Under review as a conference paper at ICLR 2025

RILE: REINFORCED IMITATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning has achieved significant success in generating complex
behavior but often requires extensive reward function engineering. Adversarial vari-
ants of Imitation Learning and Inverse Reinforcement Learning offer an alternative
by learning policies from expert demonstrations via a discriminator. However, these
methods struggle in complex tasks where randomly sampling expert-like behaviors
is challenging. This limitation stems from their reliance on policy-agnostic dis-
criminators, which provide insufficient guidance for agent improvement, especially
as task complexity increases and expert behavior becomes more distinct. We intro-
duce RILe (Reinforced Imitation Learning environment), a novel trainer-student
system that learns a dynamic reward function based on the student’s performance
and alignment with expert demonstrations. In RILe, the student learns an action
policy while the trainer, using reinforcement learning, continuously updates itself
via the discriminator’s feedback to optimize the alignment between the student
and the expert. The trainer optimizes for long-term cumulative rewards from the
discriminator, enabling it to provide nuanced feedback that accounts for the com-
plexity of the task and the student’s current capabilities. This approach allows for
greater exploration of agent actions by providing graduated feedback rather than bi-
nary expert/non-expert classifications. By reducing dependence on policy-agnostic
discriminators, RILe enables better performance in complex settings where tradi-
tional methods falter, outperforming existing methods by 2x in complex simulated
robot-locomotion tasks.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful framework for teaching agents to perform
complex tasks. In recent years, deep reinforcement learning has demonstrated remarkable success in
replicating sophisticated behaviors, including playing Atari games, chess, and Go (Mnih et al., [2013}
Silver et al., 2018). However, these achievements often come at a cost: the tedious and challenging
process of designing reward functions, as predicting the policy outcome from a manually crafted
reward function remains notoriously difficult.

To overcome the reward engineering problem, Imitation Learning (IL) leverages expert demonstra-
tions to learn a policy. Since vast amounts of expert data are required to accurately learn expert
behaviors, Adversarial Imitation Learning (AIL) approaches, such as GAIL (Ho & Ermon, 2016},
have been proposed as data-efficient alternatives. AIL employs a discriminator to measure similarity
between learned behavior and expert behavior, rewarding the agent accordingly. While computa-
tionally efficient, AIL methods suffer from a critical limitation: the policy-agnostic nature of their
discriminators. The discriminator lacks any inherent incentive to guide the agent towards expert-
like behavior, in contrast to engineered reward functions in RL. Consequently, AIL methods face
challenges in complex tasks requiring extensive exploration to find optimal actions. For instance, in
digital locomotion tasks, AIL methods often struggle to consistently replicate expert performance
(Peng et al.,[2018]).

Inverse Reinforcement Learning (IRL) is another approach to alleviate reward engineering. Unlike
IL, which directly learns expert behavior, IRL seeks to infer the underlying reward function that
motivates the agent to acquire expert behaviors. The reward function and the agent are trained
iteratively, with updates to the reward function based on the agent’s behavior. This iterative process
renders IRL computationally expensive (Zheng et al., 2022). Adversarial Inverse Reinforcement
Learning (AIRL) (Fu et al., 2018)) attempts to address this inefficiency by introducing a discriminator

Under review as a conference paper at ICLR 2025

that enables simultaneous learning of the policy and reward function. However, in AIRL, the reward
function is tightly coupled to the discriminator, potentially limiting its ability to capture complex task
structures or long-term dependencies and inheriting the limitations of a policy-agnostic discriminators.
This highlights the need for a method that can learn a more flexible reward function without the
computational overhead of traditional IRL methods.

To overcome these challenges and effectively learn behaviors in complex settings, we propose
Reinforced Imitation Learning (RILe) (Fig. [T}(d)). RILe aims to combine the ability to learn a reward
function that actively guides the agent to imitate expert behavior with the computational efficiency of
adversarial frameworks. At the core of RILe is a novel trainer-student system designed to address the
shortcomings of existing methods:

* A student agent that learns to replicate the expert’s policy via RL in the environment
* A trainer agent that learns a reward function via RL and guides the student agent during
training

By integrating the trainer-student dynamic, RILe decouples reward learning from policy learning and
the discriminator, allowing each component to specialize and thereby overcome the limitations of
policy-agnostic discriminators. While RILe utilizes a discriminator similar to those in adversarial
frameworks, its role is fundamentally redefined. In RILe, the discriminator’s primary function is
to provide feedback to the trainer agent by distinguishing expert data from student roll-outs. This
feedback serves as the reward signal for the trainer, not directly influencing the student agent. The
trainer leverages the discriminator’s feedback to learn a reward function that effectively guides the
student agent. This approach enables more nuanced reward shaping, particularly beneficial in tasks
requiring complex decision-making and extensive exploration.

Our contributions are two-fold:

1. Decoupled Reward-function Learning: We introduce a novel approach where the trainer
agent learns the reward function independently from both the student agent and the discrim-
inator. Unlike existing methods that derive rewards directly from discriminator outputs,
our trainer agent uses reinforcement learning to optimize the reward function based on
the feedback from the discriminator. By focusing on long-term reward maximization, RL
enables the trainer to distill inconsistent feedback from the discriminator into meaningful
rewards, leading to better student performance.

2. Dynamic Reward Customization: Our trainer agent dynamically adjusts rewards based on
the student agent’s progress, facilitating a better learning experience and enabling accurate
imitation of expert behavior in complex settings. This adaptive approach allows for more
gradual learning, particularly in tasks where the optimal behavior may change depending on
the agent’s current capabilities.

We evaluate RILe against state-of-the-art methods in AIL, and AIRL, specifically GAIL Ho & Ermon
(2016), and AIRL [Fu et al.[(2018)). Our experiments span three scenarios: (1) Tailoring a reward
function dynamically in a discrete maze task, (2) Investigating the impact of expert data on the
trainer-student dynamics in a humanoid locomotion task, and (3) Imitating motion-capture data in
continuous control tasks. The results demonstrate RILe’s superior performance, especially in complex
tasks, and its ability to learn an effective dynamic reward function where baseline methods fail.

2 RELATED WORK

We review literature on learning from expert demonstrations, focusing on Imitation Learning (IL)
and Inverse Reinforcement Learning (IRL), which form the conceptual foundation of RILe.

Imitation Learning Early work introduced Behavioral Cloning (BC) (Bain & Sammut, [1995)),
which learns a policy congruent with expert demonstrations through supervised learning. DAgger
(Ross et al.,[2011)) introduces data aggregation. GAIL (Ho & Ermon, |2016) introduces adversarial
methods, where a discriminator aims to discriminate expert demonstrations, while a generator tries to
fool the discriminator. DQfD (Hester et al., 2018) proposes two-stage approach with pre-training, and
ValueDice (Kostrikov et al.,2020) uses a distribution-matching objective between policy and expert.
Despite progress, IL faces challenges in efficacy and generalization (Zheng et al., [2022; [Toyer et al.,

Under review as a conference paper at ICLR 2025

2020). RILe addresses these by introducing an adaptive teacher agent to guide the student beyond
expert demonstrations.

Inverse Reinforcement Learning IRL, introduced by Ng & Russell (2000), learns the expert’s
intrinsic reward function. Key developments include Apprenticeship Learning (Abbeel & Ng| [2004),
Maximum Entropy IRL (Ziebart et al., 2008)), and adversarial approaches like AIRL (Fu et al., 2018).
Recent work explores handling unstructured data (Chen et al.,2021) and cross-embodiment scenarios
(Zakka et al.}|2022). Despite advancements, IRL faces challenges in computational efficiency and
scalability (Arora & Doshi, |2021). RILe addresses these by jointly learning policy and reward
function in a single process.

