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Abstract
For many application domains, the integration
of machine learning (ML) models into decision
making is hindered by the poor explainability and
theoretical guarantees of black box models. Al-
though the emerging area of algorithms with pre-
dictions offers a way to leverage ML while enjoy-
ing worst-case guarantees, existing work usually
assumes access to only one predictor. We demon-
strate how to more effectively utilize historical
datasets and application domain knowledge by in-
tentionally using predictors of different quantities.
By leveraging the heterogeneity in our predictors,
we are able to achieve improved performance,
explainability, and computational efficiency over
predictor-agnostic methods. Theoretical results
are supplemented by large-scale empirical eval-
uations with production data demonstrating the
success of our methods on optimization problems
occurring in large distributed computing systems.

1. Introduction
The recent rapid advancements in artificial intelligence (AI)
have the potential to reshape and transform industries world-
wide. Yet barriers to complete AI adoption still remain.
The top concerns of companies include maintaining the in-
tegrity of their brand, customer trust, and meeting external
regulatory and compliance obligations (IBM, 2022). Black
box ML models alone are unable to provide the theoretical
guarantees and explainability required for trustworthy AI.

One promising solution comes from the recent area of al-
gorithms with predictions (Mitzenmacher & Vassilvitskii,
2022). By incorporating ML predictions into classical on-
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line algorithms, researchers are able to create data-driven al-
gorithms that have theoretical worst-case guarantees. These
algorithms aim to optimally trade-off between consistency
(performance when predictions are accurate) and robustness
(performance when predictions are noisy). With proper cal-
ibration, these algorithms exploit high-quality predictions
and default to classical online decision making when predic-
tions are noisy.

A large gap still remains between the current algorithms with
predictions framework and practice. The algorithms with
predictions literature overwhelmingly consider access to one
prediction. Defaulting to the classical online assumption of
no information about the future when one prediction is inac-
curate neglects the vast domain knowledge of practitioners.
Businesses typically have many different mathematical and
computational models to forecast quantities of interest that
can greatly improve algorithm performance.

Several recent papers (Anand et al., 2022; Dinitz et al., 2022;
Wang et al., 2020) consider the setting of online algorithms
with multiple predictions. However, these works exclusively
consider multiple predictions of the same quantity. For
example, Dinitz et al. consider a portfolio of predictions
generated by different ML models that cover the hyperpa-
rameter space. Although the predictors are able to specialize
to different scenarios, there is no way to know a priori which
predictor will do well on the following problem instance,
thus requiring exploration to find the right choice.

We propose an alternative approach of incorporating predic-
tions of different quantities. The first predictor we introduce
is a parameter predictor that learns the correct value of
a tunable parameter of an online algorithm. The second
predictor is an input predictor that predicts the unknown
future inputs of the online algorithm in the form of short
look-ahead windows. We demonstrate that the two predic-
tors have different theoretical properties and how to exploit
these differences for improved performance.

Our Contributions. We initiate the study of algorithms
with heterogeneous predictors and provide the first results
showing that multiple noisy predictors outperform one, even
in worst-case settings. Our approaches have better perfor-
mance, explainability, and computational efficiency over
predictor-agnostic methods, and can even tackle real-world
challenges such as COVID-19 related distributional shifts.
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2. Background
Our contributions in this paper build on the recent area
of online algorithms with predictions (sometimes called
algorithms with untrusted advice or learning-augmented
algorithms). This field of study aims to unify the strong
average performance of ML methods with the worst-case
performance guarantees of online algorithms. The area has
seen fast progress since the seminal paper of Lykouris &
Vassilvitskii (2018), however much of that progress has been
driven by theory. This paper aims to move the ideas of algo-
rithms with predictions one step closer to implementation
in real-world systems. We initiate the study of online algo-
rithms with heterogeneous predictors to more fully utilize
the vast historical datasets and human domain knowledge
available in practice. Although we consider rent/buy prob-
lems, our framework easily extends to many other settings.

We introduce the terminology parameter predictors and in-
put predictors, but these concepts are present in previous
literature. Many online problems can be cleanly character-
ized by problem-specific parameters, motivating the use of
predictions of this parameter. Parameter predictions have
been used in settings such as the break-even point of rent-or-
buy problems (Purohit et al., 2018; Gollapudi & Panigrahi,
2019; Wang et al., 2020; Wei & Zhang, 2020; Lee et al.,
2021), item frequencies in bin packing (Angelopoulos et al.,
2022), maximum price in online conversion problems (Sun
et al., 2021), and next page requests in caching (Lykouris
& Vassilvitskii, 2018; Wei, 2020). In other online prob-
lems, predictions of problem inputs are more natural. Such
problems include linear quadratic control (Li et al., 2022)
and scheduling (Bamas et al., 2020; Bampis et al., 2022).
Although parameter and input predictors are familiar, they
are seldom used together.

3. Rent/Buy with Constrained Resources
In the traditional ski rental problem, a skier has the choice
of either renting or buying skis but does not know how many
days they will be skiing. This online optimization problem
can be framed as satisfying a time-varying demand by ei-
ther using a resource that charges by the average utilization
(renting) or by the max utilization (buying). Although the
demand is binary in the ski rental setting, the problem can be
naturally generalized to rent/buy problems with continuous
demand.

We consider a variant of the rent/buy problem where there
are multiple renting options and multiple buying options,
but resources now have capacity constraints. For brevity,
we use the term AVG (resp., MAX) resource, instead of
resource with a renting (resp. buying) pricing scheme. The
rent/buy problem with multiple constrained resources has
many practical applications, for instance running cloud ap-

plications (Khanafer et al., 2014), computation offloading
in heterogeneous mobile clouds (Zhou et al., 2018), or mini-
mizing bandwidth costs for large distributed systems (Adler
et al., 2011) (see Section 5 for more details).

The rent/buy problem with multiple constrained resources
can be stated as follows. For each time instant in a fixed time
horizon T = {1, . . . , T}, a demand d(t) is revealed. This
demand must be satisfied by using the AVG and MAX re-
sources. Let N be the set of AVG resources (with |N | = n)
and M be the set of MAX resources (with |M| = m). For
an AVG resource i ∈ N , the demand satisfied by that re-
source at time t is xi(t) and the corresponding total cost is
proportional to xi =

1
T

∑
t∈T xi(t). Similarly for a MAX

resource j ∈ M, the demand satisfied by that resource at
time t is yj(t) and the corresponding total cost is propor-
tional to yj = maxt∈T yj(t). We use the convention that
resources are indexed in ascending order of cost. Finally
the resources have constant capacity over the time horizon,
with DN

i and DM
j as the capacity of the i-th AVG and j-th

MAX resource, respectively.

