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ABSTRACT

We present a method to improve the calibration of deep ensembles in the small
data regime in the presence of unlabeled data. Our approach, which we name
ν-ensembles, is extremely easy to implement: given an unlabeled set, for each
unlabeled data point, we simply fit a different randomly selected label with each
ensemble member. We provide a theoretical analysis based on a PAC-Bayes bound
which guarantees that for such a labeling we obtain low negative log-likelihood
and high ensemble diversity on testing samples. Empirically, through detailed ex-
periments, we find that for low to moderately-sized training sets, ν-ensembles are
more diverse and provide better calibration than standard ensembles, sometimes
significantly.

1 INTRODUCTION

Deep ensembles have gained widespread popularity for enhancing both the testing accuracy and
calibration of deep neural networks. This popularity largely stems from their ease of implemen-
tation and their consistent, robust improvements across various scenarios. Both empirically and
theoretically, the performance of deep ensembles is intrinsically tied to their diversity (Fort et al.,
2019; Masegosa, 2020). By averaging predictions from a more diverse set of models, we mitigate
prediction bias and thereby enhance overall performance.

The conventional approach to introducing diversity within deep ensembles involves employing dis-
tinct random initializations for each ensemble member (Lakshminarayanan et al., 2017). As a result,
these ensemble members converge towards different modes of the loss landscape, each correspond-
ing to a unique predictive function. This baseline technique is quite difficult to surpass. Neverthe-
less, numerous efforts have been made to further improve deep ensembles by explicitly encouraging
diversity in their predictions (Ramé & Cord, 2021; Yashima et al., 2022; Masegosa, 2020; Matteo
et al., 2023).

These approaches typically encounter several challenges, which can be summarized as follows: The
improvements in test metrics tend to be modest, while the associated extra costs are substantial.
Firstly, diversity-promoting algorithms often involve considerably more intricate implementation
details compared to randomized initializations. Secondly, the computational and memory demands
of existing methods exceed those of the baseline by a significant margin. Additionally, some ap-
proaches necessitate extensive hyperparameter tuning, further compounding computational costs.

In light of these considerations, we introduce ν-ensembles, an algorithm designed to improve deep
ensemble calibration and diversity with minimal deviations from the standard deep ensemble work-
flow. Moreover, our algorithm maintains the same computational and memory requirements as
standard deep ensembles, resulting in linear increases in computational costs with the size of the
unlabeled dataset.

Our contributions

• Given an ensemble of size K and an unlabeled set, we propose an algorithm that generates
for each unlabeled data point K random labels without replacement and assigns from
these a single random label to each ensemble member. For each ensemble member we
then simply fit the training data (with its true labels) as well as the unlabeled data (with the
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Figure 1: Motivating ν-ensembles. Consider a 4-class classification problem and an unlabeled
sample x with true label y = 3. We sample K = 4 labels without replacement yr = [1, 4, 2, 3]
and fit them perfectly with ensemble members {ŵ1, ŵ2, ŵ3, ŵ4}. As we have sampled exhaus-
tively all classes for this classification problem, exactly one of the sampled labels will be the
correct one. The corresponding ensemble member ŵ4 will learn a useful feature from the in-
put label pair (x, y). Noting that p(y|x, ŵi) is with respect to the true label y, p(y|x, ŵ1) =

0, p(y|x, ŵ2) = 0, p(y|x, ŵ3) = 0, p(y|x, ŵ4) = 1 and the empirical variance will be V̂(ρ̂) =
1
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generated random labels). See Figure 1.

• We provide a PAC-Bayesian analysis of the test performance of the trained ensemble in
terms of negative log-likelihood and diversity. On average, the final ensemble is guaranteed
to be diverse, accurate, and well-calibrated on test data.

• We provide experiments for the in-distribution setting that demonstrate that for small to
medium-sized training sets, ν-ensembles are better calibrated than standard ensembles in
the most common calibration metrics.

