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Abstract

There are two types of deep generative models: explicit and implicit. The former
defines an explicit density form that allows likelihood inference; while the latter
targets a flexible transformation from random noise to generated samples. While
the two classes of generative models have shown great power in many applications,
both of them, when used alone, suffer from respective limitations and drawbacks.
To take full advantages of both models and enable mutual compensation, we
propose a novel joint training framework that bridges an explicit (unnormalized)
density estimator and an implicit sample generator via Stein discrepancy. We
show that our method 1) induces novel mutual regularization via kernel Sobolev
norm penalization and Moreau-Yosida regularization, and 2) stabilizes the training
dynamics. Empirically, we demonstrate that proposed method can facilitate the
density estimator to more accurately identify data modes and guide the generator
to output higher-quality samples, comparing with training a single counterpart.
The new approach also shows promising results when the training samples are
contaminated or limited.

1 Introduction

Deep generative model, as a powerful unsupervised framework for learning the distribution of high-
dimensional multi-modal data, has been extensively studied in recent literature. Typically, there are
two types of generative models: explicit and implicit. Explicit models define a density function
of the distribution [35} 51} 42]], while implicit models learn a mapping that generates samples by
transforming an easy-to-sample random variable [[15} 39, |2} 4].

Both models have their own power and limitations. The density form in explicit models endows
them with convenience to characterize data distribution and infer the sample likelihood. However, the
unknown normalizing constant often causes computational intractability. On the other hand, implicit
models including generative adversarial networks (GANSs) can directly generate vivid samples in
various application domains including images, natural languages, graphs, etc. Nevertheless, one
important challenge is to design a training algorithm that do not suffer from instability and mode
collapse. In view of this, it is natural to build a unified framework that takes full advantages of the
two models and encourages them to compensate for each other.

Intuitively, an explicit density estimator and a flexible implicit sampler could help each other’s
training given effective information sharing. On the one hand, the density estimation given by explicit
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models can be a good metric that measures quality of samples [6]], and thus can be used for scoring
generated samples given by implicit model or detecting outliers as well as noises in input true samples
[53]. On the other hand, the generated samples from implicit models could augment the dataset and
help to alleviate mode collapse especially when true samples are insufficient that would possibly
make explicit model fail to capture an accurate distribution. We refer to Appendix [A for a more
comprehensive literature review.

Motivated by the discussions above, in this paper, we propose a joint learning framework that enables
mutual calibration between explicit and implicit generative models. In our framework, an explicit
model is used to estimate the unnormalized density; in the meantime, an implicit generator model is
exploited to minimize certain statistical distance (such as the Wasserstein metric or Jensen-Shannon
divergence) between the distributions of the true and the generated samples. On top of these two
models, a Stein discrepancy, acting as a bridge between generated samples and estimated densities, is
introduced to push the two models to achieve a consensus. Unlike flow-based models [36, 26, our
formulation does not impose invertibility constraints on the generative models and thus is flexible in
utilizing general neural network architectures. Our main contributions are as follows:

1) Theoretically, we prove that our method allows the two generative models to impose novel mutual
regularization on each other. Specifically, our formulation penalizes large kernel Sobolev norm of
the critic in the implicit (WGAN) model, which ensures the critic not to change suddenly on the
high-density regions and thus preventing the critic of the implicit model being too strong during
training. In the mean time, our formulation also smooths the function given by the Stein discrepancy
through Moreau-Yosida regularization, which encourages the explicit model to seek more modes in
the data distribution and thus alleviates mode collapse.

ii) In addition, we show that our joint training helps to stabilize the training dynamics. Compared
with other common regularization approaches for GAN models that may shift original optimum, our
method can facilitate convergence to unbiased model distribution.

iii) We conduct comprehensive experiments to justify our theoretical findings and demonstrate that
joint training can help two models achieve better performance. On the one hand, the energy model
can detect complicated modes in data more accurately and distinguish out-of-distribution samples.
On the other hand, the implicit model can generate higher-quality samples.

