
Online Corrupted User Detection and Regret
Minimization

Zhiyong Wang
The Chinese University of Hong Kong

zywang21@cse.cuhk.edu.hk

Jize Xie
Shanghai Jiao Tong University

xjzzjl@sjtu.edu.cn

Tong Yu
Adobe Research

worktongyu@gmail.com

Shuai Li∗
Shanghai Jiao Tong University
shuaili8@sjtu.edu.cn

John C.S. Lui
The Chinese University of Hong Kong

cslui@cse.cuhk.edu.hk

Abstract

In real-world online web systems, multiple users usually arrive sequentially into
the system. For applications like click fraud and fake reviews, some users can
maliciously perform corrupted (disrupted) behaviors to trick the system. There-
fore, it is crucial to design efficient online learning algorithms to robustly learn
from potentially corrupted user behaviors and accurately identify the corrupted
users in an online manner. Existing works propose bandit algorithms robust to
adversarial corruption. However, these algorithms are designed for a single user,
and cannot leverage the implicit social relations among multiple users for more
efficient learning. Moreover, none of them consider how to detect corrupted users
online in the multiple-user scenario. In this paper, we present an important on-
line learning problem named LOCUD to learn and utilize unknown user relations
from disrupted behaviors to speed up learning, and identify the corrupted users in
an online setting. To robustly learn and utilize the unknown relations among po-
tentially corrupted users, we propose a novel bandit algorithm RCLUB-WCU. To
detect the corrupted users, we devise a novel online detection algorithm OCCUD
based on RCLUB-WCU’s inferred user relations. We prove a regret upper bound
for RCLUB-WCU, which asymptotically matches the lower bound with respect
to T up to logarithmic factors, and matches the state-of-the-art results in degen-
erate cases. We also give a theoretical guarantee for the detection accuracy of
OCCUD. With extensive experiments, our methods achieve superior performance
over previous bandit algorithms and high corrupted user detection accuracy.

1 Introduction

In real-world online recommender systems, data from many users arrive in a streaming fashion [4,
15, 2, 7, 35, 27, 26]. There may exist some corrupted (malicious) users, whose behaviors (e.g., click,
rating) can be adversarially corrupted (disrupted) over time to fool the system [29, 30, 12, 10, 9].
These corrupted behaviors could disrupt the user preference estimations of the algorithm. As a
result, the system would easily be misled and make sub-optimal recommendations [14, 23, 7, 41],

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

which would hurt the user experience. Therefore, it is essential to design efficient online learning
algorithms to robustly learn from potentially disrupted behaviors and detect corrupted users in an
online manner.

There exist some works on bandits with adversarial corruption [29, 9, 22, 5, 12, 16]. However,
they have the following limitations. First, existing algorithms are initially designed for robust online
preference learning of a single user. In real-world scenarios with multiple users, they cannot robustly
infer and utilize the implicit user relations for more efficient learning. Second, none of them consider
how to identify corrupted users online in the multiple-user scenario. Though there also exist some
works on corrupted user detection [34, 6, 39, 28, 13], they all focus on detection with known user
information in an offline setting, thus can not be applied to do online detection from bandit feedback.

To address these limitations, we propose a novel bandit problem “Learning and Online Corrupted
Users Detection from bandit feedback” (LOCUD). To model and utilize the relations among users,
we assume there is an unknown clustering structure over users, where users with similar preferences
lie in the same cluster [8, 19, 21]. The agent can infer the clustering structure to leverage the
information of similar users for better recommendations. Among these users, there exists a small
fraction of corrupted users. They can occasionally perform corrupted behaviors to fool the agent [12,
29, 30, 9] while mimicking the behaviors of normal users most of the time to make themselves hard
to discover. The agent not only needs to learn the unknown user preferences and relations robustly
from potentially disrupted feedback, balance the exploration-exploitation trade-off to maximize the
cumulative reward, but also needs to detect the corrupted users online from bandit feedback.

The LOCUD problem is very challenging. First, the corrupted behaviors would cause inaccurate
user preference estimations, which could lead to erroneous user relation inference and sub-optimal
recommendations. Second, it is nontrivial to detect corrupted users online since their behaviors
are dynamic over time (sometimes regular while sometimes corrupted), whereas, in the offline set-
ting, corrupted users’ information can be fully represented by static embeddings and the existing
approaches [18, 32] can typically do binary classifications offline, which are not adaptive over time.

We propose a novel learning framework composed of two algorithms to address these challenges.

RCLUB-WCU. To robustly estimate user preferences, learn the unknown relations from potentially
corrupted behaviors, and perform high-quality recommendations, we propose a novel bandit algo-
rithm “Robust CLUstering of Bandits With Corrupted Users” (RCLUB-WCU), which maintains a
dynamic graph over users to represent the learned clustering structure, where users linked by edges
are inferred to be in the same cluster. RCLUB-WCU adaptively deletes edges and recommends
arms based on aggregated interactive information in clusters. We do the following to ensure robust
clustering structure learning. (i) To relieve the estimation inaccuracy caused by disrupted behaviors,
we use weighted ridge regressions for robust user preference estimations. Specifically, we use the
inverse of the confidence radius to weigh each sample. If the confidence radius associated with user
it and arm at is large at t, the learner is quite uncertain about the estimation of it’s preference on
at, indicating the sample at t is likely to be corrupted. Therefore, we use the inverse of the confi-
dence radius to assign minor importance to the possibly disrupted samples when doing estimations.
(ii) We design a robust edge deletion rule to divide the clusters by considering the potential effect
of corruptions, which, together with (i), can ensure that after some interactions, users in the same
connected component of the graph are in the same underlying cluster with high probability.

OCCUD. To detect corrupted users online, based on the learned clustering structure of RCLUB-
WCU, we devise a novel algorithm named “Online Cluster-based Corrupted User Detection” (OC-
CUD). At each round, we compare each user’s non-robustly estimated preference vector (by ridge
regression) and the robust estimation (by weighted regression) of the user’s inferred cluster. If the
gap exceeds a carefully-designed threshold, we detect this user as corrupted. The intuitions are as
follows. With misleading behaviors, the non-robust preference estimations of corrupted users would
be far from ground truths. On the other hand, with the accurate clustering of RCLUB-WCU, the ro-
bust estimations of users’ inferred clusters should be close to ground truths. Therefore, for corrupted
users, their non-robust estimates should be far from the robust estimates of their inferred clusters.

We summarize our contributions as follows.
• We present a novel online learning problem LOCUD, where the agent needs to (i) robustly learn
and leverage the unknown user relations to improve online recommendation qualities under the
disruption of corrupted user behaviors; (ii) detect the corrupted users online from bandit feedback.

2

• We propose a novel online learning framework composed of two algorithms, RCLUB-WCU and
OCCUD, to tackle the challenging LOCUD problem. RCLUB-WCU robustly learns and utilizes the
unknown social relations among potentially corrupted users to efficiently minimize regret. Based on
RCLUB-WCU’s inferred user relations, OCCUD accurately detects corrupted users online.
• We prove a regret upper bound for RCLUB-WCU, which matches the lower bound asymptotically
in T up to logarithmic factors and matches the state-of-the-art results in several degenerate cases.
We also give a theoretical performance guarantee for the online detection algorithm OCCUD.
• Experiments on both synthetic and real-world data clearly show the advantages of our methods.

2 Related Work

Our work is related to bandits with adversarial corruption and bandits leveraging user relations.

The work [29] first studies stochastic bandits with adversarial corruption, where the rewards are
corrupted with the sum of corruption magnitudes in all rounds constrained by the corruption level C.
They propose a robust elimination-based algorithm. The paper [9] proposes an improved algorithm
with a tighter regret bound. The paper [22] first studies stochastic linear bandits with adversarial
corruptions. To tackle the contextual linear bandit setting where the arm set changes over time, the
work [5] proposes a variant of the OFUL [1] that achieves a sub-linear regret. A recent work [12]
proposes the CW-OFUL algorithm that achieves a nearly optimal regret bound. All these works
focus on designing robust bandit algorithms for a single user; none consider how to robustly learn
and leverage the implicit relations among potentially corrupted users for more efficient learning.
Moreover, none of them consider how to online detect corrupted users in the multiple-user case.

Some works study how to leverage user relations to accelerate the bandit learning process in the
multiple-user case. The work [38] utilizes a known user adjacency graph to share context and payoffs
among neighbors. To adaptively learn and utilize unknown user relations, the paper [8] proposes the
clustering of bandits (CB) problem where there is an unknown user clustering structure to be learned
by the agent. The work [20] uses collaborative effects on items to guide the clustering of users.
The paper [19] studies the CB problem in the cascading bandit setting. The work [21] considers the
setting where users in the same cluster share both the same preference and the same arrival rate. The
paper [25] studies the federated CB problem, considering privacy and communication issues. All
these works only consider utilizing the relations among normal users; none of them consider how to
robustly learn the user relations from potentially disrupted behaviors, thus would easily be misled by
corrupted users. Also, none of them consider how to detect corrupted users from bandit feedback.

To the best of our knowledge, this is the first work to study the problem to (i) learn the unknown user
relations and preferences from potentially corrupted feedback, and leverage the learned relations to
speed up learning; (ii) adaptively detect the corrupted users online from bandit feedback.

3 Problem Setup

This section formulates the problem of “Learning and Online Corrupted Users Detection from ban-
dit feedback” (LOCUD) (illustrated in Fig.1). We denote ∥x∥M =

√
x⊤Mx, [m] = {1, . . . ,m},

number of elements in set A as |A|.
In LOCUD, there are u users, which we denote by set U = {1, 2, . . . , u}. Some of them are
corrupted users, denoted by set Ũ ⊆ U . These corrupted users, on the one hand, try to mimic
normal users to make themselves hard to detect; on the other hand, they can occasionally perform
corrupted behaviors to fool the agent into making sub-optimal decisions. Each user i ∈ U , no
matter a normal one or corrupted one, is associated with a (possibly mimicked for corrupted users)
preference feature vector θi ∈ Rd that is unknown and ∥θi∥2 ≤ 1. There is an underlying clustering
structure among all the users representing the similarity of their preferences, but it is unknown to
the agent and needs to be learned via interactions. Specifically, the set of users U can be partitioned
into m (m ≪ u) clusters, V1, V2, . . . Vm, where ∪j∈[m]Vj = U , and Vj ∩ Vj′ = ∅, for j ̸= j′. Users
in the same cluster have the same preference feature vector, while users in different clusters have
different preference vectors. We use θj to denote the common preference vector shared by users in
the j-th cluster Vj , and use j(i) to denote the index of cluster user i belongs to (i.e., i ∈ Vj(i)). For

3

any two users k, i ∈ U , if k ∈ Vj(i), then θk = θj(i) = θi; otherwise θk ̸= θi. We assume the arm
set A ⊆ Rd is finite. Each arm a ∈ A is associated with a feature vector xa ∈ Rd with ∥xa∥2 ≤ 1.

1

8

7
6

5

4

3

2

��

1

8

7
6

5

4

3

2

��

1

8

7
6

5

4

3

2

��

1

8

7

6

5

4

3

2

��

Figure 1: Illustration of LOCUD. The unknown user
relations are represented by dotted circles, e.g., user 3,
7 have similar preferences and thus can be in the same
user segment (i.e., cluster). Users 6 and 8 are corrupted
users with dynamic behaviors over time (e.g., for user
8, the behaviors are normal at t1 and t3 (blue), but
are adversarially corrupted at t2 and t4 (red)[29, 12]),
making them hard to be detected online. The agent
needs to learn user relations to utilize information
among similar users to speed up learning, and detect
corrupted users 6, 8 online from bandit feedback.