• We also provide detailed experiments in the out-of-distribution setting and demonstrate that
ν-ensembles remain significantly better calibrated than standard ensembles for a range of
common distribution shifts.

2 SMALL TO MEDIUM-SIZED TRAINING SET SETTING

In the laboratory setting, deep learning models are typically trained and evaluated using large highly
curated, and labeled datasets. However, real-world settings usually differ significantly. Labeled
datasets are often small as the acquisition and labeling of new data is expensive, time-consuming, or
simply not feasible. A small labeled training set is also often accompanied by a larger unlabeled set.
A typical example where practitioners encounter such conditions is when applying deep learning in
the medical field.

The small data regime has been explored in a number of works (Ratner et al., 2017; Balestriero
et al., 2022; Zoph et al., 2020; Sorscher et al., 2022; Bornschein et al., 2020; Cubuk et al., 2020;
Fabian et al., 2021; Zhao et al., 2019; Foong et al., 2021; Perez-Ortiz et al., 2021), both theoretical
and practical. Two of the most common approaches for dealing with few training data, are using an
ensemble of predictors, and/or using data augmentation to artificially create a larger training set.

We test our proposed ν-ensembles for a range of training set sizes, while applying data augmenta-
tion, and have found that we get performance gains for small to medium-sized training sets (1K -
10K samples). We emphasize that the “small data” regime is relative; more complex distributions
require more data. As such ν-ensembles can be effective beyond these thresholds.
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3 RELATED WORK ON IMPROVEMENTS OF DEEP ENSEMBLES

A number of approaches have been proposed to improve upon standard deep ensembles.

Diversity promoting objectives. Ramé & Cord (2021) propose to use a discriminator that forces
the latent representations of each ensemble member just before the final classification layer to be
diverse. They show consistent improvements for large-scale settings in terms of test accuracy and
other metrics, however, their approach requires very extensive hyperparameter tuning. Yashima
et al. (2022) encourage the latent representations just before the classification layer to be diverse by
leveraging Stein Variational Gradient Descent (SVGD). They show improvements in robustness to
non-adversarial noise. However, they do not show improvements over Ramé & Cord (2021) in other
metrics.

Masegosa (2020); Ortega et al. (2022) propose optimizing a second-order PAC-Bayes bound to
enforce diversity. In practice, this means estimating the mean likelihood of a true label across
different ensemble members and “pushing” the different members to estimate a different value for
their own likelihood. The authors show improvements for small-scale experiments, however, this
comes at the cost of two gradient evaluations per data sample at each optimization iteration. The
method closest to our approach is the very recently proposed Agree to Disagree algorithm (Matteo
et al., 2023). Agree to disagree forces ensemble members to disagree with the other members on
unlabeled data. Crucially, however, (and in contrast to our approach) the ensemble is constructed
greedily, where a single new member is added at a time and is forced to disagree with the previous
ones. The method is also evaluated only in the OOD setting.

The above methods exhibit all the shortcomings we previously described, where the cost of imple-
mentation, tuning and training cannot easily be justified: 1) the implementation differs significantly
from standard ensembles (Ramé & Cord, 2021; Yashima et al., 2022; Masegosa, 2020; Matteo et al.,
2023); 2) the computational complexity increases significantly (Ramé & Cord, 2021; Matteo et al.,
2023); 3) and the algorithm requires extensive hyperparameter tuning (Ramé & Cord, 2021).

