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ABSTRACT

The evolution of digital communication systems and the designs of online platforms have inadvertently facilitated
the subconscious propagation of toxic behavior. Giving rise to reactive responses to toxic behavior. Toxicity in
online content and Artificial Intelligence Systems has become a serious challenge to individual and collective well-
being around the world. It is more detrimental to society than we realize. Toxicity, expressed in language, image,
and video, can be interpreted in various ways depending on the context of usage. Therefore, a comprehensive
taxonomy is crucial to detect and mitigate toxicity in online content, Artificial Intelligence systems, and/or
Large Language Models in a proactive manner. A comprehensive understanding of toxicity is likely to facilitate
the design of practical solutions for toxicity detection and mitigation. The classification in published literature
has focused on only a limited number of aspects of this very complex issue, with a pattern of reactive strategies
in response to toxicity. This survey attempts to generate a comprehensive taxonomy of toxicity from various
perspectives. It presents a holistic approach to explain the toxicity by understanding the context and environment
that society is facing in the Artificial Intelligence era. This survey summarizes the toxicity-related datasets and
research on toxicity detection and mitigation for Large Language Models, social media platforms, and other online
platforms, detailing their attributes in textual mode, focused on the English language. Finally, we suggest the
research gaps in toxicity mitigation based on datasets, mitigation strategies, Large Language Models, adaptability,
explainability, and evaluation.

1. Introduction

The rise of online platforms, social media, and Artificial Intelligence
(AI) has revolutionized how people communicate, share information,
and express opinions (Gao et al., 2020; Villate-Castillo et al., 2024).
While these technologies provide significant benefits, they are also the
source of toxicity, like hate speech, cyberbullying, misinformation, and
harassment (Lin et al., 2024b). The pervasive nature of toxicity in online
platforms and Al systems impacts individuals, society, and businesses,
and has regulatory implications (Kiritchenko et al., 2021).

Many synonymous terms are used in industry and academia to refer
to toxicity in digital media. A partial list includes words and phrases
such as hate, hate speech, offensive language, flaming, incivility, risk,
malicious, harmful, hateful sexual, illegal and abusive content, informa-
tion hazards, discrimination, bias, fake news, misinformation, human-
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computer-interaction harms, and cyberbullying (Kirk et al., 2022; Wang
et al., 2024d). Toxicity is further categorized into implicit and explicit,
based on target groups, political and social bias, illegal, violent, aggres-
sive, and more (Pachinger et al., 2023). These are most prevalent on
social media and other online platforms. Toxicity and harm have been
interpreted as distinct by some research (Wang et al., 2024d). In this
survey, we treat toxicity and harm as synonyms, with similar impacts.
Markov et al. (2023) highlighted the challenges in real-world toxicity
detection in Generative AI (GenAl). They emphasized the importance of
a well-motivated taxonomy of toxic content being fundamental to their
detection.

The research for detecting the toxicity in online platforms and AI Sys-
tems has picked up pace due to its ubiquitous and adverse psychological
impacts on society. Misinformation and fake news have a dramatic ef-
fect on public opinion and are likely to move society toward extremism
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Fig. 1. LLMs depicted as Kids, trained on Toxicity Ignorant Datasets, unable
to distinguish toxic language from normal language. Just as kids grow up in
their toxic environments unaware that it is toxic, when grow up as adults start
displaying toxic behavior same as their environments.

(Gjerazi & Skana, 2023; Lazer et al., 2018). Although individuals of all
generations are negatively impacted, the influence on adolescents’ fac-
ulties seems to be most pronounced (Lemaire et al., 2025).

Platform economy has taken over communication, and most plat-
forms either are beset with toxicity issues or are prone to harbor toxic-
ity in various ways (Villate-Castillo et al., 2024). Large Language Models
(LLMs) can be leveraged to detect toxicity in online platforms and detox-
ify them (Gallegos et al., 2024). LLMs are trained on very large language
corpora. The datasets are usually annotated, and not filtered, contain-
ing all types of implicit toxic words, explicit toxic words, and social bias.
Thus, LLMs trained on such a dataset also propagate the inherent tox-
icity of its dataset. An analogical depiction is shown in Fig. 1, where
LLMs are depicted as little kids unaware of toxicity, existing in an envi-
ronment where toxicity abounds. Kids grow up and become an integral
part of society with inherent toxic behavior, unaware that it is detrimen-
tal and that it should be avoided. LLMs are the underlying technology in
GenAl, which generates human-like responses to given prompts. Toxic-
ity is seen in their responses too. Moreover, using prompt engineering,
prompt injection, and jail-breaking attacks, toxicity can be deliberately
introduced (Liu et al., 2024; Wei et al., 2024; Xu et al., 2024). While
there has been tremendous improvement in GenAl, there is a need to
implement improved toxicity detection and detoxification (Kim et al.,
2024).

There is significant research on detection and detoxification of ex-
plicit, implicit, and biased toxicities. With current technological ad-
vancements, dealing with toxicity requires a careful understanding of
the environment and platform. Derave et al. developed a generic module
of digital platform (DP) ontology, based on DP attributes, DP attribute
values, DP software functionalities, DP types, and DP supported commu-
nication (Derave et al., 2021). It provides DP design gaps in DPs. The
advent of Web 2.0, linguistic toxicity was predominant in communica-
tion. Most research dealing with toxicity still focuses only on linguis-
tic expressions, and is usually classified as implicit and explicit toxicity
(Lewandowska-Tomaszczyk et al., 2023). Their semantics of the words
or phrases are used for classification as implicit or explicit. To mitigate
the impacts of toxicity comprehensively, we need to understand the en-
vironment in which it appears. Toxicity is a fatal disease that not only re-
quires diagnosis but also cure and prevention. This metaphor implies that
the Toxicity is a disease, diagnosis is detection, cure is detoxification, and
prevention requires an understanding of the environment and its source
and impacts on society.
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While there is tremendous effort in the research community to gener-
ate a taxonomy for toxicity in digital communication, with every passing
year and the advent of new technology, it is never complete. Our survey
provides a structured overview of toxicity in online platforms and Al sys-
tems. Based on the current state-of-the-art, we examine key areas such as
detection methods, mitigation strategies, detoxification techniques, and
bias-related concerns. Beyond technical approaches, we also explore the
psychological and societal consequences of toxic content, along with the
limitations of existing datasets. This work aims to inform future research
and support the development of safer, more inclusive digital ecosystems.
The main contributions of our survey are as follows.

e We present a holistic taxonomy of toxicity, capturing diverse forms
of harmful behavior, language, and content, in the context of various
platforms, including insights from human psychology.

e We systematically review over 200 studies addressing toxicity detec-
tion, mitigation, detoxification, associated biases, and the evolution
of digital communication and online platforms.

¢ We evaluate major toxicity datasets identifying key limitations such
as bias, annotation inconsistency, and coverage gaps.

e We examine the broader psychological and societal impacts of toxic

content on individuals and communities.

We identify open challenges and outline future research directions

to advance responsible and inclusive online and Al systems.

The remainder of this paper is structured as follows. In Section 2, we
discuss Background and Motivation for this survey. It includes the basic
terminologies used, why the study of toxicity matters, and outlines the
stakeholders of the toxicity ecosystem. In Sections 4 and 5, we discuss
a taxonomy of toxicity we have developed (Fig. 3). In Section 6, we
examine the impacts of toxicities on human psychology. In Section 7,
we collate and discuss the toxicity datasets, followed by detection and
detoxification research. In Section 8, we present the open challenges that
still need to be addressed and future directions. Finally, in Section 9, we
draw the conclusion of this survey.

2. Background and motivation

Modes of communication have evolved through history. Since 1792,
there has been rapid technological progress in communication. Dhin-
gra and Mudgal (2019) navigate the evolution of communication tech-
nology from the telegraph in 1792, the telephone in 1876, email
(ARPANET) in 1971, the World Wide Web in 1989, and Social Media
started in 2003. The emergence of Social Media Platforms (SMP) such
as Facebook in 2004, YouTube in 2005, Twitter in 2006, WhatsApp in
2009, Pinterest, and Instagram in 2010 have drastically altered the digi-
tal communication landscape. Currently, Al-powered Social Media have
taken over channels of communication. Vayadande et al. (2024) and
Shen et al. (2024) navigate through the evolution and impacts of Web
1.0 (1991-2004), Web 2.0 (2004-2024) to Web 3.0 (2020 onwards).
The use of AI improves user experience during enhanced communica-
tion, and the use of blockchain technology achieves safety, trust, pri-
vacy, and decentralization. Wang et al. (2024c) point to the increase
in probability of toxicity in Web 3.0 content, requiring effective gover-
nance policies while we move toward decentralization in Web 3.0. We
describe the basic terminologies used before getting into our motivation
of this survey.

2.1. Selected basic terminologies

» Toxicity is a term we use to signify a substance or language construct
or media element that highly impact an individual in a negative man-
ner. In online context, it is often derogatory, rude, harmful, and dis-
respectful. Toxic content induces stress, anxiety, suicidal thoughts,
depression, and loneliness. These are the least among the impacts on
society (Akar, 2025; Maleki et al., 2022).
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Implicit Toxicity is the use of language or media elements that can-

not be straightforwardly interpreted as toxic, but which suggest an

implied toxic meaning. It introduces toxicity indirectly, which of-
ten targets one or more individuals, races, or genders in context

(Baczkowska et al., 2025). It often involves use of figures-of-speech

like metaphor, simile, irony or sarcasm.

Explicit Toxicity is the direct and intentional use of toxic lan-

guage or media elements. It is aggressive and offensive. Bansal et

al. describe it as direct and intentional flaming (Bansal et al., 2011;

Lewandowska-Tomaszczyk et al., 2023).

o Fake News is not authentic news, created intentionally and propa-
gated via diverse users (Hu et al., 2025). It mimics real news con-
struct.

¢ Misinformation is incorrect information whose authenticity can be

verified as false but is generated unintentionally (Scheufele & Krause,

2019). It does not mimic real news. Disinformation is similar to mis-

information, but is intentionally created false information. A rumor

is unverified information that could be true or false.