2 Background

Energy Model. The energy model assigns each data x € R? with a scalar energy value E;(x),
where E4(-) is called energy function and parameterized by ¢. The model is expected to assign low
energy to true samples according to a Gibbs distribution py(x) = exp{—Ey4(x)}/Z4, where Z is a
normalizing constant dependent of ¢. The term Z is often hard to compute, making optimization
intractable, and various methods are proposed to detour such term (see Appendix[A).

Stein Discrepancy. Stein discrepancy [[16} 30, 5, [38] [3]] is a measure of closeness between two
probability distributions and does not require knowledge for the normalizing constant of one of the
compared distributions. Let P and Q be two probability distributions on X C R?, and assume Q has
a (unnormalized) density ¢. The Stein discrepancy S(P, Q) is defined as

S(P,Q) := sup Eyp[Agf(x)] = sup T'(Exup[Vylogq(x)f(x)" + Vif(x)]), (1)
feF feF

where F is often chosen to be a Stein class (see, e.g., Definition 2.1 in [30Q]), f : R? - R? isa
vector-valued function called Stein critic and T is an operator that transforms a d X d’ matrix into a
scalar value. One common choice of T is trace operator when d’ = d. One can also use other forms
for T, like matrix norm when d’ # d [30]. If F is a unit ball in some reproducing kernel Hilbert space
(RKHS) with a positive definite kernel k, it induces Kernel Stein Discrepancy (KSD) [17]. More
details are in Appendix

Wasserstein Metric. Wasserstein metric is suitable for measuring distances between two distributions
with non-overlapping supports [2]]. The Wasserstein-1 metric between P and Q is

WP, Q) = min Egcy)nyllx =yl
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where the minimization with respect to -y is over all joint distributions with marginals P and Q. By
Kantorovich-Rubinstein duality, W(IP, Q) has a dual representation

W(P, Q) := max {Ex-p[D(x)] — Ey~o[D(y)]}, 2)

where the maximization is over all 1-Lipschitz continuous functions.

Sobolev space and Sobolev dual norm. Let L?(P) be the Hilbert space on R¢ equipped with
an inner product (u,v)r2(py := [p. uvdP(x). The (weighted) Sobolev space H' is defined as

the closure of C§°, a set of smooth functions on R? with compact support, with respect to norm

ull o = ( Jfpa(u? + HVqu)dIP’(x))l/Q, where PP has a density. For v € L?, its Sobolev dual norm
[|v]| -1 is defined by [10]

[oll-s = sup {<07U>L2 [ IV aee) <1, [ uodpe - o}.

The constraint fRd u(x)dx = 0 is necessary to guarantee the finiteness of the supremum, and the
supermum can be equivalently taken over C§°.

3 Proposed Model: Stein Bridging

In this section, we formulate our model Stein Bridging. A scheme of our framework is illustrated
in Figure |I Denote by P, the underlying real distribution from which the data {x} are sampled.
The formulation simultaneously learns two generative models — one explicit and one implicit —
that represent estimates of P..,1. The explicit generative model has a distribution Pg on X’ with
explicit probability density proportional to exp(—FE(x)), x € X, where F is referred to as an energy
function. We focus on energy-based explicit model in model formulation as it does not enforce
any constraints or assume specific density forms. For specifications, one can also consider other
explicit models, like autoregressive models or directly using some density forms such as Gaussian
distribution with given domain knowledge. The implicit model transforms an easy-to-sample random
noise z with distribution P, via a generator G to a sample = G(z) with distribution P¢. Note that
for distribution P, we have its explicit density without normalizing term, while for P and Pea,
we have samples from two distributions. Hence, we can use the Stein discrepancy (that does not
require the normalizing constant) as a measure of closeness between the explicit distribution Pg,
and the real distribution P,¢,1, and use the Wasserstein metric (that only requires only samples from
two distributions) as a measure of closeness between the implicit distribution Pg and the real data
distribution P,¢,).