The learning process of the agent is as fol-
lows. At each round t ∈ [T], a user
it ∈ U comes to be served, and the learn-
ing agent receives a set of arms At ⊆ A to
choose from. The agent infers the cluster
Vt that user it belongs to based on the in-
teraction history, and recommends an arm
at ∈ At according to the aggregated in-
formation gathered in the cluster Vt. After
receiving the recommended arm at, a nor-
mal user it will give a random reward with
expectation x⊤

at
θit to the agent.

To model the behaviors of corrupted users,
following [29, 9, 5, 12], we assume that
they can occasionally corrupt the rewards
to mislead the agent into recommending
sub-optimal arms. Specifically, at each
round t, if the current served user is a cor-
rupted user (i.e., it ∈ Ũ), the user can cor-
rupt the reward by ct. In summary, we
model the reward received by the agent at
round t as

rt = x⊤
at
θit + ηt + ct ,

where ct = 0 if it is a normal user, (i.e., it /∈ Ũ), and ηt is 1-sub-Gaussian random noise.

As the number of corrupted users is usually small, and they only corrupt the rewards occasionally
with small magnitudes to make themselves hard to detect, we assume the sum of corruption magni-
tudes in all rounds is upper bounded by the corruption level C, i.e.,

∑T
t=1 |ct| ≤ C [29, 9, 5, 12].

We assume the clusters, users, and items satisfy the following assumptions. Note that all these
assumptions basically follow the settings from classical works on clustering of bandits [8, 19, 25,
36].
Assumption 1 (Gap between different clusters). The gap between any two preference vectors for
different clusters is at least an unknown positive constant γ∥∥∥θj − θj′

∥∥∥
2
≥ γ > 0 ,∀j, j′ ∈ [m] , j ̸= j′ .

Assumption 2 (Uniform arrival of users). At each round t, a user it comes uniformly at random
from U with probability 1/u, independent of the past rounds.
Assumption 3 (Item regularity). At each round t, the feature vector xa of each arm a ∈ At is drawn
independently from a fixed unknown distribution ρ over {x ∈ Rd : ∥x∥2 ≤ 1}, where Ex∼ρ[xx

⊤]’s
minimal eigenvalue λx > 0. At ∀t, for any fixed unit vector z ∈ Rd, (θ⊤z)2 has sub-Gaussian tail
with variance no greater than σ2.

Let a∗t ∈ argmaxa∈At
x⊤
a θit denote an optimal arm with the highest expected reward at round t.

One objective of the learning agent is to minimize the expected cumulative regret

R(T) = E[
∑T

t=1(x
⊤
a∗
t
θit − x⊤

at
θit)] . (1)

Another objective is to detect corrupted users online accurately. Specifically, at round t, the agent
will give a set of users Ũt as the detected corrupted users, and we want Ũt to be as close to the
ground-truth set of corrupted users Ũ as possible.

4 Algorithms

This section introduces our algorithms RCLUB-WCU (Algo.1) and OCCUD (Algo.2). RCLUB-
WCU robustly learns the unknown user clustering structure and preferences from corrupted feed-

4

back, and leverages the cluster-based information to accelerate learning. Based on the clustering
structure learned by RCLUB-WCU, OCCUD can accurately detect corrupted users online.

Algorithm 1 RCLUB-WCU
1: Input: Regularization parameter λ, confidence radius parameter β, threshold parameter α, edge

deletion parameter α1, f(T) =
√

(1 + ln(1 + T))/(1 + T).
2: Initialization: M i,0 = 0d×d, bi,0 = 0d×1, M̃ i,0 = 0d×d, b̃i,0 = 0d×1, Ti,0 = 0 , ∀i ∈ U ;

A complete graph G0 = (U , E0) over U .
3: for all t = 1, 2, . . . , T do
4: Receive the index of the current served user it ∈ U , get the feasible arm set at this round At.
5: Determine the connected components Vt in the current maintained graph Gt−1 = (U , Et−1)

such that it ∈ Vt.
6: Calculate the robustly estimated statistics for the cluster Vt:

MVt,t−1 = λI +
∑

i∈Vt
M i,t−1 , bVt,t−1 =

∑
i∈Vt

bi,t−1 , θ̂Vt,t−1 = M−1
Vt,t−1bVt,t−1 ;

7: Select an arm at with largest UCB index in Eq.(3) and receive the corresponding reward rt;
8: Update the statistics for robust estimation of user it:

M it,t = M it,t−1 + wit,t−1xat
x⊤
at
, bit,t = bit,t−1 + wit,t−1rtxat

, Tit,t = Tit,t−1 + 1 ,

M ′
it,t = λI +M it,t, θ̂it,t = M ′−1

it,t
bit,t , wit,t = min{1, α/∥xat

∥M ′−1
it,t

} ;
9: Keep robust estimation statistics of other users unchanged:

M ℓ,t = M ℓ,t−1, bℓ,t = bℓ,t−1, Tℓ,t = Tℓ,t−1 , θ̂ℓ,t = θ̂ℓ,t−1, for all ℓ ∈ U , ℓ ̸= it;
10: Delete the edge (it, ℓ) ∈ Et−1, if∥∥∥θ̂it,t − θ̂ℓ,t

∥∥∥
2
≥ α1

(
f(Tit,t) + f(Tℓ,t) + αC

)
,

and get an updated graph Gt = (U , Et);
11: Use the OCCUD Algorithm (Algo.2) to detect the corrupted users.
12: end for

4.1 RCLUB-WCU

The corrupted behaviors may cause inaccurate preference estimations, leading to erroneous relation
inference and sub-optimal decisions. In this case, how to learn and utilize unknown user relations to
accelerate learning becomes non-trivial. Motivated by this, we design RCLUB-WCU as follows.

Assign the inferred cluster Vt for user it. RCLUB-WCU maintains a dynamic undirected graph
Gt = (U , Et) over users, which is initialized to be a complete graph (Algo.1 Line 2). Users with
similar learned preferences will be connected with edges in Et. The connected components in the
graph represent the inferred clusters by the algorithm. At round t, user it comes to be served with
a feasible arm set At for the agent to choose from (Line 4). In Line 5, RCLUB-WCU detects the
connected component Vt in the graph containing user it to be the current inferred cluster for it.

Robust preference estimation of cluster Vt. After determining the cluster Vt, RCLUB-WCU esti-
mates the common preferences for users in Vt using the historical feedback of all users in Vt and rec-
ommends an arm accordingly. The corrupted behaviors could cause inaccurate preference estimates,
which can easily mislead the agent. To address this, inspired by [40, 12], we use weighted ridge re-
gression to make corruption-robust estimations. Specifically, RCLUB-WCU robustly estimates the
common preference vector of cluster Vt by solving the following weighted ridge regression

θ̂Vt,t−1 = argmin
θ∈Rd

∑
s∈[t−1]
is∈Vt

wis,s(rs − x⊤
as
θ)2 + λ ∥θ∥22 , (2)

where λ > 0 is a regularization coefficient. Its closed-form solution is θ̂Vt,t−1 = M−1
Vt,t−1bVt,t−1 ,

where MVt,t−1 = λI +
∑

s∈[t−1]
is∈Vt

wis,sxasx
⊤
as

, bVt,t−1 =
∑

s∈[t−1]
is∈Vt

wis,srasxas .

We set the weight of sample for user is in Vt at round s as wis,s = min{1, α/ ∥xas∥M ′−1
is,s

}, where
α is a coefficient to be determined later. The intuitions of designing these weights are as follows.
The term ∥xas

∥M ′−1
is,s

is the confidence radius of arm as for user is at s, reflecting how confident
the algorithm is about the estimation of is’s preference on as at s. If ∥xas∥M ′−1

is,s
is large, it means

the agent is uncertain of user is’s preference on as, indicating this sample is probably corrupted.

5

Therefore, we use the inverse of confidence radius to assign a small weight to this round’s sample if
it is potentially corrupted. In this way, uncertain information for users in cluster Vt is assigned with
less importance when estimating the Vt’s preference vector, which could help relieve the estimation
inaccuracy caused by corruption. For technical details, please refer to Section 5.1 and Appendix.

Recommend at with estimated preference of cluster Vt. Based on the corruption-robust pref-
erence estimation θ̂Vt,t−1 of cluster Vt, in Line 7, the agent recommends an arm using the upper
confidence bound (UCB) strategy to balance exploration and exploitation

at = argmaxa∈At
x⊤
a θ̂Vt,t−1 + β ∥xa∥M−1

Vt,t−1
≜ R̂a,t + Ca,t , (3)

where β =
√
λ+
√
2 log(1δ) + d log(1 + T

λd)+αC is the confidence radius parameter, R̂a,t denotes
the estimated reward of arm a at t, Ca,t denotes the confidence radius of arm a at t. The design of
Ca,t theoretically relies on Lemma 2 that will be given in Section 5.

Update the robust estimation of user it. After receiving rt, the algorithm updates the estimation
statistics of user it, while keeping the statistics of others unchanged (Line 8 and Line 9). Specifically,
RCLUB-WCU estimates the preference vector of user it by solving a weighted ridge regression

θ̂it,t = argmin
θ∈Rd

∑
s∈[t]
is=it

wis,s(rs − x⊤
as
θ)2 + λ ∥θ∥22 (4)

with closed-form solution θ̂it,t = (λI +M it,t)
−1

bit,t , where M it,t =
∑

s∈[t]
is=it

wis,sxasx
⊤
as

,

bit,t =
∑

s∈[t]
is=it

wis,sras
xas

, and we design the weights in the same way by the same reasoning.

Update the dynamic graph. Finally, with the updated statistics of user it, RCLUB-WCU checks

Algorithm 2 OCCUD (At round t, used in Line 11 in Algo.1)

1: Initialize Ũt = ∅; input probability parameter δ.
2: Update the statistics for non-robust estimation of user it

M̃ it,t = M̃ it,t−1 + xatx
⊤
at

, b̃it,t = b̃it,t−1 + rtxat , θ̃it,t = (λI + M̃ it,t)
−1b̃it,t ,

3: Keep non-robust estimation statistics of other users unchanged
M̃ ℓ,t = M̃ ℓ,t−1, b̃ℓ,t = b̃ℓ,t−1, θ̃ℓ,t = θ̃ℓ,t−1, for all ℓ ∈ U , ℓ ̸= it .

