/(rp+1),
but we can reasonably infer that it should be similar to this form. We replace λ(b) with λsubGCV(b)
chosen by GCV since it is infeasible to determine λ(b) with the unknown function η. Theoretical
results li1986asymptotic,craven1978smooth have shown that λsubGCV(b) is a good estimator of λ(b),
with L(λsubGCV(b))/L(λ(b)) = 1 + op(1). Thus, it is natural to expend the assumption λsubGCV(b) →
0 and b(λsubGCV(b))

2/r → ∞ to the general regression problems with responses from exponential
families. The numerical examples results also support this assumption.

C CHOICES OF HYPERPARAMETERS m, p

For J(η, η) =
∫ 1

0

(
η(2)

)2
dx on [0, 1], r = 2m = 4. When η(2) is square-integrable, we have

p = 1, and when η(4) is square-integrable, we have p = 2. For the tensor product cubic spline, we
have 4 − ϵ < r < 4,∀ϵ > 0 (Wahba, 1990b) . Therefore, in practice we take r = 4 and p = 2
empirically.

D SIMULATION DETAILS

D.1 NONPARAMETRIC REGRESSION

Scenario 1: Let

ηm1(x) =

3∑
i=1

g1
(
x⟨i⟩

)
+ g2

(
x⟨1⟩, x⟨2⟩

)
+ g2

(
x⟨1⟩, x⟨3⟩

)
+ g3

(
x⟨1⟩, x⟨2⟩, x⟨3⟩

)
,
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Scenario 2: Let

ηm2(x) =

3∑
i=1

αig1
(
x⟨i⟩

)
+

6∑
i=4

αig5
(
x⟨i⟩

)
+

9∑
i=7

g4
(
x⟨i⟩

)
+

3∑
i=1

4∑
j>i

βig2
(
x⟨i⟩, x⟨j⟩

)
+ θ1g2

(
x⟨5⟩, x⟨6⟩

)
+ θ2g6

(
x⟨7⟩, x⟨8⟩

)
+ θ3g3

(
x⟨1⟩, x⟨2⟩, x⟨3⟩

)
,

where:

g1(x) = 106x11(1− x)6;

g2
(
x⟨1⟩, x⟨2⟩

)
= exp

(
3x⟨1⟩x⟨2⟩

)
;

g3
(
x⟨1⟩, x⟨2⟩, x⟨3⟩

)
= 15 sin

(
2πx⟨1⟩

)
/
{
2− sin

(
2πx⟨2⟩x⟨3⟩

)}
;

g4(x) = 104x3(1− x)10;

g5(x) = 15xsin(15x);

g6(x) = ap1

πσ1σ2
exp

{
− (x⟨1⟩−0.2)

2

σ2
1

− (x⟨2⟩−0.3)
2

σ2
2

}
+ ap2

πσ1σ2
exp

{
− (x⟨1⟩−0.7)

2

σ2
1

− (x⟨2⟩−0.8)
2

σ2
2

}
−b,

with σ1 = 0.3, σ2 = 0.4, p1 = 0.625, p2 = 0.375, and a = b = 4.2.

αi = i; βi = 3i; θ1 = 6; θ2 = 8; θ3 = 10

E DATASETS

E.1 DATASETS FOR DENSITY ESTIMATION

CD14: Transcriptions in CD14 single cells. The data contains the abundance information of 13
proteins in 2096 cells. The data set is available through (Stoeckius et al., 2017).

AReM: Activity Recognition system based on Multisensor data fusion Data Set. The dimension is
6 and the sample size is 42240. The time-domain features including 3 mean values and 3 standard
deviations were collected from the multisensor system during a period of time. The data set is
available at UCI Machine Learning Repository.

ESC: Embryonic Stem Cell from Mouse (Ouyang et al., 2009). The data concerns mouse embryonic
stem cell gene expression and transcription factor association strength. the 4 features that describe
the scores of TFAS with KLF4, NANOG, OCT4, and SOX2 of 1027 genes are used for density
estimation. The data set is available at CRAN in gss package.

MFCC: Anuran Calls (MFCCs) Data Set. The data is extracted from syllables of anuran (frogs)
calls, including 22 variables with a sample size of 7,195. The data set is available at UCI Machine
Learning Repository (Dua & Graff, 2017).

All the continuous variables in five datasets are scaled through a min-max normalization.

E.2 DATASETS FOR NONPARAMETRIC REGRESSION

SUSY: Supersymmetric Dataset (Baldi et al., 2014). The dataset contains one response and 18 kine-
matic features x⟨1⟩, . . . , x⟨18⟩. The full sample size is 5,000,000, and about 54.24% of the responses
in the data are from the background process. We consider the full sample GCV as the golden stan-
dard, but it is not affordable to compute GCV on the full sample. Therefore, we uniformly pick a
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subsample of size 20, 000. The data set is available at UCI Machine Learning Repository Dua &
Graff (2017).

WFRN: Wall-Following Robot Navigation Data Data Set (Freire et al., 2009). The data is a robot
navigating through the room following the wall using 24 ultrasound sensors with 19,735 time points.
The data set is available at UCI Machine Learning Repository Dua & Graff (2017).

All the continuous predictors in the datasets are scaled through a min-max normalization.

F RESOURCES

All datasets in the real data analysis are public available as described in Section E. The code and
instructions for the proposed KCas method are available upon request.
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