
TaDiCodec: Text-aware Diffusion Speech Tokenizer for
Speech Language Modeling

Yuancheng Wang, Dekun Chen, Xueyao Zhang, Junan Zhang, Jiaqi Li, Zhizheng Wu
The Chinese University of Hong Kong, Shenzhen

yuanchengwang@link.cuhk.edu.cn, wuzhizheng@cuhk.edu.cn

Abstract

Speech tokenizers serve as foundational components for speech language models,
yet current designs exhibit several limitations, including: 1) dependence on multi-
layer residual vector quantization structures or high frame rates, 2) reliance on
auxiliary pre-trained models for semantic distillation, and 3) requirements for
complex two-stage training processes. In this work, we introduce the Text-aware
Diffusion Transformer Speech Codec (TaDiCodec), a novel approach designed
to overcome these challenges. TaDiCodec employs end-to-end optimization for
quantization and reconstruction through a diffusion autoencoder, while integrating
text guidance into the diffusion decoder to enhance reconstruction quality and
achieve optimal compression. TaDiCodec achieves an extremely low frame rate of
6.25 Hz and a corresponding bitrate of 0.0875 kbps with a single-layer codebook
for 24 kHz speech, while maintaining superior performance on critical speech
generation evaluation metrics such as Word Error Rate (WER), speaker similarity
(SIM), and speech quality (UTMOS). Notably, TaDiCodec employs a single-stage,
end-to-end training paradigm, and obviating the need for auxiliary pre-trained
models. We also validate the compatibility of TaDiCodec in language model
based zero-shot text-to-speech with both autoregressive modeling and masked
generative modeling, demonstrating its effectiveness and efficiency for speech
language modeling, as well as a significantly small reconstruction-generation
gap. We will open source our code and model checkpoints. Audio samples are
are available at https:/tadicodec.github.io/. We release code and model
checkpoints at https://github.com/AmphionTeam/TaDiCodec.

1 Introduction

Recent advances have been made in both large language model (LLM)-based text-to-speech (TTS)
systems [1, 2, 3, 4, 5, 6, 7, 8, 9] and spoken language models [10, 11, 12, 13, 14, 15, 16, 17, 18].
At the core of these systems lies the speech tokenizer, which converts continuous speech signals
into discrete token sequences, thereby enabling the application of textual LLM paradigms to speech
modeling. Beyond this, speech tokenizers play a fundamental role in bridging the text and speech
modalities, forming the basis for cross-modal learning, alignment, and generation.

However, most existing speech tokenizers are suboptimal for speech language modeling. Prior
works (e.g., EnCodec [19], SoundStream [20], DAC [21]) primarily target speech signal compression
and transmission, relying on multi-layer residual vector quantization (RVQ) and operating at high
frame rates and bitrates. Such configurations make modeling with language models challenging and
inefficient. More recently, several studies [5, 6, 22, 23, 24] have explored techniques for single-layer
speech tokenizers. However, these approaches still fall short in reconstruction quality compared to
RVQ-based tokenizers and often maintain high token rates (typically exceeding 50 tokens per second).
Moreover, they usually depend on complex loss designs and adversarial training. Additionally,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https:/tadicodec.github.io/
https://github.com/AmphionTeam/TaDiCodec

many of these models primarily optimize for acoustic-level reconstruction, resulting in discrete
representations that lack semantic richness, making them suboptimal for language model modeling
and causing reconstruction-generation gap.

Recent studies [2, 3, 4, 10, 11, 25, 26] emphasize that effective speech tokens for language modeling
should exhibit low frame rates and semantic richness, which criteria that directly shape the design
of modern speech tokenizers. To achieve this, several works [10, 25, 26, 27] decompose speech
into semantic and acoustic tokens by distilling features from speech self-supervised learning (SSL)
models [28, 29, 30, 31]. In this framework, semantic tokens exhibit improved alignment with
textual representations, thereby facilitating more effective language modeling. However, preserving
reconstruction quality often requires RVQ, along with intricate loss functions, adversarial objectives,
and the integration of external SSL models. An alternative line of work, including systems such
as CosyVoice [3], SeedTTS [2], FireRedTTS [4], and Vevo [32], adopts a two-stage design: first
quantizing SSL-derived features, then training a separate diffusion model [33, 34, 35] to reconstruct
speech conditioned on these tokens. While this design enables relatively low frame rates and supports
a single-layer token representation, it comes with several limitations: 1) Two-stage training: the
pipeline introduces greater architectural complexity and reduced training efficiency compared to
end-to-end approaches; 2) External dependency: it relies on pre-trained SSL or supervised models
for semantic feature extraction; and 3) Struggle with extreme compression: most systems fail to
achieve ultra-low token rates (e.g., fewer than 20 tokens per second), which are critical for modeling
efficiency and scalability.

To address the limitations of current speech tokenizers, we propose the Text-aware Diffusion Trans-
former Speech Codec (TaDiCodec), a novel model that achieves an exceptionally low frame rate
of 6.25 Hz using a single codebook, corresponding to a bitrate of 0.0875 kbps for 24 kHz speech.
Despite this ultra-low rate, TaDiCodec delivers high-fidelity speech reconstruction and robust per-
formance on downstream speech language modeling tasks. Specifically: 1) TaDiCodec unifies
quantization and reconstruction within an end-to-end diffusion autoencoder, removing the need
for separate semantic distillation or complex adversarial objectives by relying solely on diffusion
loss; 2) it enhances reconstruction quality and compression efficiency by incorporating text and
prompt guidance into the diffusion decoder. Our design is motivated by the increasing availability
of transcriptions from automatic speech recognition (ASR) systems [36, 37], and the widespread use
of paired speech-text data in generative applications. In zero-shot TTS scenarios, for instance, the
target text is inherently available; in end-to-end spoken language systems, speech and text tokens are
typically generated jointly [12, 13, 14, 15, 16, 17, 38].

Our experiments show that TaDiCodec achieves performance comparable to or better than existing
speech tokenizers in both reconstruction and downstream speech generation, while maintaining a
significantly smaller gap between reconstruction and generation. In addition, it adopts a much simpler
pipeline and operates with much fewer tokens. We evaluate zero-shot TTS using TaDiCodec under
both autoregressive and masked language modeling settings, achieving strong results in intelligibility,
speaker similarity, speech quality, and overall training and inference efficiency. A comparison with
other tokenizers is presented in Figure 1 and Table 1.

The contributions of our work are summarized as follows:

• We propose TaDiCodec, a novel speech tokenizer with a token rate of 6.25 Hz and a bitrate
of 0.0875 kbps, based on a diffusion autoencoder that jointly performs quantization and re-
construction without adversarial training, external pretrained models for semantic distillation,
or multi-stage training. This design enables efficient optimization and simplifies the speech
tokenization pipeline.

• We introduce text-aware and prompt-guided decoding into the diffusion process to facilitate ex-
treme compression. By leveraging paired speech-text data, this approach enhances reconstruction
quality and enables high intelligibility, speaker similarity, and speech quality under ultra-low
token rates.

• We build zero-shot TTS models using our tokenizer under both autoregressive and masked
language modeling settings, achieving WERs of 2.28 and 1.19 on SeedTTS test-en and test-zh,
respectively. Our models demonstrate notable improvements on challenging benchmarks such
as articulatory, code-switching, and cross-lingual test sets, and support real-time inference with
RTFs ranging from 0.12 to 0.29 across different model sizes.

2

WER (Lower is Better)
3

4
5

6
7

UTM
OS (

High
er

 is
 Bet

te
r)

2.8

3.0

3.2

3.4

3.6

3.8

SI
M

 (
H

ig
he

r
is

 B
et

te
r)

0.45

0.50

0.55

0.60

0.65

0.70
TaDiCodec
CosyVoice 2 Tokenizer
SemantiCodec
BigCodec
WavTokenizer
Mimi
BiCodec
CosyVoice Tokenizer
Ints Tokenizer

TaDiCodec
(0.0875 Kbps)

CosyVoice 2 Tokenizer
(0.325 Kbps)

SemantiCodec
(0.675 Kbps)

BigCodec
(1.04 Kbps)

WavTokenizer
(0.9 Kbps)

Mimi
(0.825 Kbps)

BiCodec
(0.65 Kbps)

CosyVoice Tokenizer
(0.3 Kbps)

Ints Tokenizer
(0.175 Kbps)

Figure 1: Comparison between TaDiCodec and other speech tokenizers. We use a three-
dimensional coordinate system to display the performance across three dimensions: the x-axis
represents WER, the y-axis represents UTMOS, and the z-axis represents SIM. The size of the
markers is proportional to the kbps value.

2 Related Work

Discrete Speech Tokenizer Discrete speech tokenizers convert continuous speech into discrete
tokens, enabling modern zero-shot TTS and speech language modeling. Early tokenizers [19, 20, 21]
focused on audio compression, relying on residual vector quantization (RVQ) [20, 39] and operating at
high frame rates and bitrates, settings ill-suited for language modeling. Recent work has shifted toward
designing tokenizers tailored for language modeling, emphasizing low frame rates [10, 26], semantic-
rich representations [4, 5, 6, 10, 25, 26, 27, 32, 40, 41], and single-layer codebooks [22, 23, 24].
Diffusion-based methods [33, 34] have gained popularity for their performance at low token rates and
scalability. However, they typically follow a two-stage pipeline: extracting tokens via self-supervised
speech representations [28, 29, 30, 31, 36, 42], then reconstructing waveforms through diffusion. For
example, [43, 44] apply diffusion to improve de-tokenization quality, but still operate at relatively
high token rates. Achieving ultra-low bitrates (e.g., below 0.2 kbps or 20 tokens/s) with a compact,
generative-friendly framework remains a major challenge.

Zero-shot TTS Modern zero-shot TTS systems typically operate on discrete speech tokens using
either autoregressive (AR) language modeling [1, 2, 3, 4, 5, 6, 8, 9, 41] or masked generative
(language) modeling (MGM) [7, 45, 46, 47]. Some models [2, 3, 4, 7, 41] adopt an “AR + diffusion”
framework, where a diffusion decoder enhances waveform quality based on predicted tokens. Zero-
shot TTS is also foundational in recent end-to-end spoken language models. For example, Qwen2.5-
Omni [18] uses a “talker” module to generate speech tokens from the text output of a “thinker.”
Similar architectures [15, 16] decode speech directly from text, while others [11, 12, 14, 17] leverage
TTS models to synthesize large-scale speech corpora for training dialogue agents.

