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Abstract

The CSGM framework (Bora-Jalal-Price-Dimakis’17) has shown that deep gen-
erative priors can be powerful tools for solving inverse problems. However, to
date this framework has been empirically successful only on certain datasets (for
example, human faces and MNIST digits), and it is known to perform poorly on
out-of-distribution samples. In this paper, we present the first successful application
of the CSGM framework on clinical MRI data. We train a generative prior on brain
scans from the fastMRI dataset, and show that posterior sampling via Langevin
dynamics achieves high quality reconstructions. Furthermore, our experiments
and theory show that posterior sampling is robust to changes in the ground-truth
distribution and measurement process. Our code and models are available at:
https://github.com/utcsilab/csgm-mri-langevin.

1 Introduction

Compressed sensing [23, 15] has enabled reductions to the number of measurements needed for
successful reconstruction in a variety of imaging inverse problems. In particular, it has led to shorter
scan times for magnetic resonance imaging (MRI) [62, 90], and most MRI vendors have released
products leveraging this framework to accelerate clinical workflows. Despite their successes, sparsity-
based methods are limited by the achievable acceleration rates, as the sparsity assumptions are either
hand-crafted or are limited to simple learned sparse codes [72, 73].

More recently, deep learning techniques have been used as powerful data-driven reconstruction
methods for inverse problems [49, 68]. There are two broad families of deep learning inversion
techniques [68]: end-to-end supervised and distribution-learning approaches. End-to-end supervised
techniques use a training set of measured images and deploy convolutional neural networks (CNNs)
and other architectures to learn the inverse mapping from measurements to image. Network architec-
tures that include both CNN blocks and the imaging forward model have grown in popularity, as they
combine deep learning with the compressed sensing optimization framework, see e.g. [32, 3, 64].
End-to-end methods are trained for specific imaging anatomy and measurement models and show
excellent performance in these tasks. However, reconstruction quality is known to suffer when applied
out of distribution, and recently has been shown to severely degrade [4, 19] under certain types of
natural measurement and anatomy perturbations.

In this paper we study deep learning inversion techniques based on distribution learning. These models
are trained without reference to measurements, and so easily adapt to changes in the measurement
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process. The most common family of such techniques, known also as Compressed Sensing with
Generative Models (CSGM) [13] uses pre-trained generative models as priors. Generative models
are extremely powerful at representing image statistics and CSGM has been successfully applied
to numerous inverse problems [13, 34] including non-linear phase retrieval [35], and improved
with invertible models [6], sparsity based deviations [21], image adaptivity [42], and posterior
sampling [79, 45]. These methods have only recently been applied to MRI and have not yet been
shown to be competitive with supervised end-to-end methods. The very recent work [53] trains a
StyleGAN for magnitude-only DICOM images but requires the presence of side-information and
studies Gaussian, real-valued measurements for reconstruction. The deviation from the true MRI
measurement model and the use of magnitude images are known to be problematic when evaluating
performance [77]. Another work [54] trained an Invertible Neural Network on complex-valued
single-coil MR images and showed very good performance in comparison to sparsity and GAN priors.
Untrained and unamortized generators [37] have also been recently explored [19], showing promising
results in some cases. Further, [17] studies the harder problem of learning a generative model for a
class of images using only partial observations, as first proposed in AmbientGAN [14].

In this paper we train the first score-based generative model [80] for MR images. We show that
we can faithfully represent MR images without any assumptions on the measurement system. As a
consequence, we are able to reconstruct retrospectively under-sampled MRI data under a variety of
realistic sampling schemes. We show that our reconstruction algorithm is competitive with end-to-end
supervised training when the test-data are matched to the training data and that it is robust to various
out-of-distribution shifts, while in some cases end-to-end methods significantly degrade.

1.1 Contributions

• We successfully train a score-based deep generative model for complex-valued, T2-weighted brain
MR images without any assumptions on the measurement scheme. When applied to multi-coil
MRI reconstruction under the CSGM framework, we achieve competitive performance compared
to end-to-end deep learning methods when the test-time data are sampled within distribution.

