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Abstract

The scarcity of annotated medical imaging data has driven significant progress in
semi-supervised learning to alleviate reliance on expensive expert labeling. While
foundational vision models such as the Segment Anything Model (SAM) exhibit
robust generalization in generic segmentation tasks, their direct application to
medical images often results in suboptimal performance. To address this challenge,
in this work, we propose a novel fully SAM-based semi-supervised medical image
segmentation framework and develop the corresponding knowledge distillation-
based learning strategy. Specifically, we first employ an efficient SAM variant as
the backbone network of the semi-supervised framework and update the default
prompt embedding of SAM to unleash its full potential. Then, we utilize an
original SAM, which is rich in prior knowledge, as the teacher to optimize our
efficient student SAM backbone through hierarchical knowledge distillation and
a dynamic loss weighting strategy. Extensive experiments on various medical
datasets demonstrate that our method outperforms state-of-the-art semi-supervised
segmentation approaches. Especially, our model requires less than 10% of the
parameter size of the original SAM, enabling substantially lower deployment and
storage overhead in real-world clinical settings.

1 Introduction

Medical image segmentation aims to delineate precise anatomical structures from imaging data and
serves as a fundamental basis for clinical applications [1, 2]. Recently, as an important foundational
vision model for general image segmentation, the Segment Anything Model (SAM) [3] has been
applied to medical images, resulting in various medical SAM variants. Through fine-tuning on medical
datasets [4, 5, 6] and generating high-quality prompts [7, 8, 9, 10], these variants have achieved
considerable segmentation results. Despite significant progress in medical image segmentation, the
cumbersome and costly manual annotation process still hinders its development. To address this
challenge, semi-supervised learning has gained traction as a robust approach that enhances model
performance and generalization by leveraging both limited labeled data and abundant unlabeled
data. However, there are still some key issues regarding how to effectively integrate the powerful
capabilities of foundational models into semi-supervised medical image segmentation (SSMIS).

First, existing SSMIS frameworks have yet to fully leverage the capabilities of SAM. Lately,
researchers have conducted numerous explorations into the application of SAM in SSMIS. For
instance, SemiSAM [11] leverages coarse masks from the segmentation model to derive prompt
points, which are then fed into SAM to generate more accurate pseudo-labels for model optimization.
SFR [12] introduces an improved approach by pre-training SAM on labeled data, allowing it to
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Figure 1: (a) Mean Teacher for ESDE. (b) Two semi-supervised approaches based on ESDE (Mean
Teacher and our approach, colored in orange and red) with 5% labeled data and 95% unlabeled data
vs. fully supervised learning (colored in blue) using 5% and 100% labeled data on the LA dataset.
Our approach achieves competitive performance, with an 88.42% DSC, improving by 9.33% over
the 5% labeled supervised setting. (c) Our proposed approach for ESDE.

directly generate high-quality pseudo-labels. However, due to the large parameter size of SAM, these
approaches do not fully adopt SAM for semi-supervised segmentation but instead typically deploy it
as an auxiliary component in SSMIS only for generating pseudo-labels as an additional source of
supervision. This strategy inevitably restricts the potential of SAM. Moreover, such implementations
are critically dependent on the prompts generated by the segmentation model, and inaccurate prompts
can severely degrade the segmentation performance of SAM [13]. Therefore, the key challenge lies
in maximizing the segmentation advantages of SAM while minimizing the impact of prompts, which
is critical to advancing its application in SSMIS.

It is worth noting that to overcome the substantial computational demands of SAM, the community
has proposed various lightweight approaches to improve efficiency without compromising accuracy.
These methods focus on training lightweight models entirely from scratch [14, 15, 16] and use
knowledge distillation with appropriate supervision for model training [17, 18, 19, 20, 21]. The
success of efficient SAM variants inspires us to consider whether they can serve as backbone networks
in semi-supervised learning frameworks, replacing traditional ConvNet-based backbones to fully
leverage their capabilities. Moreover, when employing SAM as the segmentation model, updating
its default prompt embedding can naturally enable high-quality segmentation results, while also
mitigating the negative effects of inaccurate prompts. Therefore, we propose a novel fully SAM-based
SSMIS framework that utilizes an Efficient SAM variant as the backbone with a Default Embedding
(ESDE), which is promising to address the aforementioned challenges.

