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ABSTRACT

We present a new open-vocabulary detection approach based on detection-
oriented image-text pretraining to bridge the gap between image-level pretraining
and open-vocabulary object detection. At the pretraining phase, we replace the
commonly used classification architecture with the detector architecture, which
better serves the region-level recognition needs of detection by enabling the de-
tector heads to learn from noisy image-text pairs. Using only standard contrastive
loss and no pseudo-labeling, our approach is a simple yet effective extension of the
contrastive learning method to learn emergent object-semantic cues. In addition,
we propose a shifted-window learning approach upon window attention to make
the backbone representation more robust, translation-invariant, and less biased by
the window pattern. On the popular LVIS open-vocabulary detection benchmark,
our approach sets a new state of the art of 40.4 mask APr using the common ViT-
L backbone, significantly outperforming the best existing approach by +6.5 mask
APr at system level. On the COCO benchmark, we achieve very competitive 40.8
novel AP without pseudo labeling or weak supervision. In addition, we evaluate
our approach on the transfer detection setup, where ours outperforms the baseline
significantly. Visualization reveals emerging object locality from the pretraining
recipes compared to the baseline. Code and models will be publicly released.

1 INTRODUCTION

To understand and localize all objects and entities in the visual world has been a foundational prob-
lem in computer vision and machine learning. This capability unlocks a broad array of compelling
applications from self-driving cars to search and recommendation. However, existing object detec-
tors typically rely on human-annotated regions and class labels. These annotations are costly and
unscalable in terms of the number of categories e.g. O(1K) and the number of images e.g. O(100K).

The open-vocabulary detection (OVD) task (Zareian et al., 2021) has been introduced to overcome
both limitations by pretraining on larger-scale image-text data before finetuning for detection tasks.
By representing each category as a text embedding rather than a discrete label, open-vocabulary
detectors can localize objects based on any user-provided text queries unavailable during training.
Many techniques such as knowledge distillation (Gu et al., 2022; Du et al., 2022), weak supervi-
sion (Zhou et al., 2022b), self-training (Zhong et al., 2022; Rasheed et al., 2022; Zhao et al., 2022;
Huynh et al., 2022), frozen backbone (Kuo et al., 2023), detection feature alignment (Arandjelović
et al., 2023), and better positional embeddings (Kim et al., 2023b) have been proposed. Most ex-
isting methods assume the pretrained Vision Language Models (VLMs) e.g. (Radford et al., 2021)
are given, and focus on recipes to train the entire model or at least the detector heads from scratch
using the pretrained backbone (Gu et al., 2022; Du et al., 2022; Zhong et al., 2022; Kuo et al., 2023;
Kim et al., 2023b; Rasheed et al., 2022). This tends to result in suboptimal generalization because
the detector heads are trained on the limited vocabulary of detection datasets, and only the backbone
contains the knowledge of open-vocabulary concepts.

We present DITO (Detection-Oriented Image-Text pretraining for Open-vocabulary detection), an
intuitive method to perform image-language pretraining in a detection-friendly manner for open-
vocabulary object detection. Standard pretraining typically uses image classification architecture,
and thus needs to train at least the detector heads from scratch during the detection fine-tuning stage.
In contrast, our approach learns the detector heads directly from the large image-text corpus. The
detector heads receive text supervision at image level at multiple scales by pooling over randomly
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generated regions, which learns image-text representation across multiple levels of semantic granu-
larity. In addition, we proposed a simple yet effective Shifted-Window Learning (SWL) approach in
detection to enhance the features of vision transformer using window attention. Specifically, we roll
the patch tokens with strides less than the window size to mitigate the bias caused by window atten-
tion pattern and obtain a more shift-invariant representation. Through Detection-Oriented Pretrain-
ing (DOP) and Shifted-Window Learning (SWL), we close the gap between image-text pretraining
and open-vocabulary detection, and obtain robust backbone features for better generalization.

The best DITO model obtains 40.4 mask APr on the widely used LVIS open-vocabulary detection
benchmark, surpassing the previous best approach by +6.5 APr at system level. In the setting with
external box annotations, it achieves 45.8 box APr, a significant gain of +12.5 points over the pre-
vious best approach. On the COCO benchmark, DITO achieves a very competitive 40.8 novel AP
without using pseudo-labels or joint training. In summary, our contributions are:

• We present a novel contrastive pretraining methodology using detector architecture to learn
detection-sensitive representation from noisy, large-scale image-text pairs.

• We propose a simple Shifted-Window Learning technique for detection to produce more
robust and translation-invariant representation from pretrained vision transformers.

• Our approach significantly outperforms the state-of-the-art methods on LVIS open-
vocabulary detection benchmark, including larger models and pseudo-labeling approaches,
and achieves very competitive performance on COCO benchmark and transfer detection to
Objects365 simultaneously.

We hope these findings will encourage the community to further explore detection-oriented pretrain-
ing on noisy, large-scale image-text data to advance open-vocabulary tasks.

