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ABSTRACT

In federated learning, the non-identically distributed data affects both global and
local performance, while clients with small data volumes may also suffer from
overfitting issues. To address these challenges, we propose a federated learning
framework called Fed3+2p. In Fed3+2p, we divide the client neural network into
three parts: a feature extractor, a filter, and classification heads, and to train these
parts, we present two types of coordinators to train client sets with a two-phase
training strategy. In the first phase, each Type-A coordinator trains the feature
extractor of partial clients, whose joint data distribution is similar to the global
data distribution. In the second phase, each Type-B coordinator trains the filter
and classification heads of partial clients, whose data distributions are similar to
each other. We conduct empirical studies on three datasets: FMNIST and CIFAR-
10/100, and the results show that Fed3+2p surpasses the state-of-the-art methods
in both global and local performance across all tested datasets.

1 INTRODUCTION

In Federated Learning, the non-identically distributed nature of data leads to some challenges,
such as unstable model parameter aggregation and inefficient communication Alamgir et al. (2022);
Kairouz et al. (2021); Tan et al. (2023). Personalized Federated Learning (pFL) has attracted much
attention in mitigating feature distribution inconsistency and label distribution imbalance issues in
recent years Tan et al. (2023); Dinh et al. (2022); Zhang et al. (2023b;c), and is also the focus of our
research.

In pFL, the performance of the global model plays a crucial role in ensuring robustness across di-
verse datasets, while local optimization allows each client to improve its model based on its specific
data, adapting to the unique characteristics of its own dataset Konečný et al. (2015). However,
existed pFL approaches pose a problem on existed clients: no or limited improvement of global
performance and local performance Zhang et al. (2023a); Hu et al. (2020); Dinh et al. (2022), such
as FedPerArivazhagan et al. (2019), FedProx Li et al. (2020b) and pFedMe Dinh et al. (2022). Re-
cently, shared feature extractors combined with personalized classification heads P-Heads Collins
et al. (2023); Chen & Chao (2022) or personalized feature extractor Li et al. (2021b); Tan et al.
(2022) are proposed to promote global and local performance, respectively. The core idea of this
method is to train different parts of the network with proper data samples, so we extend this idea
here, by reorganizing the neural network from the ”feature extractor - personalized classification
head” to ”feature extractor - filter - personalized classification head”, and training the three parts
separately.

On the one hand, a high-quality feature extractor is essential for these methods, but it will bias the
shared feature extractor’s parameters away from the global optimum when averagely aggregating
Duan et al. (2021). For example, when a client’s data dominates the data space or are more concen-
trated, the feature extractor tends to learn more prominent features from the client, which will cause
the feature extractor to reflect the data characteristics of this client more, posing the risk of overfitting
on specific client Wang et al. (2020); Karimireddy et al. (2021). Thus, an underperforming feature
extractor may mislead the feature extraction process, causing a decline in global performance Chen
et al. (2023). In addition, through mathematical proof Duan et al. (2021), we know that when the
local data distribution is consistent with the global data distribution, the risk of the model overfitting
to specific clients is reduced. Here, to train a high-quality feature extractor, we partition all clients
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into several sets whose joint data distributions are similar to the global distribution, and then use
coordinators to manage the training of clients.

On the other hand, the personalized classification head P-Head plays a crucial role in the personal-
ized classification ability of each client’s local model, which is independently trained on each client’s
local dataset Sattler et al. (2019); Konečný et al. (2015); Chen & Chao (2022). However, due to the
typically simple structure of the P-Head and the lack of external information during independent
training, it is prone to overfitting on clients with smaller data volumes Liu et al. (2019); Wang et al.
(2020). Here, to address the overfitting issue, we partition all clients into several groups with similar
data distributions, designate a part of the neural network as a shared filter part for each client group,
and then use coordinators to manage the training of clients.

In corresponding to the three reorganized parts of the neural network, we design a two-phase train-
ing strategy. In the first phase, we train the feature extractor shared by all clients. In the second
phase, we train the filter shared by clients with similar data distributions, along with the classifi-
cation heads unique to each client. Overall, we constructed a federated learning framework named
Fed3+2p, which features a three-part neural network architecture and a two-phase training strategy,
introducing coordinators to manage the client training process.