Bayesian approaches. One can also approach ensembles as performing approximate Bayesian
inference (Wilson & Izmailov, 2020). Under this view, a number of approaches that perform ap-
proximate Bayesian inference can also be seen as constructing a deep ensemble (Izmailov et al.,
2021; Wenzel et al., 2020a; Zhang et al., 2020; Immer et al., 2021; Daxberger et al., 2021). The
samples from the approximate posterior that form the ensemble can be sampled locally around a
single mode using the Laplace approximation (Immer et al., 2021; Daxberger et al., 2021) or from
multiple modes using MCMC (Izmailov et al., 2021; Wenzel et al., 2020a; Zhang et al., 2020). While
some approaches resort to stochastic MCMC approaches for computational efficiency (Wenzel et al.,
2020a; Zhang et al., 2020), the authors of Izmailov et al. (2021) apply full-batch Hamiltonian Monte
Carlo which is considered the gold standard in approximate Bayesian inference. D’Angelo & For-
tuin (2021) propose a repulsive approach in terms of the neural network weights. They show that the
resulting ensemble can be seen as Bayesian, however, they do not demonstrate consistent improve-
ments across experimental setups.

One would hope that the regularizing effect of the Bayesian inference procedure would improve
the resulting ensembles. Unfortunately, approximate Bayesian inference approaches are typically
outperformed by standard deep ensembles (Ashukha et al., 2019). In particular, to achieve the same
misclassification or negative log-likelihood error, MCMC approaches typically require many more
ensemble members than standard ensembles.

Complementary works. Some works on diverse ensembles are compatible with our approach and
can be used in conjunction with it.

Wenzel et al. (2020b) propose to induce diversity by training on different random initializations as
well as different choices of hyperparameters such as the learning rate and the dropout rates in differ-
ent layers. Ensemble members can be trained independently, and the approach results in consistent
gains over standard ensembles. As we also train each ensemble member independently we could
use hyperparameter ensembling to improve diversity. Jain et al. (2022) propose to create different
training sets for each ensemble member using image transformations (for example edge detection
filters) to bias different ensemble members towards different features. In a similar vein, Loh et al.
(2023) encourage different ensemble members to be invariant or equivariant to different data trans-
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formations. These approaches can also be used in conjunction with our method to further increase
diversity.

Self-training. Jain et al. (2022) propose to pseudo-label unlabeled data using deep ensembles
trained on labeled data. These pseudo-labeled data are then used to retrain the ensemble. This
approach (known as self-training, see Lee et al., 2013) can improve significantly standard ensem-
bles. We note however that it is complicated to implement and costly. First, unlabeled data have
to be labeled in multiple rounds, a fraction at a time. Also, to be fully effective, ensembles have
to be “distilled” into a final single network. Finally, care has to be taken that ensemble members
capture diverse features. By contrast, our method requires a single random labeling of unlabeled
data, followed by standard training and introduces a single hyperparameter that is easy to tune.

4 DIVERSITY THROUGH UNLABELED DATA

We now introduce some notation and then make precise our notions of train and test performance,
as well as diversity.

We denote the learning sample (X,Y ) = {(xi, yi)}ni=1 ∈ (X × Y)n, that contains n input-output
pairs, and use the generic notation Z for an input-output pair (X,Y ). Observations (X,Y ) are
assumed to be sampled randomly from a distribution D. Thus, we denote (X,Y ) ∼ Dn the i.i.d
observation of n elements. We consider loss functions ℓ : F × X × Y → R, where F is a set
of predictors f : X → Y . We also denote the empirical risk L̂ℓ

X,Y (f) = (1/n)
∑

i ℓ(f,xi, yi).
We denote ℓnll(f,x, y) = − log(p(y|x, f)) the negative log-likelihood, where we assume that the
outputs of f are normalized to form a probability distribution, and p(y|x, f) the probability of label
y given x and f . Finally, let δ(x) be the Dirac delta function (in the following we suppress it’s
normalization where applicable).

Now let us assume that f is a deep neural network architecture, and ρ̂(w) = 1
K

∑
i δ(w =

ŵi) is a set of minima that form a deep ensemble. We are typically interested in minimizing
E(y,x)∼D

[
− ln 1

K

∑
i [p(y|x, f(x; ŵi))]

]
, the loss over new samples drawn from D for the en-

semble predictor, that is: a predictor where we average the probabilities estimated per class by each
ensemble member 1

K

∑
i p(y|x, f(x; ŵi)). The standard deep ensemble algorithm then simply min-

imizes ∀i,minwi L̂
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Z (f(x; ŵi)) for some training set Z.