The resulting offline optimization problem is:

min
x,y

C(x,y) =
∑
i∈N

cNi xi +
∑
j∈M

cMj yj (1)

s.t.
∑
i∈N

xi(t) +
∑
j∈M

yj(t) = d(t), t ∈ T ,

0 ≤ xi(t) ≤ DN
i , i ∈ N , t ∈ T ,

0 ≤ yj(t) ≤ DM
j , j ∈ M, t ∈ T ,

where the first constraint ensures that all demand is satisfied.

3.1. Break-Even Structure of the Offline Optimal

Similarly to the ski rental problem, the offline optimal solu-
tion of the rent/buy problem with constrained resources has
a break-even structure. Any instance of (1) has an optimal
offline solution (x∗,y∗) with the following property: all ar-
riving traffic up until a certain amount β∗ (the optimal break-
even point) is satisfied using the MAX resources, i.e. at each
time instant

∑
j∈M y∗j (t) = min{d(t), β∗,

∑
j∈M DM

j }.
All demand over that cutoff amount β∗ is satisfied using the
AVG resources, i.e.

∑
i∈N x∗

i (t) = d(t) −
∑

j∈M y∗(t).
Once the demand is divided among N and M, the available
resources are used greedily to capacity from the cheapest
to the most expensive (see Algorithm 4). Thus the optimal
solution of (1) is fully characterized by β∗.

3.2. Optimal Algorithm without Predictions

Previous work on the rent/buy problem with constrained
resources introduced an optimal online deterministic algo-
rithm (Adler et al., 2011). The optimal algorithm utilizes a
break-even point vector β = {β(1), . . . , β(T )}, so that the
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break-even point can be refined as demand is revealed over
the time horizon. Adler et al. demonstrate that this algo-
rithm provably learns the correct value of β∗ by the end of
the time horizon and in doing so incurs a cost at most twice
that of the offline optimal. We will refer to this algorithm as
Dynamic Break-Even Optimization (DBO). Further details
on DBO can be found in Appendix A.

4. Online Algorithms with Predictions
Although future-oblivious algorithms provide the best per-
formance guarantee in the worst case setting, they are often
pessimistic and overly conservative. In practice, algorithms
that utilize predictions are preferred due to their better per-
formance on typical inputs. The downside of using predic-
tions is the lack of performance guarantees. We address
this problem by first providing a theoretical analysis of
data-driven methods for rent/buy problems with constrained
resources. Specifically we consider the two extremes of
predictors: (1) a static parameter prediction of the opti-
mal break-even point available at the beginning of the time
horizon and (2) a dynamic input prediction of the future
demand that can be updated over time. Our analyses use the
competitive ratio performance metric.

4.1. Parameter Predictions

Static predictions of the optimal break-even point are a
natural starting point. We assume that there is an ML model
that predicts β̂ as the estimated value of the optimal offline
break-even point β∗. The ML model can be trained using
supervised methods on historical demand instances, with the
labels generated by solving the offline optimization problem.
We assume that this estimate is provided at the beginning
of the time horizon. As predictions are rarely perfect, we
denote the normalized error of the parameter predictor by
ϵpar = |β∗− β̂|/maxt∈T d(t). Reliance on predictions with
large ϵpar may degrade the performance beyond the worst-
case guarantees of pure online algorithms, while predictions
with small ϵpar almost match the offline optimal solution.

We now introduce Parameter Prediction Static Break-Even
Optimization (parSBO), a simple data-driven algorithm
that integrates the advice β̂ into its decision-making. The
algorithm mimics the offline optimal by dividing the demand
among AVG and MAX resources and then uses the greedy
subroutine. Details of parSBO are shown in Algorithm 1.

Theorem 4.1. parSBO has a competitive ratio of
1 + ϵpar max{µ−, µ+}, where µ− = cNn /cM1 and µ+ =
TcMm /cN1 are problem-specific constants.

See Appendix B.1 for the proof. The problem-dependent
constants µ− and µ+ represent an upper bound on the worst-
case ratio arising from respectively underestimating and
overestimating β∗. Although parSBO achieves near opti-

Algorithm 1 parSBO (Static Break-even Optimization
with Parameter Predictions)

Require: β̂, d, N , M
1: for t = 1, . . . , T do
2: Set βs(t) = β̂
3: Greedily satisfy the demand using Alg. 4 for βs(t)
4: end for
5: return (x(βs), y(βs)) = (x, y)

mal performance when β̂ is of high quality, the algorithm
is highly sensitive to the prediction error with performance
that degrades linearly in ϵpar.

4.2. Input Predictions

Committing to a prediction β̂ induces an inability to ex-
ploit new information that is revealed over the time horizon.
As an alternative, we can instead use input predictions of
the demand itself, that can be dynamically updated to im-
prove their quality. In our model, at each time instant an
algorithm will have access to predictions of the demand
for the next w time instants, where w ≥ 2. We represent
the prediction of the demand at τ available at time t as
d̂t(τ), the full window of predictions available at time t

as d̂t = [d̂t(t), . . . , d̂t(t + w − 1)] and the full set of pre-
dictions available to the algorithm over the time horizon
as [d̂t]t∈T . Since the true current demand is available at
each time instant, d̂t(t) = d(t) for all t ∈ T . However,
it might not be the case that the remaining predictions are
correct. We define the normalized total error ϵin of the input
predictions [d̂t]t∈T as the sum of the error incurred in each
prediction window:

ϵin =
1

maxt∈T d(t)

T∑
t=1

min{t+w−1,T}∑
τ=t

|d̂t(τ)− d(τ)|.

Since input predictions forecast over a shorter time period
and can be updated over the time horizon, usually ϵin ≤
ϵpar. Unlike the parameter predictions which only have two
possible values given ϵpar and β∗, there are infinitely many
possible input predictions [d̂t]t∈T that have an associated
error ϵin.