Second, commonly used learning strategies are incompatible with the fully SAM-based SSMIS
framework. As shown in Figure 1 (a), we present a preliminary analysis by applying ESDE to
a popular semi-supervised learning approach, Mean Teacher (MT) [22], where a teacher model is
updated via exponential moving average (EMA) of a student model. However, as shown in Figure 1
(b), despite the availability of extensive unlabeled data, ESDE with MT achieves only a marginal
improvement of less than 4% in Dice Similarity Coefficient (DSC). We attribute this limitation to the
ViT-based architecture of SAM, which has weaker inductive biases compared to ConvNets, making it
less effective in general semi-supervised paradigms [23]. Therefore, another key objective of this
work is to develop a simple yet effective semi-supervised learning strategy for ESDE, in which the
efficient SAM variant can better benefit from unlabeled data.

Based on the above analysis, as illustrated in Figure 1 (c), we propose a knowledge distillation-
based learning strategy coupled with a customized training pipeline for ESDE to advance SSMIS.
Specifically, we utilize an original SAM to optimize the efficient SAM backbone through knowledge
distillation. The customized training process is divided into two steps: first, we apply parameter-
efficient fine-tuning to the original SAM, progressively adapting its general segmentation capability
to medical-specific tasks. Notably, this approach maintains the robustness of the foundational
model while improving the precise recognition of anatomical structures. Then, the fine-tuned SAM
serves as the teacher model, where it provides comprehensive guidance to the efficient student
SAM through a hierarchical knowledge transfer mechanism operating on global contextual features
and local boundary details. To address potential limitations, a dynamic weighting strategy adjusts
the distillation intensity during training, thereby mitigating the excessive influence of the frozen
teacher. Through the phased training pipeline, the framework effectively utilizes unlabeled data while
preserving the segmentation strength of SAM in medical scenarios.
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Overall, in this work, we design a fully SAM-based SSMIS framework and develop the corresponding
knowledge distillation-based learning strategy. Our main contributions are summarized as follows:

• To our knowledge, we are the first to fully use efficient SAM as the backbone network in a
semi-supervised learning framework. Meanwhile, we update the default prompt embedding
of SAM to avoid the negative impact of inaccurate prompts. This innovative attempt
harnesses its full power while reducing the complexity of deployment.

• We propose a novel semi-supervised learning strategy to address the limitations of ESDE in
traditional settings. It constructs a hierarchical knowledge distillation pipeline to transfer
structural knowledge and boundary details, and designs a dynamic weighting mechanism
that adaptively adjusts distillation intensity based on the student’s evolving capabilities.

• Comprehensive experiments across various medical segmentation tasks demonstrate that
our proposed method achieves superior performance compared to other state-of-the-art
semi-supervised methods.

2 Related Work

2.1 Semi-supervised Medical Image Segmentation

Since medical image annotation requires specialized expertise, incurs high costs, and is time-
consuming, semi-supervised learning (SSL) [24, 25, 26] has emerged as an effective approach
to tackle the challenge of insufficient labeled data in medical image segmentation. Most existing
semi-supervised segmentation methods are typically grouped into two categories: consistency regu-
larization [22] and pseudo-labeling [27]. Consistency regularization aims to learn more robust and
generalizable representations by maintaining consistent predictions for the same input under different
perturbations [28, 29]. Pseudo-labeling leverages the high-confidence predictions of the model on
unlabeled data as temporary labels for supervised training [30, 31]. Unlike these methods, which
are typically optimized using ConvNet-based backbones, we propose introducing an efficient SAM
variant as the backbone network and designing a novel fully SAM-based framework.

2.2 SAM Adaptation for Medical Images

The Segment Anything Model (SAM) [3], trained on the large-scale SA-1B dataset, exhibits re-
markable zero-shot generalization for natural images [32]. However, its performance drops sharply
when applied to medical images [33, 34, 35], especially for unseen anatomical structures or patholo-
gies [36, 37]. To better adapt SAM for medical images, researchers are focusing on generalizing
SAM using automatic prompting techniques and different fine-tuning strategies. For instance,
MaskSAM [38] provides accurate guidance to SAM through the design of a learnable prompt gener-
ator. Med-SA [5] fine-tunes the prompted SAM with points and boxes, incorporating lightweight
adaptation blocks to extract domain-specific medical prior knowledge. Moreover, prompt-free SAM
adaptation approaches introduced for medical segmentation suggest that prompts may not be com-
pletely essential [39, 40]. SAMed [6] integrates LoRA [41] layers into the image encoder while
eliminating the prompts. Building on this progress, H-SAM [42] employs a hierarchical decoding
structure to optimize the process of fine-tuning with limited medical data and attains impressive
results. In this work, we also adopt a prompt-free strategy to decrease the adverse effects of inaccurate
prompts, further optimizing the application of SAM in semi-supervised medical image segmentation.