Our contributions are summarized as follows:

• We propose a federated learning method Fed3+2p, which divides a neural network archi-
tecture into three parts: a feature extractor, a filter, and classification heads, and adopts a
two-phase training strategy with two types of coordinators managing the clients.

• To train the shared feature extractor of all clients under conditions similar to the global data
distribution, we present Type-A coordinators to partition all clients into several sets whose
joint data distributions are similar to the global distribution, and then update the parameters
of the feature extractor on coordinators and the central server.

• To train the shared filter of some clients under conditions of similar data distributions,
we propose Type-B coordinators to cluster clients with similar data distributions, and then
update the parameters of the filter on their corresponding coordinator.

2 RELATED WORK

In this section, we provide a brief overview of imbalanced data learning and introduce various per-
sonalized federated learning algorithms.

2.1 IMBALANCED DATA LEARNING

The primary solutions to address this issue involve sampling and ensemble learning Yang et al.
(2019); Li et al. (2020a).

Sampling includes undersampling and oversampling. Undersampling involves sampling from im-
balanced datasets to obtain a balanced subset, which is easy to implement but requires large
datasets.Unfortunately, in FL, the datasets of each client are typically small. Oversampling gen-
erates minority class samples to balance the dataset, but generating a large number of duplicate
minority class samples on small client datasets may lead to severe overfitting. Ensemble methods
are sensitive to noise and outliers, which are common in distributed datasets. While these meth-
ods manipulate the dataset to alleviate the non-identically distributed problem, they have limited
effectiveness due to aforementioned issues.

2.2 PERSONALIZED FEDERATED LEARNING

Existing personalized Federated Learning (pFL) algorithms can be categorized into several main
types, each with its unique characteristics.

Fine-Tuning. Algorithms in this category, such as Per-FedAvg Fallah et al. (2020), learn a global
model through fine-tuning. They perform minor local fine-tuning on each client to adapt to specific
client data distributions and features.
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P-Heads. Including algorithms like FedPer Arivazhagan et al. (2019), FedRep Collins et al. (2023),
and FedRoD Chen & Chao (2022), which partition the neural network into a feature extractor and P-
Heads. The feature extractor is shared, while each client independently owns P-Heads. This allows
for personalized model training based on the specific requirements of each client.

Regularization Methods. Algorithms in this category use regularization techniques to balance the
relationship between the global model and personalized models, such as FedProx Li et al. (2020b),
pFedMe Dinh et al. (2022), and Ditto Li et al. (2021a). They introduce additional regularization
terms to control the distance between the global model and personalized models, achieving a balance
between global performance and personalized performance.

An ideal pFL is a type of FL with two objectives: (1) aggregating information for collaborative
learning and (2) training reasonable personalized models Zhang et al. (2023a). However, existing
pFL methods often focus on only one of these objectives on clients. FedPer Arivazhagan et al.
(2019) and FedRep Collins et al. (2023) rely solely on local data for personalized training, lacking
the learning of global knowledge, which makes them prone to overfitting when client data is limited.
FedRoD Chen & Chao (2022) trains the feature extractor to capture global features but overlooks
personalized feature extraction.

3 OBJECTIVES OF PERSONALIZED FEDERATED LEARNING

The personalized federated learning has a global optimization objective and a set of local objectives.
The local objectives focus on optimizing for each client, while the global objective aims to find the
best global model across all clients.

Let N be the number of clients, and D(k) be the local dataset on client k, we denote the expected
loss on client k as F (k), shown by Eq. (1)

F (k) = E(x,y)∼D(k) [L(f(x;W (k)), y)], (1)

where W (k) denotes the parameters of the entire neural network on client k, f(·) denotes the model’s
prediction function, L(·) denotes the loss function applied to each local data instance, and E denotes
the expectation operator. And so the local objective of client k is defined by Eq. (2)

minF (k), k = 1, 2, . . . , N. (2)

Furthermore, the global objective can be expressed as the sum of weighted local objectives, shown
by Eq. (3)

min

N∑
k=1

αk F
(k), (3)

where the weight of client k is αk = |D(k)|∑
j∈N |D(j)| , and |D(k)| is the number of training samples on

client k.

From Eq. (2) and Eq. (3), the challenge of achieving both local and global optimization objec-
tives lies in their differing focuses: while the local objective minimizes loss on each client’s local
data distribution D(k), potentially reducing model parameter coordination across clients, the global
objective balances personalized objectives F (k) through weighted summation, which can weaken
individual client model personalization.