Although there are many classic algorithms in the class of
Model Predictive Control that optimize using look-ahead
windows, they are ill-suited to the time-coupling present
in rent/buy problems. For example, the popular Reced-
ing Control Horizon algorithm (Bellingham et al., 2002)
with access to perfect predictions achieves a competitive
ratio of T/w on our problem. We instead introduce Input
Prediction Dynamic Break-Even Optimization (inDBO), a
modification of DBO that utilizes input predictions (shown
as Algorithm 2).
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Algorithm 2 inDBO (Dynamic Break-even Optimization
with Input Predictions)

Require: [d̂t]t∈T , d, N , M
1: for t = 1, . . . , T do
2: Set d′(τ) = d(τ) for τ ≤ t, d′(τ) = d̂t(τ) for

t < τ ≤ min{t+ w − 1, T}, d′(τ) = 0 otherwise
3: Solve (1) for d′ and set βd(t) = max{β∗, βd(t− 1)}
4: Greedily satisfy the demand using Alg. 4 for βd(t)
5: end for
6: return (x(βd), y(βd)) = (x, y)

For the performance analysis of inDBO, the adversary has
an error budget that can be allocated in any way to gen-
erate the worst-possible predictions (Comden et al., 2019).
For example the error ϵin can be distributed evenly over
the billing period or used entirely on the predictions for a
specific time-slot.

Theorem 4.2. inDBO is
(
2− (w− ϵinµ

−)/T
)
-competitive.

The proof can be found in Appendix B.2. Although the com-
petitive ratios of both parSBO and inDBO have a linear
dependence on the error of their respective predictions, the
coefficient for parSBO is larger by a factor of T . Compared
to parSBO, inDBO performs worse with perfect predic-
tions, however it is much more robust to prediction error.

4.3. Comparison of Online Algorithms

We now discuss and compare the three online algorithms
seen so far: (1) DBO: the best online algorithm that does
not use any predictions (Adler et al., 2011); (2) parSBO:
our first data-driven algorithm that uses a prediction of the
parameter setting; and (3) inDBO: our second data-driven
algorithm that uses multiple forecasts of future inputs.

4.3.1. CONSISTENCY AND ROBUSTNESS

The competitive ratio metric does not capture the full nuance
of how different algorithms behave under variable predic-
tion error levels. We now define two new performance met-
rics: consistency and robustness, introduced in Purohit et al.
(2018) and Lykouris & Vassilvitskii (2018). Consistency is
the competitive ratio of an algorithm when it has access to
perfect predictions, while robustness is the competitive ratio
of an algorithm when it has access to imperfect predictions.
In our setting, the extent to which a prediction is incorrect
can vary, so the robustness of an algorithm will be a function
of the prediction error. Table 1 shows the consistency and
robustness of the algorithms discussed previously in this
section. Since DBO does not use predictions, its consistency
and robustness are both 2.

Table 1 shows the trade-offs of each algorithm. Although
DBO has bounded worst-case performance in any setting, it

Algorithm Consistency Robustness
DBO 2 2

parSBO 1 1 + ϵpar max{µ−, µ+}
inDBO 2− w/T 2− w/T + ϵinµ

−/T

Table 1. Consistency and robustness of online and prediction-based
algorithms. Using only one of these 3 algorithms in all settings
results in a hard trade-off between good performance in typical
settings (low prediction error) and good performance in the worst-
case (high prediction error).

is unable to exploit available domain knowledge or histor-
ical data. On the other hand, parSBO matches the offline
optimal when predictions are accurate, but its performance
degrades rapidly with error. Finally, inDBO provides a mid-
dle ground between DBO and parSBO by offering a modest
improvement in performance with accurate prediction in
exchange for a lessened impact from inaccurate predictions.
Figure 1 shows a practical take-away of Table 1 on how to
choose between the three online algorithms. When parame-
ter predictions are accurate, parSBO is the best choice. In
the case that the parameter prediction is inaccurate, either
DBO or inDBO could be the best choice, depending on the
quality of the input predictions.

Is the parameter
prediction of
high quality?

Is the input
prediction of
high quality?

Use parSBO Use inDBO

Use DBO

Yes

No

Yes

No

Figure 1. A practical flowchart that summarizes the theoretical
results in Table 1. The flowchart suggests a classification approach,
where the classifier can either be an ML model (see Section 6.1)
or a human expert.

Theorem 4.3. parSBO and inDBO achieve the optimal
consistency for their respective predictors.

The optimality of inDBO can be shown by a reduction to the
ski-rental problem (Lu et al., 2012). Theorem 4.3 shows that
the trade-off seen in Table 1 is not an artifact of the online
algorithms parSBO and inDBO but rather a fundamental
information theoretic property of the different types of pre-
dictors themselves. A parameter predictor that ambitiously
predicts the optimal strategy is on the opposite end of the
risk-reward spectrum compared to an input predictor that
slowly learns the optimal break-even point by forecasting
windows of future demand.

4.3.2. COMPUTATIONAL COMPLEXITY

Another consideration when choosing which algorithm to
implement is the cost of computation. The computational

4



Applied Online Algorithms with Heterogeneous Predictors

cost has two components: (1) the cost of executing the on-
line algorithms and (2) the cost of generating the predictions.
For the former, parSBO has the lowest cost of O(n log n+
m logm) corresponding to sorting the resources for the
greedy subroutine. However any of the *DBO strategies
must compute the offline optimization problem T times
over the time horizon. At a cost of O(L(logm+ T log n))
per iteration, both DBO and inDBO have a complexity of
O(TL(logm+ T log n) + n log n+m logm), where L is
the number of bits required to represent the max demand.

Regarding the cost of predictions, there has been a recent
effort in designing algorithms that utilize fewer predictions
following the work of Bhaskara et al. (2021) and Im et al.
(2022). While DBO has no associated prediction cost and the
cost of parSBO is negligible as the algorithm only requires
one prediction per problem, inDBO requires at least T pre-
dictions of length w. For the best performance, it might even
be necessary to retrain the input prediction model on new
data. From this perspective DBO might be preferable over
inDBO, even when input prediction error is low, simply be-
cause the improvement in algorithm performance does not
justify the computational cost. Existing predictor-agnostic
methods are unable to incorporate this nuance into their
decision making unless explicitly instructed.