2.3 Efficient SAM with Knowledge Distillation

Knowledge distillation (KD) is a model compression technique that improves a lightweight stu-
dent by transferring knowledge from a complex teacher [43]. When deploying KD to accelerate
SAM [3], the objective is to convey knowledge from the original, larger SAM to more compact and
efficient SAM-like models. Considering the encoder-decoder architecture of SAM, KD strategies
are typically divided into two approaches: distilling the entire SAM model or distilling only the
image encoder. For example, MobileSAM [20] distills the image embedding from the image encoder
into a lightweight ViT encoder while replicating the prompt-guided decoder. Based on this method,
EfficientSAM [15] achieves a great speed-performance trade-off through masked image pretraining.
However, TinySAM [17] points out that the absence of mask-level supervision for the student network
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Figure 2: Overview of the proposed knowledge distillation-based semi-supervised learning strategy
for ESDE. For labeled data, the student SAM receives direct supervision from ground-truth masks via
segmentation losses. For unlabeled data, hierarchical distillation transfers knowledge from the frozen
teacher (encoder embeddings and decoder outputs) to the student via KL divergence. Moreover, DLW
strategy automatically adjusts the distillation intensity for better model optimization.

may lead to significant performance degradation and, therefore, proposes a full-stage distillation
framework. Inspired by these methods, in this work, we leverage KD by transferring knowledge from
the teacher model to refine the predictions on unlabeled samples during semi-supervised learning.

3 Preliminaries

Notations. Let X ⊂ RH×W denote the image space, where each medical image x ∈ X has a
resolution of H ×W . The corresponding label space is defined as Y ⊂ {1, . . . , C}H×W , where each
pixel is assigned one of C anatomical or pathological categories. In the semi-supervised setting, we
have two datasets:Dℓ = {(xℓ

i ,y
ℓ
i )}Ni=1,Du = {xu

i }
N+M
i=N+1, where Dℓ contains N labeled samples

and Du contains M unlabeled samples, typically N ≪ M . A SAM-based segmentation model
fΘ : X → Y can be decomposed as an encoder-decoder:

fΘ(x) = GΘg

(
EΘe

(x), q
)
, (1)

where EΘe denotes the image encoder, GΘg denotes the mask decoder, and q is the query of the
mask decoder, which is formed by concatenating the prompt embedding with the output tokens. Let
Θf = {Θ(i)}Ki=1 be the set of all parameter tensors of model fΘ. The total parameter count is defined
as P (fΘ) =

∑K
i=1

∣∣Θ(i)
∣∣, where |Θ(i)| denotes the number of scalar parameters in tensor Θ(i). In

particular, if fΘ1
and fΘ2

are two models, P (fΘ1
) > P (fΘ2

) means fΘ1
has more parameters.

Problem Definition. The goal of SSMIS is to learn a segmentation function fΘ that approaches
the performance of a fully supervised model using limited annotations. This can be formulated as a
semi-supervised expected risk minimization problem:

min
Θ

E(xℓ,yℓ)∼Dℓ [Lsup(fΘ(x
ℓ),yℓ)] + λExu∼Du [Lunsup(fΘ,x

u)] , (2)

where Lsup is the supervised loss (e.g., Dice or cross-entropy), Lunsup exploits unlabeled data via
consistency learning, pseudo-labeling, or knowledge distillation, and λ balances their contributions.

We adopt a teacher-student paradigm to tackle the above problem. The teacher model fΘT
provides

supervision, while the student fΘS
, which has fewer parameters (P (fΘT

) > P (fΘS
)), learns from

labeled data and the teacher’s guidance on unlabeled samples. Hierarchical knowledge distillation
and dynamic loss weighting allow the student to inherit both the teacher’s visual priors and domain-
specific knowledge, yielding a high-performance yet lightweight segmentation model.
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4 Method

4.1 Overview

As shown in Figure 2, our SSMIS framework employs a teacher model fΘT
(original SAM) and a

student model fΘS
(efficient SAM variant), both using the default prompt embedding for segmentation.

The training process comprises two sequential stages: supervised fine-tuning and semi-supervised
learning. In the first stage (supervised fine-tuning), both teacher and student are fine-tuned on the
labeled dataset Dℓ. For the teacher model fΘT

, we apply the low-rank-based (LoRA) fine-tuning
strategy to the image encoder, preserving generic visual features while incorporating medical domain
knowledge. The student model fΘS

is fine-tuned simultaneously to learn task-specific representations
with limited annotations. In the second stage (semi-supervised learning), the fine-tuned teacher
is frozen and guides the student on unlabeled data Du. Crucially, hierarchical distillation pipeline
transfers different-level feature representations from teacher to student, while dynamic loss weighting
adaptively balances the distillation intensity, enabling efficient and stable knowledge transfer. During
testing, only the lightweight student model fΘS

is used for inference, providing fast and memory-
efficient predictions while maintaining high segmentation performance.