3 Method

3.1 TaDiCodec

Speech Tokenization with Diffusion Transformer Autoencoder Some speech tokenizers adopt
raw waveform signals as modeling targets. However, raw waveforms often contain a considerable
amount of redundant information. In this work, we instead adopt the mel-spectrogram as both
the input and reconstruction target for the tokenizer, given its compactness and ease of inversion
to waveform using vocoder models [48, 49]. Formally, we denote the input mel-spectrogram as

3

𝒙 ∈ R𝑇×𝑑 , where 𝑇 denotes the number of frames, corresponding to the number of waveform
frames divided by the hop size. The tokenizer’s encoder E transforms 𝒙 into a sequence of latent
embeddings, i.e., E(𝒙). These embeddings are then quantized by the vector quantization (VQ)
module Q into a discrete token sequence 𝒒 = Q(E(𝒙)) ∈ Z𝑇𝑞×1, where 𝑇𝑞 is the length of the token
sequence, typically equal to 𝑇 divided by a predefined down-sampling factor. Each token 𝑞𝑖 (for
𝑖 ∈ [0, 𝑇𝑞)) corresponds to an index in a codebook. The decoder D subsequently reconstructs the
mel-spectrogram as 𝒙̂ = D(𝒒). Previous speech tokenizers primarily adopted generative adversarial
networks (GANs) [50] for training the system, typically operating on short speech segments (e.g.,
1–3 seconds) and employing CNNs as the backbone. However, GANs often suffer from issues related
to training stability and efficiency, and the reliance on CNN-based architectures and short-segment
training further constrains the model’s ability to capture long-range dependencies, leading to a focus
on only local acoustic patterns. To overcome these limitations, we use a fully Transformer-based [51]
architecture for both the encoder and decoder, and adopt a diffusion loss for reconstruction training,
enabling more stable optimization and improved modeling capabilities. Specifically, we adopt a flow
matching-based decoder [35, 52]. During training, we sample Gaussian noise 𝝐 and generate a noisy
target 𝒙𝑡 via a linear interpolation: 𝒙𝑡 = 𝑡𝒙 + (1 − 𝑡)𝝐 , where 𝑡 ∈ [0, 1] is a randomly sampled noise
level. The model is then trained to predict the velocity field 𝒗, defined as the derivative of 𝒙𝑡 with
respect to 𝑡, i.e., 𝒗 =

𝑑𝒙𝑡
𝑑𝑡

= 𝒙 − 𝝐 . We provide more details about flow matching in Appendix B.

DiT Decoder

𝒟
Encoder

ℰ
Quantizer

𝒬𝑥 𝑣

𝑥!"#!

𝑥!

Figure 2: Training speech tokenizer with
diffusion autoencoder. We optimize tok-
enization and reconstruction end-to-end with
diffusion loss. The input 𝒙 is passed through
the encoder and quantizer to get Q(E(𝒙)),
which is then conditioned and input into the
DiT decoder to predict the velocity 𝒗 corre-
sponding to the noisy 𝒙𝑡 .

Binary Spherical Quantization For quantization,
we use Binary Spherical Quantization (BSQ) [53],
which does not rely on an explicit learnable code-
book. We first apply downsampling to the en-
coder output E(𝒙), followed by a linear projec-
tion to obtain a low-dimensional latent sequence:
𝒉 = Linear(Downsample(E(𝒙))) ∈ R𝑇𝑞×𝐿 , where
𝑇𝑞 is the number of quantized frames and 𝐿 is the
latent dimension. Each vector 𝒉𝑡 ∈ R𝐿 of 𝒉 is then
projected onto the unit sphere: 𝒖𝑡 =

𝒉𝑡

∥𝒉𝑡 ∥ . Binary
quantization is applied independently on each dimen-
sion: 𝒖̂𝑡 =

1√
𝐿

sign(𝒖𝑡), where sign(𝑥) is the element-
wise sign function. To enable gradient flow through
the quantization step, we adopt a Straight-Through
Estimator (STE): signSTE (𝑥) = sg(sign(𝑥) − 𝑥) + 𝑥,

where sg(·) denotes the stop-gradient operation. The quantized latent sequence 𝒖̂ ∈ R𝑇𝑞×𝐿 is
then mapped back to the 𝑑-dimensional space and upsampled to the original temporal resolution:
Upsample(Linear(𝒖̂)) ∈ R𝑇×𝑑 . Each quantized vector 𝒉𝑡 corresponds to a discrete token index
computed by:

𝑘𝑡 =

𝐿∑︁
𝑖=1

1[𝒉𝑡,𝑖>0] · 2𝑖−1, (1)

where 1[·] is the indicator function. As noted in [53], BSQ can be optimized without the need for a
commitment loss [54], since its quantization error is theoretically bounded. This property enables
end-to-end training of the system using only the diffusion loss. See Appendix C for further details.

Text-aware De-Tokenization Most existing speech tokenizers rely solely on speech features
for reconstruction. However, in the context of speech language modeling, the corresponding text
associated with the speech is often readily available. For example, in TTS, the target text is always
known, and in most end-to-end spoken dialogue systems, text and speech tokens are generated
jointly [10, 11, 12, 13, 14, 15, 16, 17, 18]. Motivated by this observation, we propose a text-aware
de-tokenization strategy, which conditions the diffusion decoder on the corresponding text sequence
𝒙𝑡𝑒𝑥𝑡 . To further improve reconstruction quality under the extremely low compression rate setting,
we introduce a prompt mechanism into TaDiCodec, similar to prior works [7, 55, 56, 57]. This
mechanism enables the model to better reconstruct speech when a prompt is provided, making it
particularly suitable for speech generation scenarios such as zero-shot TTS and the decoding stage
of spoken language models. Specifically, during training, we randomly sample a prefix 𝒙𝑝𝑟𝑜𝑚𝑝𝑡 from
the input mel-spectrogram by drawing a segment length 𝑙 ∼ Uniform(0, 0.25𝐿), where 𝐿 denotes
the total number of frames in the mel-spectrogram. The prefix is preserved without any added noise,
while the loss is computed solely on the noisy portion of the sequence. Table 4 shows this prompt

4

mechanism yields substantial improvements in reconstruction performance. We also experiment with
removing text conditioning from the decoder and observe significant performance degradation under
extremely low token rate and bitrate settings. e.g., at a frame rate of 12.5 Hz, the WER exceeds 10.

Notably, Unlike prior works [2, 3, 4, 7, 11, 32, 40, 58] that adopt a two-stage pipeline: first training
a VQ model and then a separate diffusion model for de-tokenization, our tokenizer jointly learns
feature quantization and reconstruction in an end-to-end manner. The overall training objective
of TaDiCodec can be formulated as:

Ldiff = E(𝒙,𝒙𝑡𝑒𝑥𝑡) ,𝝐 ,𝑡
[
∥(𝒙 − 𝝐) − D𝜙 (Q(E𝜃 (𝒙)), 𝒙𝑡 , 𝑡, 𝒙𝑡𝑒𝑥𝑡)∥

]
, (2)

where E𝜃 and D𝜙 are the encoder and decoder parameterized by 𝜃 and 𝜙. We ignore the prompt for
simplification. We also find that continuing to train the decoder while freezing the encoder and VQ
module can further improve performance.

3.2 Speech Language Modeling with TaDiCodec

Existing speech tokenizers often neglect their effectiveness in downstream speech language modeling
tasks and suffer from a pronounced reconstruction–generation gap. In this work, we apply our
tokenizer to large-scale multilingual zero-shot TTS, adopting an “AR + Diffusion” paradigm: an
autoregressive model first predicts speech tokens 𝒒 from text 𝒙𝑡𝑒𝑥𝑡 , which are then passed, along with
the text, to TaDiCodec’s diffusion decoder to generate speech. The AR model, parameterized by 𝜓, is
optimized to minimize the negative log-likelihood of the target token sequence conditioned on the
input text and previously predicted tokens:

LAR = −E(𝒒,𝒙𝑡𝑒𝑥𝑡)

𝑇𝑞∑︁
𝑖=1

log 𝑝(𝒒𝑖 | 𝒒<𝑖 , 𝒙𝑡𝑒𝑥𝑡 ;𝜓), (3)

where 𝒒𝑖 is the 𝑖-th token of 𝒒. We also apply the non-autoregressive Masked Generative Modeling
(MGM) [7, 59] for modeling speech tokens. See more details about MGM in the Appendix D.

4 Experiments

We first describe the implementation details and datasets (Section 4.1). We then present the speech
reconstruction results of TaDiCodec in Section 4.2, including the main results (Section 4.2.1, Table 1),
multilingual performance (Table 2), subjective evaluation results (Table 3), and ablation studies on
tokenizer design (Section 4.2.2, Table 4). Section 4.3 reports the zero-shot TTS results of models
built upon TaDiCodec (Table 5), along with results on model size scaling and training and inference
efficiency (Table 6), and an analysis of the reconstruction–generation gap (Figure 3).

4.1 Experimental Settings

Datasets We use the Emilia [60] dataset to train all of our models. Emilia is a multilingual and
diverse in-the-wild speech dataset designed for large-scale speech generation. It contains 46.8K hours
of English, 49.9K hours of Chinese, 1.6K hours of German, 1.4K hours of French, 1.7K hours of
Japanese, and 0.2K hours of Korean.

Implementation Details We build TaDiCodec using standard Llama-style Transformer blocks [61],
with bidirectional attention instead of causal attention. The base configuration employs an 8-layer
encoder and a 16-layer decoder, each with hidden size 1024, intermediate size 4096, and 16 attention
heads. We further explore decoder variants; see Section 4.2.2 and Table 4 for details. We adopt RoPE
positional embedding [62] and RMSNorm [63]. For the text-aware diffusion decoder, RMSNorm
is modified to Adaptive RMSNorm to condition on the diffusion step embedding. Text tokens are
adapted from a pretrained LLM vocabulary [64, 65], and concatenated with speech features along the
time axis before being input to the decoder. For vector quantization, we use BSQ [53] with a latent
size of 14, yielding a codebook size of 214 = 16384. All models are trained on 8 80GB NVIDIA
A100 GPUs using dynamic batching with 200 seconds of speech per batch. We train the tokenizer
for 800K steps using AdamW [66] with a learning rate of 7.5 × 10−5 and 32K warmup steps. TTS
models are trained for 300K steps with a learning rate of 3 × 10−4 unless otherwise specified. AR
models extend the vocabulary of pretrained textual LLMs [3, 5] and are trained with 0.2B, 0.5B, 3.0B,
and 4.0B parameters; see Section 4.3 for analysis. For MGM models, we follow the setup of [7].

5

Table 1: The comparison between TaDiCodec and other speech tokenizers. TaDiCodec offers an
extremely high compression rate, achieving a 6.25 Hz frame and token rate and a 0.0875 kbps bitrate
without requiring additional pretrained models for semantic distillation. It achieves comparable or
better reconstruction quality than other speech tokenizers, based on generation-related metrics.