3 BACKGROUND

3.1 MARKOV DECISION PROCESS

A standard Markov Decision Process (MDP) is defined by (S, A, R, T, K,~). S is the state space
consisting of all possible environment states s, and A is action space containing all possible envi-
ronment actions a. R = R(s,a) : S x A — R is the reward function. T' = {P(-|s,a)} is the
transition dynamics where P(:|s, a) is an unknown state state transition probability function upon
taking action @ € A in state s € S. K(s) is the initial state distribution, i.e., so ~ K (s) and =y is
the discount factor. The policy 7 = m(als) : S — A is a mapping from states to actions. In this
work, we consider y-discounted infinite horizon settings. Following Ho & Ermon| (2016]), expectation
with respect to the policy m € II refers to the expectation when actions are sampled from 7(s):
Ex[R(s,a)] £ Ex[> 72,7 R(st, ar)], where sq is sampled from an initial state distribution K(s),
ay is given by m(-|s¢) and s;41 is determined by the unknown transition model as P(-|s;, a;). The
unknown reward function R(s, a) generates a reward given a state-action pair (s, a). We consider a
setting where R = R(s, a) is parameterized by 6 as Ry(s,a) € R (Finn et al., 2016).

Our work considers an imitation learning problem from expert trajectories, consisting of states s and
actions a. The set of expert trajectories 7 are sampled from an expert policy 7g € II, where II is
the set of all possible policies. We assume that we have access to m expert trajectories, all of which

have n time-steps, 7 = {(s},ad), (si,a}),...,(st,at)}m .

3.2 REINFORCEMENT LEARNING (RL)

Reinforcement learning seeks to find an optimal policy, 7*. that maximizes the discounted cumulative
reward given from the reward function R = R(s,a) (Fig. (a)). In this work, we incorporate
entropy regularization using the y-discounted casual entropy function H (7)) = E,[—log 7(a|s)] (Ho
& Ermonl 2016} |Bloem & Bambos|, |2014). The RL problem with a parameterized reward function
and entropy regularization is defined as

RL(Ry(s,a)) = 7" = argmaxE,[Ry(s,a)] + H(7). (D

s

3.3 INVERSE REINFORCEMENT LEARNING (IRL)

Given sample trajectories 7r from an optimal expert policy 7, inverse reinforcement learning
aims to recover a reward function R}(s,a) that maximally rewards the expert’s behavior (Fig.
(b)). Formally, IRL seeks a reward function, Rj(s,a), satisfying: Ex,[> .~ v R} (s, ar)] >
Ex[> ooV Rj(s¢,a:) + H(w)] V. Optimizing this reward function with reinforcement learning
yields a policy that replicates expert behavior: RL(Rj(s,a)) = 7*. Since only the expert’s trajec-
tories are observed, expectations over 7 are estimated from samples in 7z. Incorporating entropy
regularization H (7), maximum causal entropy inverse reinforcement learning (Ziebart et al., [2008) is

defined as

IRL(1g) = ;r(g m)zgﬂ; (Es,ae'r}; [Ro(s,a)] — max (Ex[Ro(s,a)] + H(’]T))) .)

Under review as a conference paper at ICLR 2025

Environment

b

Environment

4

s

Reward

HEUEIE Function

Function

Loss

(a) RL (b) IRL

Student Environment Student Environment

_"- s @ i
b)
™ Q& .ik‘
;. ‘ @ -
% @ !

Discriminator

Expert Data Expert Data

(c) GAIL + AIRL (terms in green) (d) RILe

Figure 1: Overview of the related works. (a) Reinforcement Learning (RL): learning a policy
that maximizes hand-defined reward function; (b) Inverse RL (IRL): learning a reward function
from data. IRL has two stages: 1. training a policy with frozen reward function, and 2. updating
the reward function by comparing the converged policy with data. These stages repeated several
times; (C) Generative Adversarial Imitation Learning (GAIL) + Adversarial IRL (AIRL): using
discriminator as a reward function. GAIL trains both policy and the discriminator at the same time.
AIRL implements a new structure on the discriminator, seperating reward from environment dynamics
by using two networks under the discriminator (see additional terms in green). (D) RILe: similar to
IRL, learning a reward function from data. RILe learns the reward function at the same time with the
policy, using discriminator as a guide for learning the reward.

3.4 ADVERSARIAL IMITATION LEARNING (AIL) AND ADVERSARIAL INVERSE
REINFORCEMENT LEARNING (AIRL)

Imitation Learning (IL) aims to directly approximate the expert policy from given expert trajectory
samples 7. It can be formulated as IL(7g) = argmin, E(s 4)~r [L(7(:]5),a)], where L is a loss
function, that captures the difference between policy and expert data.

GAIL (Ho & Ermon)} [2016)) introduces an adversarial imitation learning setting by quantifying the
difference between the agent and the expert with a discriminator Dy (s, a), parameterized by ¢
(Fig. [TH(c)). The discriminator distinguishes between between expert-generated state-action pairs
(s,a) ~ g and non-expert ones (s,a) ¢ 7. The goal of GAIL is to find the optimal policy that
fools the discriminator while maximizing an entropy constraint. The optimization is formulated as a
zero-sum game between the discriminator Dy (s,) and the policy

min mgxIEﬂ[log Dy(s,a)] +E. log (1 — Dg(s,a))] — AH (). 3)

In other words, the reward function that is maximized by the policy is defined as a similarity function,
expressed as R(s,a) = —log (Dg(s,a)).

AIRL extends AIL to inverse reinforcement learning, aiming to recover a reward
function decoupled from environment dynamics (Fig. [TH(c)). The key insight of AIRL is to structure
the discriminator as:

exp(fs(s,a,s"))

4
xp(fy(5,0,5")) + n(als)’ @

D¢ﬂb (87 a, 8/) =

4

Under review as a conference paper at ICLR 2025

where fy(s,a,s") = ry(s,a) + vVy(s') — Vg(s). Here, ry(s,a) represents the learned reward
function that is decoupled from the environment dynamics, vV (s’) — V(s). The AIRL optimization
problem is formulated equivalently to GAIL (see Eqn. . The reward function (s, a) is learned
through minimizing the cross-entropy loss inherent in this adversarial setup. Therefore, the reward
function remains tightly coupled with the discriminator’s learning process.

4 RILE: REINFORCED IMITATION LEARNING

We propose Reinforced Imitation Learning (RILe) to learn the reward function and acquire a policy
that emulates expert-like behavior simultaneously in one learning process. Our RILe framework
introduces a novel trainer-student dynamic to overcome limitations in existing imitation learning
methods. Figure2]illustrates our approach.

In RILe, the student agent learns an action policy by interacting with the environment, while the
trainer agent learns a reward function that effectively guides the student toward expert-like behavior.
Both agents are trained simultaneously via reinforcement learning, with assistance from an adversarial
discriminator.

Unlike traditional AIL, where the discriminator directly influences the student, RILe decouples this
process by introducing the trainer agent. The discriminator provides immediate feedback solely to
the trainer agent. This allows the trainer to adjust the reward function on-the-fly considering the
current stage of the student’s learning process, and guiding the student without waiting for its policy
to converge, a significant improvement over traditional IRL.

In our framework, the trainer agent takes the key role. Trained via RL, the trainer learns to pro-
vide tailored feedback to the student by maximizing the cumulative rewards it receives from the
discriminator. This approach equips RILe with three key advantages that set it apart from existing
AIL frameworks: (1) the trainer associates its reward signals to future improvements in the student’s
behavior, even if these improvements occur after many steps, (2) the trainer encourages the student to
explore actions that steer it in the right direction, even when immediate expert-like behavior isn’t
achieved yet, and (3) the trainer adjusts its reward function based on the student’s current policy,
creating a learning path that gradually guides the student toward expert behavior.

This approach enables RILe to overcome limitations of previous methods, particularly in complex
tasks requiring extensive exploration, by promoting the discovery of expert-like strategies even when
the student’s initial policy significantly diverges from expert behavior.