4.2 Fine-tuning Stage

As illustrated in Figure 3, our foundational teacher model is built upon the original SAM, and
it is composed of three components: a ViT-based image encoder, a prompt encoder, and a mask
decoder. The image encoder is the most heavyweight part, comprising a significant proportion of
total parameters. Specifically, we freeze all layers in the image encoder and add a smaller, trainable
bypass for each transformer block. These bypasses, which constitute the LoRA layers, first compress
the transformer features into a low-rank space and subsequently reproject these condensed features to
align with the channel dimensions of the output features in the frozen transformer blocks. During
training, only the LoRA layers are updated, facilitating subtle yet impactful adjustments to the model
and enabling efficient parameter adaptation with minimal memory overhead.
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Figure 3: The pipeline for fine-tuning the teacher
SAM. We freeze the image encoder and integrate
LoRA layers into transformer blocks for efficient
fine-tuning. Additionally, we update the prompt
encoder using a default embedding to enable a
prompt-free setting.

For the SSMIS task, the prompt encoder plays
a crucial role in achieving more accurate seg-
mentation results. Here, we update the default
embedding, which refers to the embedding gen-
erated by the prompt encoder when no prompts
are provided, to enhance SAM’s performance
and eliminate the need for manual inputs. This
strategy not only avoids the potential pitfalls of
inaccurate prompts, but also enables automated
medical diagnosis. For the mask decoder, we
update all parameters. In summary, we adopt
the same implementation as SAMed [6] to fine-
tune the teacher model. During fine-tuning, we
utilize a supervised loss Lsup as the fine-tuning
stage optimization objective Lft, enabling the
model to learn accurate segmentation boundaries from labeled medical data effectively. The fine-
tuning optimization is formulated as:

Lft(x
ℓ
i ,y

ℓ
i ) = Lsup(p

ℓ
i ,y

ℓ
i ) , Lsup(p

ℓ
i ,y

ℓ
i ) = λdice Ldice(p

ℓ
i ,y

ℓ
i ) + λce Lce(p

ℓ
i ,y

ℓ
i ) , (3)

where pℓ
i = fΘ(x

ℓ
i) denotes the model prediction for a labeled image, and yℓ

i is the corresponding
ground-truth mask. Ldice and Lce represent the Dice loss and Cross-entropy loss, respectively, with
λdice and λce controlling their relative contributions.

To obtain an efficient SAM backbone, we replace the image encoder of the original SAM with a much
smaller ViT, while the rest of the components remain unchanged. For this student SAM, similarly,
we also retain the strategy of updating the default embedding. During fine-tuning, all parameters are
optimized, utilizing the same loss function as the teacher model.

5



4.3 Semi-supervised Learning Stage

After fine-tuning, we further optimize the model through semi-supervised learning. As shown in
Figure 2, our framework employs a teacher-student architecture to strategically leverage both labeled
and unlabeled data. Specifically, the teacher model remains frozen to preserve reliable knowledge
and generalization capability, while the student model maintains full trainability to assimilate two
learning signals: direct supervision from labeled data via ground-truth annotations and knowledge
distillation from the teacher’s embedding-level and logit-level for unlabeled data. In this work, the
proposed distillation mechanism is implemented through the newly designed hierarchical distillation
pipeline and dynamic loss weighting strategy, both of which are detailed subsequently.

Hierarchical Knowledge Distillation. Inspired by MobileSAM [20], we adopt the image encoder
output as the distilled information. Since ET (xi) and ES(xi) are feature maps of shape D×H ′×W ′,
we compute KL divergence for each spatial position after softmax along the channel dimension.
Given a batch of N ′ unlabeled images {xi}N

′

i=1 ⊂ Du, the embedding-level distillation loss is:

Lemb =
1

N ′ ·H ′ ·W ′

∑N ′

i=1

∑H′

u=1

∑W ′

v=1
DKL

(
ÊT (xi):,u,v ∥ ÊS(xi):,u,v

)
, (4)

where ÊT (xi):,u,v = softmax(ET (xi):,u,v), ÊS(xi):,u,v = softmax(ES(xi):,u,v), DKL(p∥q) =∑D
d=1 pd log

pd

qd
, with u, v indexing spatial positions and d denoting the number of dimensions.