Fallacy (Helwe et al., 2024) provides logical reasoning behind un-

true construct or falsehood. It is divided into three main types: ethos

(assuming false credibility), logos (false logic), and pathos (appeal-

ing to emotions). Fallacies provide support to fake news, misinfor-

mation, and disinformation dissemination.

e Illegal Content is comprised of unauthorized or authorized users

selling goods to evade taxes or the sale of smuggled goods, controlled

substances, weapons, wildlife, sexually explicit content or trafficking
in human, goods, or animals. Illegal content is unlawful and is regu-
lated by law (Dangsawang & Nuchitprasitchai, 2024; Mademlis et al.,

2024; Roy & Kumar, 2024; Singh & Nambiar, 2024).

Cyberbullying is bullying or threatening behavior on digital tech-

nology platforms (Ray et al., 2024).

e Modes are the media used to communicate ideas, information, opin-
ions, etc. They include text, audio, and video (Chandler & Munday,
2011).

+ Engagement refers to the ability of digital media to keep the user

highly interested or engaged.

Bias is a false pre-conceived notion based on skewed data or infor-

mation or expectation assessment or evaluation impacting a target

population (Delgado-Rodriguez & Llorca, 2004).

Implicit Bias is an unconscious inclination of one’s behavior towards

or against others’ race, identity, culture, background, color, ability,

community, gender, age, sexuality, nationality, status, religion, and

so on (Banaji et al., 2015).

e Social Bias is an occurrence of societal discrimination against a tar-
get group, person, ideas, or beliefs based on prejudices and stereo-
types prevalent in the society (Webster et al.,, 2022). Sap et al.
(2020a) developed so-called social bias frames to generate the So-
cial Bias Inference (SBIC) Dataset.

e Algorithmic Bias occurs when an algorithm outputs favors or ig-
nores particular target groups or individuals for the wrong reasons,
causing imbalanced impacts (Kordzadeh & Ghasemaghaei, 2022). It
can be divided in two categories. One is when Social Bias, as ex-
plained earlier, influences the training dataset and generates the
same bias in outputs (Johnson, 2021). The second is an intentional
bias built into the platforms to gear the users’ engagement and rev-
enue generation. The Netflix Documentary “The Social Dilemma,”
directed by Jeff Orlowski in 2020, has explained it exceptionally
well.

2.2. Why does toxicity matters?

Understanding the implications of online toxicity is crucial to ad-
dress and develop effective mitigation strategies. The implications in-
clude psychological harm, social division, proliferation of misinforma-
tion, ethical challenges, legal complexities, and economic disruptions
(Kiritchenko et al., 2021).
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Mental Health Impact on an individual: Toxicity emanating from
online and Al systems can significantly harm an individual’s mental
health (Si et al., 2022). Exposure to online cyberbullying, harassment,
and hate speech has been linked to increased anxiety, depression, stress,
self-harm, and suicidal ideation, particularly among adolescents and
marginalized communities (Twenge, 2020). Excessive exposure to on-
line toxic content can disrupt sleep patterns and elevate self-harm risks
(Twenge, 2020). The World Health Organization (WHO) has recognized
problematic internet use as a growing public health concern, with online
toxicity playing a significant role in reinforcing compulsive and harmful
digital behaviors (Kumar & Mondal, 2018; Sandua, 2024)

Societal Impact: Toxicity arising from Online and Al systems ex-
tends beyond individual harm, fueling societal issues like polarization,
proliferation of mental health crises, and unabated spread of misinfor-
mation (Fan et al., 2024a). Al algorithms amplify ideological divisions
by reinforcing pre-existing beliefs, making individuals more resistant to
opposing views (Biju & Gayathri, 2023; Guess & Munger, 2023).

Ethical Concerns: The ethical implications afflicting online and Al
systems are deeply rooted in questions of algorithmic responsibility,
bias, and digital rights (Cheng et al., 2021). Al-driven content moder-
ation and recommendation systems often contain inherent biases that
unequally impact certain demographic groups (Liu, 2024). Unregulated
toxicity can distort public discourse, spreading misinformation, ampli-
fying divisive narratives, and undermining trust in reliable information
sources (Manheim & Kaplan, 2019).

Legal and Regulatory Implications: Governments and interna-
tional bodies recognize the need for legal frameworks to regulate online
toxicity and moderation of Al-driven content (Evangeline, 2025). The
European Union’s Digital Services Act (DSA) and General Data Protec-
tion Regulation (GDPR) have established basic content moderation and
user protection standards, setting a global precedent for the regulation of
digital platforms (Bradford, 2023). As digital communications continue
to shape global discourse, addressing the challenges posed by toxicity
in online platforms and Al systems is critical for ensuring a safer, more
responsible, and equitable digital future (Stahl, 2021).

Business and Technological Risks: Toxicity is more than a social,
ethical, legal, or psychological issue; it is a silent killer (George, 2023). It
is also a significant risk to the integrity, reputation, and long-term sus-
tainability of online platforms, businesses, and Al-driven technologies
(Polemi et al., 2024). When users encounter abusive content, misinfor-
mation, or targeted harassment, they are more likely to disengage af-
fecting user retention, lower engagement rates, and a weakening sense
of community (Throuvala et al., 2021). The erosion of trust has far-
reaching consequences. Toxicity can result in income loss, advertising
reduction, and increased scrutiny and regulations (Beknazar-Yuzbashev
et al.,, 2025). It damages brand credibility, discourages potential in-
vestors, and creates legal liabilities (Keller, 2018). It challenges the cred-
ibility of automated systems. Addressing toxicity is not just an ethical
obligation, but a crucial business strategy. Ensuring a safe and trust-
worthy environment is essential for long-term growth, user satisfaction,
resilience, and technological reliability (Polemi et al., 2024).

2.3. Stakeholders of the toxicity ecosystem

The prevalence of toxicity in online platforms and Al systems neces-
sitates a collaborative effort among key stakeholders (Ognibene et al.,
2023). Key stakeholders include individuals, platform owners, policy-
makers, Al developers, researchers, clinicians, businesses, media and
news organizations, and educational and psychological testing institu-
tions. Online users and individuals should be responsible for spreading
and moderating toxic content, and SMPs should implement Al-driven
moderation strategies (Siapera, 2022). Online communities shape self-
regulation norms, contributing to either the mitigation or amplification
of toxicity (Zhang, 2024). Al developers create automated moderation
systems and toxicity control tools to enhance online safety and user ex-
perience (Zhang et al., 2022). Researchers study toxicity patterns and



S. Khapre et al.

Online Users

Individuals Religious and Cultural

Organizations

/ IA Developers
"// Online

Media and News
Organizations

Advertisers —\

Mental Health > . .
Professionals TOXlClty -

Researchers —¥%

Communities

Al Ethics and
Fairness Auditors

\ Content
Educational and _/4 \ Moderators
Psychological ) '
Institutions / Social Media
Platforms
Cybersecurity

Policy Makers
and Regulators

Experts

Fig. 2. Key Stakeholders in the ecosystem of online platforms and Al systems.
Each stakeholder has a role in the generation, detection, moderation, and miti-
gation of toxic content.

biases to improve detection mechanisms (Garg et al., 2023). Policy-
makers and regulators implement and enforce regulations to hold plat-
forms accountable for toxic content, fostering a safer digital environ-
ment (Flew, 2021). Businesses and advertisers prioritize brand safety
by advocating for faithful content policies and responsible platform
practices (Brown, 2020). Media and news organizations influence pub-
lic discourse on online platforms and toxicity of Al systems (Salminen
et al., 2020). Educational institutions promote digital literacy and study
the psychological impact of toxic interactions (Wardle & Derakhshan,
2017). Fig. 2 shows key stakeholders in the Online platforms and Al
systems ecosystem.

3. Systematic review methodology

This section outlines the systematic methodology adopted to collect
and analyze the literature on toxicity in online platforms and Al systems.
Following established guidelines for systematic reviews, we employed
the PRISMA framework (Moher et al., 2009) to ensure reproducibility
and transparency. The review process consisted of three main phases:
keyword formulation, source selection, and document filtering.

3.1. Keyword formulation

Given the interdisciplinary and evolving nature of toxicity in re-
search on online platforms and Al systems, we designed a comprehen-
sive keyword taxonomy spanning multiple conceptual and technical di-
mensions. Specifically, the search space was structured into six thematic
categories, as shown in Table 1. This taxonomy ensured the retrieval of
literature that addresses the phenomenon from various perspectives, in-
cluding detection algorithms, social implications, model debiasing, ex-
plainability, and mitigation strategies. The complete set of keywords is
presented in Table 1.

3.2. Search source

We performed a comprehensive literature search across four promi-
nent academic repositories: Google Scholar, ACM Digital Library, IEEE
Xplore, and the ACL Anthology. These platforms were selected for their
extensive coverage of computational linguistics, artificial intelligence,
and natural language processing research.

Keyword queries were formulated using logical OR operators within
each category and, where appropriate, combined using AND to ensure
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contextual specificity. For example: (“Toxicity” OR “Hate speech” OR
“Cyberbullying”) AND (“Toxicity detection” OR “LLM detoxification”). The
search covered works published between 2021 and 2025, with an
English-language restriction applied to narrow the scope and exclude
studies focused on multilingual and low-resource language settings. Du-
plicate records were removed before the screening process.

3.3. Document screening and inclusion criteria

An initial corpus of 4,094 documents was retrieved from the four
selected databases. After removing duplicate records, a total of 2023
unique entries remained for screening. Our team members indepen-
dently reviewed the titles and abstracts of these entries to assess their
relevance to the scope of this review. During this phase, studies were
excluded if they were non-peer-reviewed, had fewer citations, were out-
side the scope of computational sciences, or lacked methodological or
empirical relevance to toxicity in online platforms and Al systems.

Following the initial screening, 545 papers were identified for full-
text review. These articles were independently assessed by our team
based on the following inclusion criteria: (1) the study addressed the
detection or mitigation of hate speech, toxicity, offensive language, or
cyberbullying; (2) it employed computational approaches relevant to
online platforms or large language models (LLMs); and (3) it examined
at least one key dimension such as bias mitigation, detoxification, or psy-
chological impact. This structured evaluation resulted in the final inclu-
sion of 247 peer-reviewed publications for in-depth analysis. Among
these, 232 focused on tasks related to toxicity in online platforms and
Al systems.

Our methodology ensures a comprehensive and diverse corpus, rep-
resentative of current research in toxicity detection, and provides a solid
foundation for the analyses presented in subsequent sections.