In the following, we define the components of RILe and explain how they can efficiently learn
behavior from imperfect data.

Student Agent The student agent learns a policy mg by interacting with an environment in a
standard RL setting within an MDP. For each of its actions a® € A, the environment returns a new
state s° € S. However, rather than from a hand-crafted reward function, the student agent receives its
reward from the policy of the trainer agent 7. Therefore, the reward function is represented by the
trainer policy. Thus, the student agent is guided by the actions of the trainer agent, i.e., the action of
the trainer is the reward of the student: r* = 7m7((s%,a®)). The optimization problem of the student
agent is then defined as

min _]E(ss,as)rwws [ﬂ—T ((SS’aS))]' %)

s

Discriminator The discriminator differentiates between expert-generated state-action pairs (s, a) ~
75 and state-action pairs from the student (s,a) ~ mg. In RILe, the discriminator is defined as a
feed-forward deep neural network, parameterized by ¢. Hence, the optimization problem is

mg‘x E(S,G)NTE [lOg(D¢(S, a))] + I['Z(s,al)fwrs [IOg(l - be(s’ a))] (6)

To provide effective guidance, the discriminator needs to accurately distinguish whether a given
state-action pair originates from the expert distribution (s, a) ~ 7g or not (s, a) ¢ 7g. The feasibility
of this discrimination has been demonstrated by GAIL (Ho & Ermon), [2016). The according lemma
and proof are presented in the Appendix [A]

Under review as a conference paper at ICLR 2025

Expert Data 4
.

Figure 2: Reinforced Imitation Learning (RILe). The framework consists of three key components:
a student agent, a trainer agent, and a discriminator. The student agent learns a policy mg by
interacting with an environment, and the trainer agent learns a reward function as a policy mp. (1)
The student receives the environment state s°. (2) The student takes an action o, forwards it to
the environment which is updated based on a®. (3) The student forwards its state and action to the
trainer, whose state is s = (ss , a®). (4) Trainer, 7, evaluates the state action pair of the student
agent s7 = (5%, a%) and chooses an action a” that then becomes the reward of the student agent
a® = rS. (5) The trainer agent forwards the sT = (ss , a®) to the discriminator. (6) Discriminator
compares student state-action pair with expert demonstrations (s”). (7) Discriminator gives reward
to the trainer, based on the similarity between student- and expert-behavior.

Trainer Agent The trainer agent guides the student to approximate expert behavior by operating as
its reward mechanism. Since the trainer agent takes the role of a reward function for the student, a
new MDP is defined for the trainer agent: MDPy : (S7, Ap, Ry, Tr, K,), where St : S x A is the
state space that consists all possible state action pairs from the standard MDP, defined in[3.1} Ay is
the action space, a mapping from S — R, so the action is a scalar value. Rr (s, a) is the reward
function where s € Sy and a € Ap. Ty = {P(+|s,a)} is the transition dynamics where P(-|s,a) is
defined as the state distribution upon taking action a € Ap in state s € Sp. K7 is the initial state
distribution.

The trainer agent learns a policy 7 that produces adequate reward signals to guide the student agent,
by learning in a standard RL setting, within M D Pr. Since the state space of M D Pr is defined over
state-action pairs of M D Pg, the state of the trainer comprises the state-action pair of the student
sT = (s%,a”) € Sp. It generates a scalar action a” which is given to the student agent as reward
9, and bounded between -1 to 1. If the trainer’s reward depends only on the discriminator’s output,
it won’t know whether rewarding or punishing the student was effective, because its reward would be
the same regardless of its action. For example, when the student behaves like the expert (discriminator
output is close to 1), the trainer should reward the student (action close to +1). If the trainer’s action
isn’t part of its reward, it receives the same reward even if it punishes the student (action close to
-1), making the trainer impossible to understand results of its own actions and learn proper guidance.
To help the trainer understand how its actions impact the reward it receives, we define the reward
function such that it multiplies the scaled discriminator’s output by trainer’s actions. Therefore, the
trainer agent’s reward function is defined as RT = v(Dy(sT))(a™), where Dy (sT) is the output of
the discriminator and v(x) = 2x — 1 is the scaling function. By incorporating a” into the reward
function, the trainer learns to adjust its policy based on the effectiveness of its previous actions. The
optimization problem of the trainer can be defined as

max E (s o)uns [0(Dg(s, a))a’].)

(LTN7TT

RILe RILe combines the three components defined previously in order to find a student policy that
mimics expert behaviors presented in 7. In RILe, the student policy mg and the trainer policy 7
can be trained via any single-agent online reinforcement learning method. The training algorithm is
given in Appendix E Overall, the student agent aims to recover the optimal policy 7 defined as

oo
7T:§« = arg maXE(sS,as)Nws [Z 7t[7TT ((51?'7 a’f))] : (8)
s t=0

Under review as a conference paper at ICLR 2025

At the same time, the trainer agent aims to recover the optimal policy 77 as

mp =argmaxE r [Z fyt[v(D,b(stT))aT] .)
T t=0

at ~rp

We outline the employed training strategies in Appendix [B]

5 EXPERIMENTS

We evaluate the performance of RILe by addressing three key questions:

1. How does RILe’s adaptive reward function evolve compared to baseline methods and how
does this evolution enhance the learning process?

2. How dynamic is RILe’s adaptive reward function, and how does this dynamism benefit the
student agent compared to the policy-agnostic discriminator in AIL?

3. Is RILe efficient and scalable to high-dimensional continuous control tasks?
4. Can RILe use expert-data explicitly to imitate expert behavior?

To answer the first question, we compare RILe’s performance with AI(R)L baselines in a maze
setting, where we demonstrate how the trainer agent modifies the reward function to guide the student
during training. For the second question, we evaluate the dynamics of the learned reward function
and analyze the correlation between these changes and improvements in the student’s performance.
For the third question, we evaluate RILe’s effectiveness in imitating motion-capture data within
robotic control tasks, using LocoMujoco (Al-Hafez et al.| 2023). To answer the last question, we
use a humanoid character from MuJoCo (Brockman et al., 2016}, Todorov et al.l [2012) to evaluate
RILe’s performance when expert data is explicitly used by the agents. Additional experimental results
are provided in the Appendix, where we evaluate the robustness of the learned reward function and
analyze the noise resilience of our method.

Baselines We compare RILe with five baseline methods: Behavioral cloning (BC (Bain & Sammut,
1995;Ross & Bagnelll [2010)), adversarial imitation learning (GAIL (Ho & Ermon,|[2016) and DRAIL-
GAIL (Lai et al.| |2024)), adversarial inverse reinforcement learning (AIRL (Fu et al.,[2018))), and
inverse reinforcement learning (IQ-Learn (Garg et al.;2021)). DRAIL (Lai et al.} [2024) introduces a
diffusion-based discriminator implementation, which is applied to both GAIL and RILe, and referred
as DRAIL-GAIL and DRAIL-RILe.

Additional experimental details are provided in the Appendix[C] and hyperparameter selections are
discussed in the Appendix [G]

5.1 EVOLVING REWARD FUNCTION

To evaluate the impact of RILe’s trainer agent on the learning process compared to existing methods,
we designed a maze experiment. Using a single expert demonstration, we trained RILe, GAIL, and
AIRL, in a maze where the agent must navigate from a fixed start to a goal, avoiding obstacles.

Fig. [3|shows how each method’s reward function evolves during training. For RILe, we plot the
reward function learned by the trainer. For GAIL and AIRL, we visualize the discriminator outputs.
The columns represent reward landscapes at 25%, 50%, 75%, and 100% of training completion. The
student’s trajectory from the previous epoch is overlaid to demonstrate how reward functions adapt to
the student’s progress.

RILe’s reward function adapts dynamically based on the student’s current policy, providing mean-
ingful guidance even when the discriminator can easily distinguish non-expert policies. In contrast,
GAIL and AIRL’s reward functions remain relatively static due to their policy-agnostic discriminators.
This dynamic adaptation in RILe creates a learning curriculum that encourages exploration and
gradual improvement towards expert-like behavior.