4.4. Robust Data-Driven Decision Making

The classification approach suggested by Figure 1 requires
some degree of certainty in anticipated prediction quality.
However it is also possible that practitioners are uncertain
whether ϵpar will be small and instead might want a way
to hedge their bets. To allow for this, we introduce a trust
parameter that allows the user to modify the performance
of an algorithm by adjusting the reliance on predictions.

Definition 4.4. Let λ defined over the interval (0, 1] be a
trust parameter that indicates the level of trust in the pa-
rameter predictor. Employing customary notation, λ → 0
represents full trust in the parameter predictor, whereas
λ → 1 indicates no trust in the parameter predictions at
all. Any values other than 0 or 1 indicate partial trust in the
parameter prediction.

The worst-case cost of an online algorithm equipped with
a trust parameter is a function of the problem parameters,
prediction errors and chosen value of λ.

We incorporate λ into decision-making by using the dy-
namic break-even strategies of DBO and inDBO but now
incentivizing MAX resources used by parSBO with β̂ and
disincentivizing those that are not. Rather than solve the true
problem (1), the algorithm instead solves another problem
that only differs in the costs of the MAX resources, with
incentivized resources having cost λcMj and disincentivized
resources having cost cMj /λ. The algorithm is shown as

Algorithm 3 RoBO (Robustified Break-even Optimization)

Require: λ, β̂, [d̂t]t∈T , b, N , M
1: for t = 1, . . . , T do
2: if using both predictors then
3: Set d′(τ) = d(τ) for τ ≤ t, d′(τ) = d̂t(τ) for

t < τ ≤ min{t+ w − 1, T}, d′(τ) = 0 o.w.
4: else
5: Set d′(τ) = d(τ) for τ ≤ t, d′(τ) = 0 o.w.
6: end if
7: Solve (1) for d′ with MAX resources used by β̂ dis-

counted by λ, all other MAX resources marked up
by 1/λ, and set βλ(t) = max{β∗, βλ(t− 1)}

8: Greedily satisfy the demand using Alg. 4 for βλ(t)
9: end for

10: return (x(βλ), y(βλ)) = (x, y)

Algorithm 3.

Our approach builds off work on other rent/buy problems
that use a similar incentivization scheme to achieve good
consistency-robustness tradeoffs (Purohit et al., 2018; An-
gelopoulos et al., 2020; Wang et al., 2020; Lee et al., 2021).
Unlike previous work, we allow the user to either use DBO
(for RoBO-1) or inDBO (for RoBO-2) to robustify the
parameter predictor and provide protection in the worst-
case. Table 2 shows the consistency and robustness results,
with proofs in Appendix B.3. For the robustness analysis
of RoBO-2, we assume a powerful adversary that couples
ϵpar and ϵin in the worst-possible way. Surprisingly, even
with such a strong adversary, using both noisy predictors
provides better worst-case performance than just one.

Algorithm Consistency Robustness

RoBO-1 1 + λ
1 + λ+

ϵpar
(
min{1/λ, µ−} − λ

)
RoBO-2 1+λ(1−w/T ) 1+λ

(
1−(w−ϵinµ

−)/T
)
+

ϵpar
(
min{1/λ, µ+} − λ

)
Table 2. Consistency and robustness of robustified algorithms that
use either 1 (RoBO-1) or both (RoBO-2) predictors. Varying the
trust parameter λ smoothly trades-off between performance in the
low prediction error and high prediction error regimes.

Theorem 4.5. RoBO-2 Pareto-dominates RoBO-1 when
the following conditions are met: (i) symmetry of worst-case
instances (µ− ≈ µ+) and (ii) sufficiently large look-ahead
window size (w ≥ µ+).

This counter-intuitive result holds for all values of λ and un-
der mild assumptions. The first, symmetry of worst-case in-
stances, requires that underestimating the break-even point
is roughly as bad as overestimating it. This is necessary
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because RoBO-1 and RoBO-2 have their worst-case in-
stances from underestimating and overestimating the break-
even point, respectively. The second requirement, suffi-
ciently large look-ahead window size, requires that RoBO-2
have access to large enough windows of input predictions to
improve over RoBO-1. Satisfying this condition can be as
simple as having input prediction windows of size w > 2.

The vast majority of previous work on learning-augmented
algorithms promotes defaulting to oblivious online decision-
making when predictions are noisy. Theorem 4.5 challenges
this approach by demonstrating that multiple noisy predic-
tors can be combined and consistently provide improved
performance, even in the worst-case.

5. Experimental Setup
We now experimentally evaluate the performance of our
algorithms. Our goal is to provide empirical conclusions that
will help future theory be better aligned with the desiderata
of the real world. The experiments focus on the problem of
bandwidth cost minimization for large distributed systems.

5.1. Bandwidth Cost Minimization

Modern internet-scale distributed services such as Ama-
zon’s web services (Jacquemart et al., 2019) or Akamai’s
CDN services rely on a large platform of servers deployed
in thousands of data centers around the world (Maggs &
Sitaraman, 2015). The operating expenditure of these sys-
tems is dominated by the bandwidth cost of the network
traffic between the servers and clients (Hasan et al., 2014).
For large CDNs, bandwidth costs are on the order of 100s
of millions of dollars per year.

Bandwidth cost minimization is an example of a rent/buy
problem with constrained resources (Adler et al., 2011). The
resources correspond to different data centers, each with a
bandwidth contract that dictates the maximum available
capacity and either a usage or peak-based1 billing scheme.

5.2. Real World Datasets

In our evaluation we use two different real world datasets to
demonstrate challenges occurring in real large distributed
computing systems. The first dataset showcases the vari-
ety in user traffic predictability across different geographic
locations. The second dataset documents the shift in in-
ternet demand patterns during the COVID-19 lockdowns.
Although we focus on bandwidth cost minimization, the
challenges present in our traces arise from internet usage

1Data centers typically charge using the 95th percentile for
peak-based billing purposes, often referred to as burstable billing.
However since traffic cannot be controlled precisely enough to
take advantage of the 5% of “free” traffic per billing period, we
can safely model the 95th percentile as a max function.

and services. The many other rent/buy optimization prob-
lems in the Internet ecosystem have similar challenges.