Let us now assume that we have access not only to a training set Z but also to an unlabeled set U of
size m. We can then present a PAC-Bayes bound* that links the loss on new test data to the loss on
the training data as well as the diversity of the ensemble predictions on the unlabeled data.
Theorem 1. With high probability over the training set Z and the unlabeled set U drawn from D,
for an ensemble ρ̂(w) = 1
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is the empirical variance of the ensemble, and h : R+ → R+ is a strictly increasing function.

The term 1
K

∑
i

[
L̂ℓnll

Z (f(x; ŵi))
]

is simply the average negative log-likelihood of all the ensemble

members on the training set Z. The term V̂(ρ̂) captures our notion of diversity for the deep ensem-
ble. Specifically, given a sample (x, y) it is the empirical variance of the likelihood p(y|x, f) of the

*Variants of this bound have appeared in recent works for majority vote classifiers (Thiemann et al., 2017;
Wu & Seldin, 2022; Masegosa et al., 2020; Masegosa, 2020). However, to the best of our knowledge, this
particular version is novel in the deep ensemble case.
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Algorithm 1 ν-ensembles
Input: Weight of the unlabeled loss β, ℓ2 regularization strength γ, training data Z, unlabeled data
U , number of ensemble members K
Output: Ensemble EK = {ŵ1, . . . , ŵK}

1: for i in {1, . . . ,K} do
2: Ui ← {}
3: for x in U do
4: Sample y randomly without replacement from [1, . . . , c]
5: Ui ← Ui ∪ (x, y)
6: end for
7: ŵi ← Random Initialization
8: minŵi

L̂ℓnll

Z (f(x; ŵi)) + βL̂ℓnll
Ui

(f(x; ŵi)) + γ∥ŵi∥22
9: end for

correct class y over all the ensemble members. The terms h
(
∥ŵi∥22

)
capture a notion of complexity

of the deep ensemble. If this term is too large, then it is possible that the ensemble has memorized
the training and unlabeled sets leading to poor generalization on new data. From the above, we see
that for a deep ensemble to generalize well to new data one needs to minimize its average training
error, while maximizing its variance.

One could attempt to optimize the RHS of equation 1 directly by setting U = Z, through gradient
descent. However, this introduces unnecessary complexity to the optimization objective, necessitates
that all ensemble members are trained jointly, and also neglects potentially useful unlabeled data. We
thus crucially evaluate the variance on a new unlabeled set U and not the training set Z. However, a
careful reader would note that it is no longer possible to apply gradient descent directly to equation 1
as V̂(ρ̂) depends on the unknown true label y. We thus show in the following proposition that it is
actually not necessary to know the true label y. For each unlabeled sample x, it simply suffices to
draw K labels randomly without replacement and assign each of them to a different member of the
deep ensemble. Then for K = c exactly one of these labels will be the correct one. If each ensemble
member fits these random labels perfectly then we can compute the variance term analytically for
K ≤ c.

Proposition 1. Assume an unlabeled set U ∈ Dm, c number of classes, and a labeling distribution
R which for each sample (x, ·) ∈ U selects K ≤ c labels from [1, . . . , c] randomly without replace-
ment such that yr ∈ [1, . . . , c]K . Let A be an algorithm that takes yr as input and generates an
ensemble ρ̂(w) = 1

K

∑
i δ(w = ŵi) such that ∀i, f(x, ŵi) perfectly fits yr[i]

Eρ̂∼A

[
V̂(ρ̂)

]
=

K − 1

2cK
(3)

where the randomness is over yr and we suppress the index for the different unlabeled points.