• We give evidence that posterior sampling should give high-quality reconstructions. First, we show
that for any measurements (including the Fourier measurements in MRI) that posterior sampling
with the correct prior is within constant factors of the optimal recovery method; second, even if
the prior is wrong but gives α mass to the true distribution, we show that posterior sampling for
Gaussian measurements is nearly optimal with just an additive O(log(1/α)) loss.

• We empirically show that our approach is robust to test-time distribution shifts including different
sampling patterns and imaging anatomy. The former is unsurprising given that our model was
trained without knowledge of the measurement scheme. As a consequence, our approach provides
a degree of flexibility in choosing scan parameters – a common situation in routine clinical
imaging. Perhaps surprisingly, the latter indicates that a specialized training set may offer sufficient
regularization for a larger class of images. In contrast, we empirically show that end-to-end methods
do not always enjoy the same robustness guarantees, in some cases leading to severe degradation in
reconstruction quality when applied out-of-distribution.

• Our method can be used to obtain multiple samples from the posterior by running Langevin
dynamics with different random initializations. This allows us to get multiple reconstructions
which can be used to obtain confidence intervals for each reconstructed voxel and visualize
our reconstruction uncertainty on a voxel-by-voxel resolution. Uncertainty quantification can
be incorporated into end-to-end methods, e.g., using variational auto-encoders [24], but this
requires changes to the architecture. Our method does not require any modification and multiple
reconstruction samplers can be run in parallel.

Our main results are succinctly summarized in Figure 1: we achieve equivalent reconstruction
performance using a reduced training set when evaluated in-distribution and are robust when evaluated
out-of-distribution.

1.2 Related Work

Generative priors have shown great utility to improving compressed sensing and other inverse
problems, starting with [13], who generalized the theoretical framework of compressed sensing and
restricted eigenvalue conditions [85, 23, 12, 15, 40, 11, 10, 25] for signals lying on the range of
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Figure 1: Comparison of reconstruction methods for in-distribution, sampling-shift, and anatomy-shift images.
All methods and hyperparameters were optimized on T2-weighted brain scans with a vertical sampling mask,
and tested at higher accelerations, horizontal masks, and on knee & abdomen scans. Our reconstructions are
competitive with state-of-the-art methods, and introduce fewer artifacts out of distribution. All measurements
are multicoil k-space from the NYU fastMRI dataset and the supervised baselines are trained from scratch on
MVUE targets for a fair comparison.

a deep generative model [29, 55, 81]. Lower bounds in [51, 61, 48] established that the sample
complexities in [13] are order optimal. The approach in [13] has been generalized to tackle different
inverse problems [47, 35, 7, 71, 60, 63, 74, 9], and different reconstruction algorithms [21, 50, 69,
27, 26, 64, 37, 38, 18]. The complexity of optimization algorithms using generative models have
been analyzed in [28, 39, 58, 36]. Our prior work shows that posterior sampling is instance-optimal
for compressed sensing [45], and satisfies certain fairness guarantees without explicit information
about protected sensitive groups [46].

Using compressed sensing for multi-coil MRI reconstruction has led to a rich body of work in the
past two decades [62, 20, 87, 75]. See [22] and the recent special issue [44] for an overview of
these methods. Classical approaches impose sparsity in a well-chosen basis, such as the wavelet
domain [62], or apply shallow learning that leverages low-level redundancy in the images [72, 73, 93].
Recent research has demonstrated the superior performance of deep neural networks for MR image
reconstruction [76, 32, 3, 82, 83]. A broad class of approaches is represented by end-to-end unrolled
methods, which use deep networks as learned data priors in the image [3, 32, 82] or k-space domain
[84]. Recent work has also investigated the performance of untrained methods [89, 38] for MR
reconstruction and has shown competitive results. A much less explored line of research is MR
image reconstruction with generative priors. The work in [67] proposes a CSGM-like algorithm that
finetunes an entire pre-trained generator that requires a carefully tuned optimization algorithm during
inference.
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Figure 2: Average test PSNR in various scenarios, across a range of acceleration factors R. Higher R indicates
a smaller number of acquired measurements. All methods and hyperparameters were optimized on brains with an
equispaced vertical mask. Our approach mostly shows the best performance and lowest reconstruction variance
both in- and out-of-distribution at test-time. Shaded regions indicate 95% confidence intervals. Note that we
trained baselines on MVUE images and hence these numerical values should not be compared with those in
literature trained on RSS images (see Appendix A.1 for a more detailed discussion).