Specifically, the first column shows RILe’s trainer encourage exploration towards the expert path
when the student does not resemble the expert, which shows the trainer provides informative rewards
despite negative discriminator feedback. The second column presents when the student learns to

Under review as a conference paper at ICLR 2025

(a) RILe

10
- 075
05
025
00
-0.25
05
075
10

(b) GAIL

"10
- 075
05
025
00
025
03
075
10

(c) AIRL

Figure 3: Reward Function Comparison. Evolution of reward functions during training for (a)
RILe, (b) GAIL, and (c) AIRL in a continuous maze environment. Columns show reward landscapes
at 25%, 50%, 75%, and 100% of training completion (left to right). The expert’s trajectory is shown in
red, while the student agent’s trajectory from the previous training epoch is in black. Color gradients
represent reward values, with darker colors indicating lower rewards and brighter colors indicating
higher rewards. Purple squares represent obstacles. RILe demonstrates a more adaptive reward
function that evolves with the student’s progress, while GAIL and AIRL maintain relatively static
reward landscapes throughout training.

reach the bottom-right, the trainer shifts high rewards to the top-left, guiding the agent to explore that
area. Third column shows as the student approaches the goal, the trainer increases rewards around it
while maintaining rewards in specific areas (e.g., the left part) to prevent the agent from getting stuck.

All in all, RILe’s evolving reward function demonstrates its ability to provide meaningful guidance
even when the discriminator easily identifies non-expert policies. By adapting to the student’s current
capabilities, RILe creates a dynamic learning curriculum that encourages exploration and gradual
improvement towards expert-like behavior.

5.2 REWARD FUNCTION DYNAMICS

To understand the dynamics of the learned reward functions, we evaluated the dynamism of the reward
functions and analyzed the correlation between the changes in the reward function and improvements
in the student’s performance. We compared RILe with GAIL, DRAIL-GAIL, and DRAIL-RILe in a
task of learning to walk with the UnitreeH1 robot in LocoMujoco.

We introduced three metrics (see@for more details): Reward Function Distribution Change (RFDC),
Fixed-State Reward Function Distribution Change (FS-RFDC), and Correlation between Performance
and Reward (CPR). RFDC measures the Wasserstein distance between reward distributions over
consecutive training intervals, quantifying the overall shift in the reward function. FS-RFDC assesses
how reward values for a fixed set of expert states change over time, where fixed states are all states
present in the expert demonstration. CPR asseses how the performance improvement in the student
agent is related to the updates in the reward function.

Under review as a conference paper at ICLR 2025

(—— RiLe —=— GAIL —— DRAIL-GAIL DRAILRILe

0.1 0.05

._W
S 0.00

°
N
S

°
2
5
Absolute Distance
I ° °
o =
8 I
Pearson Correlation

o
°
2

°
=
o

—0.05

Wasserstein Distance

o
o
G

°
|
o
o
o)

4 5 6 7 8 9 10 05735 5 7 & & 1w 1 2 3 4 5 6 7 8 9 10
Steps (100k) Steps (100k) Steps (100k)

(a) REDC (b) FS-RFDC (c) CPR

1 2

Figure 4: Dynamics of Reward Functions. (a) Reward Function Distribution Change (RFDC):
Wasserstein distance between reward function distributions over consecutive 10,000-step intervals.
(b) Fixed-State Reward Function Distribution Change (FS-RFDC): Mean absolute deviation of
reward values for a fixed set of expert states over consecutive 10,000 steps. (¢) Correlation between
Performance and Reward (CPR): Pearson correlation between changes in the reward function and
changes in the student’s performance.

5.2.1 DYNAMISM OF THE LEARNED REWARD FUNCTION

We assess how dynamic the reward function learned by the trainer is compared to that of AIL. Fig.]
presents changes in reward distributions over consecutive 10,000 steps. RILe exhibits the highest
dynamism in its reward function, aligning with our goal of having the reward function adapt based
on the student’s learning stage. The advanced discriminator in DRAIL reduces the need for drastic
reward function changes, yet RILe remains more adaptive than GAIL. Additionally, Fig. fb]shows
deviations in reward values for the fixed set of states. Again, RILe’s reward function is the most
adaptive among all methods.

5.2.2 CORRELATION BETWEEN THE LEARNED REWARD AND THE STUDENT PERFORMANCE

We evaluate how changes in the reward function correlate with improvements in student performance.
To this end, Fig. presents the Pearson correlation between student’s performance and reward
updates, where a positive value indicate a positive correlation and a negative value indicate a negative
correlation. DRAIL-RILe achieves the highest positive correlation, indicating that it learns the most
effective rewards for improving student performance. RILe ranks second, demonstrating that the
trainer agent effectively helps the student achieve better scores. In contrast, for GAIL, the correlation
starts positive but quickly becomes negative, which persists throughout training. This highlights the
limitations of the policy-agnostic discriminator in effectively guiding the student.

5.3 MOTION-CAPTURE DATA IMITATION FOR ROBOTIC CONTINUOUS CONTROL

We evaluate RILe’s performance on the LocoMujoco benchmark, which presents a challenging task
of imitating motion-capture data for various robotic control tasks. This benchmark is particularly
demanding due to its high dimensionality and the absence of action data in the motion-capture
recordings which precludes the use of methods such as Behavioral Cloning (BC) that require complete
state-action pairs.

Table 1: Test results on seven LocoMujoco tasks.

RILe GAIL AIRL IQ DRAIL-GAIL DRAIL-RILe Expert

Atlas 870.6 7927 300.5 309 834.4 899.1 1000
:=; Talos 8425 4423 102.1 45 787.7 896.6 1000
£ UnitreeHl 966.2 950.2 568.1 8.8 940.8 995.8 1000

Humanoid 831.3 1814 80.1 45 814.6 527.6 1000
> Atlas 850.8 669.3 2564 36.8 516.6 317.1 1000
5 Talos 220.1 1863 1342 105 836.7 840.5 1000
© UnitreeHl 7883 6346 130.5 14.4 796.7 909.5 1000

Under review as a conference paper at ICLR 2025

Table [T] presents the results for seven LocoMujoco tasks across test seeds (see [C.3|for more details).
The expert performance, set at 1000 for all tasks, serves as the upper benchmark. RILe demonstrates
superior performance in all scenarios, particularly excelling in generalization to new initial conditions
as evidenced by the test seed results.

5.4 IMPACT OF EXPERT DATA ON TRAINER-STUDENT DYNAMICS

Trainer w== Normalized Scores
100% Buffer 50% _
- Student
Y 5
- 25% Buffer 25% «

We study how explicitly incorporating expert
data into RILe’s training affects the trainer’s 0%~
ability to adapt to the student’s needs, in Mu-
JoCo’s Humanoid environment (Todorov et al.,
2012; Brockman et al.,|2016) using a single ex- /
pert trajectory from (Garg et al., 2021). We v/
varied the proportion of expert data in the replay /
buffers from 0% to 100%; for example, 25% Pl
means a quarter of the buffer is expert data and
75% is from agent interactions (see[C.4]for more b
details). o

Normalized Steps

~<.
25%

SS ~
25% S«
T Y

0102 0% 50%
10203 S
040506 [
108ps1oh1y

Fig. [5] presents introducing the expert data .
led to faster convergence but decreased perfor-
mance. Notably, when environmental interac-
tions were completely replaced by expert data
(100% case), the student’s performance declined
significantly. Excessive expert data appears to

50% _ = 100%
~

R 1Q-Learn
" 100%

hinder the trainer’s ability to adapt to the student,
disrupting RILe’s dynamic learning process. We
include results from IQLearn and BC, which
rely explicitly on expert data. Neither matches
RILe’s performance, even when RILe used sub-
stantial amounts of expert data.