Thus fitting yr ∼ R guarantees in expectation through equation 3 a fixed level of variance, that
strictly increases with the size of the ensemble. Taking the expectation on both sides of equation 1 we
can also derive a high probability bound on Eρ̂∼AE(y,x)∼D

[
− ln 1

K

∑
i [p(y|x, f(x; ŵi))]

]
given

multiple samples from ρ̂ ∼ A, and subject to additional conditions on the training set and complexity
terms (namely boundedness). We defer the technical details to the Appendix.

We thus propose algorithm 1 to train ν-ensembles. The proposed algorithm is extremely simple
to implement. We simply need to construct K randomly labeled sets Ui, such that all the sets Ui

contain different labels for all samples. We can then optimize

L̂ℓnll

Z (f(x; ŵi)) + βL̂ℓnll
Ui

(f(x; ŵi)) + γ∥ŵi∥22 (4)

with the optimization algorithm of our choice. In the above, β is the weight placed on the randomly
labeled samples. Notably, doing hyperparameter optimization over β allows us to easily detect
when ν-ensembles improve upon standard ensembles using a validation set, as for β = 0 we recover
standard ensembles. The term γ∥ŵi∥22 results from equation 1, and coincides with standard weight
decay regularization. Crucially we rely on being able to fit random labels. We note that it is well
known that deep neural networks can fit random labels perfectly (Zhang et al., 2021).
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5 IN-DISTRIBUTION AND OUT-OF-DISTRIBUTION EXPERIMENTS

We conducted two main types of experiments, evaluating (i) whether ν-ensembles improve upon
standard ensembles for in-distribution testing data, (ii) whether the gains of ν-ensembles are robust
to various distribution shifts.

To approximate the presence of unlabeled data using common classification datasets, given a training
set Z, we reserve a validation set Zval, and a smaller training set Ztrain and use the remaining
datapoints as a pool for unlabeled data U . We keep the testing data Ztest unchanged.

5.1 IN-DISTRIBUTION (ID) PERFORMANCE

To test in-distribution performance, we use the standard CIFAR-10 and CIFAR-100 datasets
(Krizhevsky & Hinton, 2009). We explore a variety of dataset sizes. Specifically, for both datasets,
we keep the original testing set such that |Ztest| = 10000, and we use 5000 samples from the
training set as unlabeled data U and 5000 samples as validation data Zval. For training, we use
datasets Ztrain of size 1000, 2000, 4000, 10000 and 40000. We use three types of neural network
architectures, a LeNet architecture LeCun et al. (1998), an MLP architecture with 2 hidden layers
Goodfellow et al. (2016), and a WideResNet22 architecture Zagoruyko & Komodakis (2016). For
both datasets, we used the standard augmentation setup of random flips + crops. We note that simi-
lar training-unlabeled set splits for CIFAR-10 and CIFAR-100 have been explored before in Alayrac
et al. (2019); Jain et al. (2022).

We measure testing performance using accuracy as well as calibration on the testing set. Specifi-
cally, we measure calibration using the Expected Calibration Error (ECE) (Naeini et al., 2015), the
Thresholded Adaptive Calibration Error (TACE) (Nixon et al., 2019), the Brier Score Reliability
(Brier Rel.) (Murphy, 1973), and the Negative Log-Likelihood (NLL). We also measure the diver-
sity of the ensemble on the test set using the average mutual information between ensemble member
predictions. More specifically for each ensemble we treat its output as a random variable giving
values in [1, . . . , c]. We compute the Mutual Information (MI) of this random variable between all
ensemble pairs and take the average. Lower MI then corresponds to more diverse ensembles.

For both datasets, we first create an ensemble with K = 10 ensemble members and train each en-
semble member using AdamW (Loshchilov & Hutter, 2017). For standard ensembles we simply
minimize L̂ℓnll

Z (f(x; ŵi)) + γ∥ŵi∥22 for each ensemble member using different random initializa-
tions. For ν-ensembles we optimize equation 4. For hyperparameter tuning we perform a random
search with 50 trials, using Hydra (Yadan, 2019). The details for the hyperparameter tuning ranges
can be found in the Appendix. Table 1 presents the results for a training set of size 1000.