4: for all connected component Vj,t ∈ Gt do
5: Calculate the robust estimation statistics for the cluster Vj,t:

MVj,t,t = λI +
∑

ℓ∈Vj,t
M ℓ,t , TVj,t,t =

∑
ℓ∈Vj,t

Tℓ,t ,

bVj,t,t =
∑

ℓ∈Vj,t
bℓ,t , θ̂Vj,t,t = M−1

Vj,t,t
bVj,t,t ;

6: for all user i ∈ Vj,t do
7: Detect user i to be a corrupted user and add user i to the set Ũt if the following holds:

∥∥∥θ̃i,t − θ̂Vi,t,t

∥∥∥
2
>

√
d log(1 +

Ti,t

λd
) + 2 log(1

δ
) +

√
λ√

λmin(M̃ i,t) + λ
+

√
d log(1 +

TVi,t,t

λd
) + 2 log(1

δ
) +

√
λ+ αC√

λmin(MVi,t,t)
,

(5)

where λmin(·) denotes the minimum eigenvalue of the matrix argument.
8: end for
9: end for

whether the inferred it’s preference similarities with other users are still true, and updates the graph
accordingly. Precisely, if gap between the updated estimation θ̂it,t of it and the estimation θ̂ℓ,t of
user ℓ exceeds a threshold in Line 10, RCLUB-WCU will delete the edge (it, ℓ) in Gt−1 to split them
apart. The threshold is carefully designed to handle the estimation uncertainty from both stochastic
noises and potential corruptions. The updated graph Gt = (U , Et) will be used in the next round.

4.2 OCCUD

Based on the inferred clustering structure of RCLUB-WCU, we devise a novel online detection
algorithm OCCUD (Algo.2). The design ideas and process of OCCUD are as follows.

6

Besides the robust preference estimations (with weighted regression) of users and clusters kept by
RCLUB-WCU, OCCUD also maintains the non-robust estimations for each user by online ridge
regression without weights (Line 2 and Line 3). Specifically, at round t, OCCUD updates the non-
robust estimation of user it by solving the following online ridge regression:

θ̃it,t = argmin
θ∈Rd

∑
s∈[t]
is=it

(rs − x⊤
as
θ)2 + λ ∥θ∥22 , (6)

with solution θ̃it,t = (λI + M̃ it,t)
−1

b̃it,t , where M̃ it,t =
∑

s∈[t]
is=it

xasx
⊤
as

, b̃it,t =
∑

s∈[t]
is=it

rasxas .

With the robust and non-robust preference estimations, OCCUD does the following to detect cor-
rupted users based on the clustering structure inferred by RCLUB-WCU. First, OCCUD finds the
connected components in the graph kept by RCLUB-WCU, which represent the inferred clusters.
Then, for each inferred cluster Vj,t ∈ Gt: (1) OCCUD computes its robustly estimated preferences
vector θ̂Vi,t,t (Line 5). (2) For each user i whose inferred cluster is Vj,t (i.e.,i ∈ Vj,t), OCCUD
computes the gap between user i’s non-robustly estimated preference vector θ̃i,t and the robust es-
timation θ̂Vi,t,t for user i’s inferred cluster Vj,t. If the gap exceeds a carefully-designed threshold,
OCCUD will detect user i as corrupted and add i to the detected corrupted user set Ũt (Line 7).

1

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

(a) RCLUB-WCU

��
��

��
3

7

��

��

��

��

1

5

6
8

��
��

��

�� 4

2

(b) OCCUD

Figure 2: Algorithm illustrations. Users 6 and 8 are corrupted users (orange), and the others are
normal (green). (a) illustrates RCLUB-WCU, which starts with a complete user graph, and adap-
tively deletes edges between users (dashed lines) with dissimilar robustly learned preferences. The
corrupted behaviors of users 6 and 8 may cause inaccurate preference estimations, leading to erro-
neous relation inference. In this case, how to delete edges correctly is non-trivial, and RCLUB-WCU
addresses this challenge (detailed in Section 4.1). (b) illustrates OCCUD at some round t, where per-
son icons with triangle hats represent the non-robust user preference estimations. The gap between
the non-robust estimation of user 6 and the robust estimation of user 6’s inferred cluster (circle C1)
exceeds the threshold r6 at this round (Line 7 in Algo.2), so OCCUD detects user 6 to be corrupted.

The intuitions of OCCUD are as follows. On the one hand, after some interactions, RCLUB-WCU
will infer the user clustering structure accurately. Thus, at round t, the robust estimation θ̂Vi,t,t for
user i’s inferred cluster should be pretty close to user i’s ground-truth preference vector θi. On the
other hand, since the feedback of normal users are always regular, at round t, if user i is a normal
user, the non-robust estimation θ̃i,t should also be close to the ground-truth θi. However, the non-
robust estimation of a corrupted user should be quite far from the ground truth due to corruptions.
Based on this reasoning, OCCUD compares each user’s non-robust estimation and the robust esti-
mation of the user’s inferred cluster to detect the corrupted users. For technical details, please refer
to Section 5.2 and Appendix. Simple illustrations of our proposed algorithms can be found in Fig.2.

5 Theoretical Analysis

In this section, we theoretically analyze the performances of our proposed algorithms, RCLUB-
WCU and OCCUD. Due to the page limit, we put the proofs in the Appendix.

5.1 Regret Analysis of RCLUB-WCU

This section gives an upper bound of the expected regret (defined in Eq.(1)) for RCLUB-WCU.

The following lemma provides a sufficient time T0(δ), after which RCLUB-WCU can cluster all the
users correctly with high probability.

7

Lemma 1. With probability at least 1− 3δ, RCLUB-WCU will cluster all the users correctly after

T0(δ) ≜ 16u log(
u

δ
) + 4umax{ 288d

γ2α
√
λλ̃x

log(
u

δ
),

16

λ̃2
x

log(
8d

λ̃2
xδ

),
72

√
λ

αγ2λ̃x

,
72αC2

γ2
√
λλ̃x

}

for some δ ∈ (0, 1
3), where λ̃x ≜

∫ λx

0
(1− e−

(λx−x)2

2σ2)Kdx, |At| ≤ K,∀t ∈ [T].

After T0(δ), the following lemma gives a bound of the gap between θ̂Vt,t−1 and the ground-truth
θit in direction of action vector xa for RCLUB-WCU, which supports the design in Eq.(3).
Lemma 2. With probability at least 1− 4δ for some δ ∈ (0, 1

4), ∀t ≥ T0(δ), we have:∣∣∣xT
a (θ̂Vt,t−1 − θit)

∣∣∣ ≤ β ∥xa∥M−1
Vt,t−1

≜ Ca,t .

With Lemma 1 and 2, we prove the following theorem on the regret upper bound of RCLUB-WCU.
Theorem 3 (Regret Upper Bound of RCLUB-WCU). With the assumptions in Section 3, and
picking α =

√
d+

√
λ

C , the expected regret of the RCLUB-WCU algorithm for T rounds satisfies

R(T) ≤ O
(
(
C
√
d

γ2λ̃x

+
1

λ̃2
x

)u log(T)
)
+O

(
d
√
mT log(T)

)
+O

(
mCd log1.5(T)

)
. (7)

Discussion and Comparison. The regret bound in Eq.(7) has three terms. The first term is the time
needed to get enough information for accurate robust estimations such that RCLUB-WCU could
cluster all users correctly afterward with high probability. This term is related to the corruption
level C, which is inevitable since, if there are more corrupted user feedback, it will be harder for the
algorithm to learn the clustering structure correctly. The last two terms correspond to the regret after
T0 with the correct clustering. Specifically, the second term is caused by stochastic noises when
leveraging the aggregated information within clusters to make recommendations; the third term
associated with the corruption level C is the regret caused by the disruption of corrupted behaviors.

When the corruption level C is unknown, we can use its estimated upper bound Ĉ ≜
√
T to replace

C in the algorithm. In this way, if C ≤ Ĉ, the bound will be replacing C with Ĉ in Eq.(7); when
C >

√
T , R(T) = O(T), which is already optimal for a large class of bandit algorithms [12].

The following theorem gives a regret lower bound of the LOCUD problem.
Theorem 4 (Regret lower bound for LOCUD). There exists a problem instance for the LOCUD
problem such that for any algorithm

R(T) ≥ Ω(d
√
mT + dC) .

Its proof and discussions can be found in Appendix D. The upper bound in Theorem 3 asymptotically
matches this lower bound in T up to logarithmic factors, showing our regret bound is nearly optimal.

We then compare our regret upper bound with several degenerated cases. First, when C = 0, i.e.,
all users are normal, our setting degenerates to the classic CB problem [8]. In this case the bound
in Theorem 3 becomes O(1/λ̃2

x · u log(T)) + O(d
√
mT log(T)), perfectly matching the state-of-

the-art results in CB [8, 19, 21]. Second, when m = 1 and u = 1, i.e., there is only one user, our
setting degenerates to linear bandits with adversarial corruptions [22, 12], and the bound in Theorem
3 becomes O(d

√
T log(T)) + O(Cd log1.5(T)), it also perfectly matches the nearly optimal result

in [12]. The above comparisons also show the tightness of the regret bound of RCLUB-WCU.

5.2 Theoretical Performance Guarantee for OCCUD

The following theorem gives a performance guarantee of the online detection algorithm OCCUD.
Theorem 5 (Theoretical Guarantee for OCCUD). With assumptions in Section 3, at ∀t ≥ T0(δ),
for any detected corrupted user i ∈ Ũt, with probability at least 1− 5δ, i is indeed a corrupted user.

This theorem guarantees that after RCLUB-WCU learns the clustering structure accurately, with
high probability, the corrupted users detected by OCCUD are indeed corrupted, showing the high
detection accuracy of OCCUD. The proof of Theorem 5 can be found in Appendix D.

8

6 Experiments

This section shows experimental results on synthetic and real data to evaluate RCLUB-WCU’s rec-
ommendation quality and OCCUD’s detection accuracy. We compare RCLUB-WCU to LinUCB
[1] with a single non-robust estimated vector for all users, LinUCB-Ind with separate non-robust
estimated vectors for each user, CW-OFUL [12] with a single robust estimated vector for all users,
CW-OFUL-Ind with separate robust estimated vectors for each user, CLUB[8], and SCLUB[21].
More description of these baselines are in Appendix F. To show that the design of OCCUD is non-
trivial, we develop a straightforward detection algorithm GCUD, which leverages the same cluster
structure as OCCUD but detects corrupted users by selecting users with highest

∥∥∥θ̂i,t − θ̂Vi,t,t−1

∥∥∥
2

in each inferred cluster. GCUD selects users according to the underlying percentage of corrupted
users, which is unrealistic in practice, but OCCUD still performs better in this unfair condition.

Remark. The offline detection methods [39, 6, 18, 32] need to know all the user information in
advance to derive the user embedding for classification, so they cannot be directly applied in online
detection with bandit feedback thus cannot be directly compared to OCCUD. However, we observe
the AUC achieved by OCCUD on Amazon and Yelp (in Tab.1) is similar to recent offline methods
[18, 32]. Additionally, OCCUD has rigorous theoretical performance guarantee (Section 5.2).

6.1 Experiments on Synthetic Dataset

We use u = 1, 000 users and m = 10 clusters, where each cluster contains 100 users. We randomly
select 100 users as the corrupted users. The preference and arm (item) vectors are drawn in d − 1
(d = 50) dimensions with each entry a standard Gaussian variable and then normalized, added one
more dimension with constant 1, and divided by

√
2 [21]. We fix an arm set with |A| = 1000 items,

at each round, 20 items are randomly selected to form a set At to choose from. Following [40, 3],
in the first k rounds, we always flip the reward of corrupted users by setting rt = −xT

at
θit,t + ηt.

And we leave the remaining T − k rounds intact. Here we set T = 1, 000, 000 and k = 20, 000.