2 RELATED WORK

Language-supervised open-vocabulary recognition. Learning representations for open-
vocabulary recognition is a key to advancing general intelligence. To harness the rich co-occurrence
pattern of images and text found in web data, researchers have explored a diverse range of data
sources, including image tags, captions, alt-texts, image search queries, or combination thereof (De-
sai & Johnson, 2021; Sariyildiz et al., 2020; Radford et al., 2021; Jia et al., 2021; Schuhmann et al.,
2021; Gadre et al., 2023; Chen et al., 2023). From a modeling standpoint, contrastive learning op-
erates at the image level and has proven successful due to its simplicity, scalability, and versatility
across zero-shot (Radford et al., 2021), linear probing (Radford et al., 2021), few-shot (Zhou et al.,
2022a), and full finetuning (Dong et al., 2022) scenarios. Building upon this body of work, our ap-
proach learns region-aligned representations for open-vocabulary detection by leveraging detector
architecture during the contrastive pretraining.

Self-supervised pretraining for visual tasks. Self-supervised learning has emerged as a promis-
ing paradigm to learn object features for complex visual tasks such as detection, given the challenge
of scaling up human annotations. Early efforts designed pretext tasks that require semantic under-
standing to solve (Doersch et al., 2015; Pathak et al., 2016; Zhang et al., 2016). Subsequently, the
idea of contrastive learning became popular where the pretext tasks are specified in the data itself,
where the contrastive samples can take the forms of augmented images (Chen et al., 2020), sliding
windows (Xiao et al., 2021), object proposals (Wei et al., 2021), or point samples (Bai et al., 2022).
In addition to contrastive learning, alternative strategies like pseudo-labeling (Zhong et al., 2021),
raw pixel (He et al., 2022) and image feature reconstruction (Bao et al., 2021; Zhou et al., 2021)
have also proven effective. While the majority of these methods have focused on learning from im-
ages without textual context, and applying to closed-vocabulary detection, our work leverages large
image-text data to tackle the more demanding open-vocabulary detection task.

Open-vocabulary object detection and segmentation. Open-Vocabulary detection has made
very rapid progress in recent years (Zareian et al., 2021; Gu et al., 2022; Zhong et al., 2022). A
common approach is to repurpose the capabilities of pretrained vision-language models (VLM) for
detection. Various techniques including knowledge distillation (Gu et al., 2022) and prompt opti-
mization (Du et al., 2022) have been used to train an open-vocabulary detector with the pretrained
VLM. Pseudo-boxes and weak-labeling methods (Zhong et al., 2022; Li et al., 2022a; Zhou et al.,
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Figure 1: DITO method. Detection-Oriented Pretraining (left): DITO trains the detector heads (e.g. FPN (Li
et al., 2022b; Lin et al., 2017a), Faster RCNN head (Ren et al., 2015)) upon a ViT encoder backbone with
multi-level image-text contrastive loss to bridge the gap between image-text pretraining and open-vocabulary
detection. Shifted-Window Learning for detection (right): DITO rolls the image and combine the shifted
features with the original features to mitigate the bias of window attention grid (Li et al., 2022b), and produce
more robust semantic representation.

2022b; Gao et al., 2022; Feng et al., 2022) have also been used to recover the region-level infor-
mation missing from the image-level pretraining. In addition, pretrained VLM backbone can be
directly employed by adding new detection heads either by setting the backbone frozen (Kuo et al.,
2023) or finetunable (Minderer et al., 2022; Kim et al., 2023b).

Pretraining the vision-language models for open-vocabulary object detection is a recent direc-
tion. Yao et al. (2023); Zhang et al. (2022) train on a combination of a detection, grounding, and
caption data to learn the word-region alignment. RO-ViT (Kim et al., 2023b) proposes region-aware
positional embeddings for contrastive model training and uses the focal loss (Lin et al., 2017b)
for contrastive learning. Our work is more closely related to the latter approaches, where object
detection-oriented pretrainig is built in the pretraining phase of our model. Regarding backbone
architecture, ConvNet, ViT (Dosovitskiy et al., 2020) or hybrid models (Liu et al., 2021) have been
used in existing works. We adopt ViT with window attention in this work, and propose a shifted
window learning approach to mitigate the window-induced bias.

3 METHOD

We address the problem of open-vocabulary object detection. At training time, the model can access
the class and box labels of base categories (CB). At test time, the model is tasked with detecting
objects from a set of novel categories (CN ) not present in the training set. To achieve this, we
leverage pretrained vision and language models (VLMs) building upon prior studies (Gu et al., 2022;
Zhong et al., 2022; Kuo et al., 2023). However, instead of taking classification-based pretrained
VLMs, we demonstrate how to enhance the VLMs with detector head in image-text pretraining, and
propose shifted-window learning (SWL) strategy to improve open-vocabulary detection.

3.1 PRELIMINARIES

Image-text pretraining. Inspired by prior works in open-vocabulary detection, we adopt dual-
encoder contrastive image-language pretraining (Radford et al., 2021; Jia et al., 2021) before apply-
ing the detection finetuning. The image embeddings {v} and text embeddings {l} are the average-
pooled outputs from the image and text encoders, respectively. As in previous works, we compute
the dot product of the embeddings in batch B, and scale it by a learnable temperature τ before ap-
plying the InfoNCE loss (Oord et al., 2018; Radford et al., 2021). Mathematically, the image-to-text
(I2T) loss can be expressed as:

LI2T = − 1

B

B∑
i=1

log(
exp(vili/τ)∑B
j=1 exp(vilj/τ)

). (1)

The text-to-image (T2I) loss is symmetrical by exchanging the inner/outer summation loops. The
total contrastive loss Lcon is obtained by Lcon = (LI2T + LT2I)/2.

