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Abstract001

Spatial reasoning is a core component of hu-002
man cognition, enabling individuals to perceive,003
comprehend, and interact with the physical004
world. It relies on a nuanced understanding005
of spatial structures and inter-object relation-006
ships, serving as the foundation for complex007
reasoning and decision-making. To investi-008
gate whether current vision-language models009
(VLMs) exhibit similar capability, we introduce010
Jigsaw-Puzzles, a novel benchmark consisting011
of 1,100 carefully curated real-world images012
with high spatial complexity. Based on this013
dataset, we design five tasks to rigorously eval-014
uate VLMs’ spatial perception, structural un-015
derstanding, and reasoning capabilities, while016
deliberately minimizing reliance on domain-017
specific knowledge to better isolate and as-018
sess the general spatial reasoning capability.019
We conduct a comprehensive evaluation across020
24 state-of-the-art VLMs. The results show021
that even the strongest model, Gemini-2.5-Pro,022
achieves only 77.14% overall accuracy and per-023
forms particularly poorly on the Order Gener-024
ation task, with only 30.00% accuracy, far be-025
low the 90%+ performance achieved by human026
participants. This persistent gap underscores027
the need for continued progress, positioning028
Jigsaw-Puzzles as a challenging and diagnos-029
tic benchmark for advancing spatial reasoning030
research in VLMs.031

1 Introduction032

The road to artificial general intelligence (AGI)033

demands more than language or vision alone: it034

requires models to possess a human-like spatial rea-035

soning capability by constructing structured repre-036

sentations of the physical world (Lake et al., 2017).037

Spatial reasoning refers not just to the perception038

of visual input, but to the capability to comprehend039

spatial arrangements, model structural relations,040

and infer the geometry and layout of a scene. These041

capabilities are fundamental to human cognition042

Figure 1: Jigsaw-Puzzles example. While human partic-
ipants effortlessly reconstruct the original spatial layout,
all tested VLMs fail to recover the correct order.

Figure 2: Evaluation of VLMs on Jigsaw-Puzzles. The
plot reports the accuracy of 8 representative VLMs on 5
tasks.

and develop naturally through everyday perception 043

and interaction (Ishikawa and Newcombe, 2021). 044

In contrast, current VLMs, while highly capable in 045

tasks such as image captioning (Young et al., 2014; 046

Lin et al., 2014; Sharma et al., 2018), visual ques- 047

tion answering (Krishna et al., 2017; Singh et al., 048

2019; Marino et al., 2019), and image-text retrieval 049

(Schuhmann et al., 2021; Thapliyal et al., 2022; 050

Bitton-Guetta et al., 2023), consistently struggle 051

with tasks requiring spatial reasoning (Stogiannidis 052
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et al., 2025). We show an example in Figure 1 and053