2 System Model and Algorithm

2.1 Multi-coil Magnetic Resonance Imaging

MRI is a medical imaging modality that makes measurements using an array of radio-frequency
coils placed around the body. Each coil is spatially sensitive to a local region, and measurements are
acquired directly in the spatial frequency, or k-space, domain. To decrease scan time, reduce operating
costs, and improve patient comfort, a reduced number of k-space measurements are acquired in
clinical use and reconstructed by incorporating explicit or implicit knowledge of the spatial sensitivity
maps [78, 70, 30]. Formally, the vector of measurements yi ∈ CL acquired by the ith coil can be
characterized by the forward model [70]:

yi = PFSix
∗ + wi, i = 1, ..., Nc, (1)

where x∗ ∈ CN is the image containing N pixels, Si is an operator representing the point-wise
multiplication of the ith coil sensitivity map, F is the spatial Fourier transform operator, P represents
the k-space sampling operator, and we assume wi ∼ Nc

(
0, σ2I

)
for simplicity. Importantly, note

that the same under-sampling operator is applied to all Nc coils.

The acceleration factorR denotes the degree of under-sampling in the k-space domain, i.e.,R = N/L.
Due to the multiple coils, the measurements may not be compressive for small R. However, due to
redundancy between the coils, the measurements are compressive for moderate values of R (even if
Nc · L > N ) [41]. Also note that we use the true acceleration factor R, and this does not match the
values in fastMRI [56] 2 on certain sampling patterns.

2https://github.com/facebookresearch/fastMRI/blob/main/fastmri/data/subsample.py,
line 247 has the fastMRI definition of equispaced acceleration factors.
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Given multi-coil measurements y, sensitivity maps represented by S and the sampling operator P ,
the goal of MR image reconstruction is to estimate the underlying image variable x∗. Prior work
formulates this as a regularized optimization problem:

arg min
x

‖y −Ax‖22 + λQ(x), (2)

where we use the operator A ∈ CM×N ( with M = Nc ·L) to subsume the discrete approximation to
all linear effects, and Q is a suitably chosen functional prior for the image variable x. For example,
to enforce a sparsity prior, one can penalize the `1 norm in the wavelet representation of x [62].
More recent approaches involve learned regularization terms parameterized by deep neural networks
[76, 32, 3]. These models are typically trained end-to-end using a fixed training set and certain
assumptions about the sampling operator. In the sequel, we present how score-based generative
models can be combined with the posterior sampling [45] mechanism to reformulate (2) and achieve
good quality reconstructions without any a priori assumptions about the sampling scheme.

When k-space is fully sampled at the Nyquist rate and no regularization is applied, the solution to
(2) corresponds to the minimum-variance unbiased estimator (MVUE) of x∗, denoted by x̂MVUE

[70]. Given fully sampled k-space data, this estimate can act as a reference image for evaluating
reconstruction error as well as for end-to-end training. Alternatively, a reference image called
the root-sum-of-squares (RSS) estimate can be formed by taking the inverse Fourier transform
of each coil and subsequently applying the `2 norm for each pixel across the coil dimension, i.e.

x̂RSS =
√∑Nc

i=1 |(FHyi)|
2, where FH is the Hermitian transpose of F (here the inverse DFT).

Although the RSS estimate is a biased estimator, it is often used as it does not make any assumptions
about the sensitivity maps, which are not explicitly measured by the MRI system. However, even if
solving (2) results in perfect recovery of x∗, there will be a bias when comparing the result to x̂RSS

and thus the RSS and MVUE cannot be directly compared numerically.

2.2 Posterior Sampling

The algorithm we consider is posterior sampling [45]. That is, given an observation of the form
y = Ax∗ + w, where y ∈ CM , A ∈ CM×N , w ∼ Nc(0, σ2I), and x∗ ∼ µ, the posterior sampling
recovery algorithm outputs x̂ according to the posterior distribution µ(·|y).