4 METHOD

Our proposed federated learning framework, namely Fed3+2p, is structured into three layers: the
central server, the Type-A/B coordinator, and the clients. The training of this framework is divided
into two phases.
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Figure 1. Illustration of the structure of the federated learning framework Fed3+2p. The central
server is responsible for collecting information sent by the clients, and performing aggregation tasks.
The Type-A coordinator manages clients whose overall data distribution is similar to the global data
distribution, and is responsible for collecting gradient updates from the clients it manages, uploading
them to the central server, and distributing the aggregated global parameters from the central server
to each client during the first phase. The Type-B coordinator manages clients with similar data dis-
tributions, and is responsible for collecting gradient updates from the clients it manages, aggregating
them, and then distributing the updates to each client during the second phase.

4.1 FIRST PHASE

Our goal is to train a feature extractor shared by all clients in this phase. The central server, coordi-
nators, and clients all participate in the training process.

Central Sever. The central server is primarily responsible for aggregating the parameters from the
coordinators. Given the global model parameters W (t) in round t and the model parameter updates
∆W c(t+1) computed by coordinator c in round t, we update the global model parameters W (t+1)
by Eq. (4)

W (t+ 1) = W (t)− 1

|D|

C∑
c=1

|Dc|∆W c(t+ 1), (4)

where C is the total number of coordinators, |Dc| is the total number of training samples handled by
coordinator c, D =

⋃
Dc is all training samples and its cardinality is |D|. Subsequently, the central

server sends the aggregated parameters W (t+ 1) to each coordinator.

At the end of this phase, W will be saved as the global model parameters.

Type-A Coordinators. All clients are grouped and managed by some coordinators. Each client
is managed by exactly one coordinator. The joint data distribution of the clients managed by a
coordinator is regarded as the coordinator’s data distribution. All clients managed by the same
coordinator ultimately share the same parameters.
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First, to group all clients while ensuring the consistency between the coordinator’s data distribution
and the global data distribution, we use KL divergence as the grouping metric, shown in Eq. (5)

min

C∑
c=1

KL (PDc ∥PD) , (5)

where PDc represents the label probability distribution of coordinator c, and PD denotes the label
probability distribution of the global data. We approximate these probability distributions using
empirical distributions.

Second, the coordinator manages all clients within its group to update its parameters sequentially.
This process consists of three steps:

Step 1: At the beginning of round t of training, coordinator c receives the parameters W (t) from the
central server and sends them to a randomly selected client k that it is responsible for, as shown in
Eq. (6)

W (k)(t) = W c(t) = W (t), (6)

where W (k)(t),W c(t) are the model parameters of client k and coordinator c, respectively, and their
initial values are same.

Step 2: The coordinator receives the parameter update ∆W (k) from client k and then updates W c(t)
by Eq. (7)

W c(t) = W c(t)−∆W (k). (7)

Then, the updated W c(t) is sent to a client that has not yet undergone local training.

Step 3: After all the clients managed by coordinator c have completed local training, the total pa-
rameter update ∆W c(t+ 1) is calculated by Eq. (8)

∆W c(t+ 1) = W (t)−W c(t). (8)

The total parameter update ∆W c(t+ 1) is then sent to the central server.

In addition, to reduce additional communication overhead and hardware resource consumption, the
coordinators are deployed directly on the central server. Therefore, the computational overhead of
the coordinators is equivalent to the computational overhead on the central server.

Clients. Our client network contains three parts: a feature extractor, a filter, and G-/P-Heads, il-
lustrated by Figure 2. Accordingly, all trainable parameters of our client network are denoted by
W := {We,Wi,Wg/p}.

Feature Extractor
We

Filter
Wi

G-Head
Wg

P-Head
Wp

x
fg fc

yg

yp

Head

Figure 2. Illustration of the modules in the client neural network and the data flow between them.
We first use the feature extractor to transform the raw input x into a feature vector fg , then input fg
into the filter to obtain the feature vector fc, which is adapted to the set of similar clients Sc. Finally,
fc is input into the G-Head and the P-Head to produce the global prediction result yg and the local
prediction result yp. We share the parameters We across all clients and share the parameters W c

i
among the clients in the client set Sc managed by coordinator c.
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For a given client k managed by coordinator c, its initial parameters W (k)(0) = W (0) are released
by the central server and its parameters are calculated by Eq. (9)

∆W (k) ← η∇W (k)(t)L, (9)

where W (k)(t) contains all trainable parameters We,Wi and Wg , thereafter, the parameter updates
∆W (k) are uploaded to coordinator c.