Dataset 1: Traffic Predictability Across Metro-Areas

The predictability of user internet demand can vary greatly
across geographic locations. For example, larger metro-
areas tend to have more predictable profiles due to the
smoothing effects of mass aggregation, whereas the de-
mands of smaller metro-areas may be more volatile and
unpredictable. Other factors such as geopolitical or sporting
events might affect user trends on a country-wide basis.

Our first dataset is a proprietary production dataset from
Akamai, one of the largest content delivery networks (CDN)
in the world. It consists of production traffic demands col-
lected from 2000+ data centers in 75+ countries. In our
experiments, we take the system-wide traffic and partition
it into local instances of the bandwidth cost minimization
problem for more than 180 different metro-areas. Each
metro-area has a distinct profile, and relying on only one of
DBO, parSBO or inDBO for all metro-areas can result in
the hard trade-offs seen in Table 1.

Dataset 2: The Impact of COVID-19 Lockdowns

The global COVID-19 pandemic brought historically un-
precedented changes in internet traffic demands. Lockdowns
resulted in a migration of in-person interactions to virtu-
ally hosted alternatives. Bandwidth usage surged as video-
conferencing services such as Zoom saw a 10x increase in
usage. Over the month of March 2020, Akamai experienced
a 30% increase in global internet usage, with a recorded
peak traffic of 167 Tbps – more than twice the recorded
peak traffic of 82 Tpbs in March 2019 (Branscombe, 2020).

Our second dataset captures this distributional shift. We
digitized publicly available records of public peering traffic
at Milan’s internet exchange to recover demand data at 30
minute resolution for the duration of the COVID-19 lock-
down in Italy (March 9 to 18 May 2020) as well as a baseline
collected in January 20202. Figure 2 shows the sudden shift
in internet traffic demands as a result of lockdown measures.

Figure 2. Dramatic shift of internet demand (Tb/s) in Milan due
to COVID-related lockdowns. The first week of lockdowns saw
average demand increase by 36% and peak demand increase by
31% compared to a pre-Covid baseline.

2Dataset 2 and related experiments are available at
https://github.com/jmaghakian/covid_exp
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6. Results and Discussion
We discuss 4 experiments. The first explores the efficacy of
a simple meta-algorithm that uses a classification approach
inspired by Figure 1. Our second experiment compares the
performance of this simple classification meta-algorithm
with an algorithm from the literature that uses multiple pa-
rameter predictions (Wang et al., 2020). Finally, the last two
experiments investigate the performance of our algorithms
in the presence of dramatic distributional shift.

6.1. Simple Classification Succeeds on Production Data

Inspired by Figure 1, we ask the following question: can sys-
tem operators use a classification-based approach to deter-
mine which locations can benefit from relying on parameter
predictions, which are more suited to input predictions and
which are better using no predictions at all? The proposed
meta-algorithm, meta, uses a classifier to a priori select
which of DBO, parSBO or inDBO it will exactly mimic for
the upcoming billing period.

We evaluate the performance of our heterogeneous predic-
tor approach by implementing DBO, parSBO and inDBO
across the 180+ metro-areas of Dataset 1. The data spans
one month at five minute resolution and we use two weeks
for training predictors and two weeks for testing. At each
location and for each billing period, we instantiate 50 dif-
ferent instances of possible bandwidth prices to allow for a
range of algorithm behaviors.

To generate the parameter predictions, we use linear regres-
sion with price setting, metro-area location and size as the
dependent variables. For the input predictions, we predicted
day-ahead windows using the AutoARIMA forecaster avail-
able through sktime. The classifier was trained using the
same features as the parameter predictions, with the best
choice of DBO, parSBO or inDBO on historical data as
labels for the training dataset.
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Figure 3. Our large-scale evaluations (18000+ trials) demonstrate
that the empirical behavior of the three online algorithms matches
the theoretical results summarized in Table 1. The success of our
classification meta-algorithm shows that context and historical
performance can be used to exploit predictors with no exploration.

For each location, we report the average and worst-case nor-
malized cost for each algorithm. The results are aggregated
over locations with the means and standard errors are shown
in Figure 3.

Figure 3 demonstrates that in practice, although parameter
predictions provide the strongest performance on average,
parSBO is susceptible to very bad worst case performance.
DBO provides the opposite trade-off, while inDBO is be-
tween the two extremes. Our classification-based meta al-
gorithm can identify good strategies to use in each situa-
tion and impressively provides worst-case performance that
matches the best average-case performance of the three on-
line algorithms. Table 3 shows the frequency with which
meta chooses each of the online algorithms.

DBO parSBO inDBO

1.96% 93.76% 4.28%

Table 3. Usage of each algorithm by our classification meta-
algorithm. By selecting parSBO for the many scenarios where it
performs very well and selecting either DBO or inDBO for the rare
situations when ϵpar is very large, our meta-algorithm can achieve
the strong performance seen in Figure 3.

Since our meta-algorithm only incurs the overhead associ-
ated with its chosen online algorithm, Table 3 demonstrates
that the approach has minimal computational cost. For ex-
ample, meta uses at most 1 prediction for more than 95%
of trials. In addition to a parsimonious use of predictions,
our meta-algorithm exploits the static strategy and computes
a dynamic approach for less than 7% of trials.

6.2. Simple Classification Even Outperforms SOTA

Now we compare the performance of meta against online
algorithms in the literature that use multiple predictions. Of
the previous work, only Wang et al. (2020) consider a setting
similar enough that we could adapt their algorithm to band-
width cost minimization. The adapted algorithm (which we
refer to as WLW) requires multiple parameter predictions and
utilizes a trust parameter λ to balance between data-driven
and online decision making.

To generate multiple parameter predictions, we modified the
setting of the previous experiment to create two different
training sets for the different parameter predictors. We refer
to the data-driven algorithms that use the first and second
parameter predictions as parSBO-1 and parSBO-2, re-
spectively. Although meta was originally designed to use
only one of each predictor type, the meta-algorithm can
be easily adapted to use a classifier with 4 labels: DBO,
parSBO-1, parSBO-2 and inDBO.

We evaluate parSBO-1, parSBO-2 and meta, as well
as WLW with three settings of trust parameter: λ = 0.25,
λ = 0.5 and λ = 0.75. As in the previous experiment,

7
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the average and worst-case normalized cost are reported for
each algorithm and aggregated over locations. The results of
the experiment (mean and standard error for each algorithm
and setting) are shown in Table 4.