To jointly learn the two generative models P and Py, arguably a straightforward way is to minimize
the sum of the Stein discrepancy and the Wasserstein metric:

%nél W<]P)rcal» PG) + )\S(Prcalv ]PE)v

where A > 0. However, this approach appears no different than learning the two generative models
separately. To achieve information sharing between two models, we incorporate another term



S(P¢g,Pg) — called the Stein bridge — that measures the closeness between the explicit distribution
P and the implicit distribution Pg:

%ng W(]P)realy PG) + >\1$<]P)realy IPE) + AQS(]P)Gv PE)v (3)

where A1, A2 > 0. The Stein bridge term in @]) pushes the two models to achieve a consensus.

Remark 1. Our formulation is flexible in choosing both the implicit and explicit models. In (3), we
can choose statistical distances other than the Wasserstein metric W(Pyca1, Pe) to measure closeness
between P, and Pg, such as Jensen-Shannon divergence, as long as its computation requires only
samples from the involved two distributions. Hence, one can use GAN architectures other than
WGAN to parametrize the implicit model. In addition, one can replace the first Stein discrepancy
term S(Prea1, Pr) in (3) by other statistical distances as long as its computation is efficient and hence
other explicit models can be used. For instance, if the normalizing constant of Py is known or easy
to calculate, one can use Kullback-Leibler (KL) divergence.

Remark 2. The choice of the Stein discrepancy for the bridging term S(P¢g,Pg) is crucial and
cannot be replaced by other statistical distances such as KL divergence, since the data-generating
distribution does not have an explicit density form (not even up to a normalizing constant). This is
exactly one important reason why Stein bridging was proposed, which requires only samples from the
data distribution and only the log-density of the explicit model without the knowledge of normalizing
constant as estimated in MCMC or other methods.

In our implementation, we parametrize the generator in implicit model and the density estimator in
explicit model as Gg(z) and py(x), respectively. The Wasserstein term in (3)) is implemented using
its equivalent dual representation in (@ with a parametrized critic Dy, (x). The two Stein terms in
(3) can be implemented using (I) with either a Stein critic (parametrized as a neural network, i.e.,
f.,(x)), or the non-parametric Kernel Stein Discrepancy. Our implementation iteratively updates the
explicit and implicit models. Details for model specifications and optimization are in Appendix

Comparison with Existing Works. There are several studies that attempt to combine explicit
and implicit generative models from different ways, e.g. by energy-based GAN [35]], contrastive
divergence [25 6], cooperative learning [S0] or two generator game [7]]. Here we provide a high-level
comparison in Table[l| where we note that the formulations of existing works only consider one-side
discrepancy or at most two discrepancy terms. Such formulations cannot address the respective issues
for both models and, even worse, the training for two models would constrain rather than exactly
compensate each other (more discussions are in Appendix[A.3). Differently, our model considers
three discrepancies simultaneously as a triangle to jointly optimize two generative models. In the
following, we will show that such new simple formulation enables two models to compensate each
other via mutual regularization effects and stabilize the training dynamics.

4 Theoretical Analysis

In this section, we provide theoretical insights on proposed scheme, which illuminate its mutual
regularization effects as a justification of our joint training and further show its merit for stabilizing
the training dynamics. The proofs for all the results in this section are in Appendix [D.

4.1 Mutual Regularization Effects.

We first show the regularization effect of the Stein bridge on the Wasserstein critic. Define the kernel
Sobolev dual norm as

1Dl -1 pspy == Sup {(D, ) L2(p) : Bxpomp[Vu(x) k(x, X ) Vu(x)] < 1, Ep[u] = 0}.
ueCge

It can be viewed as a kernel generalization of the Sobolev dual norm defined in Section [2, which
reduces to the Sobolev dual norm when k(x,x’) = I(x = x’) and P is the Lebesgue measure.