Figure 5: Impact of explicit usage of expert data.
Red and yellow markers show normalized scores
and steps, respectively. Square markers show
IQLearn and BC results for comparison. More
expert data speeds the training of RILe but reduce
final performance.

6 DISCUSSION

As our experiments demonstrates, RILe consistently outperforms baseline models across various
settings. The key to RILe’s superior performance lies in its adaptive learning approach, where the
trainer agent dynamically adjusts the reward function based on the student’s current learning stage.

Our Maze experiments exemplify how the trainer agent adapts rewards based on the student’s current
training stage. The trainer encourages the student to take actions that are suboptimal in terms of
immediate imitation but optimal for long-term learning. This adaptive strategy enables RILe to
achieve better performance compared to baselines. In contrast, as our studies in Section@ shows,
the policy-agnostic discriminators of AIL methods fails to provide constructive guidance as training
progresses in complex settings. This limits the student’s ability to improve beyond a certain point.
Meanwhile, RILe’s trainer continues to offer informative and beneficial rewards, underscoring the
importance of adaptive reward mechanisms.

However, RILe faces challenges, primarily in maintaining policy stability with a changing reward
function. Our solution of freezing the trainer once its actor-critic critic network converges is effective
but potentially limiting, as it halts further adaptation. Additionally, the discriminator’s tendency
to overfit quickly presents another significant challenge. Future work should focus on establishing
bounds for trainer updates to enhance stability and exploring discriminator-less approaches.

Despite these challenges, RILe demonstrates significant advantages in adaptability, robustness, and
generalization. By providing dynamic and tailored rewards, it effectively guides the student through
complex learning processes, making it a promising direction for future research in imitation learning
and opening up new possibilities for dynamic and responsive learning frameworks.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Firas Al-Hafez, Guoping Zhao, Jan Peters, and Davide Tateo. Locomujoco: A comprehensive
imitation learning benchmark for locomotion. In 6th Robot Learning Workshop, NeurIPS, 2023.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods
and progress. Artificial Intelligence, 297:103500, 2021.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, pp. 103-129, 1995.

Michael Bloem and Nicholas Bambos. Infinite time horizon maximum causal entropy inverse
reinforcement learning. 53rd IEEE Conference on Decision and Control, pp. 4911-4916, 2014.
URLhttps://api.semanticscholar.org/CorpusID:14981371.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Annie S Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward functions from”
in-the-wild” human videos. In Robotics: Science and Systems, 2021.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pp. 49-58. PMLR, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse reinforce-
ment learning. In International Conference on Learning Representations, 2018.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Ig-learn:
Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems, 34:
40284039, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep g-learning from demonstrations. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations, 2020.

Chun-Mao Lai, Hsiang-Chun Wang, Ping-Chun Hsieh, Yu-Chiang Frank Wang, Min-Hung Chen, and
Shao-Hua Sun. Diffusion-reward adversarial imitation learning. arXiv preprint arXiv:2405.16194,
2024.

Xu-Hui Liu, Feng Xu, Xinyu Zhang, Tianyuan Liu, Shengyi Jiang, Ruifeng Chen, Zongzhang
Zhang, and Yang Yu. How to guide your learner: Imitation learning with active adaptive expert
involvement. In Proceedings of the 2023 International Conference on Autonomous Agents and
Multiagent Systems, pp. 1276—1284, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Andrew Y Ng and Stuart J Russell. Algorithms for inverse reinforcement learning. In Proceedings of
the Seventeenth International Conference on Machine Learning, pp. 663-670, 2000.

11

https://api.semanticscholar.org/CorpusID:14981371

Under review as a conference paper at ICLR 2025

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Transactions On
Graphics (TOG), 37(4):1-14, 2018.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp. 661-668. IMLR
Workshop and Conference Proceedings, 2010.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627-635. IMLR Workshop and Conference Proceedings,
2011.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140-1144, 2018.

Voot Tangkaratt, Nontawat Charoenphakdee, and Masashi Sugiyama. Robust imitation learning from
noisy demonstrations. In International Conference on Artificial Intelligence and Statistics, pp.
298-306. PMLR, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033.
IEEE, 2012.

Sam Toyer, Rohin Shah, Andrew Critch, and Stuart Russell. The magical benchmark for robust
imitation. Advances in Neural Information Processing Systems, 33:18284—-18295, 2020.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama. Imita-
tion learning from imperfect demonstration. In International Conference on Machine Learning, pp.
6818-6827. PMLR, 2019.

Yiqing Xu, Wei Gao, and David Hsu. Receding horizon inverse reinforcement learning. Advances in
Neural Information Processing Systems, 35:27880-27892, 2022.

Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta Dwibedi.
Xirl: Cross-embodiment inverse reinforcement learning. In Conference on Robot Learning, pp.
537-546. PMLR, 2022.

Boyuan Zheng, Sunny Verma, Jianlong Zhou, Ivor W Tsang, and Fang Chen. Imitation learning:
Progress, taxonomies and challenges. IEEE Transactions on Neural Networks and Learning
Systems, pp. 1-16, 2022.

Brian D Ziebart, Andrew L Maas, J] Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 8,
pp. 1433-1438. Chicago, IL, USA, 2008.

12

Under review as a conference paper at ICLR 2025

A JUSTIFICATION OF RILE

Assumptions:

* The discriminator loss curve is complex and the discriminator function, D¢(s, a), is suffi-
ciently expressive since it is parameterized by a neural network with adequate capacity.

* For the trainer’s and student’s policy functions (7%7) and (7%%), and the Q-functions
(Q%), each is Lipschitz continuous with respect to its parameters with constants
(Lg,), (Lgg), and(Lg), respectively. This means for all (s, a) and for any pair of parameter

settings (6,6') : [|n(s,a) =" (s,a)| < Lol6—6'|,]1Q%(s,a) = Q" (s,a)| < Lq|0—¢'|]

To prove that the student agent can learn expert-like behavior, we need to show that the trainer agent
learns to give higher rewards to student experiences that match with the expert state-action pair
distribution, as this would enable a student policy to eventually mimic expert behavior.

A.1 LEMMA 1:

Given the discriminator Dy, the trainer agent optimizes its policy 797 via policy gradients to provide
rewards that guide the student agent to match expert’s state-action distributions.

Proof for Lemma 1 The student agent, mg(a;|s;), interacts with the environment and generates
state action palrs as (5;'" ,a?). The trainer agent observes these pairs and provides a reward r; =
al = mr(al|(sf,a})) to the student, where al € [—1,1] is the trainer’s action. We have Dy, :
S x A — [0, 1] as the discriminator, parameterized by ¢, which outputs the likelihood that a given
state-action pair (s, a) originates from the expert, as opposed to the student.

The trainer’s reward at timestep ¢ is:
ri =v(Dy(s;))a; (10)

where s] = (3;59 ,ay) is the trainer’s state, Dy(s]) is the discrimantor output that estimates the
likelihood that s} comes from the expert data, and v(D) = 2D — 1 is a scaling function that maps
discriminator’s output to the range [—1, 1].

The trainer maximizes the expected cumulative reward:

Jr(77) = By ng lZv] (11)

t=0

where v € [0, 1) is the discount factor. In other words, trainer aims to find the policy that maximizes
Jr(mr): 71 = argmax,_+ Jr(mwr).