0.0 0.2 0.4 0.6 0.8 1.0
Round 1e6

0
2
4
6
8

C
um

ul
at

iv
e

R
eg

re
t

1e4

RCLUB-WCU(ours)
CLUB
SCLUB
LinUCB
LinUCB-ind
CW-OFUL
CW-OFUL-ind

(a) Synthetic

0.0 0.2 0.4 0.6 0.8 1.0
Round 1e6

0
1
2
3
4
5

C
um

ul
at

iv
e

R
eg

re
t

1e4

RCLUB-WCU(ours)
CLUB
SCLUB
LinUCB
LinUCB-ind
CW-OFUL
CW-OFUL-ind

(b) Movielens

0.0 0.2 0.4 0.6 0.8 1.0
Round 1e6

0
1
2
3
4
5
6
7

C
um

ul
at

iv
e

R
eg

re
t

1e4

RCLUB-WCU(ours)
CLUB
SCLUB
LinUCB
LinUCB-ind
CW-OFUL
CW-OFUL-ind

(c) Amazon

0.0 0.2 0.4 0.6 0.8 1.0
Round 1e6

0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
um

ul
at

iv
e

R
eg

re
t

1e5

RCLUB-WCU(ours)
CLUB
SCLUB
LinUCB
LinUCB-ind
CW-OFUL
CW-OFUL-ind

(d) Yelp

Figure 3: Recommendation results on the synthetic and real-world datasets

Fig.3(a) shows the recommendation results. RCLUB-WCU outperforms all baselines and achieves
a sub-linear regret. LinUCB and CW-OFUL perform worst as they ignore the preference differences
among users. CW-OFUL-Ind outperforms LinUCB-Ind because it considers the corruption, but
worse than RCLUB-WCU since it does not consider leveraging user relations to speed up learning.

The detection results are shown in Tab.1. We test the AUC of OCCUD and GCUD in every 200, 000
rounds. OCCUD’s performance improves over time with more interactions, while GCUD’s perfor-
mance is much worse as it detects corrupted users only relying on the robust estimations. OCCUD
finally achieves an AUC of 0.855, indicating it can identify most of the corrupted users.

6.2 Experiments on Real-world Datasets

We use three real-world data Movielens [11], Amazon[31], and Yelp [33]. The Movielens data does
not have the corrupted users’ labels, so following [24], we manually select the corrupted users. On
Amazon data, following [39], we label the users with more than 80% helpful votes as normal users,
and label users with less than 20% helpful votes as corrupted users. The Yelp data contains users
and their comments on restaurants with true labels of the normal users and corrupted users.

We select 1,000 users and 1,000 items for Movielens; 1,400 users and 800 items for Amazon; 2,000
users and 2,000 items for Yelp. The ratios of corrupted users on these data are 10%, 3.5%, and

9

30.9%, respectively. We generate the preference and item vectors following [37, 21]. We first
construct the binary feedback matrix through the users’ ratings: if the rating is greater than 3, the
feedback is 1; otherwise, the feedback is 0. Then we use SVD to decompose the extracted binary
feedback matrix Ru×m = θSXT, where θ = (θi), i ∈ [u] and X = (xj), j ∈ [m], and select d =
50 dimensions. We have 10 clusters on Movielens and Amazon, and 20 clusters on Yelp. We use the
same corruption mechanism as the synthetic data with T = 1, 000, 000 and k = 20, 000. We conduct
more experiments in different environments to show our algorithms’ robustness in Appendix.G.

Dataset Alg
Time 0.2M 0.4M 0.6M 0.8M 1M

Synthetic OCCUD 0.599 0.651 0.777 0.812 0.855
GCUD 0.477 0.478 0.483 0.484 0.502

Movielens OCCUD 0.65 0.750 0.785 0.83 0.85
GCUD 0.450 0.474 0.485 0.489 0.492

Amazon OCCUD 0.639 0.735 0.761 0.802 0.840
GCUD 0.480 0.480 0.486 0.500 0.518

Yelp OCCUD 0.452 0.489 0.502 0.578 0.628
GCUD 0.473 0.481 0.496 0.500 0.510

Table 1: Detection results on synthetic and real datasets

The recommendation results are shown in
Fig.3(b)-(d). RCLUB-WCU outperforms
all baselines. On the Amazon dataset, the
percentage of corrupted users is lowest,
RCLUB-WCU’s advantages over base-
lines decrease because of the weakened
corruption. The corrupted user detection
results are provided in Tab.1. OCCUD’s
performance improves over time and is
much better than GCUD. On the Movie-
lens dataset, OCCUD achieves an AUC
of 0.85; on the Amazon dataset, OCCUD
achieves an AUC of 0.84; and on the Yelp dataset, OCCUD achieves an AUC of 0.628. According
to recent works on offline settings [18, 32], our results are relatively high.

7 Conclusion

In this paper, we are the first to propose the novel LOCUD problem, where there are many users with
unknown preferences and unknown relations, and some corrupted users can occasionally perform
disrupted actions to fool the agent. Hence, the agent not only needs to learn the unknown user pref-
erences and relations robustly from potentially disrupted bandit feedback, balance the exploration-
exploitation trade-off to minimize regret, but also needs to detect the corrupted users over time. To
robustly learn and leverage the unknown user preferences and relations from corrupted behaviors, we
propose a novel bandit algorithm RCLUB-WCU. To detect the corrupted users in the online bandit
setting, based on the learned user relations of RCLUB-WCU, we propose a novel detection algo-
rithm OCCUD. We prove a regret upper bound for RCLUB-WCU, which matches the lower bound
asymptotically in T up to logarithmic factors and matches the state-of-the-art results in degener-
ate cases. We also give a theoretical guarantee for the detection accuracy of OCCUD. Extensive
experiments show that our proposed algorithms achieve superior performance over previous bandit
algorithms and high corrupted user detection accuracy.

8 Acknowledgement

The corresponding author Shuai Li is supported by National Key Research and Development Pro-
gram of China (2022ZD0114804) and National Natural Science Foundation of China (62376154,
62006151, 62076161). The work of John C.S. Lui was supported in part by the RGC’s SRFS2122-
4S02.

10

References
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. Advances in neural information processing systems, 24, 2011.

[2] Charu C Aggarwal et al. Recommender systems, volume 1. Springer, 2016.

[3] Ilija Bogunovic, Arpan Losalka, Andreas Krause, and Jonathan Scarlett. Stochastic linear
bandits robust to adversarial attacks. In International Conference on Artificial Intelligence and
Statistics, pages 991–999. PMLR, 2021.

[4] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, pages 208–214. JMLR Workshop and Conference Proceedings, 2011.

[5] Qin Ding, Cho-Jui Hsieh, and James Sharpnack. Robust stochastic linear contextual bandits
under adversarial attacks. In International Conference on Artificial Intelligence and Statistics,
pages 7111–7123. PMLR, 2022.

[6] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing
graph neural network-based fraud detectors against camouflaged fraudsters. In Proceedings
of the 29th ACM International Conference on Information & Knowledge Management, pages
315–324, 2020.

[7] Evrard Garcelon, Baptiste Roziere, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud,
Alessandro Lazaric, and Matteo Pirotta. Adversarial attacks on linear contextual bandits. Ad-
vances in Neural Information Processing Systems, 33:14362–14373, 2020.

[8] Claudio Gentile, Shuai Li, and Giovanni Zappella. Online clustering of bandits. In Interna-
tional Conference on Machine Learning, pages 757–765. PMLR, 2014.

[9] Anupam Gupta, Tomer Koren, and Kunal Talwar. Better algorithms for stochastic bandits with
adversarial corruptions. In Conference on Learning Theory, pages 1562–1578. PMLR, 2019.

[10] Mohammad Hajiesmaili, Mohammad Sadegh Talebi, John Lui, Wing Shing Wong, et al. Ad-
versarial bandits with corruptions: Regret lower bound and no-regret algorithm. Advances in
Neural Information Processing Systems, 33:19943–19952, 2020.

[11] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

[12] Jiafan He, Dongruo Zhou, Tong Zhang, and Quanquan Gu. Nearly optimal algorithms for
linear contextual bandits with adversarial corruptions. In Advances in Neural Information
Processing Systems (2022), 2022.

[13] Mengda Huang, Yang Liu, Xiang Ao, Kuan Li, Jianfeng Chi, Jinghua Feng, Hao Yang, and
Qing He. Auc-oriented graph neural network for fraud detection. In Proceedings of the ACM
Web Conference 2022, pages 1311–1321, 2022.

[14] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Jerry Zhu. Adversarial attacks on stochastic
bandits. Advances in neural information processing systems, 31, 2018.

[15] Pushmeet Kohli, Mahyar Salek, and Greg Stoddard. A fast bandit algorithm for recommen-
dation to users with heterogenous tastes. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 27, pages 1135–1141, 2013.

[16] Fang Kong, Canzhe Zhao, and Shuai Li. Best-of-three-worlds analysis for linear bandits with
follow-the-regularized-leader algorithm. arXiv preprint arXiv:2303.06825, 2023.

[17] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international confer-
ence on World wide web, pages 661–670, 2010.

11

[18] Qiutong Li, Yanshen He, Cong Xu, Feng Wu, Jianliang Gao, and Zhao Li. Dual-augment graph
neural network for fraud detection. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, pages 4188–4192, 2022.

[19] Shuai Li and Shengyu Zhang. Online clustering of contextual cascading bandits. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[20] Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. Collaborative filtering bandits. In
Proceedings of the 39th International ACM SIGIR conference on Research and Development
in Information Retrieval, pages 539–548, 2016.

[21] Shuai Li, Wei Chen, and Kwong-Sak Leung. Improved algorithm on online clustering of
bandits. arXiv preprint arXiv:1902.09162, 2019.

[22] Yingkai Li, Edmund Y Lou, and Liren Shan. Stochastic linear optimization with adversarial
corruption. arXiv preprint arXiv:1909.02109, 2019.

[23] Fang Liu and Ness Shroff. Data poisoning attacks on stochastic bandits. In International
Conference on Machine Learning, pages 4042–4050. PMLR, 2019.

[24] Shenghua Liu, Bryan Hooi, and Christos Faloutsos. Holoscope: Topology-and-spike aware
fraud detection. In Proceedings of the 2017 ACM on Conference on Information and Knowl-
edge Management, pages 1539–1548, 2017.

[25] Xutong Liu, Haoru Zhao, Tong Yu, Shuai Li, and John CS Lui. Federated online clustering of
bandits. In Uncertainty in Artificial Intelligence, pages 1221–1231. PMLR, 2022.

[26] Xutong Liu, Jinhang Zuo, Siwei Wang, Carlee Joe-Wong, John Lui, and Wei Chen. Batch-size
independent regret bounds for combinatorial semi-bandits with probabilistically triggered arms
or independent arms. Advances in Neural Information Processing Systems, 35:14904–14916,
2022.

[27] Xutong Liu, Jinhang Zuo, Siwei Wang, John CS Lui, Mohammad Hajiesmaili, Adam Wier-
man, and Wei Chen. Contextual combinatorial bandits with probabilistically triggered arms.
In International Conference on Machine Learning, pages 22559–22593. PMLR, 2023.

[28] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Pick and
choose: a gnn-based imbalanced learning approach for fraud detection. In Proceedings of the
Web Conference 2021, pages 3168–3177, 2021.

[29] Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic bandits robust to ad-
versarial corruptions. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, pages 114–122, 2018.