4. Modalities and sources of toxicity
4.1. Modalities of toxicity

Toxicity in online platforms and Al systems exists in various modali-
ties, including text, images, audio, video, and multi-modal. The severity
of harm caused depends on how the content is consumed, shared, and
interpreted. The speed and reach of digital communication have acceler-
ated the growth of modern online platforms, also amplifying their effects
(Skiba, 2024). Each mode of toxicity presents unique challenges in de-
tection, moderation, and mitigation. This section provides an in-depth
discussion of the different modes of toxicity, their impact, and why they
are considered toxic in online platforms and Al systems.

4.1.1. Text-based toxicity

Text-based toxicity is one of the most widespread and studied modal-
ities of toxic and harmful content. The ability to quickly generate,
modify, and distribute text across multiple platforms makes it a pow-
erful medium for constructive and destructive discourse (Keen, 2011).
Textual toxicity is particularly harmful due to its scalability. One of the
primary reasons text toxicity is harmful is its direct psychological im-
pact (Saha et al., 2019; Scheuerman et al., 2021). For instance, harass-
ment, hate speech, and aggressive language can cause stress, anxiety,
and depression (Bilewicz & Soral, 2020). Text-based toxicity is aggra-
vated by anonymity and platform structures that enable rapid dissemi-
nation (Singh et al., 2022).

4.1.2. Image-based toxicity

Toxic images may display not only explicit content, but also spread
misinformation and visual hate speech, and become viral (Pandiani
et al., 2025). Images have an extraordinary power because they are pro-
cessed faster by the human brain than text and are often more emo-
tionally striking (Greenfield, 2015). A significant challenge with image-
based toxicity is its ability to bypass traditional moderation methods
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Table 1
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Keyword categories used for the systematic literature review. Each column represents a thematic category, listing the search terms used to collect relevant

literature on toxicity.
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Fig. 3. A Taxonomy of Toxic Content based on origination of digital communication in online platforms and Al systems via text, image, audio, video, and/or multi-
modal channel. Each mode of communication hosts toxicity divided mainly into information-based and interaction-based systems. Red color signifies the impact of
toxicity, green is toxicity in interaction-based platforms, Blue represents other online platforms, and blue-green color gradient in both social media and other online
platforms. The pink colored box encompasses the toxicities requiring the detection and mitigation effort.

(Li et al., 2025b). Explicit or violent images are relatively easy to detect.
However, more indirect forms of image toxicity, such as hate symbols
and deepfakes, are difficult to recognize (Aprin, 2024). Detecting these
forms of toxic image content requires advanced mechanisms. Image tox-
icity is particularly harmful due to its viral nature.

Manipulated images, offensive visual content, and graphic violence
can spread rapidly across online platforms (Duncombe, 2020). Such

widespread dissemination can have significant consequences in the real
world, affecting social behavior, politics, and legal outcomes. Mislead-
ing toxic images can provoke violence and fuel political and social con-
flicts (Gamson et al., 1992). Toxic images generated by Al such as fake
content, create a more significant challenge. Advances in generative Al
enable the creation of hyper-realistic images, which can be used for of-
fensive purposes, including generation of misinformation (Wang, 2023).
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Such content can seriously harm individuals and institutions. The legal
and ethical implications of Al-generated imagery remain a topic of on-
going debate worldwide (Florindi et al., 2024).

4.1.3. Audio-based toxicity

Audio-based toxicity is becoming widespread with the rise of voice
assistants, social audio platforms, and Al-generated speech technolo-
gies (Yu et al., 2023). Unlike text and images, audio-based tox-
icity presents a significant challenge due to its temporal nature
(Yousefi & Emmanouilidou, 2021). The harm caused by toxic audio con-
tent often arises from the emotional intensity conveyed through spoken
words (Soni & Singh, 2018). Elements like tone, pitch, and emphasis can
significantly shape the meaning of a statement. As a result, spoken or
audio toxicity can sometimes be more damaging than written words.
Detecting and moderating audio toxicity is difficult due to linguistic
and cultural diversity. Detection and moderation become more complex
when it is processed in real-time. Slurs, coded language, and harmful au-
dio toxicities may not always appear explicitly offensive. However, their
impact can vary according to the speaker’s intent, tone, and contextual
nuances.

Another emerging challenge is the use of Al-generated voices for
toxicity (Desai et al., 2024). Deepfake audio can realistically mimic real
people, enabling impersonation, fraud, and targeted harassment. This
technology has been exploited to create fake audio clips of political fig-
ures, spread misinformation, and manipulate public perception (Desai
et al., 2024)). The consequences of synthetic audio manipulation extend
across politics, journalism, and cybersecurity. Real-time audio toxicity,
such as harassment in various communities in online communications,
has been especially difficult to address (Blackwell et al., 2019). Toxic
audio messages delivered in situations when one is engaged in activities
such as driving can also be life-threatening. Live voice interactions are
challenging to monitor and moderate effectively. In addition, victims
often struggle to report toxic behavior, as conversations disappear once
they end, leaving no evidence (Saarinen, 2017).

4.1.4. Video-based toxicity

Toxicity delivered via video is multidimensional combining text, au-
dio, and visual elements. As a result, it is very difficult for online plat-
forms and Al systems to recognize and mitigate. Toxic videos can con-
tain explicit content, hate speech, misinformation, or violent material
(Arora et al., 2023). Due to its immersive nature, video content can
be more powerful and influential than other modalities (Tuong et al.,
2014). This increases the impact of toxic video content, making moder-
ation even more challenging (Gongane et al., 2022). The main concern
with video toxicity is its ability to manipulate emotions and perceptions
on a large scale. Videos are highly engaging and easily shareable, often
reaching a broad audience before moderation (AlShami et al., 2024).
Toxic content in videos has been linked to harassment campaigns and
the spread of conspiratorial thinking. This makes video-based toxicity
very dangerous and difficult to control (Maity et al., 2024a). The rise of
Al-generated deepfake videos has made it easy to incorporate harmful
content in seemingly realistic videos. Deepfakes can be highly realistic
synthetic videos that can misrepresent individuals and fake events (Han-
cock & Bailenson, 2021). Deepfake-powered video toxicity presents seri-
ous threats to political stability, personal integrity, and legal systems. As
deepfakes become more sophisticated, detecting and preventing video-
based toxicity becomes a significant challenge (Nasri et al., 2018).

4.1.5. Multi-modal based toxicity

Multi-modal toxicity involves blending of text, image, audio, and
video to create a more complex and often more dangerous form of toxic
content (Maity et al., 2024b). It leverages multiple forms of inputs, mak-
ing toxic and harmful content more engaging and impactful. The rise of
toxic memes, which blend text and imagery to create offensive or toxic
content is a perfect example. Memes spread toxicity effectively using hu-
mor and sharing to broadcast toxic content (Kiela et al., 2020). Due to

Expert Systems With Applications 299 (2026) 129832

the interplay of different content types, multi-modal toxicity is challeng-
ing to detect and moderate (Liu et al., 2024). Traditional Al moderation
tools struggle to analyze cross-modal interactions and toxicity (Nedun-
gadi et al., 2025).

4.2. Information-based toxicity

Online platforms facilitate businesses, education, gaming, banking
and financial services, healthcare, transportation, news media, legal,
public services, and many more. The content on these platforms is ei-
ther user-generated or Al-generated. It includes articles, reports, notifi-
cations, reviews, forms, chatbots, and many other formats.

When the content is generated by the subscriber or the user of a par-
ticular platform, it is referred to as user-generated content (Wyrwoll,
2014). Regardless of mode, such content in any mode is generated with
or without the help of Al tools or by hand. The content that uses Gener-
ative Al models (Cao et al., 2025) is usually referred to as Al-generated
content, discussed in detail in Section 4.4. Such content has the potential
to host at least one or all of the forms of toxicity. Both user-generated
and Al-generated content may host various fine-grained toxicities, ex-
plained in detail in Section 5.

4.3. Interaction-based toxicity

Various forms of digital communication like emails, messenger, and
social media permeate our lives, providing information pertaining to
news, education, business, healthcare, social engagements, government
engagements, and so on. These enhance the interaction among people
and entities. On various occasions, they host toxicity impacting social
or physical well-being.

4.3.1. Social media platforms

Social Media Platforms (Dhingra & Mudgal, 2019), as the name sug-
gests, are meant to bring people together. People share opinions, mo-
ments, pictures, videos, and stories informally. Over the last 2 decades,
SMPs have grown to be a multi-billion-dollar business. SMPs have added
various features like followers, reactions, comments, replies, stream-
ing services, advertisements, feeds, and political and social influencers,
to mention the least. The primary source of revenue for SMPs is user
engagement, i.e., how long users are glued to it. The algorithms im-
plemented track users’ activities. Based on users’ reactions, a platform
keeps flooding their accounts with relevant feeds, which may impact
users psychologically. Arguably, users get addicted to SMP and discon-
nected from mainstream communications. The 2020 Netflix Documen-
tary The Social Dilemma, directed by Jeff Orlowski, explains this phe-
nomenon, in particular how it impacts youth and adults, and how it
moves people to extremism without realization. The main attributes of
social media that engender toxicity in SMP are the following (Khapre,
2025).

* Engagement: Users engage in an SMP either by post or feed. They
can comment, reply, and share posts or feeds. These acts, in turn, may
exhibit their own biases (Cheng & Li, 2024; Shahbaznezhad et al.,
2021)

¢ Reactions: Users react to the posts and feeds using emojis (Cheng
& Li, 2024; Eberl et al., 2020; Lin & Utz, 2015). Negative reactions
may introduce toxicity, depending on the context. Another potent
form of reaction is to un-follow or un-friend a user. A reduction in
the number of followers or friends may impact upon an individual’s
self-esteem or affect in other ways. Negative reactions may signal
criticism, disapproval, or denial of relationships among the users,
potentially impacting their well being.

Algorithmic Bias: (Qiu, 2024; Thomas & Bhat, 2022) Two types of

algorithms employed in an SMP promote user engagement in the ad-

dictive content and for revenue generation from advertisement feeds.

The algorithms prioritize emotionally provocative or controversial
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content to maximize user interaction (Vosoughi et al., 2018; Zollo &
Quattrociocchi, 2018).