Although the global features extracted by the image encoder provide a broad understanding of the
image structure, they are insufficient for the precise requirements of pixel-level mask prediction.
Segmentation tasks rely more on features near the output layer, which capture localized details
and boundaries. Hence, the teacher’s logit output is also selected as a distillation target to provide
fine-grained guidance. The logit-level distillation loss is defined as:

Llogit =
1

H ·W
∑H

u=1

∑W

v=1
DKL

(
ĜT (xi):,u,v ∥ ĜS(xi):,u,v

)
, (5)

where ĜT (xi):,u,v=softmax
(
GT (ET (xi), qT ):,u,v

)
, ĜS(xi):,u,v=softmax

(
GS(ES(xi), qS):,u,v

)
.

Combining the embedding and logit distillation losses helps the student better replicate the teacher’s
performance. Thus, the overall knowledge distillation loss function is given as:

Lkd = λembLemb + λlogitLlogit , (6)

where λemb and λlogit are weight coefficients that balance the contributions of the embedding and
logit distillation losses, respectively.

Dynamic Loss Weighting. To prevent the static knowledge of the frozen teacher from dominating
the learning process, we design a dynamic loss weighting (DLW) strategy that automatically adjusts
the distillation intensity based on comparative performance metrics. The key mechanism involves
monitoring the supervised losses of both models on labeled data: the teacher’s loss LT

sup serves as a
fixed reference benchmark after fine-tuning, while the student’s loss LS

sup reflects its current learning
progress. At each epoch t, we update the distillation weight λkd through conditional decay:

λ
(t)
kd =

{
α · λ(t−1)

kd , LS
sup < LT

sup,

λ
(t−1)
kd , otherwise,

(7)

where α is a scaling factor (e.g., 0.95) for gradual decay and λ
(0)
kd = 1.0 initiates strong guidance.

Note that LT
sup is only used to compute λkd and does not contribute to the backpropagation of

gradients. DLW helps the student rely more on the teacher’s guidance in the early stages while
gradually focusing on self-learning as training progresses, which aids in adapting to unlabeled data
and improving generalization to unseen data.

In summary, the overall optimization objective for semi-supervised learning is written as:

Lall = Lsup + λkdLkd . (8)

Differing from LS
sup, which denotes the supervised loss of the student model on labeled data summed

over an entire epoch, Lsup here denotes the loss for each training iteration.
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Table 1: Comparisons with SOTA semi-supervised segmentation methods on the LA dataset.

Method Scans used Metrics Scans used Metrics
Labeled Unlabeled DSC↑ Jaccard↑ 95HD↓ ASD↓ Labeled Unlabeled DSC↑ Jaccard↑ 95HD↓ ASD↓

UA-MT [29]

4(5%) 76(95%)

82.26 70.98 13.71 3.82

8(10%) 72(90%)

87.79 78.39 8.68 2.12
SASSNet [49] 81.60 69.63 16.16 3.58 87.54 78.05 9.84 2.59

DTC [50] 81.25 69.33 14.90 3.99 87.51 78.17 8.23 2.36
URPC [51] 82.48 71.35 14.65 3.65 86.92 77.03 11.13 2.28

MC-Net [52] 83.59 72.36 14.07 2.70 87.62 78.25 10.03 1.82
SS-Net [31] 86.33 76.15 9.97 2.31 88.55 79.62 7.49 1.90
BCP [30] 88.02 78.72 7.90 2.15 89.62 81.31 6.81 1.76

Ours 88.42 79.47 8.15 2.65 90.47 82.71 6.41 1.97

Table 2: Comparisons with SOTA semi-supervised segmentation methods on the Brats-2019 dataset.

Method Scans used Metrics Scans used Metrics
Labeled Unlabeled DSC↑ Jaccard↑ 95HD↓ ASD↓ Labeled Unlabeled DSC↑ Jaccard↑ 95HD↓ ASD↓

DAN [53]

25(10%) 225(90%)

81.71 71.43 15.15 2.32

50(20%) 200(80%)

83.31 73.53 10.86 2.23
DTC [50] 81.75 71.63 15.73 2.56 83.43 73.56 14.77 2.34
CPS [54] 82.52 72.66 13.08 2.66 84.01 74.02 12.16 2.18