[30] Yuzhe Ma, Kwang-Sung Jun, Lihong Li, and Xiaojin Zhu. Data poisoning attacks in contextual
bandits. In International Conference on Decision and Game Theory for Security, pages 186–
204. Springer, 2018.

[31] Julian John McAuley and Jure Leskovec. From amateurs to connoisseurs: modeling the evo-
lution of user expertise through online reviews. In Proceedings of the 22nd international
conference on World Wide Web, pages 897–908, 2013.

[32] Zidi Qin, Yang Liu, Qing He, and Xiang Ao. Explainable graph-based fraud detection via
neural meta-graph search. In Proceedings of the 31st ACM International Conference on Infor-
mation & Knowledge Management, pages 4414–4418, 2022.

[33] Shebuti Rayana and Leman Akoglu. Collective opinion spam detection: Bridging review net-
works and metadata. In Proceedings of the 21th acm sigkdd international conference on knowl-
edge discovery and data mining, pages 985–994, 2015.

[34] Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang, Quan Yu, Jun
Zhou, Shuang Yang, and Yuan Qi. A semi-supervised graph attentive network for financial
fraud detection. In 2019 IEEE International Conference on Data Mining (ICDM), pages 598–
607. IEEE, 2019.

12

[35] Zhiyong Wang, Xutong Liu, Shuai Li, and John CS Lui. Efficient explorative key-term selec-
tion strategies for conversational contextual bandits. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pages 10288–10295, 2023.

[36] Zhiyong Wang, Jize Xie, Xutong Liu, Shuai Li, and John Lui. Online clustering of bandits
with misspecified user models. arXiv preprint arXiv:2310.02717, 2023.

[37] Junda Wu, Canzhe Zhao, Tong Yu, Jingyang Li, and Shuai Li. Clustering of conversational
bandits for user preference learning and elicitation. In Proceedings of the 30th ACM Interna-
tional Conference on Information & Knowledge Management, pages 2129–2139, 2021.

[38] Qingyun Wu, Huazheng Wang, Quanquan Gu, and Hongning Wang. Contextual bandits in a
collaborative environment. In Proceedings of the 39th International ACM SIGIR conference
on Research and Development in Information Retrieval, pages 529–538, 2016.

[39] Ge Zhang, Jia Wu, Jian Yang, Amin Beheshti, Shan Xue, Chuan Zhou, and Quan Z Sheng.
Fraudre: fraud detection dual-resistant to graph inconsistency and imbalance. In 2021 IEEE
International Conference on Data Mining (ICDM), pages 867–876. IEEE, 2021.

[40] Heyang Zhao, Dongruo Zhou, and Quanquan Gu. Linear contextual bandits with adversarial
corruptions. arXiv preprint arXiv:2110.12615, 2021.

[41] Jinhang Zuo, Zhiyao Zhang, Zhiyong Wang, Shuai Li, Mohammad Hajiesmaili, and Adam
Wierman. Adversarial attacks on online learning to rank with click feedback. arXiv preprint
arXiv:2305.17071, 2023.

13

Appendix

A Proof of Lemma 1

We first prove the following result:
With probability at least 1− δ for some δ ∈ (0, 1), at any t ∈ [T]:∥∥∥θ̂i,t − θj(i)

∥∥∥
2
≤

β(Ti,t,
δ
u)√

λ+ λmin(M i,t)
,∀i ∈ U , (8)

where β(Ti,t,
δ
u) ≜

√
2 log(uδ) + d log(1 +

Ti,t

λd) +
√
λ+ αC.

θ̂i,t − θj(i) = (λI +M i,t)
−1bi,t − θj(i)

= (λI +
∑
s∈[t]
is=i

wis,sxasx
⊤
as
)−1

∑
s∈[t]
is=i

wis,sxasrs − θj(i)

= (λI +
∑
s∈[t]
is=i

wis,sxasx
⊤
as
)−1

(∑
s∈[t]
is=i

wis,sxas(x
⊤
as
θis + ηs + cs)

)
− θj(i)

= (λI +
∑
s∈[t]
is=i

wis,sxas
x⊤
as
)−1

[
(λI +

∑
s∈[t]
is=i

wis,sxas
x⊤
as
)θj(i) − λθj(i) +

∑
s∈[t]
is=i

wis,sxas
ηs

+
∑
s∈[t]
is=i

wis,sxas
cs

]
− θj(i)

= −λM ′−1
i,t θj(i) +M ′−1

i,t

∑
s∈[t]
is=i

wis,sxas
ηs +M ′−1

i,t

∑
s∈[t]
is=i

wis,sxas
cs ,

where we denote M ′
i,t = M i,t + λI , and the above equations hold by definition.

Therefore, we have

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤ λ

∥∥∥M ′−1
i,t θj(i)

∥∥∥
2
+

∥∥∥∥∥∥∥M ′−1
i,t

∑
s∈[t]
is=i

wis,sxas
ηs

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥M ′−1
i,t

∑
s∈[t]
is=i

wis,sxas
cs

∥∥∥∥∥∥∥
2

.

(9)
We then bound the three terms in Eq.(9) one by one. For the first term:

λ
∥∥∥M ′−1

i,t θj(i)
∥∥∥
2
≤ λ

∥∥∥M ′− 1
2

i,t

∥∥∥2
2

∥∥∥θj(i)
∥∥∥
2
≤

√
λ√

λmin(M
′
i,t)

, (10)

where we use the Cauchy–Schwarz inequality, the inequality for the operator norm of matrices, and
the fact that λmin(M

′
i,t) ≥ λ.

For the second term in Eq.(9), we have∥∥∥∥∥∥∥M ′−1
i,t

∑
s∈[t]
is=i

wis,sxas
ηs

∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥M ′− 1
2

i,t

∑
s∈[t]
is=i

wis,sxas
ηs

∥∥∥∥∥∥∥
2

∥∥∥M ′− 1
2

i,t

∥∥∥
2

(11)

=

∥∥∥∑ s∈[t]
is=i

wis,sxas
ηs

∥∥∥
M ′−1

i,t√
λmin(M

′
i,t)

, (12)

where Eq.(11) follows by the Cauchy–Schwarz inequality and the inequality for the operator norm
of matrices, and Eq.(12) follows by the Courant-Fischer theorem.

14

Let x̃s ≜
√
wis,sxas , η̃s ≜

√
wis,sηs, then we have: ∥x̃s∥2 ≤

∥∥√wis,s

∥∥
2
∥xas∥2 ≤ 1, η̃s is still

1-sub-gaussian (since ηs is 1-sub-gaussian and √
wis,s ≤ 1), M ′

i,t = λI +
∑

s∈[t]
is=i

x̃sx̃
⊤
s , and the

nominator in Eq.(12) becomes
∥∥∥∑ s∈[t]

is=i
x̃sη̃s

∥∥∥
M ′−1

i,t

. Then, following Theorem 1 in [1] and by union

bound, with probability at least 1− δ for some δ ∈ (0, 1), for any i ∈ U , we have:∥∥∥∥∥∥∥
∑
s∈[t]
is=i

wis,sxas
ηs

∥∥∥∥∥∥∥
M ′−1

i,t

=

∥∥∥∥∥∥∥
∑
s∈[t]
is=i

x̃sη̃s

∥∥∥∥∥∥∥
M ′−1

i,t

≤

√
2 log(

u

δ
) + log(

det(M ′
i,t)

det(λI)
)

≤
√
2 log(

u

δ
) + d log(1 +

Ti,t

λd
) , (13)

where det(·) denotes the determinant of matrix arguement, Eq.(13) is because det(M ′
i,t) ≤(

trace(λI+
∑

s∈[t]
is=i

wis,sxasx
⊤
as

)

d

)d

≤
(λd+Ti,t

d

)d
, and det(λI) = λd.

For the third term in Eq.(9), we have∥∥∥∥∥∥∥M ′−1
i,t

∑
s∈[t]
is=i

wis,sxas
cs

∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥M ′− 1
2

i,t

∑
s∈[t]
is=i

wis,sxas
cs

∥∥∥∥∥∥∥
2

∥∥∥M ′− 1
2

i,t

∥∥∥
2

(14)

=

∥∥∥∑ s∈[t]
is=i

wis,sxas
cs

∥∥∥
M ′−1

i,t√
λmin(M

′
i,t)

(15)

≤

∑
s∈[t]
is=i

|cs|wi,s ∥xas
∥M ′−1

i,t√
λmin(M

′
i,t)

≤ αC√
λmin(M

′
i,t)

(16)

where Eq.(14) follows by the Cauchy–Schwarz inequality and the inequality for the operator norm
of matrices, Eq.(15) follows by the Courant-Fischer theorem, and Eq.(16) is because by defini-
tion wi,s ≤ α

∥xas∥M
′−1
i,s

≤ α
∥xas∥M

′−1
i,t

(since M ′
i,t ⪰ M ′

i,s, M ′−1
i,s ⪰ M ′−1

i,t , ∥xas
∥M ′−1

i,s
≥

∥xas
∥M ′−1

i,t
),
∑T

t=1 |ct| ≤ C.

Combining the above bounds of these three terms, we can get that Eq.(8) holds.

We then prove the following technical lemma.

Lemma 6. Under Assumption 3, at any time t, for any fixed unit vector θ ∈ Rd

Et[(θ
⊤xat)

2| |At|] ≥ λ̃x ≜
∫ λx

0

(1− e−
(λx−x)2

2σ2)Kdx , (17)

where K is the upper bound of |At| for any t.

Proof. The proof of this lemma mainly follows the proof of Claim 1 in [8], but with more careful
analysis, since their assumption on the arm generation distribution is more stringent than our As-
sumption 3 by putting more restrictions on the variance upper bound σ2 (specifically, they require
σ2 ≤ λ2

8 log(4K)).

15

Denote the feasible arms at round t by At = {xt,1,xt,2, . . . ,xt,|At|}. Consider the corresponding
i.i.d. random variables θi = (θ⊤xt,i)

2 − Et[(θ
⊤xt,i)

2| |At|], i = 1, 2, . . . , |At|. By Assumption 3,
θi s are sub-Gaussian random variables with variance bounded by σ2. Therefore, for any α > 0 and
any i ∈ [|At|], we have:

Pt(θi < −α| |At|) ≤ e−
α2

2σ2 ,

where we use Pt(·) to be the shorthand for the conditional probability
P(·|(i1,A1, r1), . . . , (it−1,At−1, rt−1), it).

By Assumption 3, we can also get that Et[(θ
⊤xt,i)

2| |At| = Et[θ
⊤xt,ix

⊤
t,iθ| |At|] ≥

λmin(Ex∼ρ[xx
⊤]) ≥ λx. With these inequalities above, we can get

Pt(min
i=1,...,|At|

(θ⊤xt,i)
2 ≥ λx − α| |At|) ≥ (1− e−

α2

2σ2)K .

Therefore, we can get

Et[(θ
⊤xat)

2| |At|] ≥ Et[min
i=1,...,|At|

(θ⊤xt,i)
2| |At|]

≥
∫ ∞

0

Pt(min
i=1,...,|At|

(θ⊤xt,i)
2 ≥ x| |At|)dx

≥
∫ λx

0

(1− e−
(λx−x)2

2σ2)Kdx ≜ λ̃x

Note that wi,s = min{1, α
∥xas∥M

′−1
i,t

}, and we have

α

∥xas
∥M ′−1

i,t

=
α√

x⊤
as
M ′−1

i,t xas

≥ α√
λmin(M

′−1
i,t)

= α
√
λmin(M

′
i,t) ≥ α

√
λ.