System Frame Rate Token Rate Bitrate (kbps) Codebook Semantic Reconstruction Quality
Number Distill Free WER (↓) SIM (↑) UTMOS (↑)

Token rate less than 150

EnCodec [19] 75 150 1.5 2 ✓ 5.36 0.48 1.54
DAC (RVQ) [21] 25 75 0.75 3 ✓ 20.08 0.39 1.75
DAC (VQ) [21] 75 75 0.75 1 ✓ 12.74 0.45 2.08
SpeechTokenizer [27] 50 100 1 2 ✗ 7.98 0.46 2.47
Mimi [10] 12.5 75 0.825 6 ✗ 4.51 0.52 3.09
Mimi [10] 12.5 100 1.1 8 ✗ 3.99 0.57 3.21
DualCodec [26] 12.5 75 0.925 6 ✗ 2.63 0.62 3.78
DualCodec [26] 12.5 100 1.225 8 ✗ 2.57 0.64 3.78
BiCodec [6] 16 kHz 50 50 0.65 1 ✗ 3.05 0.61 3.68
X-codec 2 [5] 16 kHz 50 50 0.8 1 ✗ 2.63 0.62 3.68
WavTokenizer [23] 75 75 0.9 1 ✓ 6.65 0.48 3.36
BigCodec [22] 16 kHz 80 80 1.04 1 ✓ 3.25 0.61 3.59
TAAE [24] 16 kHz 25 25 0.4 1 ✓ 11.08 0.41 3.87
Two stage, Diffusion decoder
SemantiCodec [40] 25 50 0.675 2 ✗ 5.11 0.49 2.83
Vevo Tokenizer [32] 50 50 0.65 1 ✗ 3.04 0.53 3.50
FireRedTTS Tokenizer [4] 25 25 0.35 1 ✗ 3.35 0.59 3.40
CosyVoice Tokenizer [3] 25 25 0.3 1 ✗ 5.63 0.47 3.65
CosyVoice 2 Tokenizer [41] 25 25 0.325 1 ✗ 4.10 0.68 3.65

Token rate less than 20

Two stage, Diffusion decoder
Ints Tokenizer [68] 12.5 12.5 0.175 1 ✗ 7.14 0.67 3.37
One stage, Diffusion decoder
TaDiCodec 6.25 6.25 0.0875 1 ✓ 3.02 0.67 3.68
TaDiCodec (w. dct)* 6.25 6.25 0.0875 1 ✓ 2.73 0.69 3.73
* “w. dct” denotes continued training of the decoder for 400K additional steps, with the encoder and VQ module frozen.

Evaluation We evaluate our approach from two main perspectives: speech reconstruction using
the proposed tokenizer (Section 4.2) and zero-shot TTS performance (Section 4.3). We assess
intelligibility (WER), speaker similarity (SIM), and speech quality (UTMOS). Speaker similarity is
computed as the cosine similarity between WavLM-TDNN embeddings of the prompt and generated
speech [28]. WER is measured using whisper-large-v3 [36] for non-Chinese languages and
paraformer-zh [37] for Chinese, following prior work [2, 3, 7, 58]. Speech quality is evaluated
using the official UTMOS checkpoint. In addition to objective metrics, we conduct subjective
evaluation via Comparative Mean Opinion Score (CMOS). We do not report signal-level metrics
(e.g., PESQ, STOI), as our focus is on generation-oriented performance, in line with [58, 67]. Further
Evaluation details are provided in Appendix F.

4.2 Speech Reconstruction

4.2.1 Main Results

We report our main results on SeedTTS test-en [2] in Table 1. We also evaluate our methods on
multilingual test sets in Table 2. Subjective evaluation results are show in Table 3.

Baselines We compare with a wide range of baselines in settings where the token rate is less than
150: 1) single stage with multi-layer codebook and adversarial training: EnCodec [19], DAC [21],
SpeechTokenizer [27], Mimi [10], DualCodec [26]; 2) single stage with single-layer codebook
and adversarial training: DAC (with single VQ), BiCodec [6], X-codec 2 [5], WavTokenizer [23],
BigCodec [22], TAAE [24]; 3) two stage with diffusion decoder: SemantiCodec [40], Vevo Tok-
enizer [32], FireRedTTS Tokenizer [4], CosyVoice [3] & CosyVoice 2 Tokenizer [41], Ints Tok-
enizer [68]. We provide more detailed description of these baselines in Appendix E.1.

Results Analysis 1) Compression: TaDiCodec demonstrates a significantly higher compression
rate compared to all baselines. It operates at a token rate of 6.25 Hz with a single-layer codebook,
resulting in a bitrate of 0.0875 kbps. Among the baselines, the closest in compression rate to
TaDiCodec is the Ints Tokenizer, which has double the token rate and bitrate of TaDiCodec. However,
it performs worse in terms of WER (7.14 vs. 2.73) and UTMOS (3.37 vs. 3.73) and requires two-stage
training and semantic distillation. All other baselines have a token rate greater than 25 and a bitrate of
at least 0.3 kbps. Compared to other single-stage and distillation-free models, BigCodec has a higher

6

Table 2: Results of multilingual speech reconstruction. In addition to English, we evaluate on five
other languages: Chinese (zh), French (fr), German (de), Japanese (ja), and Korean (ko).

System Bitrate en zh fr de ja ko
(kbps) WER SIM WER SIM WER SIM WER SIM WER SIM WER SIM

Mimi [10] 1.1 3.99 0.57 2.87 0.59 20.71 0.55 16.12 0.59 25.71 0.44 36.10 0.57
BiCodec [6] 16 kHz 0.65 3.05 0.61 1.97 0.66 17.74 0.57 11.98 0.64 20.50 0.49 29.39 0.63
FireRedTTS Tokenizer [4] 0.35 3.35 0.59 1.99 0.68 20.16 0.56 13.87 0.61 18.57 0.48 32.20 0.62

TaDiCodec (w. dct) 0.0875 2.73 0.69 0.94 0.75 20.29 0.69 11.77 0.73 20.22 0.59 26.80 0.74

WER (3.25 vs. 2.73) and lower SIM (0.61 vs. 0.69) than TaDiCodec, with a bitrate of 1.04 kbps.
Models with lower bitrates, such as TAAE, still have bitrates four times higher than ours and perform
significantly worse in WER and SIM. Other single-layer codebook tokenizers like BiCodec, X-codec
2, and WavTokenizer have bitrates 7.4, 9.1, and 10.3 times higher, respectively. 2) Reconstruction
Quality: In terms of WER, TaDiCodec achieves a score of 3.02 without decoder continued-training
and 2.73 with fine-tuning, ranking just behind DualCodec and X-codec 2, which have scores of 2.57
and 2.63, respectively, but with bitrates 10.6 and 9.1 times higher. Table 4 shows that our setting
with a bitrate of 0.175 kbps achieves the best WER. In terms of SIM, TaDiCodec with decoder
continued-training achieves the best SIM of 0.69, while even without decoder continued-training, it
reaches 0.67, surpassing all baselines except for the CosyVoice 2 tokenizer. In terms of UTMOS, our
model achieves scores of 3.68 and 3.73 (with and without decoder continued-training), ranking just
behind DualCodec and TAAE, which have scores of 3.78 and 3.87. However, these models operate at
much higher bitrates of 0.925 kbps and 0.4 kbps and demonstrate poorer performance in SIM.

Results for Multilingual As shown in Table 2, TaDiCodec achieves the best WER on English,
Chinese, German, and Korean, with especially low WER on Chinese. It also outperforms all baselines
in speaker similarity across all evaluated languages.

Subject Evaluation Result As shown in Table 3, our proposed system achieves the highest CMOS
score among evaluated baselines. More details about subjective evaluation are shown in Appendix F.3.

4.2.2 Ablation Study

In this section, we explore several designs for TaDiCodec. For the ablation study, we report the
results on SeedTTS test-en and SeedTTS test-zh. 1) Vector Quantization Scheme: Replacing BSQ
with a standard VQ tokenizer (implemented following [21, 69] with an explicit codebook of the
same size as BSQ) leads to consistent degradation across all evaluation metrics. This indicates
that BSQ more effectively preserves both speech quality and intelligibility. 2) Tokenizer Size
Scaling: Reducing the decoder size to 160M results in substantial performance drops, particularly
in English WER. In contrast, increasing the decoder size results in marginal improvements. These
results also imply the existence of a scaling law for TaDiCodec, warranting further investigation
in future work. 3) Prompt Mechanism: The introduction of the prompt mechanism substantially
improves all three evaluation metrics. A plausible explanation is that the prompt serves as a global
conditioning signal (e.g., speaker identity), thereby reducing the quantizer’s burden to encode such
global information. 4) Inference Time Scaling: Increasing the number of inference steps to 50
yields marginal improvements, while reducing it to 10 leads to slight degradation. However, further
reduction to 5 steps results in a noticeable drop in performance. Considering the trade-off between
efficiency and quality, using 10 to 32 steps appears to be a reasonable operating range. We aim to
achieve comparable performance with fewer inference steps (e.g., 1-2 steps) by leveraging techniques
such as [70, 71, 72]. 5) Decoder Continued-training: We explore freezing the encoder and the VQ
module while only continued-training the decoder for an additional 400K steps, focusing solely on
reconstruction. This approach yields further improvements, with WER dropping from 3.02 to 2.73 for
English and from 1.11 to 0.94 for Chinese. SIM also improves for both languages. 6) Diffusion vs.
GAN: We also replace the diffusion loss with PatchGAN [73], but observe a noticeable performance
drop in both intelligibility and speech quality.

4.3 Zero-shot TTS

In this section, we present the zero-shot TTS results using TaDiCodec as the prediction target. We
evaluate two different language modeling approaches: autoregressive (AR) and masked generative

7

Table 3: Subjective CMOS
scores. We randomly choose
40 samples from a in-the-wild
data source. Comparisons be-
tween different models can
also be found in demo page.

System CMOS
Ground Truth +0.28 ±0.25

Mimi [10] -1.79 ±0.13

WavTokenizer [28] -1.33 ±0.28

DualCodec [26] -0.92 ±0.31

X-codec 2 [5] -1.07 ±0.19

TaDiCodec 0.00 ±0.00

Table 4: Ablation study.

System Recon. Seed en Recon. Seed zh
WER SIM UTMOS WER SIM UTMOS

TaDiCodec 3.02 0.67 3.68 1.11 0.74 2.70

bsq → vq 3.30 0.64 3.44 1.25 0.72 2.46

w. prompt → wo. prompt 8.63 0.52 3.26 5.42 0.59 2.28

decoder size: 320M → 160M 7.96 0.63 3.60 2.02 0.73 2.89
decoder size: 320M → 480M 2.90 0.69 3.68 1.02 0.75 2.73

frame rate: 6.25 hz → 12.5 hz 2.57 0.69 3.58 1.09 0.75 2.68

Inference steps: 50 2.87 0.68 3.66 1.07 0.75 2.68
Inference steps: 10 3.85 0.67 3.65 1.23 0.74 2.69
Inference steps: 5 7.89 0.65 3.19 1.96 0.73 2.35

w. decoder continued-training 2.73 0.69 3.73 0.94 0.75 2.69

Table 5: The zero-shot TTS results. Beyond regular cases, we also evaluate on challenging scenarios,
including articulatory, code-switching, and cross-lingual settings.