Theorem 1. Assume that {Pq } exhausts all continuous probability distributions and S is chosen
as kernel Stein discrepancy. Then problem (3)) is equivalent to

min max {]Ey~PE [D(¥)] = Exabrou [D(X)] = 255 1PN 71 Bty + M8 (Prear, IP’E)}~



The kernel Sobolev norm regularization penalizes large variation of the Wasserstein critic D. Particu-
larly, observe that [45] if k(x,x’) = I(x = x’) and Ep, [D] = 0, and then

WQ((l + GD)PE,PE)

HD”H*l(IP’E;k) = eh_lz% 6 J

where W, denotes the 2-Wasserstein metric. Hence, the Sobolev dual norm regularization ensures
D not to change suddenly on high-density region of P, and thus reinforces the learning of the
Wasserstein critic. Stein bridge penalizes large variation of the Wasserstein critic, in the same spirit
but of different form comparing to gradient-based penalty (e.g., [19} 40]]). It prevents Wasserstein
critic from being too strong during training and thus encourages mode exploration of sample generator.
To illustrate this, we conduct a case study where we train a generator over the data sampled from a
mixture of Gaussian (p; = [—1, —1], u2 = [1,1] and ¥ = 0.2I). In Fig. [3(a) we compare gradient
norms of the Wasserstein critic when training the generator with and without the Stein bridge. As we
can see, Stein bridge can help to reduce gradient norms, with a similar effect as WGAN-GP.

Moreover, the Stein bridge also plays a part in smoothing the output from Stein discrepancy and we
show the result in the following theorem.

Theorem 2. Assume {P¢}q exhausts all continuous probability distributions, and the Stein class
defining the Stein discrepancy is compact (in some linear topological space). Then problem (3) is
equivalent to

min {)\15 (Preat; P) + Ao max Exp, o [(Aps )z (%)] }7

where (Ap,f)x, () denotes the (generalized) Moreau-Yosida regularization of function Ap £ with
parameter Ay, i.e., (Ap,f)x,(x) = mingex {Ap,f(y) + )\1—2||x -y}

Note that (Ap,f)x, is Lipschitz continu-
ous with constant 1/A;. Hence, the Stein
bridge, together with the Wasserstein met-
ric W(Pyea1, Pc), plays as a Lipschitz reg-
ularization on the output of the Stein op- ] T
erator Ap,f via Moreau-Yosida regulariza- (a) b)

tion. This suggests a novel regularization Figure 2: (a) Contour of an energy model with one
scheme for Stein-based GAN. By smooth- ode and empirical data from a distribution with a
ing the Stein critic, the Stein bridge encour-  djfferent mode (blue dots); (b) & (c) Contours of the

ages the energy model to seek more modes in  Stein critics between the two distributions learned w/
data instead of focusing on some dominated  and w/o the Stein bridge, respectively.

modes, thus alleviating mode-collapse issue.

To illustrate this, we consider a case where we have an energy model initialized with one mode center
and data sampled from distribution of another mode, as depicted in Fig. |Z(a). Fig. |Z(b) and |Z(c)
compare the Stein critics when using Stein bridge and not, respectively. The Stein bridge helps to
smooth the Stein critic, as indicated by a less rapidly changing contour in Fig. [2b) compared to Fig.
[lc), learned from the data and model distributions plotted in Fig. 2b).

4.2 Stability of training dynamics.

We further show that Stein Bridging could stabilize adversarial training between generator and
Wasserstein critic with a local convergence guarantee. As is known, the training for minimax game
in GAN is difficult. When using traditional gradient methods, the training would suffer from some
oscillatory behaviors [14, [29) 154]. In order to better understand the optimization behaviors, we
first compare the behaviors of WGAN, likelihood- and entropy-regularized WGAN, and our Stein
Bridging under SGD via an easy to comprehend toy example in one-dimensional case. Such a toy
example (or a similar one) is also utilized by [13}|33]] to shed lights on the instability of WGAN
trainingﬂ Consider a linear critic Dy (x) = a and generator Gg(z) = fz. Then the Wasserstein
GAN objective can be written as a constrained bilinear problem: ming maxj,|<; YE[z] — ¢ 0E[z],
which could be further simplified as an unconstrained version (the behaviors can be generalized to
multi-dimensional cases [13]]):

m@inmfxq/}—w - 6. ()