report the performance of some tested VLMs on054

Jigsaw-Puzzles in Figure 2. This gap underscores a055

critical limitation: while current VLMs have made056

substantial progress in basic visual understanding,057

they continue to struggle with structured spatial058

reasoning, which is essential for grounded under-059

standing in real-world scenarios. Bridging this gap060

is essential for progressing towards generalizable061

human-like spatial cognition and ultimately AGI.062

However, existing benchmarks have yet to pro-063

vide a comprehensive evaluation of spatial rea-064

soning capability in VLMs under complex, real-065

world visual scenarios. Some works (Fu et al.,066

2024; Li et al., 2024; Liu et al., 2024; Yue et al.,067

2024) focus primarily on foundational visual un-068

derstanding by systematically evaluating percep-069

tion, comprehension, and basic visual reasoning,070

revealing notable limitations in these areas. Al-071

though a few recent efforts (Pothiraj et al., 2025;072

Stogiannidis et al., 2025; Ren et al., 2025; Tang073

et al., 2025) have attempted to evaluate the spatial074

reasoning capability of VLMs, they often rely on075

overly synthetic settings, task-specific constraints,076

or domain-dependent priors (Song et al., 2025) (See077

Appendix A.1 for examples), limiting the capabil-078

ity to capture generalizable spatial reasoning under079

natural visual conditions. A truly effective eval-080

uation of human-like spatial reasoning capability081

should model the task as a multi-stage cognitive082

process—beginning with perception, advancing083

through structural understanding, and culminating084

in high-level reasoning. Such reasoning must be085

grounded in the visual richness and ambiguity of086

real images, requiring the integration of spatial087

structural modeling and goal-directed reasoning088

(Chen et al., 2024). Yet, this critical dimension of089

spatial cognition remains largely overlooked in ex-090

isting benchmarks, underscoring the need for new091

benchmarks that move beyond narrow task formu-092

lations and embrace the full complexity of spatial093

reasoning.094

To overcome the limitations of existing bench-095

marks in evaluating spatial reasoning capability of096

VLMs under real-world conditions, we introduce097

Jigsaw-Puzzles, a novel benchmark inspired by the098

cognitive mechanisms underlying human puzzle-099

solving. Puzzle-solving naturally reflects the multi-100

stage cognitive process (Fissler et al., 2018), mak-101

ing it a compelling and effective testbed for spatial102

reasoning in VLMs.103

In total, Jigsaw-Puzzles comprises 1,100 care-104

Benchmark Understanding Reasoning High Visual
Complexity

Great
Scalability

Automated
Construction

Capture (Pothiraj et al., 2025) ✓ ✓ × × ×
Mind the Gap (Stogiannidis et al., 2025) ✓ ✓ × × ×
VGRP (Ren et al., 2025) ✓ ✓ × × ×
LEGO-Puzzles (Tang et al., 2025) ✓ ✓ × ✓ ✓
Jigsaw-Puzzles (Ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of spatial reasoning benchmarks.

fully curated real-world images and features five 105

different tasks. First, we begin with the Missing 106

Piece Selection task to evaluate VLMs’ basic spa- 107

tial understanding capability, which serves as the 108

essential foundation for spatial reasoning. Building 109

on this foundation, we introduce four reasoning- 110

centric tasks: Piece Localization, Connection Ver- 111

ification, Anomaly Detection, and Order Restora- 112

tion. These tasks are designed to assess various 113

facets of spatial reasoning, including adjacency 114

modeling, local structural consistency, spatial lo- 115

calization, geometric transformation understanding, 116

and multi-step spatial reasoning. 117

Compared to existing benchmarks for evaluat- 118

ing spatial reasoning capability in VLMs, Jigsaw- 119

Puzzles offers three key advantages, as summarized 120

in Table 1: (1) Higher visual complexity. Jigsaw- 121

Puzzles uses real-world images with diverse and 122

rich visual elements, and significantly outperforms 123

benchmarks based on synthetic images (Ren et al., 124

2025; Stogiannidis et al., 2025; Tang et al., 2025) 125

and simple visual scenes (Pothiraj et al., 2025). 126

This enables more realistic and challenging spatial 127

reasoning evaluation. (2) Greater scalability. Any 128

natural image that satisfies the construction rules 129

can be directly used to generate puzzle tasks, with- 130

out the need to manually synthesize target images. 131

(3) Fully automated construction pipeline. All 132

Jigsaw-Puzzles tasks are generated automatically 133

without manual annotation, with each question 134

paired with a unique deterministic answer. This 135

feature enables low-cost dataset construction and 136

facilitates continuous expansion and refinement. 137

In summary, we introduce Jigsaw-Puzzles, a 138

novel benchmark for systematically evaluating the 139

human-like spatial reasoning capability of VLMs 140

in realistic visual settings. Our main contributions 141

are as follows: 142

A new benchmark for spatial reasoning. We 143

introduce Jigsaw-Puzzles, a puzzle-inspired bench- 144

mark constructed through a fully automated 145

pipeline that improves existing benchmarks in vi- 146

sual complexity and scalability, while enabling 147

structured evaluation of spatial reasoning in VLMs. 148

Comprehensive evaluation and analysis. We 149

evaluate 24 state-of-the-art VLMs on Jigsaw- 150
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Puzzles and conduct detailed analysis. Our findings151