In order to sample from the posterior, we use Langevin Dynamics [8]. Assuming we have access to
∇x logµ(x|y), we can sample from µ(x|y) by running noisy gradient ascent:

xt+1 ← xt + ηt∇xt logµ(xt|y) +
√

2ηt ζt, ζt ∼ N (0, 1). (3)

Prior work [8] has shown that as t → ∞ and ηt → 0, Langevin dynamics will correctly sample
from µ(x|y). In practice, vanilla Langevin Dynamics are slow to converge. Hence, the work
in [79] proposes annealed Langevin Dynamics, where the marginal distribution of x at iteration t is
modelled as µt = µ ∗ N (0, β2

t ) and the generative model is trained to estimate the score function
f(xt;βt) := ∇xt log((µ ∗ N (0, β2

t )(xt)).

Since the distribution of y|x∗ is Gaussian in Eqn (2), we obtain ∇xt logµ(y|xt) = AH(y−Axt)
σ2 . We

find that it is also helpful to anneal this term, and we set it to AH(y−Axt)
σ2+γ2

t
, where γt → 0 is a decreasing

sequence. An application of Bayes’ rule gives: ∇xt logµ(xt|y) = f(xt;βt) + AH(y−Axt)
σ2+γ2

t
.

Putting everything together, our final algorithm is: for x0 ∼ Nc(0, I) and for all t = 0, · · · , T − 1,

xt+1 ← xt + ηt

(
f(xt;βt) +

AH(y −Axt)
γ2
t + σ2

)
+
√

2ηt ζt, ζt ∼ N (0; I). (4)

Note that the parameters T, {βt}T−1
t=0 were fixed during training of the generative model, and hence

the only hyperparameters during inference are {ηt}T−1
t=0 , σ and {γt}T−1

t=0 . Scripts in our codebase
describe hyperparameter values used in our experiments.
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3 Theoretical Results

Background and Notation. We first introduce background and notation required for our theoretical
results. ‖ · ‖ refers to the `2 norm. In this section alone, for simplicity of exposition, we will assume
that all matrices and vectors are real valued.

For two probability distributions µ, ν on some normed space Ω, and for any q ≥ 1, the Wasserstein-
q [91, 5] and Wasserstein-∞ [16] distances are defined as:

Wq(µ, ν) := inf
γ∈Π(µ,ν)

(
E

(u,v)∼γ
[‖u− v‖q]

)1/q

, W∞(µ, ν) := inf
γ∈Π(µ,ν)

(
γ- ess sup
(u,v)∈Ω2

‖u− v‖

)
.

where Π(µ, ν) denotes the set of joint distributions whose marginals are µ, ν. The above definition
says that ifW∞(µ, ν) ≤ ε, and (u, v) ∼ γ, then ‖u− v‖ ≤ ε almost surely.

The (ε, δ)−approximate covering number [45], is defined as the smallest number of ε-radius balls
required to cover 1− δ mass under a distribution.
Definition 3.1 ((ε, δ)-approximate covering number). Let µ be a distribution on RN . For some
parameters ε > 0, δ ∈ [0, 1] , the (ε, δ)-approximate covering number of µ is defined as

Covε,δ(µ) := min
{
k : µ

[
∪ki=1B(xi, ε)

]
≥ 1− δ, xi ∈ RN

}
,

where B(x, ε) is the `2 ball of radius ε centered at x.

Distributional robustness under Gaussian measurements. First, we consider mismatch be-
tween the ground-truth distribution, denoted by µ, and the generator distribution, denoted by
ν. Prior work [45] has shown that if (i) Wq(µ, ν) ≤ ε for some q ≥ 1 and (ii) we are given
M ≥ O(log Covε,δ(µ)) Gaussian measurements, then posterior sampling with respect to ν will
recover x∗ ∼ µ up to an error of ε/δ1/q with probability 1− δ. Closeness in Wasserstein distance is
a reasonable assumption in certain examples, such as when µ is the distribution of celebrity faces
and ν is the distribution of a generator trained on FlickrFaces [52]. However, this assumption is
unsatisfactory when we consider distributions of abdominal and brain MR scans, for example, since
images of these anatomies look entirely different.