Since α
√
λ < 1 typically holds, we have wi,s ≥ α

√
λ.

Then, with the item regularity assumption stated in Assumption 3, the technical Lemma 6, together
with Lemma 7 in [19], with probability at least 1 − δ, for a particular user i, at any t such that
Ti,t ≥ 16

λ̃2
x

log(8d
λ̃2
xδ
), we have:

λmin(M
′
i,t) ≥ 2α

√
λλ̃xTi,t + λ . (18)

With this result, together with Eq.(8), we can get that for any t such that Ti,t ≥ 16
λ̃2
x

log(8d
λ̃2
xδ
), with

probability at least 1− δ for some δ ∈ (0, 1), ∀i ∈ U , we have:∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤

β(Ti,t,
δ
u)√

λmin(M
′
i,t)

≤
β(Ti,t,

δ
u)√

2α
√
λλ̃xTi,t + λ

≤
β(Ti,t,

δ
u)√

2α
√
λλ̃xTi,t

=

√
2 log(uδ) + d log(1 +

Ti,t

λd) +
√
λ+ αC√

2α
√
λλ̃xTi,t

. (19)

Then, we want to find a sufficient time Ti,t for a fixed user i such that∥∥∥θ̂i,t − θj(i)
∥∥∥
2
<

γ

4
. (20)

16

To do this, with Eq.(19), we can get it by letting
√
λ√

2α
√
λλ̃xTi,t

<
γ

12
, (21)

αC√
2α

√
λλ̃xTi,t

<
γ

12
, (22)

√
2 log(uδ) + d log(1 +

Ti,t

λd)√
2α

√
λλ̃xTi,t

<
γ

12
. (23)

For Eq.(21), we can get

Ti,t >
72
√
λ

αγ2λ̃x

. (24)

For Eq.(22), we can get

Ti,t >
72αC2

γ2
√
λλ̃x

. (25)

For Eq.(23), we have
2 log(uδ) + d log(1 +

Ti,t

λd)

2α
√
λλ̃xTi,t

<
γ2

144
. (26)

Then it is sufficient to get Eq.(26) if the following holds

2 log(uδ)

2α
√
λλ̃xTi,t

<
γ2

288
, (27)

d log(1 +
Ti,t

λd)

2α
√
λλ̃xTi,t

<
γ2

288
. (28)

For Eq.(27), we can get

Ti,t >
288 log(uδ)

γ2α
√
λλ̃x

(29)

For Eq.(28), we can get

Ti,t >
144d

γ2α
√
λλ̃x

log(1 +
Ti,t

λd
) . (30)

Following Lemma 9 in [19], we can get the following sufficient condition for Eq.(30):

Ti,t >
288d

γ2α
√
λλ̃x

log(
288

γ2α
√
λλ̃x

) . (31)

Then, since typically u
δ > 288

γ2α
√
λλ̃x

, we can get the following sufficient condition for Eq.(29) and
Eq.(31)

Ti,t >
288d

γ2α
√
λλ̃x

log(
u

δ
) . (32)

Together with Eq.(24), Eq.(25), and the condition for Eq.(18) we can get the following sufficient
condition for Eq.(20) to hold

Ti,t > max{ 288d

γ2α
√
λλ̃x

log(
u

δ
),
16

λ̃2
x

log(
8d

λ̃2
xδ

),
72

√
λ

αγ2λ̃x

,
72αC2

γ2
√
λλ̃x

} . (33)

Then, with Assumption 2 on the uniform arrival of users, following Lemma 8 in [19], and by union
bound, we can get that with probability at least 1− δ, for all

t ≥ T0 ≜ 16u log(
u

δ
) + 4umax{ 288d

γ2α
√
λλ̃x

log(
u

δ
),
16

λ̃2
x

log(
8d

λ̃2
xδ

),
72
√
λ

αγ2λ̃x

,
72αC2

γ2
√
λλ̃x

} , (34)

17

Eq.(32) holds for all i ∈ U , and therefore Eq.(20) holds for all i ∈ U . With this, we can show that
RCLUB-WCU will cluster all the users correctly after T0. First, if RCLUB-WCU deletes the edge
(i, l), then user i and user j belong to different ground-truth clusters, i.e., ∥θi − θl∥2 > 0. This
is because by the deletion rule of the algorithm, the concentration bound, and triangle inequality,
∥θi − θl∥2 =

∥∥∥θj(i) − θj(l)
∥∥∥
2
≥
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
−
∥∥∥θj(l) − θl,t

∥∥∥
2
−
∥∥∥θj(i) − θi,t

∥∥∥
2
> 0. Sec-

ond, we show that if ∥θi − θl∥ ≥ γ, RCLUB-WCU will delete the edge (i, l). This is because
if ∥θi − θl∥ ≥ γ, then by the triangle inequality, and

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
< γ

4 ,
∥∥∥θ̂l,t − θj(l)

∥∥∥
2
< γ

4 ,

θi = θj(i), θl = θj(l), we have
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
≥ ∥θi − θl∥ −

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
−
∥∥∥θ̂l,t − θj(l)

∥∥∥
2
>

γ − γ
4 − γ

4 = γ
2 >

√
λ+

√
2 log(u

δ)+d log(1+
Ti,t
λd)√

λ+2λ̃xTi,t

+
√
λ+

√
2 log(u

δ)+d log(1+
Tl,t
λd)√

λ+2λ̃xTl,t

, which will trigger the

deletion condition Line 10 in Algo.1.

B Proof of Lemma 2

After T0, if the clustering structure is correct, i.e., Vt = Vj(it), then we have

θ̂Vt,t−1 − θit = M−1
Vt,t−1bVt,t−1 − θit

= (λI +
∑

s∈[t−1]
is∈Vt

wis,sxas
x⊤
as
)−1(

∑
s∈[t−1]
is∈Vt

wis,sxas
rs)− θit

= (λI +
∑

s∈[t−1]
is∈Vt

wis,sxas
x⊤
as
)−1
(∑

s∈[t−1]
is∈Vt

wis,sxas
(x⊤

as
θit + ηs + cs)

)
− θit (35)

= (λI +
∑

s∈[t−1]
is∈Vt

wis,sxas
x⊤
as
)−1

(∑
s∈[t−1]
is∈Vt

(wis,sxas
x⊤
as

+ λI)θit − λθit

+
∑

s∈[t−1]
is∈Vt

wis,sxas
ηs +

∑
s∈[t−1]
is∈Vt

wis,sxas
cs)

)
− θit

= −λM ′−1
Vt,t−1θit −M ′−1

Vt,t−1

∑
s∈[t−1]
is∈Vt

wis,sxas
ηs +M ′−1

Vt,t−1

∑
s∈[t−1]
is∈Vt

wis,sxas
cs ,

where we denote M ′
Vt,t−1 = MVt,t−1 + λI , and Eq.(35) is because Vt = Vj(it) thus θis =

θit ,∀is ∈ Vt.

Therefore, we have

∣∣∣x⊤
a (θ̂Vt,t−1 − θit)

∣∣∣ ≤ λ
∣∣∣x⊤

a M
′−1
Vt,t−1θit

∣∣∣+
∣∣∣∣∣∣∣x⊤

a M
′−1
Vt,t−1

∑
s∈[t−1]
is∈Vt

wis,sxas
ηs

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣x⊤

a M
′−1
Vt,t−1

∑
s∈[t−1]
is∈Vt

wis,sxas
cs

∣∣∣∣∣∣∣
≤ ∥xa∥M ′−1

Vt,t−1

(√
λ+

∥∥∥∥∥∥∥
∑

s∈[t−1]
is∈Vt

wis,sxas
ηs

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

+

∥∥∥∥∥∥∥
∑

s∈[t−1]
is∈Vt

wis,sxas
cs

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

)
,

(36)

where Eq.(36) is by Cauchy–Schwarz inequality, matrix operator inequality, and∣∣∣x⊤
a M

′−1
Vt,t−1θit

∣∣∣ ≤ λ
∥∥∥M ′− 1

2

Vt,t−1

∥∥∥
2
∥θit∥2 = λ 1√

λmin(MVt,t−1)
∥θit∥2 ≤

√
λ since

λmin(MVt,t−1) ≥ λ and ∥θit∥2 ≤ 1.

Let x̃s ≜
√
wis,sxas

, η̃s ≜
√
wis,sηs, then we have: ∥x̃s∥2 ≤

∥∥√wis,s

∥∥
2
∥xas

∥2 ≤ 1, η̃s is
still 1-sub-gaussian (since ηs is 1-sub-gaussian and √

wis,s ≤ 1), M ′
i,t = λI +

∑
s∈[t]
is=i

x̃sx̃
⊤
s ,

18

and
∥∥∥∑ s∈[t−1]

is∈Vt

wis,sxas
ηs

∥∥∥
M ′−1

Vt,t−1

becomes
∥∥∥∑ s∈[t]

is=i
x̃sη̃s

∥∥∥
M ′−1

Vt,t−1

. Then, following Theorem 1

in [1], with probability at least 1− δ for some δ ∈ (0, 1), we have:∥∥∥∥∥∥∥
∑

s∈[t−1]
is∈Vt

wis,sxas
ηs

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

=

∥∥∥∥∥∥∥
∑
s∈[t]
is=i

x̃sη̃s

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

≤

√
2 log(

u

δ
) + log(

det(M ′
Vt,t−1)

det(λI)
)

≤
√
2 log(

u

δ
) + d log(1 +

T

λd
) , (37)

And for
∥∥∥∑ s∈[t−1]

is∈Vt

wis,sxascs

∥∥∥
M ′−1

Vt,t−1

, we have

∥∥∥∥∥∥∥
∑

s∈[t−1]
is∈Vt

wis,sxascs

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

≤
∑

s∈[t−1]
is∈Vt

wis,s |cs| ∥xas
∥M ′−1

Vt,t−1
≤ αC , (38)

where we use
∑T

t=1 |ct| ≤ C, wis,s ≤ α
∥xas∥M

′−1
is,t−1

≤ α
∥xas∥M

′−1
Vt,t−1

.

Plugging Eq.(38) and Eq.(37) into Eq.(36), together with Lemma 1, we can complete the proof of
Lemma 2.

C Proof of Theorem 3

After T0, we define event

E = {the algorithm clusters all the users correctly for all t ≥ T0} . (39)

Then, with Lemma 1 and picking δ = 1
T , we have

R(T) = P(E)I{E}R(T) + P(E)I{E}R(T)

≤ I{E}R(T) + 4× 1

T
× T

= I{E}R(T) + 4 .

(40)

Then it remains to bound I{E}R(T). For the first T0 rounds, we can upper bound the regret in the
first T0 rounds by T0. After T0, under event E and by Lemma 2, we have that with probability at
least 1− δ, for any xa: ∣∣∣xT

a (θ̂Vt,t−1 − θit)
∣∣∣ ≤ β ∥xa∥M−1

Vt,t−1
≜ Ca,t . (41)

Therefore, for the instantaneous regret Rt at round t, with E , with probability at least 1 − δ, at
∀t ≥ T0:

Rt = x⊤
a∗
t
θit − x⊤

at
θit

= x⊤
a∗
t
(θit − θ̂Vt,t−1) + (x⊤

a∗
t
θ̂Vt,t−1 + Ca∗

t ,t
)− (x⊤

at
θ̂Vt,t−1 + Cat,t)

+ x⊤
at
(θ̂V t,t−1 − θit) + Cat,t − Ca∗

t ,t

≤ 2Cat,t ,

(42)

where the last inequality holds by the UCB arm selection strategy in Eq.(3) and Eq.(41).