4.2 SECOND PHASE

Our goal is to train a filter shared by clients with similar data distributions, as well as personalized
heads for each client in this phase. Only the coordinators and clients participate in the training
process.

Type-B Coordinators. The Type-B coordinator is responsible for grouping clients and aggregating
their parameter updates. The coordinator no longer communicates with the central server. Clients
managed by the same coordinator share the parameters of the filter.

First, to group all clients while ensuring the similar label distributions on clients within the same
coordinator, we use JS divergence as the grouping metric, shown in Eq. (10)

{S∗
1 , S

∗
2 , . . . , S

∗
M} = argmin

S1,S2,...,SM

M∑
c=1

∑
i,j∈Sc

JS(PD(i) ∥PD(j)), (10)

where PD(i) represents the label probability distribution of client i, M denotes the total number of
coordinators, and S∗

c is the set of clients managed by coordinator c.

And then, coordinator c aggregates all updates from clients by Eq. (11)

W c(t+ 1) = W c(t)− 1

|Dc|
∑
k∈S∗

c

|D(k)|∆W (k), (11)

where W c(t) represents the model parameters of coordinator c updated in round t and ∆W (k)

denotes the parameter update of client k.

Clients. The filter and the P-Head parameters {Wi,Wp} of all clients are randomly reinitialized,
while their feature extractor and G-Head parameters {We,Wg} are initialized as the outputs of the
first training phrase and are frozen and remain unchanged during the second phrase.

In detail, for any client k, the updates of its filter parameters W (k)
i and P-head parameters W (k)

p are
respectively calculated by Eq. (12) and (13)

∆W (k) ← η∇
W

(k)
i (t)

L, (12)

W (k)
p (t+ 1) = W (k)

p (t)− η∇
W

(k)
p (t)

L, (13)

where ∆W (k) = {0,∆W
(k)
i , 0}, thereafter, the parameter updates ∆W (k) are uploaded to coordi-

nator c. The P-Head only participates in local training and does not participate in aggregation in the
second phase.

5 EXPERIMENT

To verify the global and local performance of Fed3+2p, we compare it with the SOTA methods on
widely used datasets: FMNIST and CIFAR-10/100. Additionally, to assess the effectiveness of the
coordinator, filter, and two-phase training method in Fed3+2p, we conduct ablation studies.

5.1 SET UP

Datasets. We evaluate our proposed Fed3+2p on the following three datasets: FMNIST Xiao et al.
(2017) and CIFAR-10/100 Krizhevsky et al. (2009). The method for splitting the training set and
test set is also consistent with that of Xiao et al. (2017) and Krizhevsky et al. (2009).
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Backbones. Based on the work of McMahan et al. (2023); Chen & Chao (2022); Acar et al. (2021),
we use a ConvNet LeCun et al. (1998). For the FMNIST datasets, the model consists of 2 con-
volutional layers and 2 fully connected layers. The convolutional layers have 32 and 64 channels,
respectively. The fully connected layers have 50 neurons as the hidden size and 10 neurons as the
output for 10 classes. For the CIFAR-10/100 datasets, the model consists of 3 convolutional layers
and 2 fully connected layers. The convolutional layers have 32, 64, and 64 channels, respectively.
The fully connected layers have 64 neurons as the hidden size and 10/100 neurons as the output for
10/100 classes.

Statistically heterogeneous settings. To simulate non-identically distributed data distribution on
CIFAR-10/100 and FMNIST, we create heterogeneous data partitions for K clients following work
Hsu et al. (2019). Suppose the dataset has R classes. For each class r, a K-dimensional probability
vector qr is generated from the Dirichlet distribution Dir(α), where qr = [qr[1], qr[2], . . . , qr[K]].
Each element qr[k] of this vector represents the probability of assigning data from class r to client
k. The data of each class r is allocated to client k according to the probability qr[k]. Specifically, if
there are Nr samples in class r, then client k will receive approximately qr[k]×Nr samples. Since
α < 1, the generated probability vectors qr are typically very imbalanced, meaning that the data for
some classes may be concentrated on a few clients, while other clients may have fewer or none of
these class samples.