We define the following weaker notion of divergence between distributions. Informally, this new
definition tells us that ν and µ are “close” if they can each be split into components which are close
inW∞ distance, such that the close components contain a sufficiently large fraction under ν and µ.
Formally, this is defined as:
Definition 3.2 ((δ, α)-W∞ divergence). For two probability distributions ν and µ, and parameters
δ, α ∈ [0, 1], the (δ, α)-W∞ divergence is defined as

(δ, α)-W∞(µ, ν) := inf{ε ≥ 0 :

∃µ′, µ′′, ν′, ν′′ ∈M(RN ) s.t. µ = (1− δ)µ′ + δµ′′, ν = (1− α)ν′ + αν′′,W∞(µ′, ν′) = ε.}

Lemma B.1 highlights that this is a strict generalization of Wasserstein distances, in the sense that
closeness in Wasserstein distance implies closeness in this new divergence.

Since the (δ, α)-W∞ divergence is a generalization of Wasserstein distances, it is not clear that the
main Theorem in [45] holds for distributions that are close in this new divergence. The following
result shows a rather surprising fact: if (δ, α)-W∞(µ, ν) ≤ ε then posterior sampling with M =

O
(

log
(

1
1−α

)
+ log Covε,δ(µ)

)
measurements will still succeed with probability ≥ 1−O(δ).

Theorem 3.3. Let δ, α ∈ [0, 1], and ε > 0 be parameters. Let µ, ν be arbitrary distributions over
RN satisfying (δ, α)-W∞(µ, ν) ≤ ε. Let x∗ ∼ µ and suppose y = Ax∗ + w, where A ∈ RM×N
and w ∈ RM are i.i.d. Gaussian normalized such that Aij ∼ N (0, 1/M) and wi ∼ N (0, σ2/M),
with σ & ε. Given y and the fixed matrix A, let x̂ be the output of posterior sampling with respect to
ν.

Then for M ≥ O
(

log
(

1
1−α

)
+ min(log Covσ,δ(µ), log Covσ,δ(ν))

)
, there exists a universal con-

stant c > 0 such that with probability at least 1− e−Ω(M) over A,w,

Pr
x∗∼µ,x̂∼ν(·|y)

[‖x∗ − x̂‖ ≥ c(ε+ σ)] ≤ δ + e−Ω(M).
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Figure 3: Comparative reconstructions of a 2D abdominal scan with uniform random under-sampling in the
horizontal direction at R = 4. None of the methods were trained to reconstruct abdomen MRI. Our method uses
a score-based generative model trained on brain images (as explained) and obtains good reconstructions. The
red arrows indicate missing details or artifacts in the kidney structure.

For our running example of ν being a generator trained on brain scans, and µ the distribution of
abdominal scans, we can set ν′ to be the distribution of our generator restricted to abdominal scans,
and we can let µ′ be the distribution restricted to “inliers” in µ. This shows that even if our generator
places an exponentially small probability mass(i.e., 1− α� 1) on the set of abdominal scans, we
can still recover abdominal scans with a polynomial additive increase in the number of measurements
(i.e., log(1/(1− α))).

Near-optimality under arbitrary measurement processes. The previous result required Gaus-
sian matrices to handle the distribution shift. Our next result shows that for an arbitrary measurement
process, and assuming that there is no distribution shift between the generator and the ground truth
distribution, posterior sampling is almost the best algorithm for this fixed measurement process. This
result also shows that posterior sampling is good with respect to any metric.

Theorem 3.4. Let d(·, ·) be an arbitrary metric over RN × RN . Let x∗ ∼ µ and let y = A(x∗) be
measurements generated from x∗ for some arbitrary forward operator A : RN → RM . Then if there
exists an algorithm that uses y as inputs and outputs x′ such that

d(x∗, x′) ≤ ε with probability 1− δ,

then posterior sampling x̂ ∼ µ(·|y) will satisfy

d(x∗, x̂) ≤ 2ε with probability ≥ 1− 2δ.

Remark on combining these results. Our theoretical results above show that posterior sampling
is (1) highly robust to distribution shift under Gaussian measurements, and (2) accurate with arbitrary
measurements without distribution shift. A natural hope would be to combine these two results and
show that it is robust to distribution shift under Fourier measurements. Unfortunately, this is not true
for general distributions: for example, if µ and ν are both random distributions over Fourier-sparse
signals, then Fourier measurements will usually give zero information about the signal, so cannot
convince the sampler to sample near µ rather than ν.