System Frame Regular Articulatory Code-switching Cross-lingual
Rate en zh en zh en zh zh2en zh2en

WER SIM WER SIM WER SIM WER SIM WER SIM WER SIM WER SIM WER SIM
Baseline systems

NAR
MaskGCT [7] 50 2.40 0.71 2.28 0.77 14.50 0.69 10.35 0.74 38.39 0.63 19.73 0.76 8.47 0.70 16.22 0.56
F5-TTS [56] 93.75 3.02 0.63 3.87 0.71 14.13 0.61 19.54 0.66 35.35 0.54 32.63 0.68 19.93 0.64 13.78 0.46
AR
ARS [7] 50 3.55 0.68 4.37 0.75 15.98 0.68 24.07 0.71 48.59 0.63 59.71 0.76 15.22 0.70 24.30 0.56
CosyVoice 2 [41] 25 2.89 0.66 1.29 0.76 8.63 0.66 7.60 0.74 28.32 0.59 38.39 0.75 9.98 0.67 7.59 0.53
FireRedTTS [4] 25 8.53 0.46 1.27 0.65 14.47 0.45 18.81 0.64 15.03 0.38 23.97 0.63 3.87 0.34 9.04 0.48
Ints [68] 12.5 3.43 0.65 2.85 0.73 12.75 0.65 11.41 0.69 26.30 0.57 19.46 0.73 9.43 0.65 10.13 0.49
SparkTTS [6] 16 kHz 50 2.50 0.57 1.78 0.66 10.19 0.57 13.37 0.65 15.12 0.46 16.86 0.65 9.73 0.58 4.88 0.40
Llasa [5] 16 kHz 50 3.94 0.58 8.02 0.64 11.36 0.55 21.20 0.58 17.56 0.46 26.98 0.59 26.47 0.49 9.18 0.41

Ours

NAR
TaDiCodec-MGM 25 steps 6.25 3.69 0.65 1.51 0.75 10.67 0.63 8.97 0.71 14.76 0.57 20.01 0.73 9.95 0.65 4.75 0.48
TaDiCodec-MGM 10 steps 6.25 3.85 0.65 1.69 0.75 10.78 0.63 9.81 0.70 14.94 0.57 20.78 0.73 11.08 0.65 4.66 0.48
AR
TaDiCodec-AR 6.25 2.28 0.65 1.19 0.75 8.23 0.63 8.74 0.70 9.16 0.57 16.09 0.73 7.67 0.64 2.91 0.48

modeling (MGM) and we denote our models as “TaDiCodec-AR” and “TaDiCodec-MGM” respec-
tively. The results are reported on eight test sets, including SeedTTS test-en and SeedTTS test-zh,
referred to as Regular en and Regular zh, which are widely adopted benchmarks for TTS evalua-
tion [2, 3, 5, 6, 7, 41, 56]. In addition, we report performance on more challenging test sets, proposed
in [68], covering articulatory scenarios (such as repeated words and tongue twisters), code-switching,
and cross-lingual settings. We provide more details about the evaluation datasets in Appendix F.1.

Baselines We compare with a wide range of open-source and state-of-the-art baselines including: 1)
AR-based Systems: ARS [7], CosyVoice 2 [41], FireRedTTS [4], Ints [68], SparkTTS [6], Llasa [5];
2) NAR-based systems: MaskGCT [7] and F5-TTS [56]. We provide more detailed description of
these baselines in Appendix E.2.

Main Results We report the main results of our models and baselines on eight test sets in Table 5.
Our models exhibit significant improvements in intelligibility while maintaining speaker similarity
comparable to state-of-the-art zero-shot TTS systems. In terms of WER, TaDiCodec-AR achieves the
best performance on the Regular en and Regular zh test sets, reaching 2.28 and 1.19 respectively,
and outperforming all baselines. On more challenging test sets, TaDiCodec-AR demonstrates even
more pronounced advantages, for example, reducing WER from 15.03 to 9.16 on Code-switching en,
and from 4.88 to 2.91 on Cross-lingual en2zh. Notably, these improvements are achieved without
any task-specific optimization or reinforcement learning fine-tuning [74, 75] on WER, as done in
work such as [41]. For TaDiCodec-MGM, it consistently outperforms or matches the performance of
state-of-the-art NAR zero-shot TTS systems across all test sets. Even with only 10 inference steps,
which is significantly more efficient, it achieves a WER of 1.69 on Regular zh, compared to 2.28 from
MaskGCT. On more challenging test sets, such as Cross-lingual en2zh, it reaches 4.66 (vs. 13.78
from F5-TTS), and on Code-switching en, it achieves 14.94 (vs. 35.35 from F5-TTS). In terms of
SIM, both TaDiCodec-AR and TaDiCodec-MGM show clear advantages over recent systems such as
FireRedTTS, SparkTTS, and Llasa. Their SIM scores are slightly lower than those of MaskGCT and
CosyVoice 2, which operate at higher frame rates of 50 Hz and 25 Hz, respectively.

8

Table 6: Results and RTF analysis for TTS model size scaling.

System Model RTF
Regular Articulatory Code-switching Cross-lingual

Size en zh en zh en zh zh2en zh2en
WER SIM WER SIM WER SIM WER SIM WER SIM WER SIM WER SIM WER SIM

Baseline systems

CosyVoice 2 [41] 0.5B 0.47 2.89 0.66 1.29 0.76 8.63 0.66 7.60 0.74 28.32 0.59 38.39 0.75 9.98 0.67 7.59 0.53
SparkTTS [6] 0.5B 0.59 2.50 0.57 1.78 0.66 10.19 0.57 13.37 0.65 15.12 0.46 16.86 0.65 9.73 0.58 4.88 0.40
Llasa [5] 1.0B 0.42 3.94 0.58 8.02 0.64 11.36 0.55 21.20 0.58 17.56 0.46 26.98 0.59 26.47 0.49 9.18 0.41

Ours

TaDiCodec-MGM 0.6B 0.12 3.69 0.65 1.51 0.75 10.67 0.63 8.97 0.71 14.76 0.57 20.01 0.73 9.95 0.65 4.75 0.48
TaDiCodec-AR-0.2B 0.2B 0.20 7.68 0.64 1.48 0.74 16.06 0.63 12.54 0.70 16.38 0.56 23.91 0.72 13.40 0.64 4.26 0.48
TaDiCodec-AR-0.5B 0.5B 0.22 3.88 0.65 1.15 0.75 12.09 0.63 9.04 0.70 13.58 0.57 17.10 0.73 8.79 0.64 4.07 0.48
TaDiCodec-AR-3B 3.0B 0.25 3.24 0.65 1.23 0.75 8.34 0.63 8.52 0.70 11.31 0.57 15.47 0.73 7.85 0.65 3.99 0.48

TaDiCodec-AR-4B 4.0B 0.29 2.28 0.65 1.19 0.75 8.23 0.63 8.74 0.70 9.16 0.57 16.09 0.73 7.67 0.64 2.91 0.48TaDiCodec-AR-4B w. vllm 0.13

Figure 3: Performance gap between reconstruction and generation. Each system includes both
English and Chinese variants. Bars represent WER and SIM for reconstruction and generation.

TaDiCodec (o
urs)

(en)

TaDiCodec (o
urs)

(zh
)

DualCodec (e
n)

DualCodec (z
h)

X-co
dec 2

 (en)

X-co
dec 2

 (zh
)

Mimi (e
n)

Mimi (z
h)

2

4

6

8

10

W
ER

 (l
ow

er
 is

 b
et

te
r)

2.73
2.28

0.94 1.19

2.57

4.40

1.54

4.90

2.63

3.94

1.92

2.69

3.99

8.16

2.87

10.50

WER Comparison (Rec. vs Gen.)
en - Rec.
en - Gen.
zh - Rec.
zh - Gen.

(a) WER gap between reconstruction and generation.
TaDiCodec (o

urs)
(en)

TaDiCodec (o
urs)

(zh
)

DualCodec (e
n)

DualCodec (z
h)

X-co
dec 2

 (en)

X-co
dec 2

 (zh
)

Mimi (e
n)

Mimi (z
h)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

SI
M

 (h
ig

he
r i

s b
et

te
r)

0.69

0.65

0.75 0.75

0.64

0.54

0.69

0.65

0.62

0.58

0.68

0.64

0.57

0.48

0.59

0.55

SIM Comparison (Rec. vs Gen.)
en - Rec.
en - Gen.
zh - Rec.
zh - Gen.

(b) SIM gap between reconstruction and generation.

Model Size Scaling, Training and Inference Efficiency We demonstrate that our 6.25 Hz tokeniza-
tion is not only effective but also significantly more efficient for both training and generation. We
further explore how scaling the model size affects both performance and efficiency. Results are shown
in table 6. As described in the implementation details, we train all our TTS models for 300K steps.
We find that the models achieve the optimal evaluation results at around 200K steps. All models can
be trained in approximately one day under our setup, which uses 8 NVIDIA A100 GPUs with flash
attention and bf16 precision. For inference efficiency, we measure using Real-Time Factor (RTF). We
use a 5-second speech as a prompt to generate approximately 10 seconds of speech, sampling 5 times
and taking the average. The experiments show that even with 4.0B parameters, our AR model can
achieve an RTF of 0.29 without any deployment acceleration. With vLLM [76], the 4.0B AR model
can achieve an RTF of 0.13. Additionally, the 0.6B TaDiCodec-MGM model achieves an RTF of
0.12. We also observe a reasonable improvement in performance with increasing model parameters,
especially on challenging test sets (Articulatory, Code-switching, and Cross-lingual). Notably, our
0.5B model already matches or surpasses many state-of-the-art systems with an RTF of 0.22.

Reconstruction and Generation Gap In Figure 3, we present the performance gap between recon-
struction and generation across multiple systems. Our proposed system, TaDiCodec, demonstrates a
notably small performance gap: -16.5% for English WER (generation better than reconstruction),
-5.8% for English SIM, +26.5% for Chinese WER, and -0.0% for Chinese SIM. These results indi-
cate that TaDiCodec is highly generation-friendly—preserving most of the reconstruction quality
during generation. In contrast, existing systems such as Mimi exhibit a much larger degradation
(e.g., -104.5% en WER gap and -265.9% zh WER gap), suggesting that they are less effective in
transferring reconstruction capabilities to generation. This highlights the advantage of our design in
ensuring consistency between reconstructed and generated outputs.

5 Conclusion

In this work, we introduce TaDiCodec, a novel speech tokenizer that injects textual information
into the decoder and incorporates a prompt mechanism within an end-to-end diffusion autoencoder
training framework. TaDiCodec achieves an extremely low frame rate of 6.25 Hz and a corresponding
bitrate of 0.0875 kbps, using a single-layer codebook for 24 kHz speech. Beyond reconstruction,
we apply TaDiCodec to zero-shot TTS using both AR and MGM, demonstrating its effectiveness,

9

efficiency, and suitability for generation. These results highlight TaDiCodec as a viable and innovative
solution for speech language modeling.