From the policy gradient theorem, the gradient of the trainer’s objective with respect to the policy
parameters, 6, is:

Voo Jr(77) = Erpoxs [Vor log mr(al |sD)Qr(sT, aT)] (12)

where Q7 (s?', al’) is the action-value function of the trainer. The action-value function, Q7 (s} , al),
and the value function, V(s]') is defined by Bellman equation as:

Qr (51‘) Ay) = 7'f +E, T, [VT(SH—l)] (13)
VT(st+l) “t ~TT [QT(’))} (]4)

The trainer dlmb to maximize Q7 (s} ,al) to satisfy Equation I Since r! depends directly on
Dy(s!) and af, the trainer learns to select al that max1mlzes Qr(sl,al’) . Considering that

al € [~1,1], the immediate reward 77 is maximized when a] has the same sign as v(Dy(s])) .
Therefore, the optimal action afT is:
1, if Dg(sT) > 0.5,
T =4 -1, if Dg(sT) < 0.5, (15)

any value in [—1,1], if D¢(s!) = 0.5.

13

Under review as a conference paper at ICLR 2025

Equation[T3)implies the trainer assigns positive rewards to student state-action pairs that the discrimi-
nator assesses as more likely to be from the expert (Dy(sf) > 0.5) and negative rewards to those
unlikely to be from the expert (Dy(s]) < 0.5). By this mechanism, the trainer’s policy optimization

relies on the discriminator’s assessment to assign rewards that encourage expert-like behavior.

All in all, the derivative of the trainer’s expected reward, Equation [T2] with respect to its policy
parameters is rewritten as:

Vo, J1(77) = Erpons [Vor logmr(af |s]) (2Dg(s{) — Dai +vQr(s{11.afyy))] (16)

The trainer adjusts 77 to output high rewards when D (s}) is high. Therefore the trainer learns to
assign higher rewards to student behaviors that are more similar to the expert behaviors, according to
the discriminator.

A.2 LEMMA 2:

The discriminator D, parameterized by ¢ will converge to a function that estimates the probability
of a state-action pair being generated by the expert policy, when trained on samples generated by
both a student policy 7% and an expert policy 7.

Proof for Lemma 2: The discriminator’s objective is to distinguish between state-action pairs
generated by the expert and those generated by the student. The training objective for the discriminator
is framed as a binary classification problem over expert demonstrations and student-generated
trajectories. The discriminator’s loss function £ (¢) is the binary cross-entropy loss, which is
defined as:

LD((rb) - 7E(S>a)NPE [log(D¢(57 a))] -]E(s,a)wpws [log(l - D¢(5a a))} (17

where pg (s, a) is the state-action distribution of the expert policy, and p, (s, @) is the state-action
distribution of the student agent. Considering that x = (s, a), this loss can be rewritten as:

Lp(¢)=— /[pE(s, a)log Dy (s, a) + prg(s,a)log(l — Dy(s,a))]dsda (18)

Lp(¢)=— /[pE(x) log Dy () + prg(2)log(l — Dy(x))] da . (19)

As presented in |Goodfellow et al.|(2014), the optimal discriminator that minimizes this loss, D}, is:

pe(z)
PE(T) + prg ()’
pe(s,a)
PE(S,a) + prg(s,a)’

Di(z) = (20)

Dj(s,a) = 21)

This shows that the optimal discriminator estimates the probability that a state-action pair comes
from the expert policy, normalized by the total probability from both expert and student policies.

B TRAINING STRATEGIES

The introduction of the trainer agent into the AIL framework introduces instabilities that can hinder
the learning process. To address these challenges, we employ three strategies.

Freezing the Trainer Agent Midway: Continuing to train the trainer agent throughout the entire
process can lead to overfitting on minor fluctuations in the student’s behavior. This overfitting causes
the trainer to assign inappropriate negative rewards, which diverts the student away from expert
behavior—especially since the student agent may fail to interpret these subtle nuances correctly in the
later stages of training. To prevent this, we freeze the trainer agent once its actor-critic critic network
converges during the training process.

14

Under review as a conference paper at ICLR 2025

Reducing the Trainer’s Target Network Update Frequency: We decrease the target network
update frequency of the trainer agent to one-tenth that of the student agent. This adjustment aims to
prevent overestimation bias in the trainer’s value function and to slow down its learning pace. By
updating less frequently, the trainer provides more consistent and reliable reward signals. This steadier
guidance helps the student agent better understand and adapt to the trainer’s rewards, facilitating
more stable learning.

Increasing the Student Agent’s Exploration: We increase the exploration rate of the student agent
compared to standard AIL methods. We implement an epsilon-greedy strategy within the actor-critic
framework, allowing the student to occasionally take random actions. This increased exploration
enables the student to visit a wider range of state-action pairs. Consequently, the trainer agent receives
diverse input, helping it learn a more effective reward function. This diversity is crucial for the trainer
to observe the outcomes of various actions and to guide the student more effectively toward expert
behavior.

C EXPERIMENTAL SETTINGS

C.1 EVOLVING REWARD FUNCTION

We use single expert demonstration in this experiment. For RILe, we plot the reward function learned
by the trainer. For GAIL, we visualize the discriminator output, and for AIRL, the reward term under
the discriminator.

C.2 REWARD FUNCTION DYNAMICS

RFDC: We calculate the Wasserstein distance between reward distributions over consecutive 10,000-
step training intervals, denoted as times ¢ and ¢ 4+ 10,000. This metric quantifies how much the
overall reward distribution shifts over time.

FS-RFDC: We compute the mean absolute deviation of rewards between consecutive 10,000-step
training intervals, for a fixed set of states derived from expert data. This metric assesses how the
reward values for specific states change over time.

CPR: We evaluate how changes in the reward function correlate with improvements in student
performance. We store rewards from both the learned reward function and the environment-defined
rewards, in separate buffers. Environment rewards consider the agent’s velocity and stability. Every
10,000 steps, we calculate the Pearson correlation between these rewards. This metric evaluates
whether increases in the learned rewards relate to performance enhancements.

C.3 MOTION-CAPTURE DATA IMITATION FOR ROBOTIC CONTINUOUS CONTROL

During training, we use 8 different random seeds and 8 distinct initial positions for the robot. The
validation setting mirrors the training conditions: we sample initial positions from the same set
of 8 possibilities and use the same random seeds. In this setting, the student agent selects actions
deterministically, allowing us to assess its performance under familiar conditions.

For the test setting, we evaluate the policy’s ability to generalize to new, unseen scenarios. We modify
the initial positions of the robot by randomly initializing it in stable configurations not included in the
fixed set used during training. Additionally, we use different random seeds from those in training,
introducing new random variations that affect the environment’s dynamics during state transitions.
This setup enables us to assess how well the learned policy performs when faced with novel initial
conditions and environmental changes.

C.4 IMPACT OF EXPERT DATA ON TRAINER-STUDENT DYNAMICS

In this experiment, both seeds and initial positions in the test setting are different from the training
one, and we report values from the test setting.

For every percentage of the expert-data in buffers, we continue trainings of both the trainer agent
and the student agent of RILe. For instance, in 100% expert data in the trainer’s buffer case, both the

15

Under review as a conference paper at ICLR 2025

V| ...

(a) Expert traj (b) RILe traj. (c) GAIL traj. (d) AIRL traj. (e) IQLearn traj.

TN

(f) RILe val. (g) GAIL val. (h) AIRL val. (i) IQLearn val.

Figure 6: In a 5x5 grid environment with lava, (a) the expert trajectory is characterized by noisy data
that passes through lava without resulting in death. (c) GAIL, (d) AIRL and (e) IQLearn learn to
imitate the expert’s path precisely, leading them to either get stuck near the lava or enter it and perish.
(b) RILe avoids the noisy data, better mimics the expert in later stages, and successfully reaches the
goal. Subfigures (f-i) display the value tables for RILe, GAIL, AIRL, and IQLearn respectively. The
optimal path, derived from the reward of the trainer or discriminator, is highlighted with green lines.

student and the discriminator are trained normally using samples from the student agent. However,
we didn’t include student’s state-action pairs to the trainer’s buffer, instead, we filled that buffer with
a batch of expert data, and updated the trainer regularly using this modified buffer. Similarly, in 100%
expert data in the student’s buffer case , we trained the trainer agent and the discriminator normally,
using samples from the student agent. However, student’s state-actions pairs are not included in the
student’s buffer, and student agent is updated just by using expert state-action pairs, using rewards
coming from the trainer agent for these expert pairs.