expose consistent limitations in current VLMs and152

provide insights to guide future improvements in153

spatial reasoning capability.154

Open-sourced dataset and construction tools.155

We release the full dataset along with the auto-156

mated generation scripts to support the evaluation157

and continued advancement of spatial reasoning in158

VLMs under real-world visual scenarios, as well159

as to facilitate future benchmark expansion.160

2 Related Work161

General VLMs Evaluation Benchmarks. With162

the rapid progress of VLMs, systematically eval-163

uating their diverse capabilities has become a key164

challenge. Although many benchmarks have been165

introduced, most focus primarily on visual under-166

standing. MME (Fu et al., 2024) evaluates instruc-167

tion following, perception, and basic reasoning168

across 14 subtasks, revealing persistent issues like169

object hallucination and limited spatial understand-170

ing. SEED-Bench (Li et al., 2024) includes 19,000171

multiple-choice questions across 12 dimensions172

and shows continued struggles with text recogni-173

tion and temporal reasoning. MMBench (Liu et al.,174

2024) offers fine-grained bilingual evaluations, en-175

hancing the robustness of multilingual assessment.176

MMMU (Yue et al., 2024) provides 11,500 ques-177

tions across 183 subfields and 30 image types to178

test expert-level reasoning, yet even advanced mod-179

els like Gemini display notable knowledge gaps.180

While these benchmarks have advanced the eval-181

uation of perceptual and semantic understanding,182

none systematically assess spatial reasoning—the183

core aspect of human cognition. This highlights the184

pressing need for more challenging and diagnostic185

benchmarks specifically targeting spatial reasoning186

capability in VLMs.187

Spatial Reasoning Evaluation Benchmarks in188

VLMs. Several recent benchmarks have aimed to189

evaluate the spatial reasoning capability of VLMs.190

Capture (Pothiraj et al., 2025) assesses occluded191

object counting, revealing that VLMs struggle to192

form coherent spatial representations under occlu-193

sion. Mind the Gap (Stogiannidis et al., 2025)194

evaluates spatial relations, navigation, and men-195

tal rotation, showing that VLMs often perform near196

chance level, indicating limited spatial cognition.197

VGRP (Ren et al., 2025) introduces 20 visual grid198

puzzles across varying difficulty levels to assess199

visual perception, rule-following, and logical rea-200

soning. LEGO-Puzzles (Tang et al., 2025) provides 201

1,100 visual QA pairs over 11 subtasks to mea- 202

sure basic and multi-step spatial reasoning. Re- 203

sults consistently show that current VLMs struggle 204

with perceptual complexity, rotation reasoning, and 205

sequential reasoning. Despite these efforts, most 206

benchmarks rely on simplified scenarios, failing to 207

reflect the complexity of real-world spatial environ- 208

ments, thereby limiting their generalizability. More 209

diagnostic benchmarks grounded in natural visual 210

settings are needed to advance human-level spatial 211

reasoning in VLMs. 212

3 Jigsaw-Puzzles 213

In this section, we introduce Jigsaw-Puzzles, a scal- 214

able and comprehensive benchmark designed to 215

evaluate the spatial reasoning capability of VLMs 216

in realistic visual environments. Specifically, Sec- 217

tion 3.1 outlines the motivation and definition of 218

each task, while Section 3.2 describes the dataset 219

construction process, including image selection and 220

the automated generation of question–answer pairs. 221

3.1 Task Definition 222

To systematically evaluate the spatial reasoning 223

capability of VLMs, we design tasks around the 224

core cognitive stages underlying human spatial rea- 225

soning—seeing, understanding, and reasoning. In- 226

spired by the human process of solving jigsaw puz- 227

zles, our benchmark simulates how individuals inte- 228

grate fragmented visual information into a coherent 229

whole: beginning with the perception of local vi- 230

sual cues, followed by the comprehension of spatial 231

relationships, and culminating in multi-step spatial 232

reasoning to reconstruct the original scene. This 233

sequence naturally reflects the progression from 234

low-level perception to high-level spatial reason- 235

ing. Accordingly, the tasks span spatial understand- 236

ing, single-step, and multi-step spatial reasoning, 237

collectively providing a comprehensive evaluation 238

across different levels of spatial reasoning. Figure 3 239

shows examples of each task in Jigsaw-Puzzles. 240

Task 1: Missing Piece Selection. The task evalu- 241

ates VLMs’ spatial understanding capability. Given 242

an image with a missing region, VLMs need to se- 243

lect the correct patch from four candidates. We 244

define two difficulty levels: Easy, where distractors 245

are randomly chosen, and Hard, where distractors 246

are selected using CLIP (Radford et al., 2021) sim- 247

ilarity to closely resemble the ground-truth patch, 248

increasing the task’s difficulty. Task 2: Piece Lo- 249
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Figure 3: Task examples of Jigsaw-Puzzles. Note: the questions above are slightly simplified for clarity and brevity,
and the blue option indicates the correct answer.