4 Experimental Results

We perform retrospective under-sampling in all experiments, i.e., given fully-sampled k-space
measurements from the NYU fastMRI [56, 94] and Stanford MRI [1] datasets, we apply sampling
masks and evaluate the performance of all considered algorithms on the reconstructed data. Depending
on scan parameters (e.g., 3D scans for the Stanford knee data in Appendix F), we appropriately slice
and sample the data in the proper dimension so as to not commit any inverse crime [31, 77].

7



We first highlight that an advantage of the proposed approach is the invariance to the sampling scheme
during training. In contrast, this is a design choice that must be made for supervised end-to-end
methods, which here were trained on equispaced, vertical sampling masks, following the fastMRI
2020 challenge guidelines [94, 66]. As our results show, this affords us a significant degree of
robustness across a wide distribution of sampling masks during inference.

We train a score-based model, NCSNv2 [80], on a small subset of scans from the NYU fastMRI
brain dataset. Specifically, we train using T2-weighted images at a field strength of 3 Tesla for a
total of 14,539 2D training slices. We calculate the MVUE from the fully sampled data and use the
ESPIRiT algorithm [87, 43] applied to the fully-sampled central portion of k-space to estimate the
sensitivity maps. The backbone network for our model is a RefineNet [59]. Since the generator’s
output is expected to be complex-valued, we treat the real and imaginary parts as separate image
channels. Details about the architectures are given in Appendix G.

We use an `1-Wavelet regularized reconstruction algorithm [62] as a parallel imaging and compressed
sensing baseline. This aims to solve the optimization problem given in (2) with Q(x) = ||Wx||1,
where W is a 2D Wavelet transform. We use the publicly available implementation from the BART
toolbox [88, 86] and optimize the regularization hyper-parameter using the same subset of samples
from the brain dataset that was used to train our method. We find that λ = 0.01 performs the best on
the training data and use this value for all experiments. We consider three different deep learning
baselines: MoDL [3], E2E-VarNet [82], and the ConvDecoder architecture [19].

We train the MoDL and E2E-VarNet baselines from scratch on the same training dataset as our
method, at acceleration factors R = {3, 6} and equispaced under-sampling, with a supervised SSIM
loss on the magnitude MVUE image, for 40 and 15 epochs, respectively, using a batch size of 1.
For the ConvDecoder baseline, we use the architecture for brain data in [19] that outputs a complex
image estimate and optimize the number of fitting iterations on a subset of samples from the training
data. We find that 10000 iterations are sufficient to reach a stable average performance at R = 3. Put
together, all of our baselines are tailored to estimate the complex image x, thus all comparisons are
fair. We evaluate reconstruction performance using the complex MVUE of the fully sampled data as
a reference image and measure the peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) [92] between the absolute values of the reconstruction and ground-truth MVUE images.

4.1 In-Distribution Performance

In this experiment, we test all models using the same forward model that matches the training
conditions for the baselines: vertical, equispaced sampling patterns. Examples of various sampling
patterns are shown in Appendix C.

Figure 1 (top three rows) shows qualitative results and Figures 2a & 5a respectively show PSNR &
SSIM values, for the case where there is no mismatch between the training and inference sampling
patterns. As the baselines were trained to maximize SSIM at R = 3 & 6, we see that they achieve
better SSIM scores than us at these accelerations, although there is clear aliasing in the baselines at
R = 6. We achieve better PSNR values at these accelerations, which supports the claim that our
method does not overfit to a particular metric (Theorem 3.4). This also highlights the importance
of qualitative evaluations in medical image reconstruction and the limitations of existing image
quality metrics [65]. From the third row of Figure 1, and Figures 2a & 5a, we notice that our method
surpasses baselines at higher accelerations.