3



Under review as a conference paper at ICLR 2024

Open-vocabulary detection finetuning. At the fine-tuning stage, our detection finetuning recipe
follows previous studies (Zareian et al., 2021; Gu et al., 2022; Kuo et al., 2023; Kim et al., 2023b).
During the training phase, we use the RoI-Align (He et al., 2017) feature as the detection embedding
for each detected region. We replace the fixed-size classifier layer with the text embeddings of base
categories (CB). The detection score pi is determined by calculating the cosine similarity between
the region embedding ri and text embeddings of base categories (CB) followed by a softmax opera-
tion. We prepend an additional background class embedding to CB and use the term “background”
to represent the background category. Any proposals that do not match to any base category an-
notations are treated as background during training. It is important that the text embeddings are
computed from the same text encoder as from the image-text pretraining. During testing, we ex-
pand the text embeddings to include the novel categories (CB ∪ CN ), resulting in (CB ∪ CN + 1)
categories including the background. We calculate the detection scores (pi) as the cosine similarity
between the region embeddings (ri) and the expanded text embeddings.

Apart from the detection embedding (ri), we extract the VLM embedding (Kuo et al., 2023) of
region i by RoI-Align at the last ViT backbone feature map. The VLM score (zi) is calculated
as the cosine similarity with the text embeddings of the combined categories (CB ∪ CN ). As we
train the ViT backbone for detection tasks, there is a tendency to lose the pretrained image-text
knowledge. Inspired by previous work (Kim et al., 2023a), we use a separate frozen ViT backbone
as an open-vocabulary region classifier at inference time to compute the VLM score zi.

To compute the open-vocabulary detection score (siens), we ensemble the detection and VLM scores
by geometric means (Gu et al., 2022; Kuo et al., 2023). The formula is as follows:

si
ens =

{
z
(1−α)
i · pαi if i ∈ CB
z
(1−β)
i · pβi if i ∈ CN

(2)

Here, α, β are floats ∈ [0, 1] that control the weighting of base versus novel categories. The back-
ground score comes from the detection score (pi) alone, because we observe the VLM score of
“background” class is often less reliable.

3.2 DETECTION-ORIENTED PRETRAINING

Standard image-text pretraining uses classification architectures because the language supervision
occurs at the image level rather than object level. Despite showing strong zero-shot classification
performance, this approach often leads to sub-optimal performance for detection tasks. To bridge
this gap, we propose Detection-Oriented Pretraining (DOP) to use detection architecture instead
to capture the rich region-level learning signal in the pretraining phase through the object-oriented
design of detection models such as FPN (Lin et al., 2017a; Li et al., 2022b), RoI-Align (He et al.,
2017). In addition, pretraining with detection architecture allows us to transfer not only the weights
of the image backbone, but also the weights of the detector heads to downstream finetuning tasks.
Thus, the detector heads are not trained from scratch on a limited set of categories, but warm-started
from the knowledge of large image-text data, thereby improving the generalization capability.

Detector head learning from random regions. Figure 1 (left) illustrates our detection-oriented
pretraining system. To achieve the goal of training detector heads on image-text data, we first attach
the simple feature pyramid network (Li et al., 2022b) on the output features of vision transformer
backbone. This is because the vision transformer backbone does not provide multi-level feature
maps as needed by the standard feature pyramid (Lin et al., 2017a). On top of the feature pyramid,
we apply the RoI-Align (He et al., 2017) and Faster R-CNN (Ren et al., 2015) classifier head to
match the classification pathway of pretraining with the region-recognition pathway in detection
finetuning (see Table 5a for ablations).

For each level i of the feature pyramid, we randomly generate ni box regions uniformly over the im-
age by sampling the box size h,w ∼ Uniform(0.2, 1.0) and aspect ratio h/w ∼ Uniform(0.5, 2.0).
The ni value is set proportional to the size of the i-th feature map so that larger feature map would
be covered by more regions. We extract the RoI-features of each region by RoI-Align, and feed
them through the region classifier head (Ren et al., 2015) to obtain the RoI embedding.

Multi-level image-text supervision. After computing the RoI embeddings across pyramid levels,
we perform a max pooling over the RoI embeddings per-level to obtain an image embedding for
each pyramid level. Intuitively, max pooling allows the representation to focus on salient regions and
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discriminative features, thereby learning region-level information without explicit supervision. Then
we apply the standard image-text contrastive loss (see Eqn. 1) on each feature level separately, which
aids the learning of rich semantic and object knowledge within every feature map (see Table 5b for
ablations). The losses from all levels are weighted equally and summed together. As a result of
the multi-level learning, we observe the feature maps possess more localized semantic information
compared to the baseline (see Figure 2).

Different from pseudo-labeling techniques (Zhong et al., 2022; Feng et al., 2022; Huynh et al., 2022)
that require additional steps to prepare and store annotations, our approach learns the detector heads
on the fly via contrastive learning without a need to cache annotations or detection-specific losses.