Figure 4: Dataset curation pipeline. Step 1 filters candidate images through expert-defined rules to build a spatial
reasoning dataset. Step 2 uses automated templates to generate task-specific QA pairs from the curated images.

calization. This task evaluates spatial localization250

as a representative single-step spatial reasoning251

capability. Given a partially masked image and252

one masked patch, VLMs must identify the patch’s253

original position. Difficulty is controlled by grid254

size and number of masked regions: Easy (2×2255

with two masks), Hard (3×3 with four masks), in-256

creasing spatial complexity. Task 3: Connection257

Verification. This task evaluates adjacency reason-258

ing, which also falls under single-step spatial rea-259

soning. The full image is divided into 2×2 grids, 260

and two patches are randomly selected. VLMs 261

are asked to determine their spatial relationship in 262

the original image (e.g., above-below, left-right, or 263

non-adjacent). Task 4: Anomaly Detection. This 264

task targets local spatial transformation detection, a 265

process that inherently involves single-step spatial 266

reasoning. One region in 2×2 grids is randomly 267

rotated, mirrored, or left unchanged. The model 268

must detect the change, locate the region, and iden- 269
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tify the transformation. Task 5: Order Restoration.270

This task integrates the capabilities assessed in the271

previous tasks and serves as a complex multi-step272

spatial reasoning challenge. A complete image is273

split into four shuffled patches. VLMs must iden-274

tify the correct order to reconstruct the original275

spatial layout.276

Overall, the five puzzle-inspired tasks in Jigsaw-277

Puzzles cover a broad spectrum of spatial rea-278

soning challenges—from basic spatial understand-279

ing to single-step and multi-step spatial reason-280

ing—enabling a comprehensive evaluation of spa-281

tial reasoning in VLMs.282

3.2 Dataset Curation283

As illustrated in Figure 4, our dataset curation284

pipeline consists of two main stages: data collec-285

tion and QA generation.286

Data Collection. We integrate data collection and287

quality control into a unified process. Starting from288

the CC3M (Sharma et al., 2018) dataset, we ap-289

ply task-specific filtering criteria—including min-290

imum resolution and aspect ratio constraints—to291

construct an initial image pool of approximately292

10,000 candidate images. Two human experts itera-293

tively review the image pool while incrementally294

refining a shared set of filtering rules. Based on295

these evolving rules, they collaboratively filter the296

initial dataset to obtain the final set of high-quality,297

structurally diverse images. See Appendix A.2 for298

the rules pool. To enhance generalizability, we em-299

phasize semantic and structural diversity through-300

out the dataset.301

QA Generation. To support scalable and consis-302

tent QA pairs generation, each task type is asso-303

ciated with a specific construction template. QA304

pairs are automatically generated using these tem-305

plates. Figure 3 illustrates simplified examples of306

the templates, full versions are provided in Ap-307

pendix A.2.308

4 Evaluation on Jigsaw-Puzzles309

4.1 Experimental Setting310

Benchmark Models. We evaluate 24 VLMs311

on Jigsaw-Puzzles, covering a diverse range312

of model scales and training paradigms. For313

open-source models, we evaluate Qwen2-VL-314

72B (Wang et al., 2024a), QvQ-72B-Preview315

(Qwen, 2024), Qwen2.5-VL-[7B/32B/72B] (Bai316

et al., 2025), InternVL3-[8B/14B/38B/78B] (Zhu317

et al., 2025), Kimi-VL-A3B-[Instruct/Thinking]318

(Du et al., 2025), Phi-4-multimodal-instruct 319

(Abouelenin et al., 2025), Aya-Vision-[8B/32B] 320

(Dash et al., 2025), and Mistral-Small-3.1-24B- 321

Instruct (Mistral, 2025). For proprietary mod- 322

els, we evaluate Claude-[3.5/3.7]-Sonnet (An- 323

thropic, 2024), Gemini-[2.0/2.5]-Flash, Gemini- 324

2.5-Flash-Thinking, Gemini-2.5-Pro (Anil et al., 325