We find that `1-Wavelet suffers both qualitatively and quantitatively at high acceleration factors,
while the ConvDecoder is also a competitive architecture, but incurs a large computational cost.
When benchmarked on an NVIDIA RTX 2080Ti GPU, our method takes 16 minutes and 0.95 GB of
memory to reconstruct a high-resolution brain scan, whereas the ConvDecoder takes longer than 80
minutes and 6.6 GB of memory. While our method is limited by the inference time and is not in the
range of end-to-end models (where reconstruction takes at most on the order of seconds and 3.5 GB
of memory), multiple scans can be reconstructed in parallel due to the reduced memory footprint.

4.2 Out-of-Distribution Performance

Test-time sampling pattern shifts. Here we consider shifts in the forward sampling operator
at test-time, while still evaluating on the same anatomy as the training conditions. We measure

8



Figure 4: Our method successfully recovers fine details and can provide an estimate of the reconstruction error.
The left column shows a knee from the fastMRI dataset, along with an annotated meniscus tear (indicated by
red arrow in zoomed inset). Given measurements at an acceleration factor of R = 4, we obtain 48 independent
reconstructions via posterior sampling. The second column shows the pixel-wise average of reconstructions,
the third column shows the pixel-wise standard deviation, and the fourth column shows the magnitude of the
error between the ground truth and the mean reconstruction. Note that our generative prior has never seen such
pathology, as it was trained on T2-weighted brain scans.

robustness by evaluating the average incurred performance loss when the sampling pattern changes.
Recall that our proposed approach does not use any explicit information about the sampling pattern
P during training, hence we anticipate the highest degree of robustness.

Figure 1 (fourth row) shows qualitative reconstructions when the measurements are obtained from an
equispaced, horizontal sampling mask, with an acceleration factor R = 3. It can be observed that
the reconstructions output by E2E-VarNet show aliasing artifacts. Based on the statistical results in
Figure 2b & 5b, our method retains its performance.

Furthermore, this experiment reveals that MoDL is more robust to this type of mask shift when
compared to E2E-VarNet, even though it uses a smaller network. This is explained by the fact that
E2E-VarNet does not use external sensitivity map estimates, but uses a deep neural network for end-
to-end map estimation. While this improves performance on in-distribution samples, the performance
drop is strong evidence that accurate sensitivity map estimation is vital for robust generalization,
and both our proposed approach and MoDL benefit from the external ESPIRiT algorithm, which is
compatible with different sampling patterns.

We do note that retrospectively flipping the horizontal and vertical sampling direction is not necessarily
representative of prospective sampling in the horizontal direction due to the discrete nature of the
phase encoding direction in MRI, and this may contribute to the higher scores compared to the
vertical mask experiments.

Test-time anatomy shifts. We now consider the more difficult problem of reconstructing different
anatomies than the ones seen during. This was previously investigated in [19], which concluded that
all methods suffer a drastic shift due to the various changes in scan parameters between body parts.
In contrast to prior work, our main finding is that the proposed score-based model retains a significant
degree of robustness under these shifts, and outputs excellent qualitative reconstructions. In some
cases, some end-to-end methods retain robustness as well.

Figures 2c & 5c show PSNR and SSIM scores obtained on reconstructed abdominal scans obtained
from [1] at different acceleration factors. This represents both an anatomy and sampling pattern shift,
and it can be seen that our method, MoDL, and the `1-Wavelet algorithm retain their competitive
advantage, while the ConvDecoder and E2E-VarNet suffer severe performance losses. Figure 3
further shows a qualitative comparison of a reconstructed abdominal scan at R = 4, with highlighted
artifacts. Appendix E shows another abdomen scan.

Finally, Figures 2d & 5d show PSNR and SSIM scores obtained on fastMRI knee reconstructions,
while Figure 1 (bottom row) shows the accompanying qualitative plots. This anatomy is challenging
especially because of the poor signal-to-noise ratio conditions, which can be seen even in the ground-
truth image. It can be noticed that this is the most severe shift for all methods, but our approach still
shows the best performance at R = 2, 4 and a significantly lower variance. Appendix D shows more
examples of knee reconstructions with and without fat suppression, and Figure 20 shows metrics on
fat suppressed knees.
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4.3 Uncertainty Estimation

Our method can also provide uncertainty estimates for each reconstructed pixel by running multiple
reconstruction samplers. For a given observation y, we can obtain independent samples x̂1, · · · , x̂K ∼
µ(·|y), for K sufficiently large. Now, using the conditional mean estimate x̄ =

∑K
i=1 x̂i/K, we can

compute the pixel-wise standard deviation
√∑K

i=1 |x̂i − x̄|2/K, and this gives an estimate of the
error in each pixel. As shown in Fig 4, the pixel-wise standard deviation is a good estimate of the
ground truth error |x∗ − x̄|. Additionally, notice that the reconstructions are able to recover fine
details such as the annotated meniscus tear3 in Fig 4 and predict low uncertainty for these features.

