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Abstract

Many imaging inverse problems—such as image-dependent in-painting and dehazing—are challeng-
ing because their forward models are unknown or depend on unknown latent parameters. While one
can solve such problems by training a neural network with vast quantities of paired training data,
such paired training data is often unavailable. In this paper, we propose a generalized framework
for training image reconstruction networks when paired training data is scarce. In particular, we
demonstrate the ability of image denoising algorithms and, by extension, denoising diffusion models,
to supervise network training in the absence of paired training data. (The unabridged version of this
manuscript is available at https://arxiv.org/abs/2303.09642)

1 Introduction

Imaging inverse problems can generally be described in terms of a forward operator F(·) that maps a scene x to a
measurement y according to y = F(x). Historically, computational imaging research has focused on solving inverse
problems with known forward models. For instance, computed tomography’s forward model can be represented as
a Radon transform and magnetic resonance imaging’s forward model can be represented as 2D Fourier Transform.
Knowledge of these forward models allows one to reconstruct scenes x from measurements y using any number of
classical or learning-based algorithms [1].

Since the onset of the deep learning era, significant progress has been made in solving inverse problems which lack
explicit forward models. Using vast amounts of training pairs {xi, yi}Ni=0, neural networks learn to directly map
samples from a source distribution, yi, to images from a target distribution, xi. In doing so, the network implicitly
learns the inverse operator F−1 without any explicit knowledge of the forward model F . The main drawback of such
methods is that their performance is directly related to the size and quality of the training dataset. As a result, they often
struggle whenever little to no paired training data is available.

Our goal in this work is to train a network fθ(·) to reconstruct images/scenes x from measurements y using three sets
of training data:

• A small set P of paired examples (xp, yp) drawn from the joint distribution px,y .
• A large set Uy of unpaired measurements yu drawn from the marginal distribution py .
• A large set Ux of unpaired images xu drawn from the marginal distribution px.

Such mixed datasets naturally occur in applications where gathering unpaired data is easy, but gathering paired data is a
challenge. For instance, it is straightforward to capture images with fog and images without fog, but capturing two
paired images of the same scene with and without fog (with lighting conditions and all other nuisance variations fixed)
is very challenging[2, 3]. Often times, the latter paired dataset is restricted to only a few images captured in a lab.
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Figure 1: Overview of the training pipeline. A pre-trained diffusion model supervises training by pushing outputs of
the image reconstruction network towards the desired target image distribution.

A paired training set, P , allows one to optimize fθ(·) by minimizing the empirical risk

Lpaired =
1

|P |
∑

(xp,yp)∈P

∥xp − fθ(yp)∥2, (1)

where |P | denotes the cardinality of P . However, as the size of P decreases Lpaired becomes a poor approximation of
the true risk and fθ(·) overfits to the training set. As an alternative, we seek to leverage unpaired datasets Ux and Uy to
improve the quality of our reconstructions.

2 Supervision-by-denoising

Young et al. [4] recently introduced the supervision-by-denoising (SUD) framework which extends the ideas behind
regularization-by-denoising [5] to semi-supervised learning. The key intuition behind SUD and similar works [6–8] is
that learned denoisers, Dσ(u), (which are trained using the set Ux of unpaired images) encode strong priors on the
distribution px. SUD enforces that the network’s reconstructions fθ(yu) on the unpaired training data are consistent
with the priors encoded in the denoiser.

When used in combination with an ℓ2 loss and without temporal-ensembling [9] or mean-teacher [10], SUD effectively
minimizes Lpaired + λ1Ldenoiser, where λ1 is a scalar weight and

Ldenoiser =
1

|Uy|
∑

yu∈Uy

∥fθ(yu)−Dσ(fθ(yu))∥2. (2)

When updating the network weights θ to minimize (2), SUD treats Dσ(fθ(yu)) as a fixed pseudo-label and does
not propagate gradients through the denoiser. That is, SUD defines the gradient of Ldenoiser with respect to a single
reconstruction fθ(yu) as

∇fθ(yu)Ldenoiser =
2[fθ(yu)−Dσ(fθ(yu))]

|Uy|
. (3)

As demonstrated in [4], SUD is a powerful and effective semi-supervised learning technique in the context of medical
segmentation, where the goal is to map an image to a discrete-valued segmentation map. Using only a handful paired
images and segmentation maps, Young et al. were able to train a denoiser to segment brains, kidneys, and tumors.

3 Improving SUD

Unfortunately, we find that without modification, SUD, with or without temporal ensembling, is far less effective at
general image restoration tasks. In particular, minimizing the SUD loss for general inverse tasks almost always led to
mode collapse. To better understand and overcome these weaknesses, we provide the following analyses of SUD.
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Figure 2: CelebAHQ-Mask in-painting results. Supervised results are trained using 5 paired faces while semi-
supervised methods are trained on an additional 1000+12,500 unpaired faces. The forward model (the mask) is
unknown, which greatly complicates the reconstruction task.

Theorem 3.1 When Dσ is a minimum-mean-squared error (MMSE) denoiser, minimizing Ldenoiser minimizes the cross
entropy between the distribution of fθ(yu) and the smoothed version of px.