2023), GPT-4o, GPT-4o-mini (Achiam et al., 2023), 326

and Grok-2-Vision (Grok, 2024). Notably, QvQ- 327

72B-Preview, Kimi-VL-A3B-Thinking, Gemini- 328

2.5-Flash-Thinking, and Gemini-2.5-Pro are cat- 329

egorized as reasoning-enhanced models. All mod- 330

els, supporting multi-image input, are evaluated in 331

a zero-shot setting with hardware scaled to their 332

parameter size, see details in Appendix A.2. 333

Evaluation Metric. Since each QA pair in Jigsaw- 334

Puzzles has a single correct answer, we use exact 335

match accuracy (%) as the primary metric to evalu- 336

ate VLMs’ performance on each task. 337

Baselines. We provide two baselines for compari- 338

son: (1) Random, which assumes equal probability 339

across all options and calculates expected accuracy 340

accordingly. (2) p-value-based critical value, which 341

reports the minimum accuracy required to outper- 342

form random guessing at a significance level of 343

p=0.05. 344

Human Performance. To evaluate human per- 345

formance, we construct a subset called Jigsaw- 346

Puzzles-Lite by sampling 220 images from the full 347

dataset. Three human participants complete all 348

tasks on this subset under the same conditions as 349

VLMs—without access to any external tools or the 350

internet. Their performance serves as an empirical 351

upper bound for spatial reasoning capability. 352

4.2 Main Results 353

Table 2, 3 report the performance of 24 VLMs 354

on Jigsaw-Puzzles. Building on these results, we 355

conduct a comprehensive and systematic analysis. 356

We summarize several key findings as below. 357

Spatial Reasoning Remains a Challenge for 358

VLMs. As shown in Table 3, human participants 359

consistently outperform VLMs, achieving an over- 360

all accuracy of 96.36%. By comparison, current 361

VLMs perform considerably worse, with even the 362

strongest models—Gemini-2.5-Pro—lagging more 363

than 20 percentage points behind human accuracy 364

across all tasks. The persistent gap between hu- 365

mans and VLMs highlights the demanding nature 366

of Jigsaw-Puzzles and affirms its utility as a robust 367

benchmark for spatial reasoning evaluation. 368

Significant Gap Between Open-Source and 369

5



Missing Piece Selection Piece LocalizationModels Easy Hard Easy Hard
Connection
Verification

Anomaly
Detection

Order
Restoration Overall

Baseline
Random Guessing 25.00 25.00 50.00 25.00 33.33 28.13 25.00 30.21
↑ Random (p < 0.05) 27.30 27.30 52.50 27.30 35.70 30.50 27.30 32.56
Proprietary Models
Grok2-Vision 64.55 52.45 53.00 41.00 34.91 27.73 25.27 42.70
GPT-4o-mini 96.45 83.64 59.45 37.82 44.36 57.91 33.18 58.97
GPT-4o 95.00 89.18 61.55 53.45 41.09 53.18 31.55 60.71
Claude-3.5-Sonnet 99.73 94.55 62.45 41.09 45.64 67.45 35.00 63.70
Claude-3.7-Sonnet 99.55 95.09 60.27 44.55 47.91 67.00 39.82 64.88
Gemini-2.0-Flash 92.09 85.64 63.55 54.00 44.91 68.73 34.27 63.31
Gemini-2.5-Flash 98.82 92.45 64.55 54.55 48.82 67.36 34.45 65.86
Gemini-2.5-Flash-Thinking 99.55 94.73 76.64 51.27 57.91 62.00 64.82 72.42
Gemini-2.5-Pro 99.91 97.18 78.82 61.09 59.36 70.00 73.64 77.14
Open-source Models
Kimi-VL-A3B-Instruct 67.91 52.55 51.45 29.82 37.91 21.82 32.82 42.04
Kimi-VL-A3B-Thinking 84.64 58.09 56.36 32.64 28.00 30.91 20.36 44.43
Phi-4-multimodal-instruct 63.45 51.64 60.91 37.45 36.64 43.36 27.64 45.87
Qwen2.5-VL-7B 87.18 63.27 54.27 36.18 38.55 45.00 28.09 50.36
Aya-Vision-8B 26.82 27.27 49.64 26.55 35.00 12.91 24.73 28.99
InternVL3-8B 98.09 85.45 53.91 35.45 44.91 46.82 34.36 57.00
InternVL3-14B 99.73 88.73 59.64 40.18 51.73 49.09 40.91 61.43
Mistral-Small-3.1-24B-Instruct 26.91 28.55 54.27 31.27 38.27 52.36 26.45 36.87
Qwen2.5-VL-32B 97.27 76.82 62.09 40.36 50.09 61.55 33.64 60.26
Aya-Vision-32B 24.27 25.27 51.45 28.36 37.18 41.45 25.00 33.28
InternVL3-38B 99.00 91.36 63.45 42.64 56.73 30.73 54.64 62.65
Qwen2-VL-72B 95.55 75.36 55.27 40.64 40.55 42.36 33.55 54.75
QVQ-72B-Preview 77.82 52.18 53.09 36.73 41.82 47.73 34.64 49.14
Qwen2.5-VL-72B 99.36 87.82 65.91 45.27 43.36 58.82 41.00 63.08
InternVL3-78B 99.73 95.55 69.45 52.27 49.27 58.18 57.09 68.79