Baselines. Specifically, we compare Fed3+2p with twelve federated learning algorithms, including
FedAvg McMahan et al. (2023), FedProx Li et al. (2020b), Per-FedAvg Fallah et al. (2020), pFedMe
Dinh et al. (2022), Ditto Li et al. (2021a), FedPer Arivazhagan et al. (2019), FedRep Collins et al.
(2023), FedRoD Chen & Chao (2022), FedDYN Acar et al. (2021), CFL Sattler et al. (2019), PACFL
Vahidian et al. (2022), and FedClust Islam et al. (2024). Additionally, we conduct ablation experi-
ments to demonstrate the effectiveness of each module.

Metric. To evaluate global performance, we test the global model (GM) on the global test set
(G-Test) and also on the local test set (P-Test) using the global model (GM). To assess local perfor-
mance, we test the local model (LM) on the local test set (P-Test). For each local test set, its data
distribution is consistent with each local training set.

Hyperparameters. We conduct 100 training rounds for each method. Consistent with Li et al.
(2020b), the local learning rate is set to decay over communication rounds. For FMNIST, the initial
learning rate is set to 0.01, and for CIFAR-10/100, the initial learning rate is set to 0.001, which
is reduced by a factor of 0.99 in each round, similar to the approach in Acar et al. (2021). We
reset the learning rate at the beginning of each training phase in Fed3+2p. We use M = 100 clients
for FMNIST and M = 20 for CIFAR-10/100, and sample 20%/40% clients at every round. For
the duration of the experiments, we utilize the SGD optimizer with a weight decay of 1e-5 and a
momentum of 0.9. The mini-batch size is 40. During each round, clients perform local training over
5 epochs. The results presented are the mean values from five separate experiments conducted with
different random seeds.

5.2 COMPARISON WITH STATE-OF-THE-ART

The experimental results of our method compared to other methods are shown in Table 1. As shown
in Table 1, the second and third rows indicate the type of model used and the test dataset the evalu-
ation conducted on, respectively. The first column, from the fourth row to the last row, contains the
names of the SOTA methods as well as our method, Fed3+2p. The second to ninth columns con-
tain the test accuracy results on the FMNIST, Cifar10, and Cifar100 datasets, with specific models
evaluated on specific test datasets. From Table 1, we draw three conclusions.

First, our method, Fed3+2p, achieved significant improvements on three test datasets in global per-
formance compared to all baseline federated learning methods. Compared to the best personalized
federated learning methods, Fed3+2p outperformed FedRoD in terms of accuracy on both the global
and local test sets of FMNIST by 3.6% and 3.5%, respectively, and improved by 12.9% and 15.2%
on both the global and local test sets of Cifar10. For Cifar100, its global performance is nearly on
par with the best personalized federated learning methods. Even when compared to the best general
federated learning method, Fed3+2p surpassed FedDYN on the global and local test sets of FMNIST
by 4.3% and 4.2%, respectively; on Cifar10, it improved by 18.0% and 19.8%, and on both test sets
of Cifar100, the improvement was 2.9% and 2.3%, respectively.
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Table 1: Global accuracy and local accuracy comparisons of different approaches over different
datasets for non-IID Dir (0.1) (%). Model Type represents the type of model used for testing,
distinguishing between global model GM and local models LM. Test Set refers to the type of test set,
differentiating between global test sets G-Test and local test sets P-Test. The bold numbers represent
the best results for each model on each test set for every dataset. Red font indicates general federated
learning methods, blue font indicates clustered federated learning methods, and cyan font indicates
personalized federated learning methods. † indicates results collected from papers, while ‡ indicates
results obtained from our re-implemented code.

Dataset FMNIST Cifar10 Cifar100

Model Type GM LM GM LM GM LM

Method/Test Set G-Test P-Test P-Test G-Test P-Test P-Test G-Test P-Test P-Test

Local only‡ - - 85.9 - - 87.4 - - 40.2

FedAvg‡ 81.1 81.3 91.5 57.9 57.8 90.6 41.8 41.8 70.2
FedDYN† 83.2 83.2 90.7 63.4 63.9 92.4 43.0 43.0 72.0
FedProx† 82.2 82.3 91.4 58.7 58.9 89.7 41.7 41.6 70.4

CFL† - - 75.2 - - 41.9 - - 33.4
PACFL† - - 85.6 - - 51.3 - - 47.8
FedClust† - - 95.3 - - 59.7 - - 49.5