URPC [51] 82.59 72.11 13.88 3.72 82.93 72.57 15.93 4.19
CPCL [55] 83.36 73.23 11.74 1.99 83.48 74.08 9.53 2.08

AC-MT [56] 83.77 73.96 11.37 1.93 84.63 74.39 9.50 2.11
MLRPL [57] 84.29 74.74 9.57 2.55 85.47 76.32 7.76 2.00

Ours 85.14 75.56 8.58 2.57 86.46 77.21 7.64 2.21

5 Experiments

We validate our proposed method on three widely-used semi-supervised medical image segmentation
datasets: the LA dataset [44], the Brats-2019 dataset [45], and the PROMISE12 dataset [46]. Addi-
tionally, to facilitate a comprehensive comparison with existing prompt-free medical SAM variants,
we conduct experiments on the Synapse Multi-Organ CT dataset [47]. For the foundational teacher
SAM, we conduct all experiments based on the “ViT-B” version, while for the efficient student
SAM, we replace the original image encoder with TinyViT-5M [48]. More details of the datasets,
evaluation metrics, and method implementation, as well as additional experimental results such as the
effectiveness of the fine-tuned teacher and model complexity analysis, are provided in the Appendix.

5.1 Comparison with Sate-of-the-Art Methods

Results on LA Dataset. We evaluate our method on the LA dataset against state-of-the-art semi-
supervised methods, including UA-MT [29], SASSNet [49], DTC [50], URPC [51], MC-Net [52],
SS-Net [31], and BCP [30], using labeled ratios of 5% and 10%. As shown in Table 1, our approach
outperforms these competitors, achieving a 0.40% improvement in DSC with 5% labeled data and
0.85% with 10%. Additionally, other metrics highlight its competitiveness, with gains of 1.40%
in Jaccard and 0.40 in 95HD under the 10% setting. It demonstrates the feasibility of using SAM
as the backbone network with a default embedding and validates the effectiveness of the proposed
knowledge distillation-based semi-supervised learning strategy. Moreover, qualitative results in
Figure 4 demonstrate that our method produces finer segmentation boundaries and better overall
agreement with ground-truth annotations compared to existing approaches.

Results on Brats-2019 Dataset. Brain tumor segmentation is highly challenging due to variations in
tumor appearance and uncertain boundaries. To demonstrate the effectiveness of our approach, we
conduct experiments on the Brats-2019 dataset with 10% and 20% labeled ratio, comparing it with
several methods, including DAN [53], DTC [50], CPS [54], URPC [51], CPCL [55], AC-MT [56],
and MLRPL [57]. As evidenced in Table 2, our method achieves state-of-the-art performance on
both labeled protocols. With 10% labeled data, we obtain 85.14% DSC and 75.56% Jaccard scores,
outperforming the strongest baseline (MLRPL) by 0.85% and 0.82%, respectively. This advantage
further expands to 1.0% DSC and 0.89% Jaccard improvements under the 20% labeled setting.
Furthermore, our approach reduces 95HD by 0.99 compared to MLRPL with 10% labeled data,
demonstrating a superior boundary adherence capability for complex tumor structures. The consistent
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(a) (b) (d) (c) (e) (f) 

Figure 4: Visualization of segmentation results on the LA dataset with 10% labeled data. (a) Groud-
truth. (b) Ours results. (c) BCP results. (d) SS-Net results. (e) MC-Net results. (f) DTC results.

performance gains validate the effectiveness of our proposed hierarchical knowledge distillation and
dynamic loss weighting strategy in handling ambiguous tumor margins.

Results on PROMISE12 Dataset. We also perform experiments on the PROMISE12 dataset with
20% labeled ratio against CCT [58], URPC [51], SS-Net [31], SLC-Net [59], SCP-Net [60], BCP [30],
and ABD [28], as well as ABD with 10% labeled ratio. Detailed results are shown in the Appendix.

5.2 Ablation Studies

We conduct ablation studies to evaluate the impact of key components in our method, including
combinations of knowledge distillation losses, the ratios of λemb and λlogit (Eq (6)), fine-tuning
the student model, and the proposed DLW strategy. All experiments here are performed on the LA
dataset, with ablation results on other datasets provided in the Appendix.

Table 3: Ablation study on combinations of knowledge
distillation losses.

Embedding Logit Scans used Metrics
loss loss Labeled Unlabeled DSC↑ Jaccard↑ 95HD↓ ASD↓
✓

4(5%) 76(95%)
81.72 70.92 23.24 6.24

✓ 88.07 79.00 10.73 2.82
✓ ✓ 88.42 79.47 8.15 2.65
✓

8(10%) 72(90%)
84.53 75.18 11.75 3.57

✓ 90.19 82.26 6.64 2.02
✓ ✓ 90.47 82.71 6.41 1.97

Table 4: Ablation study on ratios of λemb

and λlogit with 10% labeled data.