19

Therefore, for I{E}R(T):

I{E}R(T) ≤ R(T0) + E[I{E}
T∑

t=T0+1

Rt]

≤ T0 + 2E[I{E}
T∑

t=T0+1

Cat,t] . (43)

Then it remains to bound E[I{E}
∑T

t=T0+1 Cat,t]. For
∑T

t=T0+1 Cat,t, we can distinguish it into
two cases:

T∑
t=T0+1

Cat,t ≤ β

T∑
t=1

∥xat∥M−1
Vt,t−1

= β
∑

t∈[T]:wit,t=1

∥xat∥M−1
Vt,t−1

+ β
∑

t∈[T]:wit,t<1

∥xat∥M−1
Vt,t−1

. (44)

Then, we prove the following technical lemma.

Lemma 7.
T∑

t=T0+1

min{I{it ∈ Vj} ∥xat∥
2
M−1

Vj,t−1
, 1} ≤ 2d log(1 +

T

λd
),∀j ∈ [m] . (45)

Proof.

det(MVj ,T) = det

(
MVj ,T−1 + I{iT ∈ Vj}xaT

x⊤
aT

)
= det(MVj ,T−1)det

(
I + I{iT ∈ Vj}M

− 1
2

Vj ,T−1xaT
x⊤
aT

M
− 1

2

Vj ,T−1

)
= det(MVj ,T−1)

(
1 + I{iT ∈ Vj} ∥xaT

∥2M−1
Vj,T−1

)
= det(MVj ,T0)

T∏
t=T0+1

(
1 + I{it ∈ Vj} ∥xat∥

2
M−1

Vj,t−1

)

≥ det(λI)

T∏
t=T0+1

(
1 + I{it ∈ Vj} ∥xat

∥2M−1
Vj,t−1

)
. (46)

∀x ∈ [0, 1], we have x ≤ 2 log(1 + x). Therefore

T∑
t=T0+1

min{I{it ∈ Vj} ∥xat∥
2
M−1

Vj,t−1
, 1} ≤ 2

T∑
t=T0+1

log

(
1 + I{it ∈ Vj} ∥xat∥

2
M−1

Vj,t−1

)

= 2 log

(T∏
t=T0+1

(
1 + I{it ∈ Vj} ∥xat∥

2
M−1

Vj,t−1

))
≤ 2[log(det(MVj ,T))− log(det(λI))]

≤ 2 log

(
trace(λI +

∑T
t=1 I{it ∈ Vj}xat

x⊤
at
)

λd

)d

≤ 2d log(1 +
T

λd
) . (47)

20

Denote the rounds with wit,t = 1 as {t̃1, . . . , t̃l1}, and gram matrix G̃Vt̃τ
,t̃τ−1 ≜ λI +∑

s∈[τ]
is∈V

t̃τ

xat̃s
x⊤
at̃s

; denote the rounds with wit,t < 1 as {t′1, . . . , t′l2}, gram matrix G′
Vt′τ

,t′τ−1 ≜

λI +
∑

s∈[τ]
is∈V

t′τ

wit′s
,t′s
xat′s

x⊤
at′s

.

Then we have

∑
t∈[T]:wit,t=1

∥xat∥M−1
Vt,t−1

=

m∑
j=1

l1∑
τ=1

I{it̃τ ∈ Vj}
∥∥∥xat̃τ

∥∥∥
M−1

V
t̃τ ,t̃τ−1

≤
m∑
j=1

l1∑
τ=1

I{it̃τ ∈ Vj}
∥∥∥xat̃τ

∥∥∥
G̃

−1

V
t̃τ

,t̃τ−1

(48)

≤
m∑
j=1

√√√√ l1∑
τ=1

I{it̃τ ∈ Vj}
l1∑

τ=1

min{1, I{it̃τ ∈ Vj}
∥∥∥xat̃τ

∥∥∥2
G̃

−1

V
t̃τ

,t̃τ−1

}

(49)

≤
m∑
j=1

√
TVj ,T × 2d log(1 +

T

λd
) (50)

≤

√√√√2m

m∑
j=1

TVj ,T d log(1 +
T

λd
) =

√
2mdT log(1 +

T

λd
) , (51)

where Eq.(48) is because G̃
−1

Vt̃τ
,t̃τ−1 ⪰ M−1

Vt̃τ
,t̃τ−1

in Eq.(49) we use Cauchy–Schwarz inequality,

in Eq.(50) we use Lemma 7 and
∑l1

τ=1 I{it̃τ ∈ Vj} ≤ TVj ,T , in Eq.(51) we use Cauchy–Schwarz
inequality and

∑m
j=1 TVj ,T = T .

For the second part in Eq.(44), Let x′
at′τ

≜
√
wit′τ

,t′τ
xat′τ

, then

∑
t:wit,t<1

∥xat∥M−1
Vt,t−1

=
∑

t:wit,t<1

∥xat∥
2
M−1

Vt,t−1

∥xat∥M−1
Vt,t−1

=
∑

t:wit,t<1

wit,t ∥xat∥
2
M−1

Vt,t−1

α
(52)

=

m∑
j=1

l2∑
τ=1

I{it′τ ∈ Vj}
wit′τ

,t′τ

α

∥∥∥xat′τ

∥∥∥2
M−1

V
t′τ

,t′τ−1

≤
m∑
j=1

∑l2
τ=1 min{1, I{it′τ ∈ Vj}

∥∥∥x′
at′τ

∥∥∥2
G′−1

V
t′τ

,t′τ−1

}

α
(53)

≤
m∑
j=1

2d log(1 + T
λd)

α
=

2md log(1 + T
λd)

α
(54)

where in Eq.(52) we use the definition of the weights, in Eq.(53) we use G′−1
Vt′τ

,t′τ−1 ⪰ M−1
Vt′τ

,t′τ−1,
and Eq.(54) uses Lemma 7.

21

Then, with Eq.(54), Eq.(51), Eq.(44), Eq.(40), Eq.(43), δ = 1
T , and β =

√
λ +√

2 log(T) + d log(1 + T
λd) + αC, we can get

R(T) ≤ 4 + T0 +
(
2
√
λ+

√
2 log(T) + d log(1 +

T

λd
) + αC

)
×
(√

2mdT log(1 +
T

λd
)

+
2md log(1 + T

λd)

α

)
= 4 + 16u log(uT) + 4umax{ 288d

γ2α
√
λλ̃x

log(uT),
16

λ̃2
x

log(
8dT

λ̃2
x

),
72
√
λ

αγ2λ̃x

,
72αC2

γ2
√
λλ̃x

}

+
(
2
√
λ+

√
2 log(T) + d log(1 +

T

λd
) + αC

)
×
(√

2mdT log(1 +
T

λd
)

+
2md log(1 + T

λd)

α

)
.

Picking α =
√
λ+

√
d

C , we can get

R(T) ≤ O
(
(
C
√
d

γ2λ̃x

+
1

λ̃2
x

)u log(T)
)
+O

(
d
√
mT log(T)

)
+O

(
mCd log1.5(T)

)
. (55)

Thus we complete the proof of Theorem 3.

D Proof and Discussions of Theorem 4

Table 1 of the work [12] gives a lower bound for linear bandits with adversarial corruption for a
single user. The lower bound of R(T) is given by: R(T) ≥ Ω(d

√
T + dC). Therefore, suppose

our problem with multiple users and m underlying clusters where the arrival times are Ti for each
cluster, then for any algorithms, even if they know the underlying clustering structure and keep m
independent linear bandit algorithms to leverage the common information of clusters, the best they
can get is R(T) ≥ dC +

∑
i∈[m] d

√
Ti. For a special case where Ti = T

m ,∀i ∈ [m], we can get

R(T) ≥ dC +
∑

i∈[m] d
√

T
m = d

√
mT + dC, which gives a lower bound of Ω(d

√
mT + dC) for

the LOCUD problem.

Recall that the regret upper bound of RCLUB-WCU shown in Theorem 3 is of O

(
(C

√
d

γ2λ̃x
+

1
λ̃2
x

)u log(T)

)
+ O

(
d
√
mT log(T)

)
+ O

(
mCd log1.5(T)

)
, asymptotically matching this lower

bound with respect to T up to logarithmic factors and with respect to C up to O(
√
m) factors,

showing the tightness of our theoretical results (where m are typically very small for real applica-
tions).

We conjecture that the gap for the m factor in the mC term of the lower bound is due to the strong
assumption that cluster structures are known to prove our lower bound, and whether there exists a
tighter lower bound will be left for future work.

E Proof of Theorem 5

We prove the theorem using the proof by contrapositive. Specifically, in Theorem 5, we need to
prove that for any t ≥ T0, if the detection condition in Line 7 of Algo.2 for user i, then with
probability at least 1− 5δ, user i is indeed a corrupted user. By the proof by contrapositive, we can
prove Theorem 5 by showing that: for any t ≥ T0, if user i is a normal user, then with probability at
least 1− 5δ, the detection condition in Line 7 of Algo.2 will not be satisfied for user i.

If the clustering structure is correct at t, then for any normal user i

θ̃i,t − θ̂Vi,t,t = θ̃i,t − θi + θi − θ̂Vi,t,t , (56)

22

where θ̃i,t is the non-robust estimation of the ground-truth θi, and θ̂Vi,t,t−1 is the robust estimation
of the inferred cluster Vi,t for user i at round t. Since the clustering structure is correct at t, θ̂Vi,t,t−1

is the robust estimation of user i’s ground-truth cluster’s preference vector θj(i) = θi at round t.

We have

θ̃i,t − θi = (λI + M̃ i,t)
−1b̃i,t − θi

= (λI +
∑
s∈[t]
is=i

xas
x⊤
as
)−1(

∑
s∈[t]
is=i

xas
rs)− θi

= (λI +
∑
s∈[t]
is=i

xas
x⊤
as
)−1
(∑

s∈[t]
is=i

xas
(x⊤

as
θi + ηs)

)
− θi (57)

= (λI +
∑
s∈[t]
is=i

xas
x⊤
as
)−1
(
(λI +

∑
s∈[t]
is=i

xas
x⊤
as
)θi − λθi +

∑
s∈[t]
is=i

xas
ηs)
)
− θi

= −λM̃
′−1

i,t θi + M̃
′−1

i,t

∑
s∈[t]
is=i

xasηs ,

where we denote M̃
′
i,t ≜ λI +

∑
s∈[t]
is=i

xas
x⊤
as

, and Eq.(57) is because since user i is normal, we
have cs = 0,∀s : is = i.