2Our theoretical discussions focus on WGAN, and we also compare with original GAN in the experiments.
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Figure 3: (a) The gradient norm of Wasserstein critic with (blue) and without (red) the Stein bridge
when data are sampled from a mixture of Gaussian. (b) Numerical SGD updates of Stein Bridging,
WGAN and its variants with different regularizations.
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Unfortunately, such simple objective cannot guarantee convergence by traditional gradient methods
like SGD with alternate updatinﬂ Ok+1 = Ok + iy, Y41 = Ui +1(1 —041). Such optimization
would suffer from an oscillatory behavior, i.e., the updated parameters go around the optimum point
([¢*, 0*] = [0, 1)) forming a circle without converging to the centrality, which is shown in Fig. [3(b).
A recent study in [29] theoretically show that such oscillation is due to the interaction term in (4)

One solution to the instability of GAN training is to add (likelihood) regularization, which has been
widely studied by recent literatures [46, [28]. With regularization term, the objective changes into
ming max|y <y YE[z] — YOE[z] — AE[log u(0z)], where pu(-) denotes the likelihood function and
A is a hyperparameter. A recent study [44] proves that when A < 0 (likelihood-regularization),
the extra term is equivalent to maximizing sample evidence, helping to stabilize GAN training;
when A > 0 (entropy-regularization), the extra term maximizes sample entropy, which encourages
diversity of generator. Here we consider a Gaussian likelihood function for generated sample 2’
p(z') = exp(—3 (2’ — b)?) which is up to a constant, and the objective becomes (see Appendix
for details):

rrgnmfxw—w-e—A(Hg—H). ®)

The above system would converge with A < 0 and diverge with A > 0 in gradient-based optimization,
shown in Fig. [3(b). Another issue of likelihood-regularization is that the extra term changes the
optimum point and makes the model converge to a biased distribution, as proved by [44]. In this case,
one can verify that the optimum point becomes [)*, 8*] = [—\, 1], resulting in a bias. To avoid this
issue, [44] proposes to temporally decrease |A| through training. However, such method would also
be stuck in oscillation when || gets close to zero as is shown in Fig. b).

Finally, consider our proposed model. We also simplify the density estimator as a basic energy model
py(z) = exp(—32? — ¢z) whose score function V, log ps(z) = —2 — ¢. Then if we specify the
two Stein discrepancies in (3) as KSD, the objective is (see Appendix [D.T|for details),

A A
meinmfxqunw—wﬂ—l-?1(1—1-@25)2-1-?2(9—1-@2. (6)
Interestingly, for VA1, A2, the optimum remains the same [¢*, 8%, ¢*] = [0,1, —1]. Then we show

that the optimization guarantees convergence to [¢)*, 0%, ¢*].

Proposition 1. Using alternate SGD for (@) geometrically decreases the square norm Ny = |!|? +
10— 112+ |¢+ 1|2, forany 0 < n < Lwith A\; = Ay = 1,

N1 = (1=7°(1 = n)*)Ne. (7

As shown in Fig.3[b), Stein Bridging achieves a good convergence to the right optimum. Compared
with (E), the objective (]§) adds a new bilinear term ¢ - 6, which acts like a connection between the
generator and estimator, and two other quadratic terms, which help to penalize the increasing of
values through training. The added terms and original terms in (6)) cooperate to guarantee convergence
to a unique optimum. (More discussions in Appendix [D.I). Moreover, Fig.[3[c) presents the training
dynamics w.r.t. different \;’s and \3’s. As we can see, the convergence can be achieved with different
trading-off parameters which in essence have impact on the convergence speed.

3Here, we adopt the most widely used alternate updating strategy. The simultaneous updating, i.e., O11 =
0k + nYr and Y41 = Yy + n(1 — Ox), would diverge in this case.