6 Acknowledgment

The authors gratefully acknowledge the funding support from the National Natural Science Foun-
dation of China (Grant No. 62376237), the Shenzhen Science and Technology Program (Grant No.
ZDSYS20230626091302006), the Shenzhen Research Institute of Big Data (Internal Project Fund,
Grant No. T00120230002), and the 2023 Shenzhen Stability Science Program. We would also like
to thank the anonymous reviewers and the Area Chair for their insightful comments and valuable
suggestions, which helped improve our paper.

10

References
[1] Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen,

Yanqing Liu, Huaming Wang, Jinyu Li, et al. Neural codec language models are zero-shot text
to speech synthesizers. arXiv preprint arXiv:2301.02111, 2023.

[2] Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian
Cong, Lelai Deng, Chuang Ding, Lu Gao, et al. Seed-tts: A family of high-quality versatile
speech generation models. arXiv preprint arXiv:2406.02430, 2024.

[3] Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yexin Yang, Hangrui Hu, Siqi
Zheng, Yue Gu, Ziyang Ma, et al. Cosyvoice: A scalable multilingual zero-shot text-to-speech
synthesizer based on supervised semantic tokens. arXiv preprint arXiv:2407.05407, 2024.

[4] Hao-Han Guo, Kun Liu, Fei-Yu Shen, Yi-Chen Wu, Feng-Long Xie, Kun Xie, and Kai-Tuo
Xu. Fireredtts: A foundation text-to-speech framework for industry-level generative speech
applications. arXiv preprint arXiv:2409.03283, 2024.

[5] Zhen Ye, Xinfa Zhu, Chi-Min Chan, Xinsheng Wang, Xu Tan, Jiahe Lei, Yi Peng, Haohe
Liu, Yizhu Jin, Zheqi DAI, et al. Llasa: Scaling train-time and inference-time compute for
llama-based speech synthesis. arXiv preprint arXiv:2502.04128, 2025.

[6] Xinsheng Wang, Mingqi Jiang, Ziyang Ma, Ziyu Zhang, Songxiang Liu, Linqin Li, Zheng Liang,
Qixi Zheng, Rui Wang, Xiaoqin Feng, et al. Spark-tts: An efficient llm-based text-to-speech
model with single-stream decoupled speech tokens. arXiv preprint arXiv:2503.01710, 2025.

[7] Yuancheng Wang, Haoyue Zhan, Liwei Liu, Ruihong Zeng, Haotian Guo, Jiachen Zheng, Qiang
Zhang, Xueyao Zhang, Shunsi Zhang, and Zhizheng Wu. Maskgct: Zero-shot text-to-speech
with masked generative codec transformer. arXiv preprint arXiv:2409.00750, 2024.

[8] Eugene Kharitonov, Damien Vincent, Zalán Borsos, Raphaël Marinier, Sertan Girgin, Olivier
Pietquin, Matt Sharifi, Marco Tagliasacchi, and Neil Zeghidour. Speak, read and prompt:
High-fidelity text-to-speech with minimal supervision. Transactions of the Association for
Computational Linguistics, 11:1703–1718, 2023.

[9] Puyuan Peng, Po-Yao Huang, Daniel Li, Abdelrahman Mohamed, and David Harwath. Voice-
craft: Zero-shot speech editing and text-to-speech in the wild. arXiv preprint arXiv:2403.16973,
2024.

[10] Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou,
Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time
dialogue. arXiv preprint arXiv:2410.00037, 2024.

[11] Aohan Zeng, Zhengxiao Du, Mingdao Liu, Lei Zhang, Shengmin Jiang, Yuxiao Dong, and
Jie Tang. Scaling speech-text pre-training with synthetic interleaved data, 2024. URL https:
//arxiv.org/abs/2411.17607.

[12] Aohan Zeng, Zhengxiao Du, Mingdao Liu, Kedong Wang, Shengmin Jiang, Lei Zhao, Yuxiao
Dong, and Jie Tang. Glm-4-voice: Towards intelligent and human-like end-to-end spoken
chatbot. arXiv preprint arXiv:2412.02612, 2024.

[13] Tianpeng Li, Jun Liu, Tao Zhang, Yuanbo Fang, Da Pan, Mingrui Wang, Zheng Liang, Zehuan
Li, Mingan Lin, Guosheng Dong, et al. Baichuan-audio: A unified framework for end-to-end
speech interaction. arXiv preprint arXiv:2502.17239, 2025.

[14] Ailin Huang, Boyong Wu, Bruce Wang, Chao Yan, Chen Hu, Chengli Feng, Fei Tian, Feiyu
Shen, Jingbei Li, Mingrui Chen, et al. Step-audio: Unified understanding and generation in
intelligent speech interaction. arXiv preprint arXiv:2502.11946, 2025.

[15] Qingkai Fang, Shoutao Guo, Yan Zhou, Zhengrui Ma, Shaolei Zhang, and Yang Feng.
Llama-omni: Seamless speech interaction with large language models. arXiv preprint
arXiv:2409.06666, 2024.

11

https://arxiv.org/abs/2411.17607
https://arxiv.org/abs/2411.17607

[16] Xiong Wang, Yangze Li, Chaoyou Fu, Yunhang Shen, Lei Xie, Ke Li, Xing Sun, and Long Ma.
Freeze-omni: A smart and low latency speech-to-speech dialogue model with frozen llm. arXiv
preprint arXiv:2411.00774, 2024.

[17] Ding Ding, Zeqian Ju, Yichong Leng, Songxiang Liu, Tong Liu, Zeyu Shang, Kai Shen, Wei
Song, Xu Tan, Heyi Tang, et al. Kimi-audio technical report. arXiv preprint arXiv:2504.18425,
2025.

[18] Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang,
Yang Fan, Kai Dang, et al. Qwen2. 5-omni technical report. arXiv preprint arXiv:2503.20215,
2025.

[19] Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
compression. arXiv preprint arXiv:2210.13438, 2022.

[20] Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi.
Soundstream: An end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 30:495–507, 2021.

[21] Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar. High-
fidelity audio compression with improved rvqgan. Advances in Neural Information Processing
Systems, 36, 2024.

[22] Detai Xin, Xu Tan, Shinnosuke Takamichi, and Hiroshi Saruwatari. Bigcodec: Pushing the
limits of low-bitrate neural speech codec. arXiv preprint arXiv:2409.05377, 2024.

[23] Shengpeng Ji, Ziyue Jiang, Wen Wang, Yifu Chen, Minghui Fang, Jialong Zuo, Qian Yang,
Xize Cheng, Zehan Wang, Ruiqi Li, et al. Wavtokenizer: an efficient acoustic discrete codec
tokenizer for audio language modeling. arXiv preprint arXiv:2408.16532, 2024.

[24] Julian D Parker, Anton Smirnov, Jordi Pons, CJ Carr, Zack Zukowski, Zach Evans, and
Xubo Liu. Scaling transformers for low-bitrate high-quality speech coding. arXiv preprint
arXiv:2411.19842, 2024.

[25] Zhen Ye, Peiwen Sun, Jiahe Lei, Hongzhan Lin, Xu Tan, Zheqi Dai, Qiuqiang Kong, Jianyi
Chen, Jiahao Pan, Qifeng Liu, et al. Codec does matter: Exploring the semantic shortcoming
of codec for audio language model. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pages 25697–25705, 2025.

[26] Jiaqi Li, Xiaolong Lin, Zhekai Li, Shixi Huang, Yuancheng Wang, Chaoren Wang, Zhenpeng
Zhan, and Zhizheng Wu. Dualcodec: A low-frame-rate, semantically-enhanced neural audio
codec for speech generation. In Proceedings of Interspeech 2025, 2025.

[27] Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechtokenizer: Unified
speech tokenizer for speech large language models. arXiv preprint arXiv:2308.16692, 2023.

[28] Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li,
Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, et al. Wavlm: Large-scale self-supervised pre-
training for full stack speech processing. IEEE Journal of Selected Topics in Signal Processing,
16(6):1505–1518, 2022.

[29] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0:
A framework for self-supervised learning of speech representations. Advances in neural
information processing systems, 33:12449–12460, 2020.

[30] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM transactions on audio, speech, and language processing,
29:3451–3460, 2021.

[31] Chung-Cheng Chiu, James Qin, Yu Zhang, Jiahui Yu, and Yonghui Wu. Self-supervised
learning with random-projection quantizer for speech recognition. In International Conference
on Machine Learning, pages 3915–3924. PMLR, 2022.

12

[32] Xueyao Zhang, Xiaohui Zhang, Kainan Peng, Zhenyu Tang, Vimal Manohar, Yingru Liu, Jeff
Hwang, Dangna Li, Yuhao Wang, Julian Chan, et al. Vevo: Controllable zero-shot voice
imitation with self-supervised disentanglement. arXiv preprint arXiv:2502.07243, 2025.

[33] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[34] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[35] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[36] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya
Sutskever. Robust speech recognition via large-scale weak supervision. In International
conference on machine learning, pages 28492–28518. PMLR, 2023.

[37] Zhifu Gao, Zerui Li, Jiaming Wang, Haoneng Luo, Xian Shi, Mengzhe Chen, Yabin Li, Lingyun
Zuo, Zhihao Du, Zhangyu Xiao, et al. Funasr: A fundamental end-to-end speech recognition
toolkit. arXiv preprint arXiv:2305.11013, 2023.

[38] Heting Gao, Hang Shao, Xiong Wang, Chaofan Qiu, Yunhang Shen, Siqi Cai, Yuchen Shi,
Zihan Xu, Zuwei Long, Yike Zhang, et al. Lucy: Linguistic understanding and control yielding
early stage of her. arXiv preprint arXiv:2501.16327, 2025.

[39] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive
image generation using residual quantization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11523–11532, 2022.

[40] Haohe Liu, Xuenan Xu, Yi Yuan, Mengyue Wu, Wenwu Wang, and Mark D Plumbley. Seman-
ticodec: An ultra low bitrate semantic audio codec for general sound. IEEE Journal of Selected
Topics in Signal Processing, 2024.

[41] Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin
Yang, Changfeng Gao, Hui Wang, et al. Cosyvoice 2: Scalable streaming speech synthesis with
large language models. arXiv preprint arXiv:2412.10117, 2024.

[42] Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng Chiu, James Qin, Ruoming Pang, and
Yonghui Wu. W2v-bert: Combining contrastive learning and masked language modeling
for self-supervised speech pre-training. In 2021 IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU), pages 244–250. IEEE, 2021.

[43] Simon Welker, Matthew Le, Ricky TQ Chen, Wei-Ning Hsu, Timo Gerkmann, Alexander
Richard, and Yi-Chiao Wu. Flowdec: A flow-based full-band general audio codec with high
perceptual quality. arXiv preprint arXiv:2503.01485, 2025.