3.3 SHIFTED-WINDOW LEARNING FOR DETECTION

We perform shifted-window learning on top of the vanilla vision transformer (Dosovitskiy et al.,
2020) without adding or removing any weights. In order to run vision transformer on large detection
images (e.g. 1024 × 1024), we apply window-attention layers on a fixed-size grid K × K, and L
global attention layers evenly spaced throughout the vision transformer (where L = 4) following Li
et al. (2022b). Although information mixing occurs L times through global attention, we observed
that fixed-size grid is still biased by the grid pattern, thereby compromising the representation power
of the backbone. To address the issue, we propose the Shifted-Window Learning (SWL) approach
to mitigate the bias of grid pattern in window-attention vision transformer.

Network Architecture. Figure 1 (right) illustrates our shifted-window learning system. The stan-
dard vision transformer consists of a patchifying layer and a set of transformer layers. After feeding
the image through the patchifying layer, we obtain a feature map of shape (h,w, c). We keep a copy
of this feature map to feed through the rest of the ViT, and create another copy which we roll along
both h and w axes by s pixels. The elements that roll beyond the last position are reintroduced from
the first. The shift size s is set as a fraction q of the window attention cell size M , i.e. s = qM .
Empirically, we set q = 0.5 and the cell size M = 16 equals the image size (e.g. 1024) divided by
the product of patch size (e.g. 16) and the grid size (e.g. 4). We feed the shifted feature map through
the rest of the ViT in the same way as the original feature map. The outputs are two sequence fea-
tures of the same shape (h,w, c). We then unshift the shifted features before combining the two
sequences by averaging. We apply the above shifted window operations in both detection training
and test times (see Table 6 for ablations on various configurations), and observe clear improvements
in representation quality.

Comparison with other architectures. Compared to the Swin Transformer (Liu et al., 2021), we
apply the shifted-window ideas as separate forward passes, while Swin Transformer applies simi-
lar ideas in an alternating manner layer by layer. Our approach requires no change to the vanilla
transformer architecture and is compatible with any ViT backbones pretrained without shifted win-
dows (e.g. (Radford et al., 2021)), whereas Swin Transformer requires specialized pretraining on
the same architecture. Compared to the full-attention vision transformer (Dosovitskiy et al., 2020),
we observe that window attention taps more effectively into the region-level semantic knowledge
of pretrained backbone than full attention, perhaps because the window structure helps the model
focus on relevant local cues and be more robust to noises farther away.

4 EXPERIMENTAL RESULTS

Pretraining setup. Our image-text pretraining consists of two phases. We first train a contrastive
VLM from scratch following the standard CLIP (Radford et al., 2021) recipe for 500K iterations,
with 16k batch size, and 224×224 image size. We use the vision transformers as image encoders
and use global average pooling at the last layer instead of CLS-token pooling.

Next, we apply the detection-oriented pretraining (DOP) where we freeze the image and text en-
coders trained in the first phase and introduce the detector heads. We use the Simple FPN (Li et al.,
2022b) and Faster R-CNN classifier head, where we replace the batch normalization with layer nor-
malization. At the i-th pyramid level i ∈ {2, 3, 4, 5}, we randomly sample ni ∈ {400, 200, 100, 50}
box regions and compute their RoI-Align features. We use a short training cycle of 30K iterations,
4k batch size, 256×256 image size, AdamW optimizer with an initial learning rate (LR) of 1e-4,
linear LR decay and warmup of 5k iterations. The ALIGN (Jia et al., 2021) image-text dataset is
used by default, although we also explore the more recent DataComp-1B (Gadre et al., 2023). To
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Table 1: LVIS open-vocabulary detection (mask/box AP). DITO outperforms the best existing approach by
+6.5 mask APr in the standard benchmark, and by +12.5 box APr in the unconstrained setting (Minderer et al.,
2022). ?: uses the public DataComp-1B (Gadre et al., 2023) data in pretraining. §: uses filtered Objects365
box annotations in detection training.

method pretrained
model

detector —-
backbone —-

mask
APr

mask
AP

box
APr

box
AP

ConvNet based:
VL-PLM (Zhao et al., 2022) ViT-B/32 R-50 17.2 27.0 - -
OV-DETR (Zang et al., 2022) ViT-B/32 R-50 17.4 26.6 - -
DetPro-Cascade (Du et al., 2022) ViT-B/32 R-50 20.0 27.0 21.7 30.5
Rasheed (Rasheed et al., 2022) ViT-B/32 R-50 21.1 25.9 - -
PromptDet (Feng et al., 2022) ViT-B/32 R-50 21.4 25.3 - -
OADB (Wang et al., 2023) ViT-B/32 R-50 21.7 26.6 21.9 28.7
RegionCLIP (Zhong et al., 2022) R-50x4 R-50x4 22.0 32.3 - -
CORA (Wu et al., 2023b) R-50x4 R-50x4 - - 22.2 -
BARON (Wu et al., 2023a) ViT-B/32 R-50 22.6 27.6 23.2 29.5
CondHead (Wang, 2023) R-50x4 R-50x4 24.4 32.0 25.1 33.7
Detic-CN2 (Zhou et al., 2022b) ViT-B/32 R-50 24.6 32.4 - -
ViLD-Ens (Gu et al., 2022) EffNet-B7 EffNet-B7 26.3 29.3 27.0 31.8
3Ways(Arandjelović et al., 2023) NFNet-F6 NFNet-F6 - - 30.1 44.6
F-VLM (Kuo et al., 2023) R-50x64 R-50x64 32.8 34.9 - -