SMPs are afflicted with fine-grained toxicities discussed in Section 5.
Although knowingly or unknowingly, an SMP may host a lot of these
toxicities, with concomitant negative impacts on society and human psy-
chology (Ali et al., 2025; Ali, 2024; Antypas & Camacho-Collados, 2023;
Aprin, 2024; Beknazar-Yuzbashev et al., 2025; Dangsawang & Nuchit-
prasitchai, 2024; Duncombe, 2020; Fan et al., 2024a; Gao et al., 2020;
Gongane et al., 2022; Hall, 2025; Khapre, 2025; Ognibene et al., 2023;
Przybyla et al., 2024; Qiu, 2024; Ray et al., 2024; Roy & Kumar, 2024;
Shahbaznezhad et al., 2021; Sharma et al., 2023; Shu et al., 2020; Throu-
vala et al., 2021; Vaidya et al., 2020; Wyrwoll, 2014; Zhang, 2024).
SMPs are popular in society for a lot of their positive contributions.

4.4. Generative Al

Generative Al has revolutionized digital content creation, enabling
the rapid synthesis of text (Shakil et al., 2024a), images (Archana Balkr-
ishna, 2024), audio (Mitra & Zualkernan, 2025), and video (Zhou et al.,
2024). Large Language Models (LLMs) such as OpenAl’s GPT (Shakil
etal., 2024b), Google’s Gemini (Imran & Almusharraf, 2024), and Meta’s
LLaMA (Li et al., 2025a) generate human-like text by leveraging vast
datasets. However, these models are also prone to producing toxic con-
tent, including hate speech, misinformation, and offensive material, ei-
ther unintentionally or as a byproduct of biased training data (Gehman
et al., 2020; Vidgen et al., 2021a). The generative capability of Al in-
troduces significant challenges in online toxicity management, as it can
reinforce harmful biases, amplify misinformation, and propagate toxic
content at scale (Mathew et al., 2021; Sap et al., 2020a).

Generative Al interacts with online toxicity in several ways. First, it
learns from unfiltered internet data, which often contains implicit (Wen
et al., 2023) and explicit toxicity (Gunturi et al., 2023), leading to bi-
ased or harmful outputs (Wei et al., 2025). For example, LLMs trained
on datasets with racial or gender biases may inadvertently perpetuate
these biases in their outputs, even when explicitly instructed to avoid
toxic content (Bender et al., 2021). Second, generative Al enhances en-
gagement by generating content that aligns with user preferences, which
can sometimes exacerbate toxic behaviors (Garg et al., 2023). It is partic-
ularly true in SMP, where algorithms prioritize emotionally provocative
or controversial content to maximize user interaction (Vosoughi et al.,
2018; Zollo & Quattrociocchi, 2018). Third, generative Al hallucinates,
ie, it produces misleading or fabricated information, contributing to mis-
information and digital harm (Huang et al., 2025). Hallucinations can
lead to the spread of false narratives, which are often more engaging
and emotionally charged than factual content, making them more likely
to go viral (Shakil et al., 2024c).

Addressing these issues requires a nuanced understanding of how Al-
generated toxicity manifests and impacts online discourse. For instance,
the ethical implications of generative Al in content creation are pro-
found, including questions about accountability, transparency, and the
potential for misuse in spreading disinformation or hate speech (Dubber
et al., 2020). Moreover, the challenges of detecting and mitigating toxi-
city in multi-modal content (e.g., toxic memes, deepfake videos) further
complicate the landscape, as traditional text-based moderation tools are
often insufficient to address these emerging threats (Desai et al., 2024).

4.4.1. Engagement

Engagement in digital platforms is driven by algorithms that maxi-
mize user interaction, often by prioritizing emotionally provocative or
controversial content (Vosoughi et al., 2018; Zollo & Quattrociocchi,
2018). Generative Al plays a significant role in shaping these engage-
ment patterns, as its outputs are designed to be compelling and personal-
ized. While Al-generated content fosters meaningful interactions, it also
risks reinforcing toxic discourse through both implicit and explicit en-
gagement. This dual nature of engagement poses significant challenges
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for online platforms, as it can amplify harmful behaviors while simulta-
neously driving user retention and revenue (Selvakumar et al., 2025).

Implicit engagement refers to Al’s ability to subtly shape user inter-
actions without overt toxicity. Generative AI models reinforce biases by
personalizing content recommendations based on user behavior, which
can lead to echo chambers and filter bubbles (Jawad et al., 2024; Sia-
pera, 2022). These echo chambers intensify ideological divides, making
users more resistant to opposing views and indirectly perpetuating tox-
icity (Mathew et al., 2021). For example, Al systems that recommend
content based on user preferences may inadvertently reinforce harmful
stereotypes or prejudiced language structures, even when the content
itself is not explicitly toxic (Garg et al., 2023; Zellers et al., 2019).

Explicit engagement occurs when Al-generated content directly
propagates toxic discourse, often through misinformation, hate speech,
or inflammatory language (Fitzgerald et al., 2020; Gambin et al., 2024;
Mersha et al., 2024c). Al systems trained on unfiltered datasets are prone
to generating harmful content that fuels online harassment, cyberbully-
ing, and hate speech (Ali, 2024). For instance, toxic memes, deepfake
videos, and offensive chatbot responses illustrate how generative Al can
contribute to explicit online toxicity (Desai et al., 2024). These forms of
toxicity are particularly dangerous because they are designed to provoke
strong emotional reactions, making them highly shareable and difficult
to moderate (Lehtimiki, 2024).

The engagement-driven nature of online platforms exacerbates ex-
plicit toxicity by rewarding high-interaction content. Studies indicate
that Al-generated misinformation spreads significantly faster than fac-
tual content due to its provocative and emotionally charged nature
(Vosoughi et al., 2018). This presents a critical challenge for content
moderation, as automated AI models often fail to distinguish between
engaging content and harmful narratives (Siapera, 2022). For example,
Al systems may prioritize content that generates high engagement, even
if it contains hate speech or misinformation, due to the lack of robust
mechanisms for detecting and filtering such content in real time (Wang
et al., 2023).

Addressing explicit Al-driven toxicity requires improved content
moderation strategies, enhanced model transparency, and the integra-
tion of bias-mitigation techniques such as adversarial training and re-
inforcement learning with human feedback (Liu, 2023). Additionally,
platforms must adopt a multi-stakeholder approach, involving policy-
makers, researchers, and civil society organizations, to develop ethi-
cal guidelines and regulatory frameworks that balance user engagement
with online safety (Dubber et al., 2020).

4.4.2. Hallucination

Hallucination in generative Al refers to the phenomenon where mod-
els generate incorrect, misleading, or fabricated content, often presented
as factual information (Ji et al., 2023; Shakil et al., 2024c). This issue
is particularly problematic in toxicity management, as hallucinated out-
puts can contribute to the spread of misinformation, hate speech, and
harmful stereotypes (Tonmoy et al., 2024). Hallucinations arise from
several factors, including gaps in training data, overgeneralization, and
the probabilistic nature of language model generation (Guerreiro et al.,
2023). When Al systems lack sufficient context or rely on incomplete
datasets, they generate content that may appear plausible but is factu-
ally incorrect (Huang et al., 2024).

The impact of Al hallucinations extends beyond misinformation, in-
fluencing public opinion and exacerbating social biases. For instance,
Al-generated content can reflect and amplify racial, gender, and political
biases present in the training corpus, perpetuating toxic discourse (Fang
et al., 2024). In the context of large-scale SMP, hallucinated toxicity can
rapidly spread, leading to real-world consequences such as increased
polarization, targeted harassment, and even violence (Latif, 2025). For
example, Al-generated fake news or deepfake videos can manipulate
public perception, erode trust in institutions, and destabilize democratic
processes (Wang, 2023).
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Fig. 4. Implicit Toxicity: The message seems benign or normal, but based on the

context, the reader or viewer, or the environment, it intends to harm a particular

target. Such messages have implicit toxicity.
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Efforts to mitigate hallucinations in generative Al focus on refin-
ing training methodologies and improving model oversight. Techniques
such as knowledge-grounded generation, fact-checking mechanisms,
and adversarial training have shown promise in reducing Al halluci-
nations (Yu et al., 2024). Reinforcement learning with human feed-
back further enhances model reliability by aligning outputs with human
values and factual accuracy (Ouyang et al., 2022). However, balanc-
ing creativity with factual correctness remains a challenge, particularly
for models generating diverse and context-dependent content. For in-
stance, while reinforcement learning with human feedback can reduce
hallucinations, it may also limit the model’s ability to generate creative
or contextually rich responses, highlighting the need for a nuanced ap-
proach to hallucination mitigation (Yaprak, 2024).

Moreover, addressing hallucinations requires a multi-faceted ap-
proach that combines technical solutions with ethical and regulatory
frameworks. For example, platforms must implement robust content
moderation systems to detect and remove hallucinated content, while
policymakers must establish guidelines to hold AI developers account-
able for the societal impact of their systems (Bertoncini & Serafim,
2023). Collaborative efforts between researchers, developers, and pol-
icymakers are essential to ensure that generative Al systems are both
innovative and responsible (Kim, 2024).

5. Fine-grained toxicities

The main types of toxicities are implicit toxicity, as depicted in Fig. 4,
explicit toxicity, as depicted in Fig. 5, and fallacy. Explicit toxicity is also
called fallacy by some. Fallacy (Helwe et al., 2024) refers to misinfor-
mation, disinformation, and fake news. Often, toxicity has intentions of
causing harm and is targeted towards a particular target group (Mer-
sha et al., 2024c). There is another important type of toxicity without
a target which could be both implicit or explicit, containing profanity,
negative, derogatory, disrespectful, and offensive language (Pachinger
et al., 2023). Before 2021, this type was the focus of study and research
as detailed by van Aken et al. (2018). Despot et al. highlighted that
while analyzing implicit toxicity with figures of speech like metaphor,
explicit toxic content without a target tends to be ignored (Despot et al.,
2023; Strkalj Despot, 2023). They have presented a typology of implicit
toxicity such that explicit toxicity gets detected and not ignored. It in-
cludes caps lock and repetition as aggressive speech; irony, metaphor,
circumlocution, hyperbole, rhetorical questions, (re)interpretation, eu-
phemism, simile, contrast, and name-calling are fine-grained in dis-
crediting, insulting, dehumanization, derogation, and discriminatory
speech.