We see that ν-ensembles have comparable accuracy to standard ensembles but with significantly
better calibration across all calibration metrics. We also see that ν-ensembles achieve significantly
higher diversity between ensemble members. These results are consistent across all architectures for
both CIFAR-10 and CIFAR-100. For the case of CIFAR-10, we see that the testing accuracy is low,
however, this is to be expected due to the small size of the training dataset Ztrain.

We also compare with Masegosa ensembles (Masegosa, 2020) and Agree to Disagree ensembles
(Matteo et al., 2023) (we also attempted to implement DICE ensembles (Ramé & Cord, 2021) but
could not replicate a version that converged consistently, despite correspondence with the authors).
We see that both Masegosa and Agree to Disagree ensembles tend to underfit the data and have
worse testing accuracy than ν-ensembles. In particular, Agree to Disagree ensembles also have in
general worse calibration. Masegosa ensembles on the other hand have somewhat better calibration
than ν-ensembles in most cases. Finally we also do temperature scaling for the Standard and ν-
ensembles. The ν-ensembles + temperature scaling combination results in the best calibration. Our
algorithm compares very favorably in terms of time and space complexity with both Masegosa and
Agree to Disagree Ensembles. Standard and ν ensembles have O(1) memory cost as the ensemble
size increases, if ensemble members are trained sequentially. On the other hand, Masegosa and
Agree to Disagree ensembles in general scale like O(K) as all the ensemble members have to be
trained jointly. Analyzing the computational cost is more complicated, however in general Masegosa
ensembles require approximately ×2 the computational time of Standard ensembles. Agree to Dis-
agree ensembles scale roughly as O(K) as ensemble members have to be computed one at a time.
In Figure 4 we compare the computational cost of Standard, ν and Agree to Disagree Ensembles.
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Table 1: ID performance, 1000 training samples, 10 ensemble members. ν-ensembles retain
approximately the same accuracy as standard ensembles. At the same time, they achieve signifi-
cantly better calibration in all calibration metrics. The improvements are consistent across all tested
architectures and both datasets. We also observe that the Mutual Information (MI) of ν-ensembles
is significantly lower than standard ensembles. Thus, ν-ensembles are more diverse than standard
ensembles, which explains their improved calibration. These empirical observations are also consis-
tent with our theoretical analysis. Masegosa and Agree to Disagree ensembles typically undefit and
have lower testing accuracy than both Standard and ν-ensembles.

Dataset / Aug Method Acc ↑ ECE ↓ TACE ↓ Brier Rel. ↓ NLL ↓ MI ↓
CIFAR-10 Standard 0.516 0.176 0.034 0.133 2.043 1.320
/ LeNet Agree Dis. 0.432 0.251 0.05 0.168 2.25 1.552

Masegosa 0.492 0.103 0.024 0.073 1.454 1.179
Tempering 0.517 0.024 0.0158 0.08 1.419 1.329
ν-ensembles 0.506 0.133 0.028 0.118 1.664 1.201
ν+Tempering 0.511 0.014 0.0145 0.08 1.437 1.215

CIFAR-10 Standard 0.399 0.205 0.043 0.144 2.078 1.622
/ MLP Agree Dis. 0.354 0.358 0.066 0.239 3.201 1.547

Masegosa 0.383 0.024 0.024 0.068 1.768 1.711
Tempering 0.402 0.020 0.0134 0.06 1.71 1.625
ν-ensembles 0.399 0.086 0.023 0.087 1.782 1.525
ν+Tempering 0.401 0.019 0.0133 0.06 1.69 1.554

CIFAR-10 Standard 0.527 0.087 0.024 0.106 1.690 0.939
/ ResNet22 Agree Dis. 0.478 0.051 0.02 0.087 1.633 0.706

Tempering 0.522 0.016 0.017 0.086 1.354 0.976
ν-ensembles 0.527 0.014 0.017 0.082 1.436 0.675
ν+Tempering 0.526 0.010 0.017 0.086 1.449 0.691