ViT based:
OWL-ViT (Minderer et al., 2022) ViT-H/14 ViT-H/14 - - 23.3 35.3
OWL-ViT (Minderer et al., 2022) ViT-L/14 ViT-L/14 - - 25.6 34.7
RO-ViT (Kim et al., 2023b) ViT-B/16 ViT-B/16 28.0 30.2 28.4 31.9
RO-ViT (Kim et al., 2023b) ViT-L/16 ViT-L/16 32.1 34.0 33.6 36.2
CFM-ViT (Kim et al., 2023a) ViT-B/16 ViT-B/16 28.8 32.0 29.6 33.8
CFM-ViT (Kim et al., 2023a) ViT-L/16 ViT-L/16 33.9 36.6 35.6 38.5
DITO (ours) ViT-B/16 ViT-B/16 32.5 34.0 34.9 36.9
DITO (ours) ViT-L/16 ViT-L/16 38.4 36.3 41.1 40.4
DITO (ours) ? ViT-L/16 ViT-L/16 40.4 37.7 42.8 40.7

with external box annotations:
OWL-ViT (Minderer et al., 2022) § ViT-B/16 ViT-B/16 - - 20.6 27.2
OWL-ViT (Minderer et al., 2022) § ViT-L/14 ViT-L/14 - - 31.2 34.6
DetCLIPv2 (Yao et al., 2023) § Swin-L Swin-L - - 33.3 36.6
DITO (ours) § ViT-L/16 ViT-L/16 - - 45.8 44.2

improve the region-awareness of the backbone, we adopt the cropped positional embedding (Kim
et al., 2023b) for both phases of pretraining.

Detection finetuning setup. We train the detector with image size 1024 × 1024 and use window
attention in the backbone with grid size 4×4 as in Li et al. (2022b). The learning rate for the
backbone is set lower as 0.6× of the detector head layers. The text embedding of each category
is calculated as the average over the CLIP prompt templates. We use the batch size 128, the SGD
optimizer with momentum 0.9. The initial learning rate and iterations are set to 0.18 and 36.8k for
LVIS, and 0.02 and 11.3k for COCO datasets.

4.1 COMPARISON TO THE STATE-OF-THE-ART

Comparisons on LVIS. In Table 1, we report the comparison with existing methods on the chal-
lenging LVIS benchmark. The ‘frequent’ and ‘common’ classes of the dataset belong to the base
categories CB , and the ‘rare’ classes are the novel categories CN . The primary benchmark met-
ric is the mask AP on rare classes (mask APr). The best DITO model achieves the performance
of 38.4 mask APr, which significantly outperforms the current state-of-the-art approaches RO-ViT
and CFM-ViT with the same ViT-L backbone by +6.3 and +4.5 points using the same pretraining
data (Jia et al., 2021). We achieve 40.4 mask APr when we replace the ALIGN (Jia et al., 2021) with
DataComp-1B (Gadre et al., 2023). With the smaller ViT-B backbone, DITO maintains a healthy
margin of around +4 APr above existing approaches based on ViT-B.

In addition, we present system-level comparisons in the unconstrained setting of Minderer et al.
(2022) where additional non-LVISrare object annotations e.g. Objects365 (Shao et al., 2019) can be
used in detection training (denoted by § in Table 1), and report the box APr metric. In this setting, we
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Table 2: COCO open-vocabulary detection (box AP50). DITO demonstrates a very competitive novel
category AP without using pseudo labeling or weak supervision. ‡: uses an external MViT detector (Maaz
et al., 2022). §: uses filtered Objects365 annotations for training.

method pretrained
model

detector
backbone novel AP AP

ConvNet based:
OV-RCNN (Zareian et al., 2021) R-50 R-50 22.8 39.9
ViLD (Gu et al., 2022) ViT-B/32 R-50 27.6 51.3
F-VLM (Kuo et al., 2023) R-50 R-50 28.0 39.6
OV-DETR (Zang et al., 2022) ViT-B/32 R-50 29.4 52.7
with pseudo box labels:
PromptDet (Feng et al., 2022) ViT-B/32 R-50 26.6 50.6
XPM (Huynh et al., 2022) R-50 R-50 27.0 41.2
OADB (Wang et al., 2023) ViT-B/32 R-50 30.0 47.2
CondHead (Wang, 2023) R-50 R-50 33.7 51.7
VL-PLM (Zhao et al., 2022) ViT-B/32 R-50 34.4 53.5
RegionCLIP (Zhong et al., 2022) R-50x4 R-50x4 39.3 55.7
CORA (Wu et al., 2023b) R-50x4 R-50x4 43.1 56.2
with weak supervision:
Detic-CN2 (Zhou et al., 2022b) ViT-B/32 R-50 24.6 32.4