[44] Haici Yang, Inseon Jang, and Minje Kim. Generative de-quantization for neural speech codec
via latent diffusion. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1251–1255. IEEE, 2024.

[45] Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai Xin, Dongchao Yang, Yanqing Liu,
Yichong Leng, Kaitao Song, Siliang Tang, et al. Naturalspeech 3: Zero-shot speech synthesis
with factorized codec and diffusion models. arXiv preprint arXiv:2403.03100, 2024.

[46] Zalán Borsos, Matt Sharifi, Damien Vincent, Eugene Kharitonov, Neil Zeghidour, and Marco
Tagliasacchi. Soundstorm: Efficient parallel audio generation. arXiv preprint arXiv:2305.09636,
2023.

[47] Yifan Yang, Shujie Liu, Jinyu Li, Yuxuan Hu, Haibin Wu, Hui Wang, Jianwei Yu, Lingwei
Meng, Haiyang Sun, Yanqing Liu, et al. Pseudo-autoregressive neural codec language models
for efficient zero-shot text-to-speech synthesis. arXiv preprint arXiv:2504.10352, 2025.

13

[48] Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, and Sungroh Yoon. Bigvgan: A
universal neural vocoder with large-scale training. arXiv preprint arXiv:2206.04658, 2022.

[49] Hubert Siuzdak. Vocos: Closing the gap between time-domain and fourier-based neural vocoders
for high-quality audio synthesis. arXiv preprint arXiv:2306.00814, 2023.

[50] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications
of the ACM, 63(11):139–144, 2020.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[52] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[53] Yue Zhao, Yuanjun Xiong, and Philipp Krähenbühl. Image and video tokenization with binary
spherical quantization. arXiv preprint arXiv:2406.07548, 2024.

[54] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

[55] Matthew Le, Apoorv Vyas, Bowen Shi, Brian Karrer, Leda Sari, Rashel Moritz, Mary
Williamson, Vimal Manohar, Yossi Adi, Jay Mahadeokar, et al. Voicebox: Text-guided multilin-
gual universal speech generation at scale. Advances in neural information processing systems,
36, 2024.

[56] Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, Jian Zhao, Kai Yu, and
Xie Chen. F5-tts: A fairytaler that fakes fluent and faithful speech with flow matching. arXiv
preprint arXiv:2410.06885, 2024.

[57] Sefik Emre Eskimez, Xiaofei Wang, Manthan Thakker, Canrun Li, Chung-Hsien Tsai, Zhen
Xiao, Hemin Yang, Zirun Zhu, Min Tang, Xu Tan, et al. E2 tts: Embarrassingly easy fully
non-autoregressive zero-shot tts. arXiv preprint arXiv:2406.18009, 2024.

[58] Yuancheng Wang, Jiachen Zheng, Junan Zhang, Xueyao Zhang, Huan Liao, and Zhizheng
Wu. Metis: A foundation speech generation model with masked generative pre-training. arXiv
preprint arXiv:2502.03128, 2025.

[59] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked
generative image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11315–11325, 2022.

[60] Haorui He, Zengqiang Shang, Chaoren Wang, Xuyuan Li, Yicheng Gu, Hua Hua, Liwei Liu,
Chen Yang, Jiaqi Li, Peiyang Shi, et al. Emilia: An extensive, multilingual, and diverse speech
dataset for large-scale speech generation. arXiv preprint arXiv:2407.05361, 2024.

[61] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[62] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[63] Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

[64] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

14

[65] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[66] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[67] Junan Zhang, Jing Yang, Zihao Fang, Yuancheng Wang, Zehua Zhang, Zhuo Wang, Fan Fan, and
Zhizheng Wu. Anyenhance: A unified generative model with prompt-guidance and self-critic
for voice enhancement. arXiv preprint arXiv:2501.15417, 2025.

[68] Xueyao Zhang, Yuancheng Wang, Chaoren Wang, Ziniu Li, Zhuo Chen, and Zhizheng Wu. Ad-
vancing zero-shot text-to-speech intelligibility across diverse domains via preference alignment.
arXiv preprint arXiv:2505.04113, 2025.

[69] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku,
Yuanzhong Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with
improved vqgan. arXiv preprint arXiv:2110.04627, 2021.

[70] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

[71] Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score
identity distillation: Exponentially fast distillation of pretrained diffusion models for one-step
generation. In Forty-first International Conference on Machine Learning, 2024.

[72] Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. arXiv preprint arXiv:2410.12557, 2024.

[73] Ugur Demir and Gozde Unal. Patch-based image inpainting with generative adversarial net-
works. arXiv preprint arXiv:1803.07422, 2018.

[74] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36:53728–53741, 2023.

[75] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[76] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

[77] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

[78] Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen,
Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats
diffusion–tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023.

[79] José Lezama, Huiwen Chang, Lu Jiang, and Irfan Essa. Improved masked image generation
with token-critic. In European Conference on Computer Vision, pages 70–86. Springer, 2022.

[80] Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong
Lin, Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single trans-
former to unify multimodal understanding and generation. arXiv preprint arXiv:2408.12528,
2024.

[81] Loïc Barrault, Yu-An Chung, Mariano Coria Meglioli, David Dale, Ning Dong, Mark Dup-
penthaler, Paul-Ambroise Duquenne, Brian Ellis, Hady Elsahar, Justin Haaheim, et al. Seamless:
Multilingual expressive and streaming speech translation. arXiv preprint arXiv:2312.05187,
2023.

15

[82] Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar
quantization: Vq-vae made simple. arXiv preprint arXiv:2309.15505, 2023.

[83] Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wojciech Galuba, Florian
Metze, and Christoph Feichtenhofer. Masked autoencoders that listen. Advances in Neural
Information Processing Systems, 35:28708–28720, 2022.

[84] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[85] Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler, Josh Meyer,
Reuben Morais, Lindsay Saunders, Francis M Tyers, and Gregor Weber. Common voice: A
massively-multilingual speech corpus. arXiv preprint arXiv:1912.06670, 2019.

[86] Tingwei Guo, Cheng Wen, Dongwei Jiang, Ne Luo, Ruixiong Zhang, Shuaijiang Zhao, Wubo Li,
Cheng Gong, Wei Zou, Kun Han, et al. Didispeech: A large scale mandarin speech corpus. In
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6968–6972. IEEE, 2021.

[87] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[88] Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki Koriyama, Shinnosuke Takamichi, and
Hiroshi Saruwatari. Utmos: Utokyo-sarulab system for voicemos challenge 2022. arXiv
preprint arXiv:2204.02152, 2022.

16

A Implementation Details

A.1 Model Architecture

All our models follow the standard Transformer [51, 61] architecture, employ RoPE positional
encoding [62] and the SiLU [77] activation function. The encoder and decoder of the tokenizer and
MGM models use bidirectional attention, while the AR models adopt causal attention.

The TaDiCodec-AR-0.5B and TaDiCodec-AR-3B models are initialized from the textual LLMs
Qwen2.5-0.5B-Instruct and Qwen2.5-3B-Instruct [65], respectively, while TaDiCodec-AR-
4B is initialized from Phi-3.5-mini-instruct [64].

Table 7: Model configurations.

Model Hidden size Intermediate size Num.
hidden layers

Num.
attention heads

Num.
key value heads

Num.
parameters

TaDiCodec Encoder 8 1024 4096 16 16 ∼ 0.16B
TaDiCodec Decoder 16 1024 4096 16 16 ∼ 0.32B

TaDiCodec-AR-0.2B 672 2048 24 14 2 ∼ 0.25B
TaDiCodec-AR-0.5B 896 4864 24 14 2 ∼ 0.5B
TaDiCodec-AR-3B 2048 11008 36 16 2 ∼ 3B
TaDiCodec-AR-4B 3072 8192 32 32 32 ∼ 4B

TaDiCodec-MGM 1280 5120 16 1 6 16 ∼ 0.6B

B Flow Matching

We provide additional details of the flow matching framework used to train the diffusion decoder in
TaDiCodec. Flow matching [35] defines a continuous transformation from a prior distribution (e.g.,
Gaussian noise) to a target data distribution (e.g., mel-spectrograms) by learning a time-dependent
velocity field along an interpolated trajectory 𝒙𝑡 .

While multiple interpolation strategies can be used to construct 𝒙𝑡 , we adopt the optimal transport
path formulation [35, 52], instantiated in this work as simple linear interpolation. Specifically, given
a clean mel-spectrogram 𝒙 ∈ R𝑇×𝑑 and a noise sample 𝝐 ∼ N(0, 𝑰), we construct an intermediate
sample as:

𝒙𝑡 = 𝑡𝒙 + (1 − 𝑡)𝝐 , 𝑡 ∼ Uniform(0, 1), (4)
where 𝑡 is sampled uniformly from [0, 1], and 𝒙𝑡 denotes the noisy input at time 𝑡. The corresponding
ground-truth velocity is the temporal derivative of 𝒙𝑡 :

𝒗 =
𝑑𝒙𝑡
𝑑𝑡

= 𝒙 − 𝝐 . (5)

The diffusion decoder D𝜙 is trained to predict 𝒗, conditioned on the token sequence 𝒒 = Q(E𝜃 (𝒙))
and the associated text 𝒙𝑡𝑒𝑥𝑡 , using the following objective:

Ldiff = E(𝒙,𝒙𝑡𝑒𝑥𝑡) ,𝝐 ,𝑡
[

(𝒙 − 𝝐) − D𝜙 (𝒒, 𝒙𝑡 , 𝑡, 𝒙𝑡𝑒𝑥𝑡)

] . (6)

Inference At inference time, we start with a noise sample 𝒙0 = 𝝐 ∼ N(0, 𝑰) and solve the ordinary
differential equation:

𝑑𝒙𝑡
𝑑𝑡

= D𝜙 (𝒒, 𝒙𝑡 , 𝑡, 𝒙𝑡𝑒𝑥𝑡) (7)

from 𝑡 = 0 to 𝑡 = 1 using a simple Euler ODE solver over a discretized set of 𝑁 time steps.

Flow matching provides a stable and interpretable training signal by directly supervising the instanta-
neous direction in which a noisy sample 𝒙𝑡 should evolve to match the clean target 𝒙. In our setting,
it enables effective training of the speech tokenizer under low bitrate constraints.

C Binary Spherical Quantization

Binary Spherical Quantization (BSQ) [53] optimizes over an implicit codebook CBSQ =

{
− 1√

𝐿
, 1√

𝐿

}𝐿
,

which corresponds to the 𝐿-dimensional hypercube projected onto the unit sphere. Each corner
𝒄𝑘 ∈ CBSQ represents a unique discrete token 𝑘 ∈ {0, . . . , 2𝐿 − 1}.