We further generalize the analysis to multi-dimensional bilinear system F(1,0) = 8T A1) — b0 —
c ") which is extensively used by researches for analysis of GAN stability [14} [12] 29} [13]. For
any bilinear system, with added term H (¢, 0) = (0 + ¢) 'B(6 + ¢) where B = (AAT)? to the
objective, we can prove that i) the optimum point remains the same as the original system (Proposition

[3) and ii) using alternate SGD algorithm for the new objective can guarantee convergence (Theorem
3). More discussions are given in Appendix

S Experiments

In this section, we conduct experiments to verify the effectiveness of proposed method from mul-
tifaceted views. The implementation codes are available at https://github.com/qitianwu/
SteinBridging.

5.1 Setup

We mainly consider evaluation with two tasks: density estimation and sample generation. For
density estimation, we expect the model to output estimated density values for input samples and
the estimation is supposed to match the ground-truth one. For sample generation, the model aims at
generating samples that are akin to the real observed ones.

We consider two synthetic datasets with mixtures of Gaussian distributions: Two-Circle and Two-
Spiral. The first one is composed of 24 Gaussian mixtures that lie in two circles. The second dataset
consists of 100 Gaussian mixtures densely arranged on two centrally symmetrical spiral-shaped
curves. The ground-truth distributions are shown in Fig. [f(a). Details for synthetic datasets are in
Appendix [E.T| Furthermore, we apply the method to MNIST and CIFAR datasets which require the
model to deal with high-dimensional image data.

In each dataset, we use true observed samples as input of the model and leverage them to train our
model. In synthetic datasets, we sample N; = 2000 and N2 = 5000 points from the ground-truth
distributions as true samples for Two-Circle and Two-Spiral datasets, respectively. The true samples
are shown in Fig. [ (a). In MNIST and CIFAR, we directly use pictures in the training sets as true
samples. The details for each dataset are reported in Appendix

We term our model Joint-W if using Wasserstein metric in (3) and Joint-JS if using JS divergence
in this section. As we mentioned, our model is capable for 1) yielding estimated (unnormalized)
density values (by the explicit energy model) for input samples and 2) generating samples (by the
implicit generative model) from a noise distribution. We consider several competitors for performance
comparison. For sample generation, we mainly compare our model with implicit generative models.
Specifically, we basically consider the counterparts without joint training with energy model, which
are equivalently valina GAN and WGAN with gradient penalty [[19], for ablation study. Also, as
comparison to the new regularization effects by Stein Bridging, we consider a recently proposed
variational annealing regularization [44] for GANs (short as GAN+VA/WGAN+VA) with denoising
auto-encoder [[1] to estimate the gradient for regularization penalty. For density estimation, we mainly
compare with explicit models. Specifically, we also consider the counterparts without joint training
with generator model, i.e., Deep Energy Model (DEM) using Stein discrepancy [18]. Besides we
compare with energy calibrated GAN (EGAN) [6] and Deep Directed Generative (DGM) Model [25]
which adopt contrastive divergence to train a sample generator with an energy estimator. The hyper-
parameters are tuned according to quantitative metrics (will be discussed later) used for different
tasks. See Appendix [E.3]for implementation details.

5.2 Density Estimation of Explicit Model

As shown in Two-Circle case in Fig[5, both Joint-JS and Joint-W manage to capture all Gaussian
components while other methods miss some of modes. In Two-Spiral case in Fig[4, Joint-JS and
Joint-W exactly fit the ground-truth distribution. Nevertheless, DEM misses one spiral while EGAN
degrades to a uniform-like distribution. DGM manages to fit two spirals but allocate high densities
to regions that have low densities in the groung-truth distribution. As quantitative comparison, we
study three evaluation metrics: KL & JS divergence and Area Under the Curve (AUC). Detailed
information and results are in Appendix and Table[6]respectively. The values show that Joint-W
and Joint-JS provide better density estimation than all the competitors over a large margin.
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(a) True (b) DEM  (¢) EGAN  (d) DGM (e) Joint-JS (f) Joint-W
Figure 4: Results for density estimation. (a) Densities of real distribution. (b)~(f) Estimated densities
given by the estimators of different methods on Two-Circle (upper) and Two-Spiral (bottom) datasets.
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Figure 5: Comparison for sample quality. (a) Samples from real distribution. (b)~(f) Generated
samples produced by the generators of different methods on Two-Circle (upper) and Two-Spiral
(bottom) datasets.