Regarding the normalizations, we trained Behavioral Cloning (BC) and RILe across various data
leakage levels, selecting the highest-scoring run (0% leakage RILe) as the baseline. Other scores and
convergence steps are normalized by dividing by the score and convergence steps of the baseline (0%
leakage RILe). For IQLearn, we used their reported numbers in their paper, as we couldn’t replicate
their results with their code and hyperparameters.

D ADDITIONAL EXPERIMENTS

D.1 NoISY EXPERT DATA

To demonstrate the advantage of using RL to learn the reward function in RILe, as opposed to deriving
the reward directly from the discriminator in AIL and AIRL, we designed a 5x5 MiniGrid experiment.
The grid consists of 4 lava tiles that immediately kill the agent if it steps in it, representing terminal
conditions. The goal condition of the environment is reaching the green tile.

The expert demonstrations are imperfect, depicting an expert that passes through a lava tile without
being killed and still reaches the green goal tile. Using this data, we trained the adversarial approaches
with a perfect discriminator, which provides a reward of 0.99 if the visited state-action pair stems
from the expert and 0.01 otherwise. These values were chosen over 1 and 0 because both AIRL and
GAIL use the logarithm of the discriminator output to calculate rewards.

Results are presented in Fig. @ The value graphs (Fig. [6-g) are attained by computing the value
of each grid cell ¢; as), 4 D(c;, a) for AIRL and GAIL, and) , 77 (c;i, a) for RILe. Fig. @
shows the expert trajectory.

GAIL (Fig.[6k), AIRL (Fig.[6d) and IQLearn (Fig. [p) fail to reach the goal, as their agents either
become stuck or are directed into lava.

In contrast, RILe (Fig. [6d) successfully reaches the goal, demonstrating its ability to navigate around
imperfections in expert data. The difference in the value graphs between RILe and the baselines

16

Under review as a conference paper at ICLR 2025

Table 2: Test results in MuJoCo Humanoid-v2 environment, where artificial noise sampled from a
zero-mean Gaussian distribution is added to a single expert trajectory. Results are aggregated over 20
different-seed environments. IQ-Learn* is trained using the official code and hyperparameters of the
IQ-Learn algorithm.

Noise-Free Action Noise State Noise
Y=0 Y=02 YX=05|X=02 X=0.,5
RILe 5681 5280 5154 5350 5205
GAIL 5430 5275 902 5147 917
AIRL 5276 4869 4589 4898 4780
RIL-Co 576 491 493 505 501
IC-GAIL 610 601 568 590 591
1Q-Learn* 312 192 153 243 277

intuitively explains this outcome. In AIL and AIRL (Fig. [6f-g), the optimal paths, defined by the
actions most rewarded by their discriminators, follow the noisy expert data perfectly. Similarly, in
IQLearn, the agent tries to match expert state-actions as closely as possible, minimizing any deviation
from the expert trajectory. In contrast, RILe’s trainer agent, trained using RL, adds an extra degree of
freedom in the adversarial IL/IRL setting. By providing rewards that maximize cumulative returns
from the discriminator, rather than deriving the reward directly from its output, the value graph
(Fig. [6f) can learn to circumvent the lava tile in order to follow the expert trajectory to the goal.
Consequently, the optimal path of the student agent can overcome the sub-optimal state suggested by
the noisy expert demonstration. Since the student agent is guided by the trainer to also match the
expert trajectory, it remains close to this path after passing the lava tiles.

D.2 ROBUSTNESS TO NOISE IN THE EXPERT DATA

To evaluate the robustness of RILe and baseline methods to noise in the expert data, we conducted
experiments in the MuJoCo Humanoid-v2 environment. Artificial noise sampled from a zero-mean
Gaussian distribution with varying standard deviations (3) was added to a single expert trajectory,
affecting either the actions or the states. The baselines used for comparison were GAIL (Ho & Ermon)|
2016), AIRL (Fu et al.| 2018)), RIL-Co (Tangkaratt et al., 2021}, IC-GAIL (Wu et al.;, 2019), and
IQ-Learn (Garg et al.,[2021]).

As shown in Table [2] RILe consistently outperforms the baselines across different noise levels,
demonstrating superior robustness even when a high amount of noise is present in the expert data (X =
0.5). These results indicate that RILe is less sensitive to imperfections in the expert demonstrations
compared to existing methods.

D.3 ROBUSTNESS OF THE LEARNED REWARD FUNCTION

We evaluated the robustness of the reward functions learned by RILe and AIRL (Fu et al., [2018))
through an experiment similar to that conducted by Xu et al.|(2022). Initially, both methods were
trained to learn reward functions in a noise-free MuJoCo Humanoid-v2 environment. After training,
these reward functions were frozen. Subsequently, new student agents were trained using these
fixed reward functions in environments where Gaussian noise was added to the agents’ actions, with
varying noise levels.

Table [3| presents the results of this evaluation. The reward function learned by RILe demonstrates
superior robustness to noise, maintaining high performance even under increased noise levels. In
contrast, the performance of agents using the reward function learned by AIRL decreases more
significantly as noise increases. These findings indicate that the reward function learned by RILe is
more resilient to environmental noise, contributing to better agent performance in noisy conditions.

D.4 REWARD CURVES

We compare the reward curves of RILe, GAIL (Ho & Ermon,2016), AIRL (Fu et al.,2018]), IQ-Learn
(Garg et al.,2021)), and AdapMen (Liu et al., 2023) in the MuJoCo Humanoid-v2 experiment. Since

17

Under review as a conference paper at ICLR 2025

— AdapMen AIRL = |Q-Learn* = RlLe = GAIL

5000

Reward

4000

3000

2000

1000

— — Steps
0

200k 400k 600k

Figure 7: Training reward curves for the MuJoCo Humanoid-v2 experiment comparing RILe, AIRL,
GAIL, IQ-Learn*, and adapted AdapMen. AdapMen is combined with an adversarial discriminator
to be able to train it without expert policy.

Table 3: We test the robustness of learned reward functions. After training reward
functions in a noise-free setting, reward functions are frozen, and used to train
a new agent in a noisy environment, where Gaussian noise is added to agent’s
actions in every step.

No Noise Mild Noise High Noise
=0 =02 ¥X=0.5

RILe 5748 5201 5196

AIRL 5334 5005 4967

the task involves learning from expert trajectories, we combined AdapMen with an adversarial
discriminator to enable training without an expert policy.

As shown in the reward curves, despite RILe having multiple components, it is the most efficient
method. This efficiency is achieved through the dynamic guidance of the trainer during training,
which adapts the reward function to meet the student’s needs.

E COMPUTE RESOURCES

For the training of RILe and baselines, following computational sources are employed:

e AMD EPYC 7742 64-Core Processor
¢ 1 x Nvidia A100 GPU
* 32GB Memory

F EXTENDED LOoCOMUJOCO RESULTS

We present LocoMujoco results for the validation setting and test setting, with standard errors, in
Table @] and 3] respectively.

18

Under review as a conference paper at ICLR 2025

Table 4: Validation results on seven LocoMujoco tasks.