17

Given an encoder output E(𝒙), we first obtain a low-dimensional latent sequence 𝒉 ∈ R𝑇𝑞×𝐿 after
linear projection. BSQ then projects each vector 𝒉𝑡 in 𝒉 onto the unit sphere:

𝒖𝑡 =
𝒉𝑡

∥𝒉𝑡 ∥
, (8)

and performs binary quantization independently on each dimension:

𝒖̂𝑡 =
1
√
𝐿

sign(𝒖𝑡), (9)

where sign(𝑥) is the element-wise sign function, with sign(0) defined as 1 to ensure codewords lie on
the unit sphere. To enable gradient-based training, BSQ uses the Straight-Through Estimator (STE)
for backpropagation:

signSTE (𝑥) = sg(sign(𝑥) − 𝑥) + 𝑥, (10)
where sg(·) denotes the stop-gradient operation.

For each vector 𝒉𝑡 , the corresponding discrete token index is computed as:

𝑘𝑡 =

𝐿∑︁
𝑖=1

1[𝒉𝑡,𝑖>0] · 2𝑖−1, (11)

where 1[·] is the indicator function. This efficient implicit code assignment scheme allows fast token
computation and decoding via bitwise operations.

BSQ offers several appealing properties: it avoids the need for an explicit learnable codebook;
its quantization error is bounded, allowing the entire system to be trained without a commitment
loss [54].

In this work, we use 𝐿 = 14, resulting in a codebook size of 214 = 16384.

D Masked Generative Models

In this section, we provide a brief introduction to masked generative models (MGMs) [7, 59, 78]. Let
𝒙 = [𝑦1, 𝑦2, . . . , 𝑦𝑛] denote a discrete sequence of length 𝑛. At each time step 𝑡, we define the masked
input as 𝒙𝑡 = 𝒙 ⊙ 𝒎𝑡 , where 𝒎𝑡 = [𝑚𝑡 ,1, 𝑚𝑡 ,2, . . . , 𝑚𝑡 ,𝑛] is a binary mask. Specifically, 𝑥𝑖 is replaced
with a special [MASK] token if 𝑚𝑡 ,𝑖 = 1, and remains unchanged if 𝑚𝑡 ,𝑖 = 0. Each mask element 𝑚𝑡 ,𝑖

is independently sampled from a Bernoulli distribution with parameter 𝛾(𝑡), where 𝛾(𝑡) ∈ (0, 1] is a
masking schedule function (e.g., 𝛾(𝑡) = sin

(
𝜋𝑡
2𝑇

)
for 𝑡 ∈ (0, 𝑇]). The fully unmasked input is denoted

by 𝒙0 = 𝒙.

MGMs are trained to reconstruct the original sequence from partially observed inputs, conditioned
on an optional context 𝒄 (e.g., in this paper, text 𝑥𝑡𝑒𝑥𝑡 is condition), by modeling the conditional
distribution 𝑝𝜃 (𝒙0 | 𝒙𝑡 , 𝒄). The model parameters 𝜃 are optimized by minimizing the expected
marginal cross-entropy over the masked tokens:

Lmask = −E𝒙,𝑡 ,𝒎𝑡

𝑛∑︁
𝑖=1

𝑚𝑡 ,𝑖 · log 𝑝𝜃 (𝑦𝑖 | 𝒙𝑡 , 𝒄). (12)

At inference time, MGMs generate tokens in parallel via iterative decoding. The process begins with
a fully masked sequence 𝒙𝑇 . Assuming a total of 𝑆 decoding steps, at each step 𝑗 ∈ {1, . . . , 𝑆}, a
prediction 𝒙̂0 is sampled from 𝑝𝜃 (𝒙0 | 𝒙𝑇−(𝑗−1) · 𝑇

𝑆
, 𝒄). Then, ⌊𝑛 · 𝛾(𝑇 − 𝑗 · 𝑇

𝑆
)⌋ tokens are selected

based on confidence scores to be remasked, resulting in a new masked sequence 𝒙𝑇− 𝑗 · 𝑇
𝑆

.

The confidence score for 𝑦̂𝑖 in 𝒙̂0 is given by 𝑝𝜃 (𝑦𝑖 | 𝒙𝑇−(𝑗−1) · 𝑇
𝑆
, 𝒄) if the position 𝑖 was masked;

otherwise, its score is set to 1, indicating that unmasked tokens will not be remasked. The ⌊𝑛 · 𝛾(𝑇 −
𝑗 · 𝑇

𝑆
)⌋ tokens with the lowest confidence scores are selected for masking.

Note that the method for computing confidence scores is not unique. For example, [79] propose
Token-Critic, a separate critic model trained to estimate token-wise confidence, thereby guiding the
sampling process. In addition, [79, 80] suggest that masked generative modeling can be interpreted
as a simplified form of discrete diffusion.

In this work, we develop MGM models for text-to-token. Given the low token rate of 6.25 Hz, the
task is relatively easy to model, and 10 to 25 inference steps are sufficient to achieve good results.

18

E Baselines

E.1 Speech Tokenizer

EnCodec [19] A Residual Vector Quantization (RVQ)-based neural audio codec operating at a
frame rate of 75 Hz. We use two codebooks for inference, achieving a bitrate of 1.5 kbps. We use the
official checkpoint1.

DAC [21] An improved VQGAN-based [79] codec that projects latent features onto a low-
dimensional space (e.g., 8 dimensions) prior to quantization. We reproduce two variants: one
utilizing three codebooks at a 25 Hz frame rate, and the other a single codebook at a 75 Hz frame
rate. Both configurations operate at a token rate of 75 Hz and achieve a bitrate of 0.75 kbps.

SpeechTokenizer [27] Enhances first-layer speech tokens via semantic distillation using features
from HuBERT [30]. This tokenizer operates at 50 Hz and we use two codebooks for inference. We
use the official checkpoint2.

Mimi [10] Follows the design of SpeechTokenizer but utilizes WavLM [28] for semantic distillation.
The tokenizer employs eight codebooks, each of size 2,048, at a 12.5 Hz frame rate, resulting in a
bitrate of 1.1 kbps. We use the official checkpoint3.

DualCodec [26] A state-of-the-art, low-frame-rate, semantically-enhanced neural audio codec
designed for speech generation. DualCodec directly encodes SSL representations [42] into first-layer
codec tokens. It adopt a configuration with a 12.5 Hz token rate and a 8-layer codebook hierarchy.
The first codebook contains 16,384 entries, while the remaining five each contain 4,096 entries,
yielding a bitrate of 1.225 kbps. We use the official checkpoint4.

BiCodec [6] A semantically-enhanced tokenizer with a single-layer codebook. It discretizes audio
into semantic tokens based on features from wav2vec 2.0 [29]. It operates at a token rate of 50 Hz
with a codebook size of 8,192, achieving a bitrate of 0.65 kbps. We use the official checkpoint5.

X-codec 2 [5] Employs a dual-encoder design: a semantic encoder based on Wav2Vec2-BERT [81]
and an acoustic encoder for low-level acoustic features. Their outputs are concatenated prior to
quantization. It operates at a token rate of 50 Hz with a codebook size of 65,536, yielding a bitrate of
0.8 kbps. We use the official checkpoint6.

WavTokenizer [23] A single-codebook tokenizer trained on 800K hours of mixed-domain audio. It
operates at a 75 Hz token rate with a codebook size of 4,096, resulting in a bitrate of 0.9 kbps. We
use the official checkpoint7.

BigCodec [22] A single-codebook tokenizer with scaled model size. It integrates sequential
modules into convolutional architectures and applies low-dimensional quantization to enhance code
utilization. It operates at an 80 Hz token rate with a codebook size of 8,192, yielding a bitrate of 1.04
kbps. We use the official checkpoint8.

TAAE [24] A transformer-based tokenizer using Finite Scalar Quantization (FSQ) [82] for speech
tokenization. It operates at a 25 Hz token rate with a codebook size of 46,656, resulting in a bitrate of
0.4 kbps. We use the official implementation9.

SemantiCodec [40] Combines a semantic encoder (AudioMAE [83] with k-means clustering) and
an acoustic encoder, featuring a diffusion decoder for reconstruction. It operates at a 50 Hz token rate,
with codebook sizes of 16,384 (semantic) and 2,048 (acoustic), achieving a bitrate of 0.675 kbps. We
use the official implementation10.

1https://huggingface.co/facebook/encodec_24khz
2https://github.com/ZhangXInFD/SpeechTokenizer
3https://huggingface.co/kyutai/mimi
4https://pypi.org/project/dualcodec/0.1.2/
5https://github.com/SparkAudio/Spark-TTS
6https://huggingface.co/HKUSTAudio/xcodec2
7https://huggingface.co/novateur/WavTokenizer-large-speech-75token
8https://huggingface.co/Alethia/BigCodec
9https://github.com/Stability-AI/stable-codec

10https://github.com/haoheliu/SemantiCodec-inference

19

https://huggingface.co/facebook/encodec_24khz
https://github.com/ZhangXInFD/SpeechTokenizer
https://huggingface.co/kyutai/mimi
https://pypi.org/project/dualcodec/0.1.2/
https://github.com/SparkAudio/Spark-TTS
https://huggingface.co/HKUSTAudio/xcodec2
https://huggingface.co/novateur/WavTokenizer-large-speech-75token
https://huggingface.co/Alethia/BigCodec
https://github.com/Stability-AI/stable-codec
https://github.com/haoheliu/SemantiCodec-inference

Vevo Tokenizer [32] A two-stage tokenizer utilizing features from HuBERT [30], followed by VQ
and a diffusion decoder. It employs a single codebook of size 8,192 at a 50 Hz token rate, resulting in
a bitrate of 0.65 kbps. We use the official checkpoint11.

FireRedTTS Tokenizer [4] A single-codebook tokenizer trained in two stages. Transforms speech
into semantic embeddings via features from HuBERT [30], followed by a ResNet-based encoder and
quantization. It uses a 40 ms frame shift and a codebook size of 16,384. A global embedding is also
incorporated, and decoding is performed using flow matching. Its implementation is available12.

CosyVoice Tokenizer [3] A single-codebook tokenizer trained in two stages. The encoder is
initialized from an ASR model [36] and subsequently trained with a supervised loss. A flow matching
model is used to predict mel-spectrograms. It operates at a 25 Hz token rate and 0.3 kbps bitrate. Its
code is available13.

CosyVoice 2 Tokenizer [41] An improved version of CosyVoice that replaces VQ with FSQ. It
operates at a 25 Hz token rate and 0.325 kbps bitrate. Its official implementation is available14.

Ints Tokenizer [68] Combines the DualCodec [26] semantic encoder with a flow matching decoder,
similar to the CosyVoice variants. It uses a single codebook with 16,384 entries at a 12.5 Hz token
rate, resulting in a bitrate of 0.175 kbps. The resulting TTS model, Ints, demonstrates state-of-the-art
intelligibility [68].

E.2 Zero-shot TTS

F5-TTS [56] An open-source flow matching-based TTS systems. It follows E2 TTS [57] and uses
a flow matching transformer [35, 55] to convert the text to acoustic features directly [56].