We rank generated digits (and true digits) on MNIST w.r.t densities given by the energy model in
Fig.[13] Fig.[I4]and Fig.[T5] As depicted in the figures, the digits with high densities (or low densities)
given by Joint-JS possess enough diversity (the thickness, the inclination angles as well as the shapes
of digits diverses). By constrast, all the digits with high densities given by DGM tend to be thin and
digits with low densities are very thick. Also, as for EGAN, digits with high (or low) densities appear
to have the same inclination angle (for high densities, ‘1’ keeps straight and ‘9’ ’leans’ to the left
while for low densities, just the opposite), which indicates that DGM and EGAN tend to allocate
high (or low) densities to data with certain modes and miss some modes that possess high densities in
ground-truth distributions. By contrast, our method manages to capture these complicated features in
data distributions.

We further study model performance on detection for out-of-distribution (OOD) samples. We consider
CIFAR-10 images as positive samples and construct negative samples by (I) flip images, (II) add
random noise, (III) overlay two images and (IV) use images from LSUN dataset, respectively. A
good density models trained on CIFAR-10 are expected to give high densities to positive samples
and low densities to negative samples, with exception for case (I) (flipping images are not exactly
negative samples and the model should give high densities). We use the density values rank samples
and calculate AUC of false positive rate v.s. true positive rate, reported in Table[3] Our model Joint-W
manages to distinguish samples for (II), (IT), (IV) and is not fooled by flipping images, while DEM
and EGAN fail to detect out-of-distribution samples and DGM gives wrong results, recognizing
flipping images as negative samples.

5.3 Sample Quality of Implicit Model

In Fig.[5]we show the results of different generators in synthetic datasets. For Two-Circle, there are
a large number of generated samples given by GAN, WGAN-GP and DGM locating between two
Gaussian components, and the boundary for each component is not distinguishable. Since the ground-
truth densities of regions between two components are very low, such generated samples possess
low-quality, which depicts that these models capture the combinations of two dominated features
(i.e., modes) in data but such combination makes no sense in practice. By contrast, Joint-JS and
Joint-W could alleviate such issue, reduce the low-quality samples and produce more distinguishable



Table 2: Inception Scores (IS) and Table 3: Area Under the Curve
Fréchet Inception Distance (FID) on (AUC) for OOD detection in
CIFAR-10 datasets. CIFAR-10 datasets.

MMD

Metod | IS | FID Method | I I I IV

WGAN-GP | 674+£0.041 | 42240572 DEM | 050 052 051 0.6
Energy GAN | 6.89+0.081 | 45.6+0.375
WGANAVA | 690£0.058 | 453+0307 ~DGM [ 100 100 1.00 0.82

DGM 6.51£0.041 | 488+0492 EGAN [ 050 042 030 052 Fjgyre 6:  Learning
Joint-W(ours) | 7.1240.101 | 410460546 Joint-W | 050 092 095 085 cypves in Two-Spiral.
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Figure 7: Generated digits given by the same noise z in Figure 8: %E;I)lpact of (a) noise in é‘;{a and (b)
adjacent training epochs on MNIST. insufficient data on model performance.

boundaries. In Two-Spiral, similarly, the generated samples given by GAN and WGAN-GP form a
circle instead of two spirals while the samples of DGM ‘link’ two spirals. Joint-JS manages to focus
more on true high densities compared to GAN and Joint-W provides the best results. To quantitatively
measure sample quality, we adopt Maximum Mean Discrepancy (MMD) and High-quality Sample
Rate (HSR). Details are in Appendix [E.4and results are in Table[6] where our models can outperform
the competitors over a large margin.