Pachinger et al. (2023) have analyzed various research and analyzed
a granular enumeration of harms caused by toxicity, including threats,
rudeness, mockery, name-calling, obscenity, pejorative content, aggres-
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Fig. 5. Explicit Toxicity: The explicit toxic message intends to harm a particular
target, which can be easily understood as toxic. Its implied meaning and actual
content have the same meaning. Some explicit toxic messages that do not have
a target are prevalent in the form of profanity, sarcasm, and other forms of
offensive language.

siveness, profanity, insult, discrimination, discrediting, irony, sarcasm,
derogation, hostility, hatefulness, vulgarity, and criminality.

Wang et al. (2024d) have come up with a taxonomy of LLM risks
containing three levels with an extensive fine-grain at the third level.
They have highlighted that the harms of toxicity may also be a result of
illegal trade, and illegal activities such as abuse, cruelty, exploitation,
intimidation, cyberbullying, harassment, baiting, stalking, and defama-
tion of vulnerable individuals. Harm could also arise from the endorse-
ment of unsafe items or practices, and the spread of information hazards
such as personally identifiable information pertaining to life, health, fi-
nance, education, biometrics of an individual, confidential, classified,
legal, and sensitive in nature. Such information may cause cyberse-
curity vulnerabilities, theft of technical data and internal communica-
tion, misinformation, disinformation, fake news, rumors, propaganda,
misinterpretation, and unreliable experts giving legal, medical, and fi-
nancial advice. Fine-grained target groups include those targeted for
age, disability, gender, sexual orientation, race, ethnicity, religion, re-
gion, color, body type, language, class, nationality, profession, and oth-
ers. Baczkowska et al. (2025) presented an implicitness model compris-
ing indirectness in rhetorical questions, figures of speech like simile,
metaphor, and irony (sarcasm), exaggerations in forms of over- or un-
derstatement; resulting in hostile, hateful, racist, homophobic, discredit,
threat, misogynic and vulgarism. Guest et al. (2021) presented a de-
tailed misogyny taxonomy based on online misogyny literature, mainly
on social media. They have classified online misogyny into 4 major
classes of derogatory, pejorative, treatment, and personal attacks; the
pejorative and personal attacks in their taxonomy seem explicit tox-
icity; the other two have further fine-grained toxicities, like deroga-
tory, which have intellectual and moral inferiority, sexual and physi-
cal limitations, and others. Treatment has threatening language involv-
ing physical and sexual violence, invasion of privacy, and disrespectful
actions involving controlling, manipulation, seduction, conquest, and
others.

Korre et al. (2024) have introduced a compelling perspective of the
legal framework in understanding hate speech, emphasizing its pros-
ecutable nature and significant variation across countries. They have
highlighted three legal approaches: content-, intent-, and harm-based,
having some target being impacted. The content-based approach has di-
rect content to offend certain people in society; intent-based is commu-
nication to its audience to invoke hatred towards minorities or other
hateful intentions, evidently not legitimate; and harm-based induces
lower self-esteem, physiological, emotional, and psychological condi-
tions, socio-economic distress, and societal withdrawal symptoms to its
victims.
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6. Convergence with human psychology

In human psychology, toxicity is usually referred to as incivility, offen-
sive behavior (Lewandowska-Tomaszczyk et al., 2023), flaming, and dig-
ital communication as computer-mediated communication (Bansal et al.,
2012; Lee, 2005). Flaming (aka Toxicity) can further be considered as
direct or indirect, and straight or satirical (Bansal et al., 2012). Ali et al.
(2025) demonstrated the relation of social media platform addiction
with impacts like depression, anxiety, bad interpersonal relationships,
hopelessness, guilt, sadness, lack of enthusiasm, sleep, and compul-
sive disorders, and called for mitigation strategies in digital platforms.
See Section 2.2 for mental health impact. Papageorgiou et al. (2024)
highlighted the need for safeguarding information integrity to ensure
societal trust in fallacy detection. Pennycook and Rand (2021) investi-
gated the psychology behind fallacy and why it spreads faster than real
news.

6.1. Biases in LLMs

The bias embedded during training significantly affects the devel-
opment of fair Al systems. A growing number of studies (Rao et al.,
2023) indicate that LLMs exhibit reasoning and self-improvement abili-
ties that resemble human cognitive processes, raising the possibility that
these models may develop virtual personalities and psychological char-
acteristics (Pan & Zeng, 2023). In particular, gender- and race-based dis-
criminatory content is often introduced during training (Cabrera et al.,
2023), which can embed harmful biases into the model’s responses and
behavior. These biases can manifest in stereotyping, preference for dom-
inant social norms, or assumptions based on patterns that do not reflect
the complexity of real-world experiences (Ferrara, 2023). The high pa-
rameterization of modern LLMs, while enhancing capacity, introduces
multidimensional interactions that are difficult to predict and manage.
Bai et al. (2024) reported that the most substantial biases are found in
categories related to race, followed by gender, health, and religion. One
illustrative example of gender bias is the reinforcement of exclusionary
language norms, such as referring to “both genders,” which implicitly
excludes non-binary identities (Bender et al., 2021). Despite increased
attention to these challenges, much of the current bias research in LLMs
falls short in clearly identifying who is harmed, why the behavior is
harmful, and how it reflects and reinforces social hierarchies (Blodgett
et al., 2020). While all LLMs exhibit some level of bias, there are sig-
nificant variations among them. Models with more parameters, such as
GPT-4, GPT-3.5-Turbo, Claude3-Opus, and Claude3-Sonnet, as well as
LLaMA2Chat-70B and 13B, tend to display more pronounced implicit
biases. In contrast, smaller models like LLaMA2Chat-7B and Alpaca7 B
show substantially lower bias levels (Kumar et al. , 2024).

6.2. Discrimination in LLMs

Discrimination in LLMs can manifest in both direct and indi-
rect forms. Direct discrimination involves overtly unequal treatment
based on group membership. For instance, when LLM-powered resume-
screening tools reinforce existing hiring inequities (Ferrara, 2023). In-
direct discrimination occurs when model outputs, while seemingly neu-
tral, rely on proxy variables that disproportionately disadvantage cer-
tain groups. This can be seen in LLM-assisted healthcare systems, where
demographic proxies contribute to inequities in patient care (Ferrara,
2023). Many approaches, for example, rely on the implicit assumption
that model outputs should be independent of social group identifiers,
yet they often fail to explicitly articulate the underlying social or ethi-
cal values that support this assumption. Furthermore, inconsistency in
how bias is defined and a lack of meaningful engagement with structural
power dynamics hinder the creation of robust and equitable solutions
(Blodgett et al., 2020).
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6.3. Personality Types and Toxicity

Wang et al. (2025) showed in their experiments using the HEXACO
framework on three LLMs, that the low levels of sensitivity of these six
personality traits of Honesty-Humility, Emotionality, eXtraversion, Agree-
ableness, Conscientiousness, and Openness to Experience, produce higher
levels of toxicity and bias in their responses. Serapio-Garcia et al. (2023)
through experiments have shown that the LLMs have a synthetic per-
sonality and can be fine-tuned to mimic desired personality traits. Pan
and Zeng (2023) used another psychological test MBTI (Myers-Briggs
Type Indicator), with dichotomies of extraversion, introversion, sensing,
thinking, intuition, feeling, judging, and perceiving. They have shown
that LLMs innately possess some personality traits. In a similar study,
Jiang et al. (2024) used Big Five Inventory test on LLMs with personal-
ity profiles, and their self-reported evaluations were consistent with the
LLMs’ personality profiles. All these psychological evaluations of LLMs’
personality traits provide a mitigation strategy that can be built into the
LLMs by fine-tuning them with higher sensitivity, reducing bias and tox-
icity in LLM-generated content. At the same time, one should be careful
during LLMs training, so that it avoids less sensitive personality traits
which might otherwise make it generate toxic contents.

6.4. Issue-based discussions and political polarization

Although digital platforms allow open discourse among diverse
populations, they are also breeding grounds for toxicity in politically
charged conversations. Gao et al. (2024) analyzed over 40 million Red-
dit comments and found that incivility, including vulgarity, aspersion,
and name-calling, is more prevalent in politically biased forums. Peo-
ple are more likely to respond uncivilly to those with opposing views.
Moreover, toxic comment threads tend to attract more participation but
also escalate in hostility. Exposure to personal attacks often leads users
to disengage from political spaces. If LLMs are trained on such content,
they may inadvertently learn and replicate these patterns, reflecting par-
tisan toxicity and asymmetrical ideological bias. For instance, certain
forms of incivility may be overrepresented by specific political groups,
which in turn can influence how models respond to politically sensitive
prompts. Gao et al. (2024) also found that both left-leaning and right-
leaning individuals became more uncivil when engaging with opposing
views, though right-leaning users exhibited higher levels of all incivil-
ity subtypes except third-party attacks. The most prominent difference-
interpersonal name-calling-was 177 percent higher among right-leaning
users. In a related study, Rozado (Rozado, 2023) administered 15 politi-
cal orientation assessments to ChatGPT and reported a tendency for the
model to favor left-leaning perspectives. However, this finding should
be interpreted cautiously due to the limited number of tests and the
exploratory nature of the analysis.

In conclusion, LLMs not only mirror the toxic, biased, and polar-
ized content present in online human communication but also risk rein-
forcing these tendencies when not properly constrained. Understanding
these interactions is crucial for developing more equitable, responsible,
and psychologically aware Al systems.

7. Toxicity mitigation

Toxicity mitigation mechanism requires a dataset, detections, and
detoxification mechanisms (framework, model, or techniques). All the
surveyed literature is summarized in Fig. 6 based on broadly classified
domains as Web or SMP, Fake News or Misinformation, and LLM. Most
of the models developed or proposed can be tested in at least one of these
domains. Web or SMP toxicity requires a dataset of text sequences taken
from SMP, gaming, healthcare, education, or other web-based platforms
for detection models, and counterspeech for moderation or detoxifi-
cation. Fake news or misinformation requires a fallacy-based strategic
detection model, where detoxification is quite challenging. The fallacy
datasets are created using Gossipcop and Politifact web databases. And
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~ be: binary & multiclass SELF-GUARD(x), AEGIS(x), GuardFormer(mx), NeMo(mx), CF-Detoxsigtec(X)
j = m: implicit, x: explicit

mx: implicit & explicit

Fig. 6. Summary of Toxicity Mitigation mechanism, which includes dataset, detection, and/or detoxification mechanisms. Their references are listed in the Tables 2

and 3.