MaskGCT [7] An open-source large-scale MGM-based TTS system that eliminates the need for
explicit alignment information between text and speech supervision, as well as phone-level duration
prediction. We use the official code and checkpoint15 which is trained on Emilia [60].

ARS [7] Introduced as an AR baseline by [7]. and referred to as “AR + SoundStorm” in the original
paper [7]. It adopts a cascaded architecture, including the AR text-to-token and the NAR MGM
codec-to-waveform [46].

CosyVoice 2 [41] An open-source, large-scale zero-shot TTS system built upon an AR model
initialized from Qwen2.5-0.5B-Instruct, which predicts speech codes extracted by the CosyVoice
2 tokenizer.

FireRedTTS [4] An open-source, large-scale AR-based zero-shot TTS system, which predicts
speech codes extracted by the FireRedTTS tokenizer.

Ints [68] An open-source, large-scale zero-shot TTS system built upon an AR model initialized from
Phi-3.5-mini-instruct, which predicts 12.5 Hz speech codes extracted by the Ints tokenizer.

SparkTTS [6] An open-source, large-scale zero-shot TTS system built upon an AR model initial-
ized from Qwen2.5-0.5B-Instruct, which predicts speech codes extracted by the BiCodec [6].

Llasa [5] An open-source, large-scale zero-shot TTS system built upon an AR model initialized
from Llama3.2-1B [84], which predicts speech codes extracted by the X-codec 2 [5].

F Evaluation

F.1 Test Sets

SeedTTS test-en We adopt a test set introduced in Seed-TTS [2], consisting of 1,000 samples
drawn from English public corpora, including the Common Voice dataset [85]. We refer to this set as

11https://github.com/open-mmlab/Amphion/tree/main/models/vc/vevo
12https://github.com/FireRedTeam/FireRedTTS
13https://github.com/FunAudioLLM/CosyVoice
14https://github.com/FunAudioLLM/CosyVoice
15https://github.com/open-mmlab/Amphion/blob/main/models/tts/maskgct

20

https://github.com/open-mmlab/Amphion/tree/main/models/vc/vevo
https://github.com/FireRedTeam/FireRedTTS
https://github.com/FunAudioLLM/CosyVoice
https://github.com/FunAudioLLM/CosyVoice
https://github.com/open-mmlab/Amphion/blob/main/models/tts/maskgct

“Regular en” and use it for zero-shot TTS evaluation (Table 5 and Table 6). Additionally, it is used for
evaluating the performance of our tokenizer.

SeedTTS test-zh We adopt a test set introduced in Seed-TTS, comprising 2,000 samples drawn
from Chinese public corpora, including the DiDiSpeech dataset [86]. We denote it as “Regular zh”
for zero-shot TTS evaluation.

Articulatory en, Articulatory zh These sets are introduced in [68] and contain tongue twisters and
repeated texts. For Chinese, the SeedTTS test-hard set is used directly. For English, reference speech
prompts are taken from SeedTTS test-en, while the corresponding articulatory texts are constructed
using Deepseek-V3 [87] to match the style of SeedTTS test-hard. Each set contains 400 samples. An
example:

Prompt text:
Salmon is one of the most popular fish and very delicious, though usually not sustainable.

Target text:
A big black bug bit a big black bear, but the big black bear bled black blood from the bite.

Code-switching en, Code-switching zh These sets are introduced in [68], consist of target texts that
mix English and Chinese. Based on SeedTTS test-en and test-zh, the reference speech prompts are
kept unchanged, while Deepseek-V3 is employed to convert the texts into a code-switching format.
Each set contains 500 samples. An example:

Prompt text:
创下奥运史上拒绝奥运圣火入境的首例。

Target text:
在他 execution之后 Ogilvie的 followers被 rounded up并 put in jail.

Cross-lingual zh2en, Cross-lingual en2zh These sets are introduced in [68], two types of cross-
lingual samples are constructed: zh2en and en2zh, each comprising 500 samples. The zh2en set pairs
Chinese reference speech from SeedTTS test-zh with English target text from SeedTTS test-en, while
the en2zh set follows the reverse configuration. Each set contains 500 samples. An example:

Prompt text:
调整海外购买住宅征收额外印花税率，从百分之三调整到百分之七而言。

Target text:
The recluse from Lithuania and his compatriot were making up stories about mermaids and fays.

Multilingual test sets We additionally construct four multilingual test sets to evaluate tokenizer
reconstruction in non-English languages, including French (fr), German (de), Japanese (ja), and
Korean (ko). For each language, we randomly sample 300 utterances from Common Voice [85].

F.2 Objective Evaluation

Frame Rate, Token Rate, Bitrate Frame rate means the speech is compressed into how many
frames per second (measured in Hz), while each frame may contain multiple tokens; token rate
refers to how many discrete tokens are produced per second; bitrate indicates the total amount of
information retained, computed as token rate multiplied by the number of bits per token (measured in
kbps), and reflects the overall compression level of the tokenizer.

For example, suppose a speech tokenizer operates at a frame rate of 25 Hz, meaning the input audio
is compressed into 25 frames per second. If each frame contains 2 codebook tokens (i.e., 2 layers of
quantization), and each codebook has a size of 2048 (requiring 11 bits per token since 211 = 2048),
then:

• Token Rate = 25 frames/sec × 2 tokens/frame = 50 tokens/sec

• Bitrate = 50 tokens/sec × 11 bits/token = 550 bps = 0.55 kbps

21

This means the speech is represented with a bitrate of 0.55 kbps, indicating a high compression level
while retaining discrete structure for downstream modeling.

WER Word Error Rate (WER) is employed to assess the intelligibility of reconstructed or gen-
erated speech. We adopt two automatic speech recognition (ASR) models for WER computation:
whisper-large-v316 [36] and paraformer-zh17 [37]. The former is used for non-Chinese ut-
terances, while the latter is applied to Chinese speech, following established practices in recent
studies [2, 3, 7, 58].

SIM Speaker similarity (SIM) is computed as the cosine similarity between speaker embeddings
extracted from the prompt and the generated utterance. We use the WavLM-TDNN model18 [28] for
speaker embedding extraction, following [1, 2, 7, 45, 55].

UTMOS Speech naturalness and perceptual quality are evaluated using UTMOS [88], a Mean
Opinion Score (MOS) prediction system. UTMOS combines ensemble learning of strong and weak
learners: the strong learners are fine-tuned self-supervised learning (SSL) models with architectural
enhancements, while the weak learners apply lightweight regression on SSL features. We use the
official UTMOS checkpoint19.

F.3 Subject Evaluation

We conduct a subjective evaluation of speech tokenizers in terms of audio quality using the Compara-
tive Mean Opinion Score (CMOS):

• System Interface: Users listen to two speech samples, A and B, to compare their speech
quality.

• Instruction: Participants are asked, “Which speech has better audio quality?”.

• Evaluation Criteria: Five response options: A +2 (Sample A has much better audio quality),
A +1 (Sample A has slightly better audio quality), Tie (Both have equal audio quality), B +1
(Sample B has slightly better audio quality), and B +2 (Sample B has much better audio
quality).

Figure 4 shows a shotscreen of the evaluation system.

Figure 4: Shotscreen of the subjective evaluation system.

We randomly select 40 samples from an in-the-wild dataset. Each of the six systems: Ours, X-codec
2, DualCodec, WavTokenizer, Mimi, and Ground Truth, generates all 40 samples. For evaluation,
each baseline system is compared against ours, resulting in a total of 40× 5 = 200 sample pairs. Each
pair is evaluated by two human listeners.

G Limitations and Future Work

TaDiCodec achieves an extremely low frame rate of 6.25 Hz and a corresponding bitrate of 0.0875
kbps using a single-layer codebook for 24 kHz speech compression, while demonstrating strong

16https://huggingface.co/openai/whisper-large-v3
17https://huggingface.co/funasr/paraformer-zh
18https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_

verification
19https://huggingface.co/spaces/sarulab-speech/UTMOS-demo

22

https://huggingface.co/openai/whisper-large-v3
https://huggingface.co/funasr/paraformer-zh
https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
https://huggingface.co/spaces/sarulab-speech/UTMOS-demo

performance in both reconstruction and text-to-speech tasks in terms of intelligibility, speaker
similarity, and speech quality. There remains room for improvement and several promising directions
for future work: 1) TaDiCodec employs a diffusion autoencoder for tokenization and de-tokenization,
which involves multiple steps during inference. Compared to GAN-based tokenizers, this results in
higher decoding latency. Future work may explore distillation or more powerful generative models
to enable single-step inference while maintaining performance. 2) While TaDiCodec has shown its
effectiveness for speech language modeling through zero-shot TTS, it is worth further evaluating its
applicability in speech understanding and dialogue systems. 3) TaDiCodec currently requires text
input for the decoder. It would be valuable to explore unified models that can transcribe, tokenize,
and reconstruct speech simultaneously, enabling one model for joint understanding, compression,
and reconstruction.

H Broader Impacts

Our model enables high-quality speech modeling, which can benefit applications such as personalized
speech interfaces, speech restoration, and accessibility tools. However, it also poses risks of misuse,
including voice spoofing and unauthorized impersonation. These risks are particularly concerning in
scenarios involving biometric authentication or deceptive media. To prevent misuse, we advocate for
the development of reliable deepfake detection tools, watermarking methods for synthetic speech,
and reporting mechanisms to flag suspected abuse.

23

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clarify the scope and contribution of our paper in the abstract and the last
two paragraphs of the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

24

Justification: We discuss the limitations in Appendix G.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the implementation in Section 4.1 and Appendix A. And we will
release our code and model checkpoints.

Guidelines:

25

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release our code and model checkpoints at https://github.com/
AmphionTeam/TaDiCodec. We use open-source datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

26

https://github.com/AmphionTeam/TaDiCodec
https://github.com/AmphionTeam/TaDiCodec
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide details about experimental setting and evaluation in Section 4.1,
Appendix A and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For subjective evalution, we provide the confidence interval.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the information in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.

27

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts in Appendix H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

28

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]

Justification: We discuss it in Appendix H.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers for all data and models we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release our code and model checkpoints at https://github.com/
AmphionTeam/TaDiCodec.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

29

paperswithcode.com/datasets
https://github.com/AmphionTeam/TaDiCodec
https://github.com/AmphionTeam/TaDiCodec

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We provide details about subject evaluation in Appendix F.3.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not address potential risks to research participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: We only use LLMs for editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Method
	TaDiCodec
	Speech Language Modeling with TaDiCodec

	Experiments
	Experimental Settings
	Speech Reconstruction
	Main Results
	Ablation Study

	Zero-shot TTS

	Conclusion
	Acknowledgment
	Implementation Details
	Model Architecture

	Flow Matching
	Binary Spherical Quantization
	Masked Generative Models
	Baselines
	Speech Tokenizer
	Zero-shot TTS

	Evaluation
	Test Sets
	Objective Evaluation
	Subject Evaluation

	Limitations and Future Work
	Broader Impacts