We report the Inception Score (IS) and Fréchet Inception Distance (FID) to measure the sample quality
on CIFAR-10. As shown in Table [2, Joint-W outperforms other competitors by 0.2 and achieves
5.6% improvement over WGAN-GP w.r.t IS. As for FID, Joint-W slightly outperforms WGAN-GP
and beats energy-based GAN and variational annealing regularized WGAN over a large margin. One
possible reason is that these methods both consider entropy regularization which encourages diversity
of generated samples but will have a negative effect on sample quality. Stein Bridging can overcome
this issue via joint training with explicit model. In practice, DGM is hard for convergence during
training and gives much worse performance than others.

5.4 Further Discussions

Enhancing the Stability of GAN. In Fig. [6 we present the learning curve of Joint-W compared
with WGAN and likelihood- and entropy-regularized WGAN. The curves depict that joint training
could reduce the variance of metric values especially during the second half of training. Furthermore,
we visualize generated digits given by the same noise z in adjacent epochs in Fig. [7. The results
show that Joint-W gives more stable generation in adjacent epochs while generated samples given
by WGAN-GP and WGAN+VA exhibit an obvious variation. Especially, some digits generated
by WGAN-GP and WGAN+VA change from one class to another, which is quite similar to the
oscillation without convergence discussed in Section 3.2. To quantify the evaluation of bias in model
distributions, we calculate distances between the means of 50000 generated digits (resp. images) and
50000 true digits (resp. images) in MNIST (reps. CIFAR-10). The results are reported in Table[5} We
can see that the model distributions of other methods are more seriously biased from true distribution,
compared with Joint-W.

Contaminated or Limited Data. In Fig.[8(a) we compare Joint-W with WGAN-GP for sample
generation on noisy input in Two-Circle dataset. Details are in Appendix [E.I] We can see that
the noise ratio in data impacts the performance of WGAN-GP and Joint-W, but comparatively, the
performance decline of Joint-W is less significant, which indicates better robustness of joint training
w.r.t. noised data. Moreover, in Fig. b), we compare Joint-W with DEM for density estimation with
insufficient true data in Two-Spiral dataset. When sample size decreases from 2000 to 100, the AUC
value of DEM declines dramatically. By contrast, the AUC of Joint-W exhibits a small decline when
the sample size is more than 500. The results demonstrate that Stein Bridging has promising power
in some extreme cases where the training sample are contaminated or limited.



6 Conclusions and Discussions

This paper aims at jointly training implicit generative model and explicit generative model via an
bridging term of Stein discrepancy. Theoretically, we show that joint training could i) enforce dual
regularization effects on both models and thus encourage mode exploration, and ii) help to facilitate
the convergence of minimax training dynamics. Extensive experiments on various tasks show that
our method can achieve better performance on both sample generation and density estimation.

Limitations. We mainly focus on GAN/WGAN as instantiations of implicit generative models
and energy-based models as instantiations of explicit models for theoretical analysis and empirical
evaluation. In fact, our formulation can also be extended to other models like VAE, flow model, etc.
to combine the best of two worlds. Furthermore, since we propose a new learning paradigm as a
piorneering endeavor on unifying the training of two generative models via concurrently optimizing
three loss terms, our experiments mainly focus on synthetic datasets, MNIST and CIFAR-10. We
believe our method can be applied to more complicated high-dimensional datasets given the promising
results in this paper.

Potential Societal Impacts. One merit of our method is that the joint training model makes it easier
to add inductive bias to the generative models, as discussed in Section 1 and 4.4. Such inductive
bias enforced manually can be used to control the distribution of output samples with some desirable
properties that accord with ethical considerations, e.g., fairness. Admittedly, such inductive bias
would also possibly be used by some speculators for generating false works for commercial purposes.
More studies are needed in the future to detect such works generated by machines in a more intelligent
way and further protect intellectual property of individuals.
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