CIFAR-100 Standard 0.149 0.300 0.007 0.212 8.817 2.276
/ LeNet Agree Dis. 0.113 0.229 0.007 0.156 7.568 1.628

Masegosa 0.139 0.087 0.005 0.07 4.193 2.129
Tempering 0.148 0.017 0.0039 0.049 3.854 2.236
ν-ensembles 0.147 0.186 0.006 0.131 5.115 1.826
ν+Tempering 0.144 0.008 0.0038 0.048 3.929 1.661

CIFAR-100 Standard 0.101 0.183 0.007 0.114 5.173 3.142
/ MLP Agree Dis. 0.093 0.359 0.008 0.243 7.247 2.881

Masegosa 0.093 0.257 0.008 0.16 6.134 3.103
Tempering 0.102 0.00822 0.00417 0.036 4.155 3.128
ν-ensembles 0.103 0.156 0.006 0.106 4.906 3.014
ν+Tempering 0.103 0.019 0.003 0.039 4.09 2.807

CIFAR-100 Standard 0.137 0.196 0.007 0.141 7.810 1.688
/ ResNet22 Agree Dis. 0.132 0.172 0.007 0.124 6.831 1.708

Tempering 0.136 0.011 0.004 0.040 3.891 1.608
ν-ensembles 0.135 0.135 0.006 0.099 4.922 1.475
ν+Tempering 0.131 0.018 0.003 0.036 3.930 1.432

We then explore the effect of increasing the dataset size. We plot the results of varying the training
set size in {1000, 2000, 4000, 10000, 40000} in Figure 2. We observe that ν-ensembles continue
achieving the same accuracy as standard ensembles for all training set sizes. At the same time, they
retain large improvements in calibration, in terms of the ECE, for small to medium size training
sets. For larger training sets the improvements gradually decrease. Notably, there are differences
between the easier CIFAR-10 and the more difficult CIFAR-100 dataset. Our calibration gains are
significantly larger for the more difficult CIFAR-100 dataset. Furthermore, we retain these gains for
larger training set sizes. In particular, we observe improvements for the ResNet22 architecture and
10000 training samples, while this is not the case for CIFAR-10.
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(a) CIFAR-10

(b) CIFAR-100

Figure 2: Varying the size of the training set. For both standard and ν-ensembles, we vary the
size of the training set Ztrain to take values in {1000, 2000, 4000, 10000, 40000}. ν-ensembles
have the same test accuracy as standard ensembles for all training set sizes. We also report the
improvement in Expected Calibration Error (ECE) compared to standard ensembles. We see that, as
the training size increases, the improvements decrease. Notably, we obtained larger improvements
for the more difficult CIFAR-100 dataset than for the easier CIFAR-10 dataset. Also, we continue
to have improvements for larger training set sizes. In particular, we observe improvements for the
ResNet22 architecture at 10000 training samples while this is not the case for CIFAR-10.

Figure 3: CIFAR-10 robustness to common corruptions. We apply 15 common image corruptions
to the CIFAR-10 testing dataset for 5 levels of increasing intensity. For each intensity level, we then
estimate the average testing accuracy and ECE across all corruption types, for both the standard
ensemble and the ν-ensemble. We observe that the ν-ensemble retains approximately the same
testing accuracy as the standard ensemble for all corruption levels. At the same time, the ν-ensemble
is significantly better calibrated than the standard ensemble.