Ditto† 81.5 81.5 89.4 58.1 58.3 86.8 41.7 41.8 68.5
FedPer† 74.5 74.4 91.3 50.4 50.2 89.9 37.6 37.6 71.0
FedRep† 79.5 80.1 91.8 56.6 56.2 91.0 40.7 40.7 71.5
FedRoD† 83.9 83.9 92.7 68.5 68.5 92.7 45.9 45.8 72.2
Per-FedAvg† 80.5 - 82.8 60.7 - 82.7 39.0 - 66.6
pFedMe† 76.7 76.7 83.4 50.6 50.7 76.6 38.6 38.5 63.0

Fed3+2p(Ours) 87.5 87.4 91.9 81.4 83.7 94.1 45.9 45.3 72.6

Secondly, in terms of local performance, our method Fed3+2p surpasses all baseline federated learn-
ing methods on the CIFAR-10/100 datasets. Specifically, compared to the best general federated
learning method, Fed3+2p outperforms FedDYN by 1.7% and 0.6% on CIFAR-10 and CIFAR-100,
respectively. When compared to the best clustered federated learning method, Fed3+2p exceeds
FedClust by 34.4% and 23.1% on CIFAR-10 and CIFAR-100, respectively. Even when compared to
the best personalized federated learning method, Fed3+2p achieves 1.4% and 0.6% higher accuracy
than FedRoD on CIFAR-10 and CIFAR-100. However, Fed3+2p does not perform as effectively as
FedClust on the FMNIST dataset.

Finally, Fed3+2p demonstrates a clear advantage on more complex datasets. In the FMNIST dataset,
due to its lower complexity and relatively simple image features, the advantage of Fed3+2p is rela-
tively small, with global performance only 3.6% higher than the best SOTA method, and almost no
advantage in local performance. However, in the CIFAR-10 dataset, the advantage of Fed3+2p over
SOTA methods is extremely pronounced, with global and local performance exceeding that of the
best SOTA method by 12.9% and 1.4%, respectively. On the other hand, in CIFAR-100, despite the
excellent structural design of Fed3+2p, the neural network used in the experiments is too simple to
effectively capture the complex features of the dataset, resulting in almost no advantage compared
to SOTA methods. Therefore, future research could consider more complex network architectures
to better accommodate high-complexity datasets like CIFAR-100.

To gain deeper insights into our Fed3+2p and identify the reasons behind these improvements, we
further investigate our training method and network architecture in the following empirical studies.

5.3 ABLATION EXPERIMENTS

The ablation experiments provide an in-depth effectiveness analysis of the filter, coordinator, and
two-phase training strategy of our Fed3+2p.

In the ablation experiments, we adopted a progressive removal strategy, rather than independently
removing the filter, coordinator, and two-phase training strategy. Specifically, when removing the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

filter, we turn off the Type-B coordinator in the second phase but retained the management function-
ality of the Type-A coordinator. Then, in the coordinator removal experiment, we turn off both the
Type-A and Type-B coordinators, while still maintaining the phased training of the feature extractor
and other components. Finally, when removing the two-phase training strategy, the entire network
was trained together without the use of any coordinators for client management. The results of the
ablation experiments are shown in Table 2.

Table 2: The accuracy (%) of our ablation experiments on Fed3+2p. Bold numbers represent the
best results. 2ST. Train denotes the two-phase training method. G represents testing the global test
set with the global model, while L represents testing local data with the local model.

Method FMNIST Cifar10 Cifar100
G L G L G L

Full Fed3+2p 87.5 91.9 81.4 94.1 45.9 72.6
- Filter - 91.6 - 93.7 - 72.5
- Coordinator 82.7 89.8 64.0 91.7 40.7 65.6
- 2ST. Train 82.7 89.2 63.9 90.5 40.7 64.2

Effectiveness of Filter: In the first phase of the ablation experiments, removing the filter leds to a
decline in local performance. In the FMNIST dataset, local performance decreased slightly by 0.3%,
while in CIFAR-10, it dropped by 0.4%. In CIFAR-100, there was almost no change, with only a
0.1% decrease. These results show that the filter enhances the model’s local performance, especially
on simpler datasets like FMNIST and CIFAR-10, where it helps capture local data features and
mitigate overfitting issues that may arise in clients with smaller datasets. However, on more complex
datasets like CIFAR-100, the filter has relatively less impact, with the model relying more on other
components to improve performance.