λemb λlogit
Metrics

DSC↑ Jaccard↑ 95HD↓ ASD↓
1/4 3/4 90.28 82.39 6.70 2.03
1/3 2/3 90.47 82.71 6.41 1.97
1/2 1/2 90.25 82.35 6.81 2.13
2/3 1/3 89.92 81.86 6.95 2.14
3/4 1/4 89.38 80.94 9.24 2.94

Table 5: Effectiveness of fine-tuning in the student
model.

Method Scans used Metrics
Labeled Unlabeled DSC↑ Jaccard↑ 95HD↓ ASD↓

w/o fine-tune 4(5%) 76(95%) 86.57 76.73 9.95 3.08
w/ fine-tune 88.42 79.47 8.15 2.65

w/o fine-tune 8(10%) 72(90%) 88.90 80.19 7.05 2.30
w/ fine-tune 90.47 82.71 6.41 1.97

Table 6: Effectiveness of the proposed DLW
strategy.

Method Scans used Metrics
Labeled Unlabeled DSC↑ Jaccard↑ 95HD↓ ASD↓

w/o DLW 4(5%) 76(95%) 88.00 78.94 8.10 2.67
w/ DLW 88.42 79.47 8.15 2.65
w/o DLW 8(10%) 72(90%) 90.02 81.97 7.04 2.25
w/ DLW 90.47 82.71 6.41 1.97

Different Knowledge Distillation Losses. Table 3 examines the effectiveness of different combi-
nations of knowledge distillation losses, including embedding loss and logit loss, to evaluate their
contributions. The results reveal that the logit loss plays a critical role, as it closely aligns with the
supervised information and directly impacts the evaluation metrics. Using the embedding loss alone
shows weaker performance, while the logit loss alone yields noticeable improvements. However,
combining both losses significantly enhances segmentation performance. These findings highlight
the complementary roles of embedding loss, which enables the student encoder to learn semantic
knowledge of image-dense features and spatially structured relationships from the teacher encoder,
and logit loss, which leverages the supervised alignment output to better align with the teacher.

Effect of Balancing Embedding and Prediction Losses. To explore the impact of different weight
ratios between embedding loss and logit loss, we conduct an ablation study with 10% labeled data, as
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Table 7: Comparisons with SAM-assisted semi-supervised segmentation methods on the LA dataset.

Method Scans used Metrics Scans used Metrics
Labeled Unlabeled DSC↑ Jaccard↑ 95HD↓ ASD↓ Labeled Unlabeled DSC↑ Jaccard↑ 95HD↓ ASD↓

SemiSAM [11]

4(5%) 76(95%)

80.42 68.05 18.23 5.16

8(10%) 72(90%)

84.45 73.75 14.56 3.31
UP-SAM [62] 84.06 72.90 13.78 3.14 - - - -

SFR [12] 87.95 78.83 9.23 2.89 89.99 81.93 7.07 2.04
Ours 88.42 79.47 8.15 2.65 90.47 82.71 6.41 1.97

Table 8: Comparisons with SOTA prompt-free medical SAM variants on the Synapse dataset with
10% labeled data.

Method Params Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach Metrics
DSC↑ 95HD↓

SAM Adapter [5] 131.5M 66.74 22.38 66.77 68.38 89.69 26.76 72.42 53.15 58.29 54.22
AutoSAM [40] 112.5M 75.19 24.87 76.53 77.44 88.06 34.58 68.80 52.70 62.27 31.67

SAMed [6] 108.8M 78.72 63.15 82.62 82.25 92.72 52.12 85.82 67.20 75.58 23.02
H-SAM [42] 112.3M 79.65 59.76 82.71 82.14 91.73 47.48 86.35 75.31 75.68 21.34

Ours 10.1M 86.58 67.22 83.23 79.04 93.00 57.08 86.18 75.05 78.42 17.87

shown in Table 4. The results indicate that the balance between the two losses significantly affects
segmentation performance. When the ratio λemb : λlogit is set to 1/3 : 2/3, the best performance is
achieved. However, as λemb increases, a noticeable decline in performance is observed, with DSC
dropping from 90.47% to 89.38% at 3/4 : 1/4. This indicates that overemphasizing the embedding
loss undermines the contribution of the logit loss, which is more aligned with the supervised signals.

Fine-tuning in Student. Motivated by [61], we apply fine-tuning to the student model prior to
semi-supervised learning. This step helps the student better adapt to the target task by leveraging
labeled data for initial optimization, creating a more robust foundation for knowledge distillation. As
shown in Table 5, fine-tuning reliably improves performance across all metrics, with significant gains
observed in DSC and Jaccard scores. These results highlight the importance of initializing the student
model with task-specific knowledge, which enhances its capacity to benefit from the subsequent
semi-supervised learning process.