Table 2: Full Evaluation Results of 24 VLMs on Jigsaw-Puzzles. VLMs are grouped into proprietary and open-
source categories. Dark Green and Light Green indicate the top-1 and top-2 performance within each group,
respectively. Results of reasoning-enhanced are marked in bold. We also highlight the top three models based on
their overall performance, using Dark Blue , Medium Blue , and Light Blue , respectively.

Missing Piece Selection Piece LocalizationModels Easy Hard Easy Hard
Connection
Verification

Anomaly
Detection

Order
Restoration Overall

Human Performance 99.55 100.00 95.45 91.36 93.18 97.27 97.73 96.36
Proprietary Models
Claude-3.7-Sonnet 100.00 95.45 55.45 47.27 42.73 68.18 38.64 63.96
Gemini-2.5-Flash 98.18 93.18 58.18 55.45 42.27 66.82 32.27 63.76
Gemini-2.5-Flash-Thinking 99.55 95.91 71.82 51.82 55.00 60.91 57.27 70.33
Gemini-2.5-Pro 100.00 96.36 77.73 56.82 57.27 71.36 70.91 75.78
Open-source Models
Qwen2.5-VL-72B 99.09 86.82 67.73 42.27 40.00 57.73 33.64 61.04
InternVL3-78B 99.55 95.45 70.45 53.64 44.55 61.36 56.82 68.83

Table 3: Comparing Top-Performing VLMs with Human Performance on Jigsaw-Puzzles-Lite. The human
performance is highlighted in Dark Green . Results of reasoning-enhanced are marked in bold. The top three
overall performance are highlighted in Dark Blue , Medium Blue , and Light Blue , respectively.

Proprietary VLMs. As shown in Tables 2,370

proprietary VLMs consistently outperform open-371

source VLMs on Jigsaw-Puzzles. Among them,372

non-reasoning-enhanced proprietary VLMs typi-373

cally exceed 60% overall accuracy, whereas most374

open-source VLMs fall short—only InternVL3-375

[14B/38B/78B] and Qwen2.5-VL-72B surpass this376

threshold. Reasoning-enhanced proprietary mod-377

els, such as Gemini-2.5-Flash-Thinking (72.42%)378

and Gemini-2.5-Pro (77.14%), further widen this379

gap. These results reveal a persistent disparity in 380

spatial reasoning performance, suggesting that pro- 381

prietary VLMs benefit from advantages in model 382

architecture, training strategy, and access to large- 383

scale data. Meanwhile, this finding highlights 384

substantial room for improvement in open-source 385

VLMs toward achieving more robust and general- 386

izable spatial reasoning. 387

Model Performance in Different Tasks. In 388

the Missing Piece Selection task, which primar- 389
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ily targets spatial understanding, most proprietary390