Effectiveness of Coordinator: In the second phase of the ablation experiments, removing both the
Type-A and Type-B coordinators results in a significant decline in global and local performance.
In the FMNIST dataset, global performance dropped by 4.8% and local performance by 2.1%. In
the CIFAR-10 dataset, global performance decreased by 17.4% and local performance by 2.4%. In
the CIFAR-100 dataset, global performance fell by 5.2% and local performance by 7.0%. These
results demonstrate that the coordinators enhance both global and local performance. Specifically,
the Type-A coordinator mitigates model bias caused by non-identically distributed client data by
grouping clients into sets that are similar in joint data distribution to the global data distribution and
managing their training, which allows each group’s model updates to reflect a more comprehensive
global knowledge, thereby enhancing global performance. Similarly, the feature extractor also learns
richer feature representations in this process, which can be directly utilized during the training of
the personalized parts in the second phase, allowing them to better adapt to their respective data
distributions and improve local performance.

Two-phase Strategy: In the third phase of the ablation experiments, we remove the two-phase
training strategy and disable all coordinators, resulting in a further decline in local performance. In
the FMNIST dataset, local performance decreased by 2.7%; in the CIFAR-10 dataset, local perfor-
mance dropped by 3.6%; and in the CIFAR-100 dataset, local performance fell by 8.4%. These
results indicate that the two-phase training strategy can enhance the model’s local performance.
By separating the training of the feature extractor from that of the classification head, the feature
extractor can learn more comprehensive global features in the first phase, thereby providing more
effective feature representations for the classification head, especially when local data distributions
are diverse.

Through progressive ablation experiments, we demonstrated the cumulative impact of the filter,
coordinator, and two-phase training strategy on the model’s global and local performance. The ex-
perimental results indicate that the filter primarily affects the model’s local performance as expected,
while the coordinator enhances the performance of both the global and local models. The two-phase
training strategy further improves both global and local performance by facilitating staged train-
ing. Therefore, maintaining the synergy among these modules is key to the success of the Fed3+2p
framework.
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5.4 VISUALIZE FEATURE VECTORS

The purpose of visualizing feature vectors is to intuitively demonstrate the important roles of co-
ordinators and filters in feature learning. By visualizing the feature vectors from different training
phases, we aim to validate their effectiveness in enhancing feature extraction and reducing overfit-
ting. We conducted experiments on Cifar10 under the Dir (0.1) setting while keeping other settings
constant.

(a) (b) (c) (d)

Figure 3. Each color represents the feature vectors of one class of data. (a): t-SNE visualization
of feature vectors for each class of data without using Type-A coordinators in the first phase. (b):
t-SNE visualization of feature vectors for each class of data with using Type-A coordinators in the
first phase. (c): t-SNE visualizations of feature vectors for each class of data on each client without
using Type-B coordinators in the second phase. (d): t-SNE visualizations of feature vectors for each
class of data on each client with using Type-B coordinators in the second phase.

As shown in Figure 3, we used t-SNE to visualize the feature vectors of each class of data obtained
from client training managed with and without a coordinator during two training phases.

In Figure 3a, the feature vectors of different classes exhibit a noticeable clustering phenomenon,
while in Figure 3b, the feature vectors of different classes show good separability. This indicates
that managing the training process of clients using Type-A coordinator helps the feature extractor
learn the feature differences between different categories, thereby enhancing the performance of the
feature extractor.

In Figure 3c, the feature vectors of the same label demonstrate considerable dispersion; for instance,
the black feature vectors are partially located in the upper right and partially in the lower center.
In contrast, Figure 3d shows a significant aggregation of the feature vectors with the same label,
indicating that using Type-B coordinator to manage clients with similar data distributions, in com-
bination with shared filters and feature extractors, can better capture the shared features of the same
labels across different clients, reducing the overfitting phenomenon on specific client data.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel federated learning framework called Fed3+2p to address the chal-
lenges posed by overfitting issues faced by non-identically distributed data and clients with small
data volumes, affecting both global and local performance. Fed3+2p divides the neural network
into three parts: a feature extractor, a filter, and classification heads, and introduces two types of
coordinators to implement a two-phase training strategy for these components. Experimental results
demonstrate that Fed3+2p significantly outperforms all SOTA methods in both global and local
performance.