LLMs are the model itself and require design modification within the
model to allow detection and detoxification. Toxicity datasets for LLMs
are datasets of question-answer pairs. In Fig. 6, each listed dataset is
suffixed with two parameters in parentheses, i’ and ’’. Each listed de-
tection and detoxification method has a suffix in parentheses ’j’. Where
’i’ is either binary ’b’ or multi-class ’c’ or both ’b¢’. The recent momentum
in research papers published by year is shown in Fig. 9. The toxicity mit-
igation research has shown momentum in 2024 using LLMs as detailed
in Table 3.

7.1. Toxicity datasets

Toxicity datasets used in surveyed research are collated in Table 2
and is summarized in Fig. 7. The datasets used vary by application
domains and research objectives. The datasets are usually curated for
specific application domains. Thus, some are binary datasets (Cui & Lee,
2020; Gossipcop, 2025; Hartvigsen et al., 2022; Pdldvere et al., 2023;
Vidgen et al., 2021b; Zheng et al., 2024) whereas others are multiclass.
Many datasets are multi-label where the examples have primary hate
classifications like hate and not hate, secondary labels for the target class,
and additional fine-grained labels (Barikeri et al., 2021; Dhamala et al.,
2021; ElSherief et al., 2021; Garg & Sharma, 2020; Ghosh et al., 2024;
Helwe et al., 2024; Ji et al., 2024; Kirk et al., 2022; Lin et al., 2022;
Mathew et al., 2021; Sakketou et al., 2022; Sap et al., 2020b; Shaikh
et al., 2023; Shen et al., 2025; Smith et al., 2022; van Aken et al., 2018;
Verhoeven et al., 2024; Wang et al., 2024a,d). AEGISSAFETYDATASET
(Ghosh et al., 2024), BeaverTails (Ji et al., 2024), Do-Not-Answer
(Wang et al., 2024d), HolisticBias (Smith et al., 2022), and HarmfulQ
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Fig. 7. Summary of Toxicity Datasets creation over the last five years for Fal-
lacy, LLMs, Online Platforms (OP), and Emoji. The Y-axis is the number of
datasets.

(Shaikh et al., 2023) are datasets used in toxicity detection and
detoxification in LLMs. These are multiclass datasets curated for LLM
safety. Thoroughly Engineered Toxicity (TET) (Luong et al., 2024),
MultiParaDetox (Dementieva et al., 2024), ParaDetox (Logacheva
et al.,, 2022), RealToxicityPrompts (Gehman et al., 2020), and Red-
ditBias (Barikeri et al., 2021) are toxic and paraphrase pairs datasets
for LLMs safety. TRaml/safe-guard-prompt-injection,! deepset/

1 https://huggingface.co/datasets/xTRam1/safe- guard-prompt-injection
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Table 2
Toxicity Datasets; [* Multi-class and Multi-label for each class and target group, # Binary with Multi-label for Hate class and Target
group, @ Binary with Two Labels each, - Neither binary nor multiclass (Question-answer type dataset)].

Multiclass Number

/Binary of
Dataset Year /Both classes Size Purpose
HateBenchSet (Shen et al., 2025) 2025 Multiclass 34 7838 benchmarking detectors for LLM-
-generated content
AEGISSAFETYDATASET (Ghosh et al., 2024) 2024 Multiclass 15 26,000 Adaptive content safety in LLM
BeaverTails (Ji et al., 2024) 2024 Multiclass 14 360K QA Pairs for Safety of LLMs
TwitterHateSpeech (Verhoeven et al., 2024) 2024 Multiclass 3 24.8K Explicit hate detection
DynaCounter (Chung & Bright, 2024) 2024 - - 1911 Abuse and reply pair with target group
label specific to Football Premier league
IntentCONANv2 (Hengle et al., 2024) 2024 - - 3488 4 counterspeech for each hate speech
instance of positive, informative,
questioning and denouncing
Hatemoderate (Zheng et al., 2024) 2024  Binary 2 7.6K Hate speech policy or rules compliance
Do-Not-Answer (Wang et al., 2024d) 2024  Multiclass 6 939 Suitable for LLMs safety (referred as
toxicity in this paper) training
Multilevel Annotated Fallacy 2024 Both 23 9745 2 classes at Level 0, 3 classes at Level 1
(MAFALDA) (Helwe et al., 2024) and 23 classes at level 3
Thoroughly Engineered 2024 - - 2546 Dataset of prompts to break the
Toxicity (TET) Luong et al. (2024) protective layers of LLMs
SafeEdit (Wang et al., 2024a) 2024 Multiclass 9 8100 Detection and detoxification in web or
SMP SafeEdit
MultiParaDetox (Dementieva et al., 2024) 2024 - - 16K Extending ParaDetox, supports
Russian, Ukranian and Spanish
CivilComments (Duchéne et al., 2023) 2023 Both 25 1.8M Unintended bias Classification
PolitiFact-Oslo Corpus (Poldvere et al., 2023) 2023  Binary 2 2745 Fake news analysis and detection
HarmfulQ (Shaikh et al., 2023) 2023  Multiclass 6 200 Prompts, zero-shot chain of thoughts
increases bias and toxicity with model size
TOXIGEN (Hartvigsen et al., 2022) 2022 Binary 2 274,186 Detection in online platforms
TruthfulQA (Lin et al., 2022) 2022  Multiclass 4 817 817 questions that span 38 categories
FACtuality & pOlitical blas 2022  Multiclass 65 3.3M 4150 news-spreading users with
Dataset (FACTOID) (Sakketou et al., 2022) 3.3M Reddit posts
HateMojiCheck (Kirk et al., 2022) 2022  Multiclass 7 3930 Detection of emoji based Toxicity
HateMojiBuild (Kirk et al., 2022) 2022  Both 54 5912 Hate/non-hate; 54 target groups
HolisticBias (Smith et al., 2022) 2022 Multiclass 600 45K Prompts dataset expanded to
769 descriptors
ParaDetox (Logacheva et al., 2022) 2022 - - 10K English toxic & paraphrase pairs in LLMs
Implicit Hate Speech Corpus (ElSherief et al., 2021) 2021 Both 7 22K Implicit hate detection
HateXplain* (Mathew et al., 2021) 2021 Multiclass 3 20K Implicit hate detection with 10
target group labels
DynaHate# (Vidgen et al., 2021b) 2021 Binary 2 40K Implicit hate detection; Hate class with
6 labels and 29 target group labels
Bias in Open-Ended Language 2021 Multiclass 5 23,679 5 domains with total of 43 target
Generation Dataset (BOLD) (Dhamala et al., 2021) groups
Multitarget-CONAN (Fanton et al., 2021) 2021 - - 5000 Hate speech and counter Narrative pairs
Bot Adversarial Dialogue 2021 - - 70K ChatBot safety 5K dialogues and
(BAD) Xu et al. (2021) 70K utterances
RedditBias Barikeri et al. (2021) 2021 Multiclass 4 11,873 Bias on 4 dimensions: religion, race,
gender and orientation
Online Misogyny EACL2021 Guest et al. (2021) 2021 Multiclass 5 6.567K Online Misogyny collected from Reddit
posts, annotated by trained annotators
Social Bias Inference 2020  Multiclass 7 150K Implicit hate with 7 variables; up to 3
Corpus* (Sap et al., 2020b) multi-labels; target group having 16 labels
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Table 2
Continued.
Multiclass ~ Number
/Binary of
Dataset Year /Both classes Size Purpose
CoAID @ (Cui & Lee, 2020) 2020  Binary 2 5.2K Misinformation regarding COVID with
fake or real classes
RealToxicityPrompts (Gehman et al., 2020) 2020 - - 100K Sentence paired with toxicity scores
PolitiFact (Garg & Sharma, 2020) 2020 Multiclass 6 21K Dataset of political enws
FakeNewsNet (Shu et al., 2020) 2020  Binary 2 2.67B Repository of Politifact and GossipCop
Jigsaw Toxic Comment 2018  Multiclass 6 159K Curation of Wikipedia Comments for
Classification Challenge (van Aken et al., 2018) Kaggle hosted competition in 2018
GossipCop (Gossipcop, 2025) 2009  Binary 2 22.152K  Fake or Real; subset from a fact-checking
website created in 2009
7 18
memoji mFallacy mLLM mOnline Platform 16 .
6 M Detection
14 L
5 12 m Detoxification
4 10
8
3 6
: 2 - - .
0 I I I I II 2021 2022 2023 2024 2025
Tiny Small Medium Medium-High Large Very Large

Fig. 8. Datasets size distribution: Y-axis is number of datasets, and X-axis is
dataset size range where Tiny is <1000, Small is between 1000 and 9999,
Medium is between 10,000 and 39999, Medium-High is between 40,000 and
129999, Large is between 130,000 to 299999, and Very Large is 300,000 and
above.

prompt-injections®> are Prompt Injection datasets, and Imsys/toxic-
chat,® SetFit/toxic_conversations_50k* are toxicity datasets from
Huggingface. TruthfulQA (Lin et al., 2022) is a dataset used to check
truthful answers generated by LLM for the questions. BAD (Xu et al.,
2021) is a dataset for chatbot safety. TOXIGEN (Hartvigsen et al.,
2022), Implicit Hate Speech Corpus (ElSherief et al., 2021), Social Bias
Inference Corpus (Sap et al., 2020b), HateXplain (Mathew et al., 2021),
DynaHate (Vidgen et al.,, 2021b), TwitterHateSpeech (Verhoeven
et al., 2024), HateMojiCheck (Kirk et al., 2022), HateMojiBuild (Kirk
et al., 2022), CivilComments (Duchéne et al., 2023), and Jigsaw Toxic
Comment Classification Challenge (van Aken et al., 2018) are the
datasets for toxicity detection in the web/SMP context. DynaCounter
(Chung & Bright, 2024), IntentCONANv2 (Hengle et al.,, 2024),
Hatemoderate (Zheng et al., 2024), BOLD (Dhamala et al., 2021),
SafeEdit (Wang et al.,, 2024a), Multitarget-CONAN (Fanton et al.,
2021), and HateBenchSet (Shen et al., 2025) are datasets for toxicity
detection and detoxification in web/SMP. GossipCop,”> CoAID (Cui
& Lee, 2020), FACTOID (Sakketou et al., 2022) MAFALDA (Helwe
et al., 2024), PolitiFact (Garg & Sharma, 2020) PolitiFact-Oslo Corpus
(Poldvere et al., 2023), FakeNewsNet (Shu et al., 2020) are datasets
for fallacy detection. As shown in Fig. 8, most of the datasets are
small and cannot be used in a real-world application. Only 11 datasets
namely, RealToxicityPrompts, Bot Adversarial Dialogue, HolisticBias,
DynaHate, Jigsaw Toxic Comment Classification Challenge, Social
Bias Inference Corpus, TOXIGEN, FakeNewsNet, FACtuality & pO-
litical blas, BeaverTails, and CivilComments, can be used for future

2 https://huggingface.co/datasets/deepset/prompt-injections

3 https://huggingface.co/datasets/lmsys/toxic-chat

4 https://huggingface.co/datasets/SetFit/toxic_conversations_50k
5 https://huggingface.co/datasets/osusume/Gossipcop
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Fig. 9. Toxicity mitigation research since 2021. Y-axis is the number of research
papers published.
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Fig. 10. The involvement of LLMs in Toxicity Detection and Mitigation has been
increasing rapidly since 2023, compared with other methods.

research, providing generalization. Out of these, only two of them,
RealToxicityPrompt include implicit toxicity and Beavertails for explicit
toxicity, can be used for detoxification. The remaining smaller datasets
are mainly curated to prove the toxicity problems and call for further
research.