VLMs perform well under both Easy and Hard391

settings, demonstrating strong perceptual capabil-392

ity. Although open source models generally per-393

form poorly by comparison, certain models, such394

as the InternVL3 series and Qwen2.5-VL-72B,395

achieve perceptual understanding on par with pro-396

prietary VLMs. Notably, both the Aya-Vision se-397

ries and the Mistral-Small-3.1-24B-Instruct mod-398

els perform poorly across all settings, even at the399

32B scale, accuracy remains near random, reveal-400

ing severe deficits in spatial understanding and401

instruction following. In single-step spatial rea-402

soning tasks—Piece Localization, Connection Ver-403

ification, and Anomaly Detection—most VLMs404

surpass the p-value-based critical value, indicat-405

ing emerging competence in basic spatial reason-406

ing. However, strong performance remains concen-407

trated in only a few models, particularly reasoning-408

enhanced proprietary models and the latest open-409

source InternVL3 series. This disparity becomes410

even more evident in the multi-step spatial reason-411

ing task—Order Restoration, indicating that most412

VLMs struggle with complex spatial reasoning.413

In conclusion, Jigsaw-Puzzles effectively distin-414

guishes VLMs across a spectrum of spatial reason-415

ing capability—from basic understanding to com-416

plex multi-step reasoning. As shown by the results417

in Table 2, substantial room for improvement re-418

mains, particularly in multi-step spatial reasoning.419

Foundational Spatial Understanding Shapes420

Reasoning Performance. We analyze task similar-421

ity on Jigsaw-Puzzles by computing Pearson cor-422

relation coefficients between each task and all oth-423

ers, as proposed by Zhang et al. (2025), as shown424

in Figure 5. The results show that performance425

on the Missing Piece Selection task—a proxy for426

spatial understanding, is strongly correlated with427

performance on spatial reasoning tasks. In con-428

trast, VLMs with weaker spatial understanding of-429

ten struggle with reasoning tasks, with some per-430

forming worse than random on reasoning-intensive431

tasks. This pattern reflects the human cognitive432

progression from perception to understanding to433

reasoning, underscoring the foundational role of434

spatial understanding in enabling higher-level spa-435

tial reasoning in VLMs.436

Spatial Reasoning Scales with VLM size. We437

analyze the relationship between VLM size and438

overall performance on Jigsaw-Puzzles. As shown439

in Figure 6, our results reveal that VLM ac-440

curacy consistently increases with model size,441

Figure 5: Task Similarity Heatmap. The heatmap il-
lustrates the pairwise correlation between tasks in our
benchmark, measured using Pearson correlation coeffi-
cients. Task names are abbreviated using the initials of
each word (e.g., Missing Piece Selection → MPS). The
suffixes _e and _h indicate the Easy and Hard settings,
respectively.

Figure 6: Relationship between VLM size and perfor-
mance on Jigsaw-Puzzles. Each point represents a VLM,
with its accuracy plotted against log-scaled parameter
size. A clear positive correlation is observed both across
and within model families, indicating that larger models
tend to exhibit stronger performance.

both across all models and within specific fami- 442

lies (e.g., InternVL3, Qwen2.5-VL). This positive 443

correlation suggests that spatial reasoning capa- 444

bility—like other cognitive competencies (Wang 445

et al., 2024b)—benefits from larger model capacity, 446

which scales with parameter count. 447

Reasoning-Enhanced Models Show Superior 448

Spatial Reasoning Performance. To assess the 449

spatial reasoning capability of reasoning-enhanced 450

VLMs, we evaluate Gemini-2.5-Flash-Thinking, 451

Gemini-2.5-Pro, Kimi-VL-A3B-Thinking and 452

QvQ-72B-Preview. Except for Gemini-2.5-Pro, 453
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Figure 7: An example of self-correction. Red shows the
initial incorrect answer generated by Gemini-2.5-Pro;
Blue indicates the ground-truth answer; Green illustrates
the model’s self-correction process.

each model has a corresponding base version for454

comparison. As shown in Table 2, these enhanced455

VLMs consistently achieve higher overall accuracy.456

For example, Kimi-VL-A3B-Thinking improves457

from 42.04% to 44.43%, and Gemini-2.5-Flash-458

Thinking rises from 65.86% to 72.42%. Although459

QvQ-72B-Preview overall underperforms Qwen2-460

VL-72B, it achieves better results on spatial rea-461

soning tasks. Notably, Gemini-2.5-Pro achieves462

the highest overall accuracy (77.14%) among all463

VLMs tested. Furthermore, the largest improve-464

ments occur in the multi-step spatial reasoning465

task, Order Restoration, where reasoning-enhanced466

VLMs outperform their base counterparts more sub-467

stantially than in single-step tasks. To explain this,468

we analyze cases where only Gemini-2.5-Pro an-469

swers correctly, with Figure 7 presenting one such470

example. Gemini-2.5-Pro demonstrates a form of471

self-correction: when the model’s initial predic-472

tion is not among the provided options, it will re-473

evaluate the visual input and revise its judgment.474

This behavior, facilitated by the reduced answer475

space under choice constraints, may contribute to476

the superior performance of reasoning-enhanced477

models in the Order Restoration task.478

Figure 8: Evaluation of Order Restoration and Or-
der Generation tasks on Jigsaw-Puzzles-Lite. With-
out option constraints, VLM accuracy drops signifi-
cantly—peaking at just 30.00% and falling far short
of human performance.