Figure 17 in Appendix D shows another example of an annotated meniscus tear. Figures 18 and 19
show comparisons with baselines on the same examples.

4.4 Radiologist Study

We have conducted a preliminary blind assessment of overall image quality with two board-certified
radiologists and one faculty member who uses neuroimaging for their research. These experts were
not involved in our research. We have found that our algorithm was ranked best for knee scans, and
tied with the baselines for abdominal and brain scans, supporting our robustness claims in the paper.
For more details, please see Appendix H.

5 Limitations

We reported PSNR and SSIM values as they are correlated with radiologist evaluation upto an extent,
and our preliminary radiologist study in Section 4.4 suggests the feasibility of clinical adoption. These
metrics do not capture the needs of real-world radiologists, and a more detailed study is required
before the proposed techniques can be clinically adopted.

Though promising, our initial results were still limited to fast spin-echo imaging only and all data were
retrospectively under-sampled. Further study is required to demonstrate prospective performance
in a larger body of heterogeneous MRI data. Our method also currently requires a high compute
cost at inference time, as well as the need for a pre-trained generative model. Clinical use requires
fast reconstruction in addition to fast scanning. Future work should investigate whether score-based
models can be trained without a fully-sampled training set as well as investigate approaches to
reducing computation time.

Finally, there are potential issues related to discrimination. Specifically, it is possible that the quality
of the reconstructed images varies across protected attributes, such as gender or race [57].

6 Conclusions

This paper reports the first successful application of the CSGM framework for robust multi-coil MR
image reconstruction under realistic sampling conditions, and provides theoretical evidence for the
robustness of posterior sampling. Our score-based model was trained on a small subset of brain
MRI scans without any explicit information about the sampling scheme. This shows state-of-the-art
performance under severe distributional shifts, making our model applicable in a wide range of
clinical settings.

Our method shows a considerable degree of generalization to out-of-distribution samples such as
abdomen and knee MRI, even when trained exclusively on brain MRI. Notably, these scans were
acquired using different MRI vendors with different pulse sequence parameters and at different
institutions. We postulate that adding a small set of diverse training samples to our generative model
could further improve robustness, and we hypothesize that these samples may not necessarily be
restricted to MR images.

The results presented in this work represent an important step to applying deep learning models in the
clinic, as there is a natural variation in sampling, image orientation, receive coils, scanner hardware,
and anatomy in clinical practice.

3https://discuss.fastmri.org/t/219
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ments of Theorem 3.3, Theorem 3.4.

(b) Did you include complete proofs of all theoretical results? [Yes] In Appendix B
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Our GitHub
link contains all relevant information

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In Appendix G

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All quantitative plots have 95% confidence intervals.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Yes, in section 4 and Appendix G

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
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(a) If your work uses existing assets, did you cite the creators? [Yes] Our algorithm uses
the NCSNv2 generative model, NYU fastMRI dataset, and Stanford MRI datasets, all
of which have been cited.

(b) Did you mention the license of the assets? [Yes] In Appendix G
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

To the best of our knowledge, we are the first to train generative models for complex
valued MR scans, and we include this in the GitHub link in Appendix G

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We used the NYU fastMRI and Stanford MRI datasets, both of
which have this covered in their terms of agreement.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] We used the NYU fastMRI and Stanford MRI
datasets, both of which have been anonymized.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] We didn’t do any human subject experiments
(b) Did you describe any potential participant risks, with links to Institutional Review Board

(IRB) approvals, if applicable? [N/A] We didn’t do any human subject experiments
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A] We didn’t do any human subject experiments
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