Then, we have

∥∥∥θ̃i,t − θi

∥∥∥
2
≤
∥∥∥λM̃ ′−1

i,t θi

∥∥∥
2
+

∥∥∥∥∥∥∥M̃
′−1

i,t

∑
s∈[t]
is=i

xas
ηs

∥∥∥∥∥∥∥
2

≤ λ

∥∥∥∥M̃ ′− 1
2

i,t

∥∥∥∥2
2

∥θi∥2 +

∥∥∥∥∥∥∥M̃
′− 1

2

i,t

∑
s∈[t]
is=i

xas
ηs

∥∥∥∥∥∥∥
2

∥∥∥∥M̃ ′− 1
2

i,t

∥∥∥∥
2

(58)

≤

√
λ+

∥∥∥∑ s∈[t]
is=i

xasηs

∥∥∥
M̃

′−1
i,t√

λmin(M̃
′
i,t)

, , (59)

where Eq.(58) follows by the Cauchy–Schwarz inequality and the inequality for the operator norm
of matrices, and Eq.(59) follows by the Courant-Fischer theorem and the fact that λmin(M̃

′
i,t) ≥ λ.

Following Theorem 1 in [1], for a fixed normal user i, with probability at least 1 − δ for some
δ ∈ (0, 1) we have: ∥∥∥∥∥∥∥

∑
s∈[t]
is=i

xas
ηs

∥∥∥∥∥∥∥
M̃

′−1
i,t

≤

√
2 log(

1

δ
) + log(

det(M̃
′
i,t)

det(λI)
)

≤
√

2 log(
1

δ
) + d log(1 +

Ti,t

λd
) , (60)

where Eq.(60) is because det(M̃
′
i,t) ≤

(
trace(λI+

∑
s∈[t]
is=i

xasx
⊤
as

)

d

)d

≤
(λd+Ti,t

d

)d
, and det(λI) =

λd.

Plugging this into Eq.(59), we can get

∥∥∥θ̃i,t − θi

∥∥∥
2
≤

√
λ+

√
2 log(1δ) + d log(1 +

Ti,t

λd)√
λmin(M̃

′
i,t)

. (61)

23

Then we need to bound
∥∥∥θi − θ̂Vi,t,t

∥∥∥
2
. With the correct clustering, Vi,t = Vj(i), we have

θ̂Vi,t,t − θi = M−1
Vi,t,t

bVj,t,t

= (λI +
∑
s∈[t]

is∈Vj(i)

wis,sxasx
⊤
as
)−1(

∑
s∈[t]

is∈Vj(i)

wis,sxasrs)− θi

= (λI +
∑
s∈[t]

is∈Vj(i)

wis,sxas
x⊤
as
)−1(

∑
s∈[t]

is∈Vj(i)

wis,sxas
(x⊤

as
θi + ηs + cs)))− θi (62)

= (λI +
∑
s∈[t]

is∈Vj(i)

wis,sxas
x⊤
as
)−1
(
(λI +

∑
s∈[t]

is∈Vj(i)

wis,sxas
x⊤
as
)θi − λθi

+
∑
s∈[t]

is∈Vj(i)

wis,sxasηs +
∑
s∈[t]

is∈Vj(i)

wis,sxascs))
)
− θi

= −λM−1
Vi,t,t

θi +M−1
Vi,t,t

∑
s∈[t]

is∈Vj(i)

wis,sxas
ηs +M−1

Vi,t,t

∑
s∈[t]

is∈Vj(i)

wis,sxas
cs . (63)

Therefore, we have

∥∥∥θi − θ̂Vi,t,t

∥∥∥
2
≤ λ

∥∥∥M−1
Vi,t,t

θi

∥∥∥
2
+

∥∥∥∥∥∥∥∥M
−1
Vi,t,t

∑
s∈[t]

is∈Vj(i)

wis,sxas
ηs

∥∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥∥M
−1
Vi,t,t

∑
s∈[t]

is∈Vj(i)

wis,sxas
cs

∥∥∥∥∥∥∥∥
2

≤ λ
∥∥∥M− 1

2

Vi,t,t

∥∥∥2
2
∥θi∥2 +

∥∥∥∥∥∥∥∥M
− 1

2

Vi,t,t

∑
s∈[t]

is∈Vj(i)

wis,sxas
ηs

∥∥∥∥∥∥∥∥
2

∥∥∥M− 1
2

Vi,t,t

∥∥∥
2

+

∥∥∥∥∥∥∥∥M
− 1

2

Vi,t,t

∑
s∈[t]

is∈Vj(i)

wis,sxas
ηs

∥∥∥∥∥∥∥∥
2

∥∥∥M− 1
2

Vi,t,t

∥∥∥
2

(64)

≤

√
λ+

∥∥∥∥∑ s∈[t]
is∈Vj(i)

wis,sxas
ηs

∥∥∥∥
M−1

Vi,t,t

+

∥∥∥∥∑ s∈[t]
is∈Vj(i)

wis,sxas
cs

∥∥∥∥
M−1

Vi,t,t√
λmin(MVi,t,t)

(65)

Let x̃s ≜
√
wis,sxas

, η̃s ≜
√
wis,sηs, then we have: ∥x̃s∥2 ≤

∥∥√wis,s

∥∥
2
∥xas

∥2 ≤ 1, η̃s is still
1-sub-gaussian (since ηs is 1-sub-gaussian and √

wis,s ≤ 1), MVi,t,t = λI +
∑

s∈[t]
is∈Vj(i)

x̃sx̃
⊤
s , and∥∥∥∥∑ s∈[t]

is∈Vj(i)

wis,sxas
ηs

∥∥∥∥
M−1

Vi,t,t

becomes
∥∥∥∥∑ s∈[t]

is∈Vj(i)

x̃sη̃s

∥∥∥∥
M−1

Vi,t,t

. Then, following Theorem 1 in

[1], with probability at least 1− δ for some δ ∈ (0, 1), for a fixed normal user i, we have∥∥∥∥∥∥∥∥
∑
s∈[t]

is∈Vj(i)

wis,sxas
ηs

∥∥∥∥∥∥∥∥
M−1

Vi,t,t

≤

√
2 log(

1

δ
) + log(

det(MVi,t,t)

det(λI)
)

≤
√
2 log(

1

δ
) + d log(1 +

TVi,t,t

λd
) , (66)

where Eq.(60) is because det(MVi,t,t) ≤

(trace(λI+
∑

s∈[t]
is∈Vj(i)

xasx
⊤
as

)

d

)d

≤
(λd+TVi,t,t

d

)d
, and

det(λI) = λd.

24

For
∥∥∥∥∑ s∈[t]

is∈Vj(i)

wis,sxas
cs

∥∥∥∥
M−1

Vi,t,t

, we have

∥∥∥∥∥∥∥∥
∑
s∈[t]

is∈Vj(i)

wis,sxascs

∥∥∥∥∥∥∥∥
M−1

Vi,t,t

≤
∑
s∈[t]

is∈Vj(i)

|cs|wis,s ∥xas
∥M−1

Vi,t,t

≤ αC , (67)

where Eq.(67) is because wis,s ≤ α
∥xas∥M

′−1
is,s

≤ α
∥xas∥M

′−1
is,t

≤ α
∥xas∥M

−1
Vi,t,t

(since MVi,t,t ⪰

M ′
is,t ⪰ M ′

is,s, M ′−1
is,s

⪰ M ′−1
is,t

⪰ M−1
Vi,t,t

, ∥xas
∥M ′−1

is,s
≥ ∥xas

∥M ′−1
is,t

≥ ∥xas
∥M−1

Vi,t,t
), and∑

s∈[t] |cs| ≤ C.

Therefore, we have

∥∥∥θi − θ̂Vi,t,t

∥∥∥
2
≤

√
λ+

√
2 log(1δ) + d log(1 +

TVi,t,t

λd) + αC√
λmin(MVi,t,t)

. (68)

With Eq.(68), Eq.(61) and Eq.(56), together with Lemma 1, we have that for a normal user i, for any
t ≥ T0, with probability at least 1− 5δ for some δ ∈ (0, 1

5)∥∥∥θ̃i,t − θ̂Vi,t,t

∥∥∥ ≤
∥∥∥θ̃i,t − θi

∥∥∥
2
+
∥∥∥θi − θ̂Vi,t,t

∥∥∥
2

≤

√
λ+

√
2 log(1δ) + d log(1 +

Ti,t

λd)√
λmin(M̃

′
i,t)

+

√
λ+

√
2 log(1δ) + d log(1 +

TVi,t,t

λd) + αC√
λmin(MVi,t,t)

,

(69)

which is exactly the detection condition in Line 7 of Algo.2.

Therefore, by the proof by contrapositive, we complete the proof of Theorem 5.

F Description of Baselines

We compare RCLUB-WCU to the following five baselines for recommendations.

• LinUCB[17]: A state-of-the-art bandit approach for a single user without corruption.
• LinUCB-Ind: Use a separate LinUCB for each user.
• CW-OFUL[12]: A state-of-the-art bandit approach for single user with corruption.
• CW-OFUL-Ind: Use a separate CW-OFUL for each user.
• CLUB[8]: A graph-based clustering of bandits approach for multiple users without corrup-

tion.
• SCLUB[21]: A set-based clustering of bandits approach for multiple users without corrup-

tion.

G More Experiments

G.1 Different Corruption Levels

To see our algorithm’s performance under different corruption levels, we conduct the experiments
under different corruption levels for RCLUB-WCU, CLUB, and SCLUB on Amazon and Yelp
datasets. Recall the corruption mechanism in Section 6.1, we set k as 1,000; 10,000; 100,000. The
results are shown in Fig.4. All the algorithms’ performance becomes worse when the corruption
level increases. But RCLUB-WCU is much robust than the baselines.

25

1k 10k 100k
Corruption Level

0
1
2
3
4
5
6

C
um

ul
at

iv
e

R
eg

re
t

1e4

RCLUB-WCU
CLUB
SCLUB

(a) Amazon Corruption Level

1k 10k 100k
Corruption Level

0

2

4

6

8

C
um

ul
at

iv
e

R
eg

re
t

1e4

RCLUB-WCU
CLUB
SCLUB

(b) Yelp Corruption Level

Figure 4: Cumulative regret in different corruption levels

5 10 20 50
Cluster Number

0
1
2
3
4
5
6
7

C
um

ul
at

iv
e

R
eg

re
t

1e4

RCLUB-WCU
CLUB
SCLUB

(a) Amazon Cluster Number

5 10 20 50
Cluster Number

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

R
eg

re
t

1e5

RCLUB-WCU
CLUB
SCLUB

(b) Yelp Cluster Number

Figure 5: Cumulative regret with different cluster numbers

G.2 Different Cluster numbers

Following [19], we test the performances of the cluster-based algorithms (RCLUB-WCU, CLUB,
SCLUB) when the underlying cluster number changes. We set m as 5, 10, 20, and 50. The results
are shown in Fig.5. All these algorithms’ performances decrease when the cluster numbers increase,
matching our theoretical results. The performances of CLUB and SCLUB decrease much faster
than RCLUB-WCU, indicating that RCLUB-WCU is more robust when the underlying user cluster
number changes.

26

	Introduction
	Related Work
	Problem Setup
	Algorithms
	RCLUB-WCU
	OCCUD

	Theoretical Analysis
	Regret Analysis of RCLUB-WCU
	Theoretical Performance Guarantee for OCCUD

	Experiments
	Experiments on Synthetic Dataset
	Experiments on Real-world Datasets

	Conclusion
	Acknowledgement
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 3
	Proof and Discussions of Theorem 4
	Proof of Theorem 5
	Description of Baselines
	More Experiments
	Different Corruption Levels
	Different Cluster numbers