Let ν follow an independent zero-mean white Gaussian distribution with variance σ2. We will use ν to smooth the
distributions px (recall px+ν = px ∗ pν , where ∗ denotes convolution). The cross entropy H(·, ·) between pfθ(y)
and px+ν is, by definition, −Efθ(y)[ln px+ν(fθ(y))]. We can form a Monte-Carlo approximate of this expectation by
averaging over Uy:

H(pfθ(y), px+ν) ≈ − 1

|Uy|
∑

yu∈Uy

ln px+ν(fθ(yu)). (4)

Then, we can express the gradient of this loss with respect to a reconstruction fθ(yu) as

∇fθ(yu)H(pfθ(y), px+ν) ≈ −
∇fθ(yu) ln px+ν(fθ(yu))

|Uy|
. (5)

To efficiently evaluate (5) we turn to Tweedie’s Formula [11], which states that for a signal corrupted with zero-mean
additive white Gaussian noise, r = x + ν where ν ∼ N (0, σ2I), the output of a MMSE denoiser Dσ(·) (and by
extension a neural network trained to act as a MMSE denoiser) can be expressed as

Dσ(r) = r + σ2∇r ln px+ν(r). (6)

In other words, denoisers perform gradient ascent on the log-likelihood of px+ν where the step size corresponds to the
noise variance. By applying Tweedie’s formula to (5) we arrive at

∇fθ(yu)H(pfθ(y), px+ν) ≈
[fθ(yu)−Dσ(fθ(yu))]

σ2|Uy|
. (7)

Up to constants, this is the same expression as the gradients in (3). Therefore, Ldenoiser minimizes the cross entropy
between pfθ(y) and px+ν .

Corollary 3.2 Minimizing Ldenoiser encourages mode collapse.

Minimizing Ldenoiser minimizes the cross entropy between pfθ(yu) and px+ν . The cross entropy of H(p, q) of two
distributions p and q is minimized with respect to p when p is a Dirac distribution with a non-zero support where
distribution q is largest, i.e., a mode.

To fight mode collapse, we introduce an additional penalty Lreg = cov(A,B)
σAσB

which computes the normalized covariance
between intermediate latent vectors outputted by the encoder block of our U-net. By minimizing Lreg over all latent
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Method PSNR↑ SSIM↑ LPIPS↓ FID↓
Supervised 18.44 0.71 0.29 0.48
CycleGAN 8.77 0.23 0.66 0.17
CycleGAN-SSL 11.38 0.60 0.39 1.14
SUD 11.28 0.29 0.69 3.07
SUD2 (Ours) 18.71 0.71 0.28 0.31

Figure 3: In-painting metrics. Average test scores attained by each method are listed above.

vectors in a mini-batch, we encourage network to produce outputs which are uncorrelated in latent space. Therefore,
our updated loss function becomes

Lpaired + λ1Ldenoiser + λ2Lreg. (8)

Corollary 3.3 Minimizing Ldenoiser can encourage blurry reconstructions.

Minimizing Ldenoiser minimizes the cross entropy between pfθ(yu) and px+ν and will result in solutions fθ(yu) that
maximize px+ν(fθ(yu)). For sufficiently large σ, px+ν is maximized not where px is large (along the manifold of
natural images) but rather at some point in between high-probability points.

To alleviate this problem, we inject noise onto the reconstructions fθ(yu) before passing them through the denoiser.
That is, we redefine ∇fθ(yu)Ldenoiser as

∇fθ(yu)Ldenoiser =
2[fθ(yu)−Dσ(fθ(yu) + ν2)]

|Uy|
, (9)

where ν2 ∼ N(0, σ2
2I). This simple modification allows us to compare the smoothed distribution pfθ(y)+ν2

with the
smoothed distribution px+ν .

3.1 Diffusion models

An alternative interpretation of denoising algorithms is that they project the reconstructions onto a manifold M of
allowable reconstructions, e.g., faces or “natural images”. Traditional denoising algorithms perform this projection
in a single step. However, existing theory [12] suggests that one should navigate image manifolds gradually, in a
smooth-to-rough/coarse-to-fine manner.

Loosely inspired by this observation, we propose replacing our single-step MMSE denoising algorithm with a multi-step
denoising diffusion probabilistic model (DDPM) [13]. That is, we replace our denoiser Dσ(·) from (9) with an iterative
forward “noising” operator F (·) and an iterative reverse “denoising” operator R(·) such that Dσ(fθ(yu) + ν) =
R(F (fθ(yu))). Conceptually, the DDPM serves to first project r onto the smooth manifold of noisy images and then
gradually project r onto correspondingly less smooth manifolds of less noisy images.

4 Experiments
Image in-painting is a generative process for reconstructing missing regions of an image such that restored image
fits a desired—often natural—image distribution. We test our method on the CelebAMask-HQ dataset [14], which
contains 30,000 images and their corresponding segmentation maps. In this experiment, we mask out the subject’s
face from each image and train a few shot, semi-supervised in-painting network on 5 paired images and 1000+12,500
unpaired images. A U-net is trained using 1,000 unpaired images, while a denoiser and diffusion model are pre-trained
on 12,500 unpaired images. As an additional baseline, we train an image reconstruction network using a pre-trained
CycleGAN [15] as a pseudo-label generator, which we refer to as CycleGAN-SSL.

Quantitatively, SUD2 achieves the most consistent results across our test set of 768 images, with a 48% higher average
PSNR over CycleGAN-SSL and a 43% lower average FID score compared to the supervised baseline. Although
CycleGAN achieves the best FID score overall, it tends to produce qualitatively poor faces with disproportionately
sized features, which is reflected in its poor PSNR, SSIM, and LPIPS scores. Likewise, while the supervised baseline
achieves PSNR, SSIM, and LPIPS scores comparable to SUD2, it often generates faces with missing features (i.e. eyes,
nose, mouth), which is indicated by its high FID score. Notably, as described in Corollary (3.2), the SUD baseline
collapses to a mode during training with high probability, yielding highly correlated reconstructions.

5 Conclusion
We introduce SUD2, a generalized deep learning framework for solving few-shot, semi-supervised image reconstruction
problems. Inspired by the recent success of denoising diffusion models on image generation tasks, we leverage diffusion
models to regularize network training, encouraging solutions that lie close to the desired image distribution.
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