Algorithm Average Case Worst Case
parSBO-1 1.014± 0.005 2.817± 1.625
parSBO-2 1.039± 0.011 6.107± 4.164

meta 1.022± 0.007 1.236± 0.055
WLWλ=0.25 1.052± 0.004 1.630± 0.315
WLWλ=0.5 1.102± 0.006 1.669± 0.312
WLWλ=0.75 1.155± 0.008 1.730± 0.312

Table 4. Results over 9000+ trials show that our meta algorithm
improved over the state-of-the-art by up to 11.5% in the average
case and up to 28.6% in the worst-case, all while running an
order of magnitude faster. Although increasing the value of λ (i.e.
decreasing use of historical data) of WLW should decrease the worst-
case cost, the opposite effect was observed in our experiments.

As observed in the previous experiment, parSBO-1 and
parSBO-2 demonstrated strong average-case performance,
at the cost of poor worst-case performance. Even with
two different parameter predictors to choose from, meta
successfully selected among the different online algorithms
to achieve the best average-case and worst-case performance
by a significant margin.

The state-of-the-art competitor, WLW, also achieved substan-
tially improved worst-case performance compared to both
parameter predictors alone. Surprisingly, increasing λ for
WLW resulted in a higher worst-case competitive ratio. This
observation supports our hypothesis that reverting to online
decision making when predictions are noisy is often too
conservative and pessimistic.

DBO parSBO-1 parSBO-2 inDBO

5.04% 64.65% 26.40% 3.91%

Table 5. Usage of each algorithm by our classification meta-
algorithm when there are two different parameter predictions. Our
meta-algorithm leveraged both parameter predictions to achieve
improved performance.

In addition to improved performance for both average-case
and worst-case settings, our meta-algorithm also runs sub-
stantially faster than the competition. WLW is a dynamic
strategy and thus must recompute an instance of the offline
optimization problem at each time instance. In comparison,
meta only utilizes a dynamic approach for less than 9%
of the trials (see Table 5). Since running inDBO took 105

more time than running parSBO during our experiments,
on average meta ran an order of magnitude faster than
WLW.

6.3. On Real World Data, 2 Predictors Are Better than 1

We now discuss experiments conducted using our second
dataset, which focuses on the distributional shift due to
COVID-19 lockdowns. Given the uncertainty in how gov-
ernment regulations and local lockdown measures were
unfolding in March 2020, it would be natural for system
operators to want to hedge their bets by using an algorithm
equipped with a trust parameter. This motivates the use
of our algorithms RoBO-1 and RoBO-2. In theory, Theo-
rem 4.5 states that under some mild assumptions, RoBO-2
is strictly better than RoBO-1. We now examine whether
this is the case on real-world data, which may or may not
satisfy the assumptions of Theorem 4.5.

We implemented RoBO-1 and RoBO-2 for a wide range
of trust parameter settings during first month of lockdowns
in Italy. Results are shown in Figure 4. The parameter
prediction generated using historical data performed poorly,
as seen in the performance of both algorithms for λ = 0.
RoBO-1 exhibits performance very similar to the theoreti-
cal curves predicted by Table 2. In particular, it shows the
classical graceful degradation for λ ≥ 0.3.

Although RoBO-2 does not exhibit a smooth performance
trade-off as a function of λ, it instead shows immediate im-
provement for very small values of λ. Notably, setting low
values of λ for RoBO-2 results in better performance than
parSBO and inDBO alone. One drawback of RoBO-2
is that the performance predicted in Table 2 is overly pes-
simistic due to the choice of error analysis, making it diffi-
cult to choose values of λ using theoretical results alone.
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Figure 4. Performance of RoBO-1 and RoBO-2with varying trust
levels λ on the first month of lockdown data. Balancing the pa-
rameter prediction with online decision making actually makes
RoBO-1’s performance worse before eventually improving it.
RoBO-2 immediately benefits from robustifying the parameter
prediction with input predictions and achieves a significant im-
provement starting with λ values as low as 0.02.

6.4. Parameter Predictions Excel on the New Normal

For the months of April and May, our simulations showed
that parSBO surprisingly outperformed the other online

8
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algorithms by margins similar to pre-Covid baselines in the
region. In other words, completely relying on parameter
predictions generating using the small amount of lockdown
bandwidth data performed significantly better than parSBO,
inDBO or RoBO-1 and RoBO-2 with trust parameter set-
tings λ ̸= 0.

Figure 5 gives insight into this result. Although the change
from pre-Covid demand to that of March 2020 was a signif-
icant distributional shift, internet demands soon stabilized
into a “new normal” that could be predicted fairly accurately
after a relatively short period of observation. The remaining
uncertainty about the future from an optimization perspec-
tive was not about how bandwidth traffic demands would
look under lockdown but rather how long the lockdowns
would continue.
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Figure 5. Distribution of monthly demand, with pre-Covid baseline
shown in black. Although there is a large shift from the baseline to
March demand, subsequent months are not too different in profile,
exhibiting a “new normal” that allows parSBO to perform well.

Our experiments on the second dataset suggest that even the
drastic motivation of distributional shift might not require
algorithms with trust parameters post-shift. On real-world
examples, more simple algorithms such as our classification-
based approach in Section 6.1 can be surprisingly effective.

7. Related Work
Online algorithms were multiple predictions were first in-
troduced for the ski rental problem (Gollapudi & Panigrahi,
2019), with subsequent work on multi-shop ski rental (Wang
et al., 2020), facility location (Almanza et al., 2021) and
online covering (Anand et al., 2022). The listed works are
agnostic to how the predictions are generated, resulting in
low explainability for why certain predictions are chosen.

The work of Dinitz et al. (2022) addresses the heterogene-
ity of the predictions arising from different hyperparameter
choices for the ML models. However these differences are
not known a priori and as a result Dinitz et al. focus on the
challenge of learning which predictions in the portfolio are
best in a computationally efficient manner. In comparison,
our methods are more transparent and allow for easier inte-

gration of human expertise when selecting which predictors
to use.