Further Exploring Multi-Step Spatial Reason- 479

ing in VLMs. To further evaluate VLMs’ multi- 480

step spatial reasoning beyond the constraints of 481

predefined choices, we introduce the Order Gen- 482

eration task based on Jigsaw-Puzzles-Lite. In this 483

setting, VLMs must directly generate the correct 484

sequence of puzzle pieces without relying on an- 485

swer options, thereby more authentically simulat- 486

ing open-ended spatial reasoning. As shown in Fig- 487

ure 8, current VLMs consistently struggle with this 488

task—Gemini-2.5-Pro, the best-performing model, 489

achieves only 30.00% accuracy, in stark contrast 490

to 94.09% by human participants. This finding re- 491

veals that, despite exhibiting strong self-correction 492

behavior under option constraints, existing VLMs 493

face considerable challenges in autonomously con- 494

structing coherent spatial reasoning chains. This 495

highlights a significant gap between current VLMs 496

and human-level spatial reasoning in open-ended 497

scenarios. 498

5 Conclusion 499

We propose Jigsaw-Puzzles, a novel benchmark 500

for systematically evaluating the spatial reasoning 501

capability of VLMs in real-world visual scenes. 502

Through extensive experiments on 24 representa- 503

tive VLMs, we identify persistent gaps between 504

current VLMs and human-level spatial reason- 505

ing—especially in multi-step spatial reasoning 506

tasks. Jigsaw-Puzzles provides a scalable and cog- 507

nitively grounded benchmark to advance future re- 508

search on spatial reasoning in VLMs. 509
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Limitations510

While Jigsaw-Puzzles provides a structured bench-511

mark tailored for 2D spatial reasoning in static im-512

ages, it currently does not address 3D perception,513

temporal sequences, or embodied contexts—each514

of which represents an important and orthogonal515

axis of spatial cognition. We view this as a natural516

next step and encourage future work to extend the517

benchmark in these directions.518
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A Appendix 706

A.1 Examples of Other Spatial Reasoning 707

Benchmarks 708

Figure 9 and Figure 10 illustrate two representative 709

question types commonly used to evaluate spatial 710

reasoning capability of VLMs. The tested images 711

are not based on real-world scenes, which limits the 712

capability to evaluate spatial reasoning in VLMs 713

under realistic conditions. 714

A.2 Dataset Curation 715

Rules Pool. Figure 11 shows examples of images 716

that were rejected and accepted based on the fil- 717

tering rules, the following are the rules defined by 718

experts during the image selection process: 719

• Removing images containing explicit or vio- 720

lent content. 721

• Filtering out blurry, low-resolution, or visually 722

ambiguous images. 723
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Figure 9: An example of Mind the Gap (Stogiannidis
et al., 2025).

Figure 10: An example of LEGO-Puzzles (Tang et al.,
2025).

Figure 11: Top: examples of images rejected by expert-
defined filtering rules. Bottom: examples of high-
quality images that pass the rules.

• Excluding images lacking semantic clarity or724

spatial structure.725

• Discarding images with structural ambiguity726

(e.g., multiple valid puzzle arrangements).727

• Eliminating misaligned images or those with728

overly small visual elements after cropping,729

which hinder spatial reasoning.730

Task-Specific Template. The following are de-731

tailed templates for each task. Note that <image_x>732

denotes a placeholder for the corresponding image733

input.734

Figure 12: Template of Missing Piece Selection, no-
tably, the templates for the Easy and Hard settings are
identical.

Figure 13: Template of Piece Localization (Easy).

Figure 14: Template of Piece Localization (Hard).

Figure 15: Template of Connection Verification.

Figure 16: Template of Anomaly Detection.
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735

Figure 17: Template of Order Restoration. Note: <op-
tion list> serves as a placeholder for the answer choices.
The text in parentheses is an example and should be
removed in actual use. One option is the correct answer,
while the remaining three are randomly drawn from the
other 23 candidates.

736

Figure 18: Template of Order Generation.

Hardware Setup for Evaluating VLMs. We eval-737

uate open-source VLMs using hardware configu-738

rations scaled to model size. Models with fewer739

than 20B parameters run on a single NVIDIA A100740

80GB GPU. Those between 20B and 40B use two741

NVIDIA A100 80GB GPUs, while models exceed-742

ing 40B are evaluated on four NVIDIA A100 80GB743

GPUs to meet their greater memory and computa-744

tional demands.745
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