5.2 OUT-OF-DISTRIBUTION (OOD) GENERALIZATION

We evaluated ν-ensembles and standard ensembles on difficult out-of-distribution tasks for the
CIFAR-10 dataset, for the case of 1000 training samples. Specifically, we followed the approach
introduced in Hendrycks & Dietterich (2018) which proposed to evaluate the robustness of image
classification algorithms to 15 common corruption types. We apply the corruption in 5 levels of
increasing severity and evaluate the average test accuracy and calibration in terms of ECE across
all corruption types. We plot the results in Figure 3. We observe that ν-ensembles retain the same
testing accuracy as standard ensembles. At the same time, they are significantly better calibrated in
terms of the Expected Calibration Error. This holds for all tested architectures and for all corrup-
tion levels. We note that in the ResNet22 case, we see that ν-ensembles are particularly useful for
high-intensity corruptions (the improvement in ECE increases from 10% to 15%).

5.3 SAMPLING WITH REPLACEMENT

We are also interested in exploring how our method of sampling labels without replacement com-
pares to sampling labels with replacement. Thus, we derive the following proposition.

Proposition 2. Assume an unlabeled set U ∈ Dm, c number of classes, and a labeling distribution
R which for each sample (x, ·) ∈ U selects K ≤ c labels from [1, . . . , c] randomly with replacement
such that yr ∈ [1, . . . , c]K . LetA be an algorithm that takes yr as input and generates an ensemble
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Figure 4: ν-ensembles and other methods. First: Let c = 10 and K ∈ [1, . . . , 10], we plot
Eρ̂∼A[V̂(ρ̂)] with and without replacement. Sampling without replacement results in more diverse
ensembles. Second: Improvements in ECE plateau around K = 8 for Standard ensembles, but
continue improving for ν-ensembles. Other: we compare the training time of Standard, ν and Agree
to Disagree ensembles, for the CIFAR-10 dataset with 1000 training samples and 5000 unlabeled
samples. We plot (total training time)/(epochs ∗ ensemble size). Agree to Disagree ensembles
have to be trained sequentially and have higher computational complexity for each member.

ρ̂(w) = 1
K

∑
i δ(w = ŵi) such that ∀i, f(x, ŵi) perfectly fits yr[i]

Eρ̂∼A

[
V̂(ρ̂)

]
=

1

2

[∑
r

h(r)

(
K

r

)(
1

c

)r (
1− 1

c

)K−r
]

(5)

where h(r) = 1
K

[
r ·
(
1− r

K

)2
+ (K − r) ·

(
r
K

)2]
, the randomness is over yr and we suppress

the index for the different unlabeled points.

Comparing numerically propositions 1 and 2 in Figure 4, our theoretical analysis shows that for the
same number of ensemble members, sampling without replacement results in higher variance and
thus higher diversity and better calibration for our ensembles. We confirm our prediction by redoing
the experiments in Table 1, but this time sampling with replacement. On average, sampling without
replacement results in better calibration across our different metrics. Detailed results can be found
in the Appendix.

6 LIMITATIONS

In our experiments, ν-ensembles demonstrate enhanced calibration performance when applied to
standard ensembles, particularly in low to medium-data scenarios. However, in the context of a
large data regime, we did not observe any notable improvements. Attempting to force the ensemble
to learn random labels in such cases actually had a detrimental effect on calibration. This complex
behaviour warrants a more nuanced theoretical analysis. The ability to predict in advance the spe-
cific training and unlabeled dataset sizes that would benefit from ν-ensembles would be a valuable
asset. Additionally, it is worth noting that despite observing significant enhancements in calibration,
counterintuitively we did not observe corresponding improvements in accuracy.

7 CONCLUSION

Deep ensembles have established themselves as a very strong baseline that is challenging to sur-
pass. Not only do they consistently yield improvements across diverse settings, but they also do
so with a very simple and efficient algorithm. Consequently, any algorithms aiming to enhance
deep ensembles should prioritize efficiency and conceptual simplicity to ensure widespread adop-
tion. In this work, we introduced ν-ensembles, a novel deep ensemble algorithm that achieves both
goals. When presented with an unlabeled dataset, ν-ensembles generate distinct labelings for each
ensemble member and subsequently fit both the training data and the randomly labeled data. Fu-
ture directions of research include exploring the potential for ν-ensembles to outperform standard
ensembles in the context of large datasets.
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