In future research, we aim to further enhance the flexibility and adaptability of the Fed3+2p frame-
work. One potential improvement is to establish a threshold mechanism for automatically switching
between the two-phase training process, which would autonomously decide when to use Type-A or
Type-B coordinators. This would make the training process more efficient and better suited to differ-
ent types of clients. Additionally, we plan to explore using other metrics to group clients, enhancing
privacy by collecting the minimum necessary information from clients.
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REPRODUCIBILITY STATEMENT

We provide detailed information about the hyperparameters, datasets, evaluation, and other details
in Section 5, which should be comprehensive enough for reproducibility of the experiments. The
source code related to the paper is uploaded as supplementary material.
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rian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X.
Yu, Han Yu, and Sen Zhao. Advances and open problems in federated learning, 2021. URL
https://arxiv.org/abs/1912.04977.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning, 2021.
URL https://arxiv.org/abs/1910.06378.

Jakub Konečný, Brendan McMahan, and Daniel Ramage. Federated optimization:distributed opti-
mization beyond the datacenter, 2015. URL https://arxiv.org/abs/1511.03575.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, Toronto, ON, Canada, 2009.
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A ADDITIONAL EXPERIMENTS AND ANALYSES

A.1 ADDITIONAL COMPARISON WITH STATE-OF-THE-ART

Due to space limitations in the main paper, we provide comparisons of global accuracy and local
accuracy of different approaches under other non-independent and identically distributed settings
across different datasets here, as detailed in Table 3.

Table 3: Global accuracy and local accuracy comparisons of different approaches over different
datasets for non-IID Dir (0.3) (%). Model Type represents the type of model used for testing,
distinguishing between global model GM and local models LM. Test Set refers to the type of test set,
differentiating between global test sets G-Test and local test sets P-Test. The bold numbers represent
the best results for each model on each test set for every dataset. Red font indicates general federated
learning methods, and cyan font indicates personalized federated learning methods. † indicates
results collected from papers, while ‡ indicates results obtained from our re-implemented code.

Dataset FMNIST Cifar10 Cifar100

Model Type GM LM GM LM GM LM

Method/Test Set G-Test P-Test P-Test G-Test P-Test P-Test G-Test P-Test P-Test

Local only‡ - - 85.2 - - 75.8 - - 32.5

FedAvg‡ 83.5 83.4 90.5 68.8 69.4 85.1 46.4 46.3 61.7
FedDYN† 86.1 86.1 91.5 72.5 73.2 85.4 47.5 47.4 62.5
FedProx† 84.5 84.5 89.7 69.9 69.8 84.7 46.5 46.4 61.5

Ditto† 83.3 83.2 90.1 69.7 69.8 81.5 46.4 46.4 58.8
FedPer† 79.9 79.9 90.4 64.4 64.5 84.9 40.3 40.1 62.5
FedRep† 80.6 80.5 90.5 67.7 67.5 85.2 46.0 46.0 62.1
FedRoD† 86.3 86.3 94.5 76.9 76.8 86.4 48.5 48.5 62.3
Per-FedAvg† 84.1 - 86.7 70.5 - 80.7 44.5 - 58.9
pFedMe† 79.0 79.0 83.4 62.1 61.7 70.5 41.4 41.1 53.4

Fed3+2p(Ours) 87.8 87.7 91.6 81.7 81.9 88.4 48.3 48.5 64.0

A.2 HYPERPARAMETER EXPERIMENT

The objective of this experiment is to explore the impact of the number of Type-B coordinators
on local performance in Fed3+2p. We aim to investigate how adjusting the number of Type-B
coordinators affects local performance on the CIFAR-10 dataset under the non-IID Dir(0.1) and
Dir(0.3) setting.

M

Lo
ca

l A
cc

ur
ac

y

93.0

93.5

94.0

94.5

5 10 15 20

Cifar, Non-IID Dir(0.1)

(a)

M

Lo
ca

l A
cc

ur
ac

y

87.0

87.5

88.0

88.5

5 10 15 20

Cifar, Non-IID Dir(0.3)

(b)

Figure 4. Comparison of local accuracy for different numbers of Type-B coordinators on the CIFAR
dataset under non-IID Dir (0.1) and Dir (0.3) (%). M represents the numbers of Type-B coordinators.
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