8. Conclusion
We initiated the study of online algorithms with heteroge-
neous predictors. By theoretically characterizing the perfor-
mance of the best online algorithm for each predictor type,
we provided improved explainability and clarity for the sce-
narios in which each should be used. We provided two
ways to leverage the different predictors, (1) a classification-
based meta-algorithm for when practitioners are confident
in their ability to correctly predict error levels and (2) a trust-
parameter equipped algorithm that allows the user to hedge
their bets and robustify the parameter predictor as much as
they desire. Our theoretical contributions are supplemented
by large-scale empirical evaluations using real-world data.

Although we introduced our methodology for the rent/buy
problem with constrained resources, our algorithms can be
directly applied to other rent/buy problems. We anticipate
that the performance guarantees will be similar. Our ap-
proach can also be applied to any other problem that has a
clear choice of parameter prediction, such as facility loca-
tion problems (Almanza et al., 2021; Jiang et al., 2022) or
online load balancing (Lattanzi et al., 2020). Finally, the
online algorithms with heterogeneous predictors framework
need not be restricted to input and parameter predictors.
Other quantities of interest could include distributional or
aggregate statistics of problem inputs.
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A. Previous Work on Rent/Buy Problems with Constrained Resources (Adler et al., 2011)
All the algorithms in this paper use a greedy subroutine to optimally distribute the AVG and MAX demand among the
available resources. For a specified break-even point β, Algorithm 4 returns the optimal allocations x(β) and y(β) among
the AVG and MAX resources, respectively.

Algorithm 4 Greedy Subroutine
Require: β, d, N , M

1: for t = 1, . . . , T do
2: i = 1, j = 1, dm = 0, da = 0
3: while dm < β and j ≤ |M| do
4: yj(t) = min{d(t)− dm, DM

j }
5: dm = dm + yj(t), j = j + 1
6: end while
7: while da < d(t)− dm and i ≤ |N | do
8: xi(t) = min{d(t)− dm − da, D

N
i }

9: da = da + xi(t), i = i+ 1
10: end while
11: end for
12: return (x(β), y(β)) = (x, y)

Adler et al. also provided an optimal online deterministic algorithm for the rent/buy problem with constrained resources.
Algorithm 5 shows this algorithm.

Algorithm 5 DBO (Dynamic Break-even Optimization)
Require: d, N , M

1: for t = 1, . . . , T do
2: Set d′(τ) = d(τ) for τ ≤ t and d′(τ) = 0 otherwise
3: Solve (1) for demand d′ and set βo(t) = β∗

4: Greedily satisfy the demand with Algorithm 4 for βo(t)
5: end for
6: return (x(βo), y(βo)) = (x, y)

The following lemma provides properties about the break-even points βo of the algorithm DBO, the optimal routing x∗ and
y∗ through the AVG and MAX resources respectively, and the costs CAVG and CMAX incurred by using these routing. By
combining properties (2) and (3), DBO can be proven to be 2-competitive.

Lemma A.1. (Adler et al., 2011) For any input d to DBO, the following holds: (1) βo(t) ≤ βo(t+ 1) for all t ∈ T , with
βo(T ) = β∗; (2) CMAX(y(βo)) = CMAX(y

∗); (3) CAVG(x(βo)) ≤ C(x∗,y∗)

B. Proofs
B.1. Proof of Theorem 4.1

Theorem 4.1. parSBO has a competitive ratio of 1 + ϵpar max{µ−, µ+}, where µ− and µ+ are problem-specific constants
defined as µ− = cNn /cM1 and µ+ = TcMm /cN1 .

Proof. There are two cases: (i) underestimating β (i.e. β̂ < β∗) results in more demand satisfied with AVG resources
compared to the offline optimal OPT, while (ii) overestimating β (i.e. β̂ > β∗) results in more demand satisfied with
MAX resources compared to OPT. In both cases, parSBO must incur cost C∗ equal to OPT as well as additional cost for
decisions that differ from OPT. First consider case (i): in the worst case, parSBO uses the most expensive AVG resource
to satisfy constant demand rather than the cheapest MAX resource. The total extra cost incurred by parSBO is at most
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cNn
(
ϵpar maxt∈T d(t)

)
, while the cost of OPT is at least cM1 maxt∈T d(t). When β̂ < β∗, the competitive ratio is:

1 +
cNn

(
ϵpar maxt∈T d(t)

)
C∗ ≤ 1 +

cNn
(
ϵpar maxt∈T d(t)

)
cM1 maxt∈T d(t)

= 1 + ϵparµ
−

For case (ii), in the worst case parSBO uses the most expensive MAX resource to satisfy a spike of demand rather than the
cheapest AVG resource. The total extra cost of this decision is at most cMm

(
ϵpar maxt∈T d(t)

)
, while OPT uses the AVG

resources for a cost that is at least (cN1 /T )maxt∈T d(t). As a result, when β̂ < β∗ the competitive ratio is:

1 +
cMm

(
ϵpar maxt∈T d(t)

)
C∗ ≤ 1 +

cMm
(
ϵpar maxt∈T d(t)

)
cN1
T maxt∈T d(t)

= 1 + ϵparµ
+

Depending on whether underestimating or overestimating β∗ is more costly, the adversary chooses max{µ−, µ+}.

B.2. Proof of Theorem 4.2

Theorem 4.2. inDBO is
(
2− (w − ϵinµ

−)/T
)
-competitive.

Proof. Let C(βd) = CAVG(x(βd)) + CMAX(y(βd)) be the cost incurred by inDBO over the time horizon. Since βd(t) ≥
βo(t) for all t ∈ T , inDBO spends no more on AVG resources than DBO (ie. CAVG(x(βd)) ≤ CAVG(x(βo))). This upper
bound suggests that the adversary will attempt to increase CMAX(y(βd)) rather than CAVG(x(βd)).