7.2. Toxicity detection

Toxicity detection is a process of implementing a mechanism to
identify a toxicity incident in communication in a given environ-
ment. Detection techniques may or may not be LLM-based, depend-
ing on the platforms, although the trend seems to move towards LLM-
based approaches as shown in Fig. 10. In this paper, both LLM-based
and non-LLM-based detection techniques are reviewed and presented
in Table 3. It is evident that different LLMs have different defini-
tions of toxicity and approaches for detection (Shen et al.,, 2025).
Koh et al. (2024) proposed a framework for evaluating toxicity with
variable definitions, emphasizing the flexibility of the toxicity metric
and demonstrating the adaptability of LLMs to prompts. To train tox-
icity detectors, some researchers have generated datasets like TOXI-
GEN, AEGISSAFETYDATASET, HateBenchSet, and HateXplain (refer to


https://huggingface.co/datasets/deepset/prompt-injections
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https://huggingface.co/datasets/SetFit/toxic_conversations_50k
https://huggingface.co/datasets/osusume/Gossipcop
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Summary of toxicity detection and mitigation research presented in this survey. NDS = Novel Dataset; NFW = Novel Framework;
NMT = Novel Model or Technique; UEM = Used Established Models/Benchmarks; WEB = Content hosting websites like Wikipedia;
InfoG = Info-Graphics; GP = Gaming Platforms; DET = Detection; MTG = Mitigation; FN&M* = Fake News and Misinformation.

Toxicity Research Year NDS NFW NMT UEM  Domain Mode DET MTG  Remarks
HateBench (Shen et al., 2025) 2025 Yes Yes No Yes WEB Text Yes No Explicit
Ismail et al. (2025) 2025 No Yes Yes No GP Text Yes No Implicit
Zheng et al. (2025) 2025 No No Yes Yes LLM Text Yes Yes Explicit
ToxEdit (Zhang, 2025) 2025 No No Yes Yes LLM Text Yes Yes Explicit
LATTE (Koh et al., 2024) 2024 No Yes No Yes LLM Text Yes No Both
SEAS (Diao et al., 2024) 2024 Yes Yes No Yes LLM Text Yes Yes Explicit
Goodtriever (Ermis et al., 2024) 2024  No Yes No Yes Any Text Yes Yes Explicit
Fu et al. (2024) 2024 Yes No No Yes LLM Text Yes Yes Explicit
ADPO (Kim & Lee, 2024) 2024 No No Yes Yes LLM Text Yes Yes Explicit
CF-DetoX;,,,. (Bhan et al., 2024) 2024  No No Yes No Any Text Yes Yes Explicit
Lin et al. (2024a) 2024 No Yes No Yes LLM Text Yes Yes Explicit
RIDERS (Li et al., 2024) 2024 No No Yes Yes LLM Text Yes Yes Explicit
DETOXIGEN (Niu et al., 2024) 2024 No Yes Yes No LLM Text Yes Yes Explicit
CoARL (Hengle et al., 2024) 2024  No Yes No Yes Web Text Yes Yes Explicit
MICo (Siegelmann et al., 2024) 2024 Yes No Yes Yes LLM Text Yes Yes Explicit
Schifer et al. (2024) 2024 No No Yes No Web Text Yes Yes Explicit
Wang et al. (2024b) 2024  Yes No Yes Yes LLM Text Yes Yes Explicit
ToxCL (Hoang et al., 2024) 2024 No Yes Yes No SMP Text Yes No Implicit
Verhoeven et al. (2024) 2024 No No Yes No SMP Text Yes No Explicit
BeaverTails (Ji et al., 2024) 2024 Yes No No Yes LLM Text Yes Yes Explicit
SELF-GUARD (Wang et al., 2024e) 2024 No No Yes Yes LLM Text Yes Yes Explicit
AEGIS (Ghosh et al., 2024) 2024 Yes Yes Yes No LLM Text Yes Yes Both
Chung and Bright (2024) 2024  Yes No Yes No SMP Text Yes Yes Explicit
GuardFormer (O’Neill, 2024) 2024 Yes No Yes Yes LLM Text Yes Yes Both
SharedCon (Ahn et al., 2024) 2024 No No Yes No WEB/SMP Text Yes No Implicit
Hu et al. (2024) 2024 No No Yes No LLM Text Yes Yes FN&M
BiasAlert (Fan et al., 2024b) 2024 No No No Yes LLM Text Yes No Both
DisCGen (Hassan & Alikhani, 2023) 2023 Yes Yes No Yes LLM Text Yes Yes Both
Markov et al. (2023) 2023 No Yes Yes No WEB Text Yes No Explicit
NeMo (Rebedea et al., 2023) 2023 No Yes Yes No LLM Text Yes Yes Both
HateMoji (Kirk et al., 2022) 2022 Yes No No Yes SMP Text Yes No Explicit
Factoid (Sakketou et al., 2022) 2022 Yes No No Yes WEB/SMP Text Yes No FN&M*
HSBERT (Toraman et al., 2022) 2022 Yes No No Yes SMP Text Yes No Explicit
CapsNet- 2022 Yes No Yes No SMP Text Yes No Explicit
ConvNet (Kumar & Sachdeva, 2022) Image/InfoG

HateXplain (Mathew et al., 2021) 2021 Yes No Yes Yes SMP Text Yes No Explicit
LFTW (Vidgen et al., 2021c) 2021 No Yes Yes No SMP Text Yes No Both
Guest et al. (2021) 2021 Yes No No Yes SMP Text Yes No Explicit
Raj et al. (2021) 2021 No Yes No No Web Text Yes No Explicit
RedditBias (Barikeri et al., 2021) 2021 Yes Yes No Yes Web/SMP Text Yes Yes Both

Toxicity Dataset Table 2). Recently, many researchers have generated
LLM-based techniques and frameworks. A notable approach called
ToxCL (Hoang et al., 2024), brings a new perspective by not just de-
tecting toxicity, but also explaining the detected instance. Explainable
Al (XAl is a research area to build transparency and trustworthiness
of a model (Mersha et al., 2025a,b). It increases detection performance
compared to developing separate models for detection and explanation.
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In the following sections, we have listed the broader types of toxicity
research.

7.2.1. Detection of explicit toxicity

A recent study conducted by Shen et al. (2025) on the detec-
tion of explicit toxicity in LLM-generated web content highlights
limitations in the detection techniques that enable adversarial at-
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tacks on LLMs with greater efficiency. HateBench (Shen et al., 2025)
is a novel framework to create a dataset dynamically. It utilizes
an ensemble of 8 models, out of which 4 are research (LFTW,
TweetHate (Antypas & Camacho-Collados, 2023), HSBERT, and Bert-
HateXplain) and 4 are commercial models (Perspective, Moderation,
Detoxify-original, and Detoxify-unbiased). The study curated a dataset
and proposed a detection mechanism for web content. The purpose
of this research is to highlight that it is easy to launch hate cam-
paigns without being detected, calling for a rigorous research effort
in LLM Safety and detoxification. Although this framework cannot be
used in real-world toxicity mitigation, it provides a base for future
research.

Verhoeven et al. (2024) proposed another toxicity detection mecha-
nism in SMP using Community models’ generalization via graph meta-
learning. They have trained the model on GossioCop and evaluated on
CoAID and TwitterHateSpeech. They have pointed out that such mod-
els are either transductive (assumption: graphs are static and do not
change) or inductive (assumption: graphs change all the time). They
have pointed out the absence of datasets in inductive social graphs and
achieved generalization using graph meta-learning. Although their re-
sults are encouraging, they have pointed out that further work is re-
quired to allow such a solution to be implemented in real-world appli-
cations.

Markov et al. (2023) proposed a detection mechanism (Moderation
API) for web content on a 219K dataset of real-world, synthetic, and pro-
duction content. They have acknowledged that their model suffers from
bias, fairness, robustness, and multilingual support issues and requires
further red-teaming and active learning experiments. Their dataset an-
notation is based on their taxonomy of eight categories and further sub-
categories of undesired content or toxicity. Imbalance of data categories
is another problem to solve; using data augmentation is suggested.

In developing HateMoji (Kirk et al., 2022) Kirk et al. curated two
datasets, HateMojiCheck and HateMojiBuild, and proposed a detection
mechanism for SMP where emojis are used in hateful language expres-
sions. While they have curated a multiclass dataset, their experiments
for hate detection detect binary level only. Their experiments only in-
cluded six identities and had limited scope.

In creating HSBERT (Toraman et al., 2022) Toraman et al. curated
a dataset of 100K instances for English and Turkish, each with scalabil-
ity, and a proposed detection mechanism on SMP. These datasets cover
only 5 subcategories of gender, race, religion, politics, and sports. Thus,
limited in scope. In CapsNet-ConvNet (Kumar & Sachdeva, 2022), Ku-
mar et al. curated a dataset of 10K instances from Twitter, YouTube,
and Instagram and proposed a detection mechanism for cyberbullying
on SMP. They have proposed a deep learning based model for toxic-
ity detection for multi-modal data (text, image, and image with text).
Due to the dynamic landscape of SMP, and Natural Language Processing
(NLP) models’ capability to outperform deep learning models, further
research in cyberbullying detection is suggested using state-of-the-art
methods

While developing HateXplain (Mathew et al., 2021), Mathew et al.
curated a multi-label dataset and proposed a detection mechanism using
Ground Truth Attention with Filter for ten target groups on SMP. HateX-
plain dataset has three labels: one for Hate Speech, Offensive, Normal;
the second for the target group; and the third for the rationale. This
work shows that the models that perform great at first or second la-
bel classification cannot perform as well at third rationale explanation
tasks.