ViT based:
RO-ViT (Kim et al., 2023b) ViT-B/16 ViT-B/16 30.2 41.5
RO-ViT (Kim et al., 2023b) ViT-L/16 ViT-L/16 33.0 47.7
CFM-ViT (Kim et al., 2023a) ViT-B/16 ViT-B/16 30.8 42.4
CFM-ViT (Kim et al., 2023a) ViT-L/16 ViT-L/16 34.1 46.0
DITO (ours) ViT-B/16 ViT-B/16 38.6 48.5
DITO (ours) ViT-L/16 ViT-L/16 40.8 50.3

methods with external box annotations:
Rasheed (Rasheed et al., 2022) ‡ ViT-B/32 R-50 36.9 51.5
BARON (Wu et al., 2023a) ‡ R-50 R-50 42.7 51.7
DITO (ours) § ViT-L/16 ViT-L/16 46.1 54.2

Table 3: Transfer detection from LVIS to Objects365 (box AP). All models are tested on Objects365 dataset
following the setup of Gu et al. (2022). DITO outperforms existing methods with comparable backbone size.

method backbone AP AP50 AP75

Supervised (Gu et al., 2022) R-50 25.6 38.6 28.0
ViLD (Gu et al., 2022) R-50 11.8 18.2 12.6
DetPro (Du et al., 2022) R-50 12.1 18.8 12.9
BARON (Wu et al., 2023a) R-50 13.6 21.0 14.5
F-VLM (Kuo et al., 2023) R-50x16 16.2 25.3 17.5
F-VLM (Kuo et al., 2023) R-50x64 17.7 27.4 19.1

RO-ViT (Kim et al., 2023b) ViT-L/16 17.1 26.9 18.5
CFM-ViT (Kim et al., 2023a) ViT-L/16 18.7 28.9 20.3
DITO (ours) ViT-L/16 19.8 30.4 21.2

additionally pretrain the detector on Objects365 annotations with LVISrare categories filtered out.
Then, we conduct the same LVISbase training in the standard setting. The additional Objects365
annotations provide a significant boost to DITO and yields the state-of-the-art 45.8 box APr, +12.5
APr over the state of the art in this setting.

Comparisons on COCO. We present the comparisons on COCO benchmark in Table 2. The main
metric is AP50 of novel categories (novel AP). Our model demonstrates a very competitive result
40.8 novel AP without using pseudo labeling (Feng et al., 2022; Huynh et al., 2022; Zhao et al.,
2022; Zhong et al., 2022), weak supervision (Zhou et al., 2022b), or externally trained detector
modules (Rasheed et al., 2022; Wu et al., 2023a). Among the ViT-based methods, DITO outper-
forms RO-ViT (Kim et al., 2023b) and CFM-ViT (Kim et al., 2023a) by a clear margin of +7.2 and
+6.1 points, respectively. In the unconstrained setting, we observe that training on additional box
labels of Shao et al. (2019) before the COCObase training further improves DITO to 46.1 novel AP,
surpassing all existing works that use external box annotations. The Objects365 annotations are
deduplicated against all 80 COCO categories.
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Table 4: Ablation studies on LVIS benchmark. We train on base (‘frequent’ + ‘common’) categories, and
report APr on novel (‘rare’) categories

(a) Detection-Oriented Pretraining (DOP) and
Shifted-Window Learning (SWL).

pretraining method APr AP

baseline 36.2 (+0.0) 37.4
w/ DOP 38.5 (+2.3) 38.3
w/ SWL 40.3 (+4.1) 39.7
w/ DOP + SWL 41.2 (+5.0) 40.5

(b) Frozen backbone inference.

detector inference APr AP

baseline 36.2 (-0.0) 37.4
without frozen backbone 32.8 (-3.4) 36.3

Table 5: Ablation on Detection-Oriented Pretraining (DOP). Best setting is marked by gray.

(a) Detector components.
pretraining method APr AP

baseline 36.2 (+0.0) 37.4
w/ FPN 37.2 (+1.0) 37.5
w/ FPN + Head 38.5 (+2.3) 38.3

(b) RoI sampling and pooling.
RoI embedding APr AP

single whole-image RoI 37.8 38.0
multiple RoIs, mean per level 37.5 37.9
multiple RoIs, max per level 38.5 38.3
multiple RoIs, max all levels 37.7 38.1

Table 6: Ablation on Shifted-Window Learning (SWL). Our chosen setting is marked by gray.

(a) Shifted-window backbone.
shifted-window APr AP

baseline 36.2 (+x.x) 37.4
frozen backbone 37.4 (+1.2) 37.6
finetuned backbone 38.9 (+2.7) 39.4
both backbones 40.3 (+4.1) 39.7

(b) Window division.
grid APr AP

1×1 35.7 37.6
2×2 37.7 39.0
4×4 40.3 39.7
8×8 35.2 37.9

(c) Window shift size.
stride APr AP

16 36.2 37.4
8 40.3 39.7
4 40.6 39.9

Transfer detection. We further evaluate DITO in the transfer detection setting, where the open-
vocabulary detector trained on one dataset is tested on another dataset without any finetuning. Fol-
lowing the setup of ViLD (Gu et al., 2022), the detectors trained on LVISbase are evaluated on
Objects365 dataset by simply replacing the text embeddings. Table 3 shows that DITO achieves
19.8 AP, outperforming previous methods using ConvNet or ViT backbones of similar size.