Denote the extra amount that inDBO spends on the MAX resources compared to DBO (and thus OPT) as ∆(y) =
CMAX(y(βd))− CMAX(y

∗). Specifically, ∆(y) corresponds to demand that is satisfied by the AVG resources in the offline
optimal solution. Prior to mistakenly spending more on MAX resources, inDBO will have incurred a cost of (2− w/T )C∗.
To upper bound ∆(y), note that ϵin is used by the adversary to increase the amount of anticipated demand so that inDBO
will switch to using MAX resources. For inDBO to switch, the cost of serving the true demand as well as fake demand
using the AVG resources should be at least as much as serving the true and fake demand using the MAX resources. To make
the overspending of inDBO as large as possible, the adversary will not use the error ϵin to increase the anticipated cost of
using the MAX resources. Instead it will use ϵin to make the anticipated cost of using the AVG resources as large as possible.
At most, it can increase the anticipated cost by ϵin maxt∈T d(t)

cNn
T . The resulting competitive ratio is:

CAVG(x(βd)) + CMAX(y(βd))

C∗ ≤ 2− w

T
+

∆(y)

C∗ ≤ 2− w

T
+

cNn
T ϵin maxt∈T d(t)

cM1 maxt∈T d(t)
=

= 2− w − ϵinµ
−

T
,

where µ− is the same constant as in Theorem 4.1 that provides a instance-dependent upper bound on the worst-case resulting
from underestimating the break-even point β∗.

B.3. Proof of Theorem 4.5

Theorem 4.5. RoBO-2 Pareto-dominates RoBO-1 with respect to consistency and robustness when the following conditions
are met: (i) symmetry of worst-case instances (µ− ≈ µ+) and (ii) sufficiently large look-ahead window size (w ≥ µ+).

Before proving Theorem 4.5, we first derive the competitive ratios of RoBO-1 (Lemma B.1) and RoBO-2 (Lemma B.2).

Lemma B.1. RoBO-1 is (1 + λ)-consistent and
(
1 + λ+ ϵpar(min{ 1

λ , µ
−} − λ)

)
-robust.

Proof. For the consistency result, when β̂ = β∗ the discrepancy between RoBO-1 and OPT arises from spending on the
AVG resources. Depending on the choice of λ, RoBO-1 will spend at most λCMAX(y

∗) extra compared to OPT. Combining
this with lemma A.1 yields a competitive ratio of 1 + λ.

For the robustness results, when β̂ ̸= β∗ there are two cases: (i) β̂ < β∗ and (ii) β̂ > β∗. A combination of DBO and
parSBO will achieve its worst performance when β̂ < β∗, as this exacerbates the failure modality of DBO. When β̂ < β∗,
the worst-case for RoBO-1 is that C∗ = CMAX(y

∗). RoBO-1 will spend at most CMAX(y
∗) on the MAX resources, as
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well as a non-zero amount on the AVG resources. Let ∆C denote the amount that OPT spends on satisfying the demand
β̂ < d(t) < β∗ with the MAX resources. For demand up to β̂, RoBO-1 will be incentivized to use the MAX resources and
will spend λ(CMAX(y

∗)−∆C) on AVG resources before switching to MAX resources. However for demand d(t) > β̂,
RoBO-1 will avoid using MAX resources and will pay up to 1

λ∆C on AVG resources before switching. In the worst-case,
OPT satisfies all demand using the cheapest MAX resource for a total cost of cM1 maxt∈T d(t), while RoBO-1 incurs
∆C = cM1 ϵpar maxt∈T d(t) at a marked up rate of 1/λ. The extra cost of serving ∆C is capped at cNn ϵpar maxt∈T d(t), so
the final competitive ratio of RoBO-1 is:

CMAX(y
∗) + λ

(
CMAX(y

∗)−∆C
)
+min

{
∆C
λ , cNn ϵpar maxt∈T d(t)

}
C∗ ≤

1 + λ+
λ
(
cM1 ϵpar maxt∈T d(t)

)
+min

{ cM1 ϵpar maxt∈T d(t)
λ , cNn ϵpar maxt∈T d(t)

}
cM1 maxt∈T d(t)

=

1 + λ+ λϵpar +min

{
ϵpar

λ
,
ϵparc

N
n

cM1

}
= 1 + λ+ ϵpar

(
min

{
1

λ
, µ−

}
− λ

)

Lemma B.2. RoBO-2 is
(
1+λ(1−w/T )

)
-consistent and

(
1+λ

(
1−(w−ϵinµ

−)/T
)
+ϵpar

(
min{1/λ, µ+}−λ

))
-robust.

Proof. Typical consistency and robustness results in the literature assume that one prediction is either correct or incorrect.
For our analysis with multiple predictions of different quantities, we define our consistency results as the competitive ratio
when ϵpar = ϵin = 0. The robustness results correspond to the competitive ratio when both ϵpar ̸= 0 and ϵin ̸= 0, and the
adversary is able to couple ϵpar and ϵin in the worst possible way.

First we provide the consistency analysis. RoBO-2 will spend the same amount on MAX resources as the offline optimal
OPT. By using the input predictions, RoBO-2 will spend at most CMAX(y

∗)(1−w/T ) on AVG resources before switching
to using MAX resources. Since the parameter prediction also incentivizes the use of MAX resources by a factor of λ,
by using both predictors, RoBO-2 spends at most λCMAX(y

∗)(1− w/T ) on AVG resources and CMAX(y
∗) on the MAX

resources. The corresponding competitive ratio is 1 + λ(1− w/T ).

We now provide the robustness analysis. Although the performance of both predictors is not inherently correlated, we
consider this extreme setting to illustrate the absolute worst-case scenario that can arise from using two different predictors.
Since the worst-case of inDBO arises from overspending on MAX resources, we only need consider the settings where
the parameter predictor β̂ overestimates the break-even point. There are two possibilities: either (i) βd(T ) < β̂ or (ii)
βd(T ) > β̂. In the first, inDBO will never attempt to use the MAX resources more than parSBO, while in the second
inDBO will generate fake predictions of demand to attempt to use the MAX resources even more than parSBO. Since
the latter is worse, we address the setting where βd(T ) > β̂. For demand d(t) < β∗, RoBO-2 only benefits from using
predictions, with a decreased expenditure on AVG resources as seen in the consistency analysis. For demand in the range
(β∗, β̂), the use of MAX resources is still incentivized by a discount factor of λ. Here, the overspending parallels the results
in Lemma B.1, with an additive contribution to the competitive ratio of at most ϵpar(min{ 1

λ , µ
+} − λ). Finally for demand

d(t) > β̂, due to the parameter predictions, RoBO-2 will increase its competitive ratio at most by λϵinµ
−/T . Combining

the terms gives the desired robustness result.

To prove Theorem 4.5, fix the consistency and use the parametric equations of Lemmas B.1 and B.2.
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