RlLc GAIL AIRL 1Q DRAIL/GAIL DRAIL/RIL¢ Expert
8954 9186 3560 32.1 741.3 773.9
. Atlas +25 +133 +68 +4 +46 +13 1000
= 884.7 6755 1034 7.2 963.7 949.4
= Talos 8 £105 422 42 148 154 1000
. 980.7 965.1 7162 125 954.7 973.5
UniteeHl 55 Jog 1994 46 190 18 1000
9703 2162 782 6.8 550.8 595.3
Humanoid = \4; 113 14 41 +148 +73 1000
880.7 9742 271.9 395 654.1 344.1
z Aflas 144 480 430 48 £109 193 1000
S 503.3 3385 741 117 889.8 874.3
Talos 172 448 48 43 1163 1174 1000
. 850.6 6374 1409 12.3 620.8 878.1
UniteeHl 05" L9 191 49 160 146 1000
Table 5: Test results on seven LocoMujoco tasks.
RILe GAIL AIRL 1Q DRAIL-GAIL DRAILRILe Expert
870.6 7927 3005 309 834.4 899.1
. Adas 13 4105 474 +10 +93 +17 1000
= 842.5 442.3 1021 45 787.7 896.6
= Talos 424 476 417 43 +11 +12 1000
. 966.2 950.2 568.1 8.8 940.8 995.8
UnitreeHL " 43" 1156 43 420 +6 1000
8313 1814 801 45 814.6 527.6
Humanoid =~ =y oo™ o) 19 19 +80 +39 1000
850.8 669.3 2564 36.8 516.6 317.1
e Atlas 162 455 447 414 160 119 1000
S o 220.1 186.3 1342 10.5 836.7 8405 1000
alos 488 428 418 43 +160 +133
. 788.3 6346 1305 14.4 796.7 909.5
UnitreeHL 70" 105" 499 19 1131 +9 1000

G HYPERPARAMETERS

We present hyperparameters in Table [f] For DRAIL, we replaced the discriminators with the
implementation provided by DRAIL and adopted their hyperparameters for the HandRotate task.

Our experiments revealed that RILe’s performance is particularly sensitive to certain hyperparameters.

We highlight three key observations:

* RILe is more sensitive to the hyperparameters of the discriminator compared to other
methods. Specifically, increasing the discriminator’s capacity or training speed, by using
a larger network architecture or increasing the number of updates per iteration, adversely
affects RILe’s performance. A powerful discriminator tends to overfit quickly to the expert
data, resulting in high confidence when distinguishing between expert and student behaviors.
This poses challenges for the trainer agent, as the discriminator’s feedback becomes less
informative.

* The update frequency of the trainer agent’s target network influences the stability of the
RILe framework. Lower update frequencies lead to improved stability. A slower-updating

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

trainer provides more consistent reward signals, allowing the student agent to better adapt
to the rewards. However, a lower update frequency slows down the learning process, as
the trainer adapts more slowly to changes in the student’s behavior. Therefore, there is a
trade-off between stability and learning speed that needs to be balanced.

* Enhancing the exploration rate of the student agent benefits RILe more than it does baseline
methods. By encouraging the student to explore more, through strategies like higher entropy
regularization or implementing an epsilon-greedy policy, the student visits a broader range of
state-action pairs. This increased diversity provides the trainer agent with more varied data,
enabling it to learn a more effective and robust reward function. The additional exploration
helps the trainer to better capture the effects of different actions.

20

Under review as a conference paper at ICLR 2025

- 1°60°C0
- $00°0 ‘10°0 “S0°0
- G-91 “G-9¢ P91 ‘P3¢
- $60°L6'0 '66°0

Adonug

(+) ney,

18y Surures|

(L) 10308 JUNODSI

- - - quel, ‘I uonoung uoneAndy W
¢ [e”]
- - - (dbst 207 poN)
- - - 98T ‘¢ 9ZIS Uoreq
- - - 991 ‘GOT ‘P8EIT “T618 9ZIS Iopng
[°G0°T0°T°0°S00 1°6°0°C0 1°60°C0 1°6°0°C0 Adonug
TO10°0 T010°0 TOT0°0 TOT0°0 Apaai3-uorisdyg
S00°0 ‘T0°0 ‘SO0 S00°0 ‘10°0 ‘S0°0 S00°0 ‘10°0 ‘S0°0 $00°0 ‘10°0 ‘SO0 (4) neg,
G-91 ‘G-9¢ ‘P91 ‘p-d¢ G-9[‘G-9¢ ‘Y9 ‘Pp-E G-9[‘G-9¢ -9 ‘P-dE -9 ‘G-9¢ ‘p-9] ‘p-d¢ orey Surured| 72
S6°0°L6°0 '66°0 $6°0°L6°0 ‘66°0 $6'0°L6'0 ‘66°0 S6'0°L6°0 ‘660 (L) 10308 JUNOISI m.
quel, ‘N1 quey, ‘119 quey, ‘119 JueL, 179y uonound uoneanoy 2
[DA9sT ©DA957] [DA9sT ©DA957] [DA9sT ‘DA9s7] [DA9sT *DA957] I0MION
9ST ‘T¢ 9ST ‘C¢ 9ST ‘¢ 9ST ‘¢ 971§ yoreq
991 ‘G 991 ‘G 99T ‘Gl 99T ‘GO 9ZIS Iojjng
- G-91 ‘S-3€ ‘p-9[‘p-9¢ G-9 ‘G-9€E ‘Y9I ‘p-9¢ G-9[‘G- ‘p-9[‘p-9¢ oyey Surured|
- 160 1°6°0 160 Kireusd jusrpen
[DAp9 DAp9] [DAp9 DAp9] [Dav9 Dav9] =)
- [D496T ‘D495¢] [D495T “DA957] [D495T ‘D495T] NIOMIN 2
[DdTI1S “DATIS] [Ddz1¢ DdTIs] [DdTI1S “DATIs] m
- GoT ‘P8EIT ‘618 GoT ‘p8EIT “T618 GoT ‘p8EIT “T618 9ZIS Iopng m.
- 8CI 9 T€ 8CI 9 C€ 8CI ‘v9 T€ 9ZI§ ydreqg M
- 8°CTT 8°TT 8 ‘TT punoy 1od sorepdn
uwred1-O1 TAIV TV MY s1dpwerediddlg

sjuowLIdXH prouswny pue 020MA0007 105 s1a1owerediodAH 1sog pue sdoamg 1ojowerediodAH :9 91qel,

21

Under review as a conference paper at ICLR 2025

H ALGORITHM

Algorithm 1 RILe Training Process

1: Initialize student policy mg and trainer policy w7 with random weights, and the discriminator D
with random weights.

2: Initialize an empty replay buffer B

3: for each iteration do

4: Sample trajectory 75 using current student policy 7g

5: Store Tg in replay buffer B
6: for each transition (s, a) in 75 do
7: Calculate student reward R® using trainer policy:
RS « mp (22)
8: Update 75 using policy gradient with reward R
9: end for
10: Sample a batch of transitions from B
11: Train discriminator D to classify student and expert transitions
max E..log(D(s,a))] + Erg[log(l — D(s,a))] (23)
12: for each transition (s, a) in 75 do
13: Calculate trainer reward R” using discriminator:
RT « v(D(s,a))a” (24)
14: Update 77 using policy gradient with reward RT
15: end for
16: end for

22

	Introduction
	Related Work
	Background
	Markov Decision Process
	Reinforcement Learning (RL)
	Inverse Reinforcement Learning (IRL)
	Adversarial Imitation Learning (AIL) and Adversarial Inverse Reinforcement Learning (AIRL)

	RILe: Reinforced Imitation Learning
	Experiments
	Evolving Reward Function
	Reward Function Dynamics
	Dynamism of the Learned Reward Function
	Correlation between the Learned Reward and the Student Performance

	Motion-Capture Data Imitation for Robotic Continuous Control
	Impact of Expert Data on Trainer-Student Dynamics

	Discussion
	Justification of RILe
	Lemma 1:
	Lemma 2:

	Training Strategies
	Experimental Settings
	Evolving Reward Function
	Reward Function Dynamics
	Motion-Capture Data Imitation for Robotic Continuous Control
	Impact of Expert Data on Trainer-Student Dynamics

	Additional Experiments
	Noisy Expert Data
	Robustness to Noise in the Expert Data
	Robustness of the Learned Reward Function
	Reward Curves

	Compute Resources
	Extended LocoMujoco Results
	Hyperparameters
	Algorithm