Dynamic Loss Weighting Strategy. In this work, we propose the DLW strategy to mitigate the
potential over-reliance of the student model on the fixed outputs of the teacher model. To validate its
effectiveness, we perform ablation experiments to evaluate its impact on segmentation performance.
As shown in Table 6, incorporating DLW consistently enhances the results. For 5% labeled data,
DLW improves the DSC to 88.42% and slightly reduces the ASD to 2.65. Similarly, for 10% labeled
data, it significantly decreases the ASD from 2.25 to 1.97. By dynamically adjusting the weight of
the distillation loss during training, DLW allows the student model to initially leverage the teacher’s
guidance while gradually shifting focus toward self-learning. This adaptive mechanism supports
effective utilization of unlabeled data and contributes to better generalization.

5.3 Comparisons with SAM-assisted Semi-supervised Methods

In this work, we directly use SAM as the backbone network with a default embedding and design
a novel knowledge distillation-based learning strategy. Therefore, we also conduct quantitative
experiments on the LA dataset to compare the proposed method with three existing SAM-assisted
semi-supervised methods: SemiSAM [11], UP-SAM [62], and SFR [12]. It is important to highlight
that these methods use SAM as an auxiliary component to a ConvNet backbone for semi-supervised
learning, and the outputs from the ConvNet are regarded as the final segmentation maps. As shown in
Table 7, our method achieves the best performance, verifying that employing SAM as the segmentation
pipeline to unleash its capability yields more substantial benefits than using it as an auxiliary module.
This superiority can be attributed to the fact that the ConvNet-centric architectures of existing methods
and their provision of unreliable prompts inevitably compromise the inherent segmentation potential
of SAM, while our model with prompt-free setting successfully circumvents error accumulation in
pseudo-label generation.
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Figure 5: Visualization of segmentation results on the Synapse dataset with 10% labeled data. (a)
Groud-truth. (b) Ours results. (c) H-SAM results. (d) SAMed results.

5.4 Comparisons with Prompt-free Medical SAM Variants

For a more comprehensive evaluation, we further compare our method with several prompt-free
medical SAM variants, including SAM Adapter [5], AutoSAM [40], SAMed [6], and H-SAM [42],
all of which default to the “ViT-B” version. Table 8 shows the quantitative results on the multi-class
task using the Synapse dataset with 10% labeled data. For fair comparison, we upsample 224 × 224
CT images to 512 × 512 as input instead of directly using a resolution of 512 × 512, to maintain
consistency with the methods mentioned above. Notably, compared to these fully supervised methods,
our method compresses the knowledge of a teacher SAM (equivalent to SAMed) into a student SAM
with more than 10 × fewer parameters, while also effectively leveraging a large amount of unlabeled
data. It can be observed that our method consistently outperforms the other methods across the
majority of organs, achieving higher segmentation accuracy while significantly reducing inference
costs. Moreover, Figure 5 gives some qualitative results where our model yields smoother and more
accurate segmentation regions compared to other methods.

6 Conclusion

In this work, we explore a better adaptation of SAM in semi-supervised medical image segmentation.
Capitalizing on advancements in lightweight SAM techniques, we pioneer its deployment as the
backbone network in semi-supervised frameworks to fully leverage its segmentation capability. To
address the incompatibility of conventional semi-supervised methods with the SAM backbone, we
develop a novel knowledge distillation-based learning strategy that achieves hierarchical distillation
by aligning the anatomical semantics of the encoder with the boundary details of the decoder, and
incorporates dynamic loss weighting to progressively reduce the distillation intensity for better ex-
ploitation of unlabeled data. In this way, the proposed method achieves higher segmentation accuracy
while significantly reducing model parameters, enhancing the feasibility of clinical deployment. This
work also establishes a new technical paradigm for the practical implementation of foundational
models in medical image segmentation.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: The main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope, clearly outlining both the methodological innovations
and empirical findings. Subsequent sections provide firm theoretical grounding and robust
experimental validation for each claim.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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Question: Does the paper discuss the limitations of the work performed by the authors?
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Guidelines:
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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implications would be.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The information needed to reproduce the main experimental results is intro-
duced in Section 4, Section 5, and the supplementary material.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Answer: [No]
Justification: We are currently not providing open access to the data and code.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the training and test details can be seen in Section 5 and the supplementary
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our experiment did not include error bars, confidence intervals, or other
statistical significance tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Sufficient information on the computer resources can be seen in the supple-
mentary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper fully compliant with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses both the potential positive societal impacts and negative
societal impacts of the work in the supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper that produced the code package or dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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