4.2 ABLATION STUDIES

To study the advantages of DITO methods, we provide ablation studies on the LVIS benchmark. We
use ViT-L/16 backbone and report box APr for ablations.

DITO framework. In Table 4a, we verify that the gains demonstrated by DITO come from our
proposed detection-oriented pretraining (DOP) as well as the shifted-window learning (SWL). Our
baseline uses the CLIP pretraining with cropped positional embedding (Kim et al., 2023b). For
detection, the baseline adopts the frozen backbone inference method as in CFM-ViT (Kim et al.,
2023a). It already achieves a very strong performance of 36.2 APr, higher than the state-of-the-art
CFM-ViT by +0.6 point. On top of this, our proposed detection-oriented pretraining achieves a gain
of +2.3 APr and SWL improves the baseline by +4.1 APr. By combining both strategies, DITO
shows a significant gain of +5.0 APr over the baseline. Table 4b reports that excluding the frozen
backbone inference leads to a drop of -3.4 APr, which is consistent with the findings in CFM-ViT.

Detection-Oriented Pretraining. To further investigate our detection-oriented image-text pre-
training, we ablate in Table 5a by progressively adding the FPN and Faster R-CNN head into the
pretraining. The ‘w/ FPN’ only introduces the FPN, where each pyramid level map is mean-pooled
into an image embedding, followed by the image-text contrastive loss per level. It improves the
baseline by +1.0 APr. Incorporating both FPN and Faster R-CNN head (see Section 3.2) further
improves the alignment between the pretraining and the detection finetuning, achieving 38.5 APr,
a gain of +2.3 points over the baseline. Table 5b ablates different RoI sampling strategies and the
pooling of the RoI embeddings. We first observe that sampling multiple RoIs instead of using the
whole-image RoI achieves the best performance. After computing the RoI embeddings, we find max
pooling over the RoI embeddings performs better than mean pooling, and pooling per pyramid level
(i.e., multi-level image-text supervision) is better than pooling over all levels.
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“a man riding a cart pulled by a donkey” “a crane operates amidst piles of rubble” “a person wearing blue rubber gloves is 
loading a syringe with vegetables”

“cows on the street next to people that 
are on the sidewalk”

“small white bird sits on the back of a 
horse in an open field”

“a mother and her two children sit on a 
green bench”

Figure 2: Visual-text similarity map. For each example, we show the paired image (left) and text (bot-
tom) input, and the visual-text similarity map using the backbone features (middle) or our detection-oriented
pretraining features (right). We use Flickr30K (top row) and COCO Captions (bottom row) datasets.

Figure 3: DITO prediction. LVIS results (left three) only show the novel categories (e.g., bulldozer, fishbowl,
subwoofer, heron). While Ego4D (right two) is a real-world and out-of-distribution data, many unseen objects
are detected (e.g., steel lid, sticker on the wall, recycle bin). Best viewed with zoom in.

Shifted-Window Learning for detection. As discussed in Section 3.1, our baseline detector
adopts a separate frozen ViT backbone at inference (Kim et al., 2023a) to compute the VLM scores
pi in Equation 2. In Table 6a, we ablate applying shifted window in the frozen and finetuned (detec-
tor) backbones. We find that it improves the performance in all cases, and using the shifted window
in both backbones brings the largest gain of +4.1 APr. Table 6b compares different window at-
tention division. Note that the grid size ‘1×1’ uses global attention throughout all layers without
any window attention and thus without shifting operation. OWL-ViT (Minderer et al., 2022) uses
this full global attention with its pretrained CLIP ViT backbone. Interestingly, we observe that our
SWL outperforms the full global attention by +4.6 APr with the grid size 4×4 being the optimal
value. Table 6c ablates the window shift size (s in section 3.3). Setting the shift size the same as
the window attention cell size (i.e., 16) is equivalent to the non-shifted window baseline. We choose
stride s = 8 in our method as a denser stride brings only marginal improvements.

4.3 VISUALIZATION

In Figure 2, we visualize the similarity map between the image features and a query text embedding
using the Flickr30K (Plummer et al., 2015) and COCO Captions (Chen et al., 2015b) datasets. For
each sample, we compare the baseline backbone features (middle) and our detection-oriented pre-
training features (right). We select pyramid level 4 which has the same resolution as the backbone
features and apply the Faster R-CNN head in a sliding window manner to obtain the dense feature
map. We observe that our detection-oriented pretraining results in more localized semantic informa-
tion given the queried image-text pairs. In Figure 3, we visualize the DITO outputs on LVIS novel
categories and Ego4D (Grauman et al., 2022) which is real-world and out-of-distribution data. We
use the same DITO detector trained on LVISbase, and observe that it is able to capture many novel
and unseen objects even under the significant domain shift.

5 CONCLUSION

We introduce DITO – a detection-oriented approach to learn from noisy image-text pairs for open-
vocabulary detection. By replacing the classification architecture with detection architecture, DITO
learns the locality-sensitive information from large-scale image-text data without a need for pseudo-
labeling or additional losses. Furthermore, we present a shifted-window learning method to mitigate
the bias of window attention pattern in vision transformer detectors. Experiments show that DITO
outperforms the state-of-the-art by large margins on the LVIS benchmark, and is very competitive
on the COCO benchmark and transfer detection. We hope this work would inspire the community
to explore detection-oriented image-text pretraining for open-vocabulary localization tasks.
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6 ETHICS STATEMENT

Our models utilize the rich image-text information acquired through pretraining, which may rein-
force deficiencies and biases in the raw web data and expose potentially harmful biases or stereo-
types. The models we trained are designed for academic research purposes and need more rigorous
fairness studies before serving other applications.

7 REPRODUCIBILITY STATEMENT

We plan to open source the code for reproducibility. The model, experimental and implementation
details are provided in the paper and supplementary materials. The detector model (He et al., 2017;
Li et al., 2022b), pretraining image-text data (Gadre et al., 2023), and detection datasets (Gupta
et al., 2019; Shao et al., 2019) in this work are publicly available.
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A APPENDIX

A.1 LIGHTWEIGHT BACKBONE COMPARISON

Existing ViT-based open-vocabulary detection approaches typically focus on backbones heavier than
the commonly used ResNet-50. In Table 7, we present additional LVIS benchmark results using a
light-weight ViT-S/16 backbone, which is comparable in parameter count to ResNet-50. DITO
outperforms the previous best approach using ResNet-50 backbone by a clear margin of +5.2 mask
APr. We use DataComp-1B (Gadre et al., 2023) data for pretraining in this experiment.

A.2 PRETRAINING AND FINETUNING PARAMETERS

Table 8 summarizes the hyperparameters used in our Detection-Oriented Pretraining (DOP) and
open-vocabulary detection finetuning.
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Table 7: Lightweight backbone benchmark on LVIS. DITO with ViT-S backbone significantly outperforms
the best approach based on ResNet-50 by +5.2 mask APr .

method pretrained
model

detector –
backbone –

mask
APr

mask
AP

box
APr

box
AP

ViLD-ens (Gu et al., 2022) ViT-B/32 R-50 16.6 25.5
VL-PLM (Zhao et al., 2022) ViT-B/32 R-50 17.2 27.0 - -
OV-DETR (Zang et al., 2022) ViT-B/32 R-50 17.4 26.6 - -
RegionCLIP (Zhong et al., 2022) R-50 R-50 17.4 26.7 17.1 28.2
F-VLM (Kuo et al., 2023) R-50 R-50 18.6 24.2 - -
Detic (Zhou et al., 2022b) ViT-B/32 R-50 19.5 30.9 - -
DetPro-Cascade (Du et al., 2022) ViT-B/32 R-50 20.0 27.0 21.7 30.5
Rasheed (Rasheed et al., 2022) ViT-B/32 R-50 21.1 25.9 - -
PromptDet (Feng et al., 2022) ViT-B/32 R-50 21.4 25.3 - -
OADP (Wang et al., 2023) ViT-B/32 R-50 21.7 26.6 21.9 28.7
BARON (Wu et al., 2023a) ViT-B/32 R-50 22.6 27.6 23.2 29.5
DITO (ours) ViT-S/16 ViT-S/16 27.8 29.4 29.0 31.3

Table 8: Hyperparameters for Detection-Oriented Pretraining (left) and open-vocabulary detection fine-
tuning (right)

Detection-Oriented Pretraining
optimizer AdamW
momentum β=0.9
weight decay 0.01
learning rate 0.0001
warmup steps 5k
total steps 30k
batch size 4096
image size 256

OVD finetuning LVIS / COCO
optimizer SGD
momentum β=0.9
weight decay 0.0001
learning rate 0.18 / 0.02
backbone lr ratio 0.6× / 0.2×
step decay factor 0.1×
step decay schedule [0.8, 0.9, 0.95]
warmup steps 1k
total steps 36.8k / 11.3k
batch size 128
image size 1024

A.3 APPLICATION ON EGO4D DATA

In Figure 3, we test DITO’s transfer detection to a real-world ego-centric data, Ego4D (Grauman
et al., 2022). We use the same DITO trained on LVISbase categories with ViT-L/16 backbone

The categories are provided by the user based on visual inspection of the video as follows:

plate, cabinet, stove, towel, cleaning rag, ventilator, knob, sauce and seasoning, steel lid, window,
window blinds, plant, light switch, light, door, carpet, exit sign, doormat, hair, door lock, tree, poster
on the wall, sticker on the wall, faucet, recycle bin, rack, hand, can, carton, trash, Christmas tree,
plastic container, fridge.

A.4 DATASET LICENSE

• DataComp (Gadre et al., 2023): MIT License
• COCO (Lin et al., 2014): Creative Commons Attribution 4.0 License
• LVIS (Gupta et al., 2019): CC BY 4.0 + COCO license
• COCO Captions (Chen et al., 2015a): CC BY
• Flickr30k (Plummer et al., 2015): Custom (research-only, non-commercial)
• Objects365 (Shao et al., 2019): Custom (research-only, non-commercial)
• Ego4D (Grauman et al., 2022): https://ego4d-data.org/pdfs/
Ego4D-Licenses-Draft.pdf
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