Guest et al. (2021) curated a 6,567-post dataset for online misog-
yny, misogyny taxonomy, and proposed a binary detection mechanism
for SMP. Their dataset is generated from 11 weeks of Reddit posts, an-
notated by trained annotators, and is publicly available. Their dataset
is highly imbalanced in binary and across fine-grained misogyny, which
prevents them from classifying the fine-grained using their mechanism,
given the small size of their dataset. But their taxonomy and high-quality
annotation pave the path for future work in detecting misogyny.

14

Expert Systems With Applications 299 (2026) 129832

Raj et al. (2021) propose an architecture for detecting cyberbul-
lying in online platforms. They have experimented with various ma-
chine learning algorithms and neural network models on two Wikipedia
datasets. They found that a neural network bidirectional Gated Re-
current Unit with Global Vectors outperforms existing state-of-the-art
techniques. This technique can be experimented on other datasets to
compare their performance with the current state-of-the-art. Another
observation of this work, which might be questionable, is their datasets’
imbalance, having less than 9-12 % of toxic classifications. Neural net-
works’ classification will tend to be towards the non-toxic side. If the
performance parameters are shown for only the cyberbullying and toxic
class would make their conclusion more reliable.

7.2.2. Detection of implicit toxicity

Ismail et al. (2025) have highlighted that the severe consequences
of aggressive toxicity in online gaming platforms include suicide, and
sensed the urgency for their detection. They have proposed “a novel
embeddings-based valence lexicon approach” using natural language
processing, to detect it on a Twitch Corpus, specifically for gaming plat-
forms. They have also suggested that their approach should work on
other online platforms as well. While this approach detects the implicit
toxicity, its further target classification or explanation is not generated.

In ToxCL (Hoang et al., 2024), Hoang et al. proposed a framework
of detection mechanism for an SMP with a Target Group Generator,
an encoder-decoder for a detection teacher classifier, and a knowledge
distillation approach for explanation. Thereby identifying the toxicity
class, target group, and explaining their output. They have utilized tar-
get group labels in Implicit Hate Corpus and SBIC datasets, and nineteen
fine-grained categories from HateXplain dataset. They have performed
an effectiveness evaluation by comparing ToxCL with human evalua-
tion. They have noted that their framework may not perform well on
abbreviated texts, symbols, sarcasm, and irony; and may have more than
one non-overlapping explanation.

In SharedCon (Ahn et al., 2024), Ahn et al. proposed a detection
mechanism using shared semantics by clustering and contrastive learn-
ing for SMP and web content. They have used K-Means clustering and
chosen a post randomly, which is close to the centroid as the shared
semantic sentence in the cluster. While this method eliminates the hu-
man in evaluating the implicit toxic nature, the basis of the choice of
clustering and the number of clusters is not discussed. Selecting the most
suitable clustering algorithm for a specific dataset is crucial, as the effec-
tiveness of this approach heavily depends on identifying optimal clus-
ters, which serve as the core of this mechanism.

7.2.3. Detection of both implicit and explicit toxicity

Learning from the worst (LFTW) (Vidgen et al., 2021c) proposed by
Vidgen et al. is a dynamic dataset creation mechanism for robust tox-
icity detection model training for SMP. It produces a balanced dataset
across hate and non-hate categories. Their mechanism introduces per-
turbations after each round, for further challenging set creation, requir-
ing trained annotators. They have pointed out that this technique re-
quires specific infrastructure, cross-disciplinary domain expertise, and
is time-consuming process.

Ghosh et al. (2024) presented a taxonomy with 13 critical and 9
sparse content safety risk categories in the human-LLMs conversation,
curated AEGISSAFETYDATASET, and developed an online adaptive con-
tent moderation technique called AEGISSAFETYEXPERTS for LLM. Dur-
ing the publication, they acknowledged that their dataset was not com-
plete, and further training of AEGIS is required. With a dataset size 26K,
their performance outperformed existing state-of-the-art.

O’Neill (2024) proposed a synthetic data pipeline generation ap-
proach with multi-task learning and a guardrail classifier called Guard-
Former for LLM. They have a synthetic data generation LLM for given
prompts, which generates corresponding safe and unsafe prompts, ra-
tionale, and labels. Followed by custom policy guardrailing by specific
model PolicyGuard and multi-policy guardrailing model GuardFormer
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capable of being effective on all policies. It offers a smaller memory
footprint under 512MB and is faster, outperforming state-of-the-art on
prompt injection, toxicity classification (fine-tuned), and content-safety.
While their performance on 8 datasets and 11 high-performing LLMs is
superior, testing it on real-world scenarios would be further helpful.

Fan et al. proposed BiasAlert (Fan et al., 2024b), a plug-and-play tool
using Retrieval-Augmented Generation (RAG) knowledge for bias detec-
tion in LLM. They have used their metric of efficacy score, classification
score, attribution score, and overall score to evaluate and compare their
performance. It is evaluated on the SBIC dataset only and requires an
updated RAG database corresponding to the prompt-response genera-
tion.

Koh et al. proposed LATTE (Koh et al., 2024), a framework that
demonstrates the dynamic adaptability of LLMs to various toxicity defi-
nitions, thereby allowing for their metric flexibility. It moves away from
static definitions and metrics, leaning towards the socio-cultural aspects.
They have noted that it may be subject to inductive bias. As discussed
in Section 4.4, this makes LLMs vulnerable to toxicity detection issues.

7.2.4. Detection of bias and fallacy

Factoid (Sakketou et al., 2022) is a dataset of fake news and mis-
information by Sakketou et al. They proposed a detection mechanism
for SMP and web content using a Graph Attention Network (GAN). This
dataset’s users are binary annotated for misinformation spreaders or real
news spreaders, and have four fine-grained labels with their ranges of
factuality degree (-3, 3), political bias (-3, 3), scientific belief (-1, 1),
and satire degree (0, 1). It is one such user-centric large dataset. Their
proposed models’ best performances range between 58.4 to 66.2% on
F1-Scores, which have scope of improvement.

Hu et al. (2024) proposed an LLM-based technique called adaptive
rationale guidance (ARG) network for fake news and misinformation
detection, by encoding textual description and commonsense rationales
for classification. They have evaluated LLM-only, small language model
(SLM) only and LLM +SLM models. And found that LLM + SLM with
ARG outperforms others. While their model does well in real news de-
tection, it struggles in fake news detection. They have highlighted that
their model relies on LLM-generated rationale only; there might be other
perspectives outside of this rationale that should be considered.

For Bias detection, BiasAlert is proposed by Fan et al. is detailed in
Section 7.2.3.

7.3. Toxicity detoxification

Detoxification is the mechanism to remove the toxicity. It is per-
formed after toxicity detection. In online platforms, for implicit or ex-
plicit toxicity with or without bias. Detoxification either uses pairs of
hate speech (toxic language) and counterspeech as a dataset to generate
non-hate speech non-toxic language with the same semantics or inten-
tions, thereby replacing toxic text, detoxifying the content. Correspond-
ing research summarization is presented in Table 3.

7.3.1. Detoxification of explicit toxicity in LLM

Zheng et al. (2025) proposed a lightweight fine-tuned Sentence-
BERT-based guardrails model for LLM safety. It reduces the parameter
size to 67M compared to LLM-based (7B parameters) solutions while
maintaining their performance comparable to state-of-the-art. But it is
not customizable and flexible for few-shot topic filtering.

Another safeguarding model proposed by Zhang et al. is called
ToxEdit (Zhang, 2025), which uses toxicity-aware knowledge editing.
It detects toxicity dynamically while avoiding over-editing of non-toxic
responses on SafeEdit. They have performed limited experiments on
SafeEdit using an SVM classifier only, Neural network classification
might yield better results. ToxEdit suffers from sentence repetition in
its generation.

Diao et al. proposed a self-evolving adversarial safety optimization
technique for LLMs called SEAS (Diao et al., 2024). They have gener-
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ated a dataset of adversarial prompts and a pipeline for dynamic safety
optimization in the SEAS framework, showing performance compara-
ble to GPT-4. They have highlighted that the quality of their framework
improves with the number of iterations; hence, initial dataset diversity
may be limited. They have used Llama Guard 2 in their framework for
safety classification; thus, human evaluation is advisable.

Ermis et al. proposed a framework called Goodtriever (Ermis
et al.,, 2024) comparing RAG with fine-tuned models under evolv-
ing and static language with multilingual support using translation
for text generation. It lays the foundation for multilingual toxicity
mitigation. Due to a lack of low-resource languages, cultural differ-
ences, translation variation, and information loss during translation are
evident.

Fu et al. (2024) curated an Instruction Tuning Safety-defense dataset
with 2000 documents and proposed a fine-tuned model with Low-Rank
Adaptation (LoRA). It identifies malicious documents, resulting in the
refusal of processing, while processing benign documents effectively.
This model is trained on a balanced dataset only.

Kim et al. proposed a training algorithm called adversarial direct
performance optimization (ADPO). It assigns safe or unsafe responses
using the toxic control token (Kim & Lee, 2024). This has limitations of
harmfulness and bias in LLM’s annotated labels. Human annotation is
also prone to bias due to the same demographic profile. Further, only
16K dataset is used for this work; using 160K dataset is expected to
enhance the performance.

Lin et al. (2024a) proposed a framework with four Al agents, an orig-
inal chatbot, with user therapist, and critic, with reinforcement learn-
ing based LLM tuning to detect and mitigate toxicity in the behavior of
chatbots. But this implementation highly relies on the quality of datasets
during training to enhance generalization, such that chatbot’s bias and
user’s privacy are as per ethical considerations. Al agent as a psychother-
apist needs to ensure communication with empathy to make it effective.
Quantification is necessary to be evaluated. Explainable AI and rein-
forcement learning techniques to be explored in complicated interac-
tions to allow cooperation.

RIDERS (Li et al., 2024) is another mitigation technique proposed
by Cao et al. that uses a toxic chain-of-thought (CoT) with residual de-
coding and the serial position swap. It reduces the toxic CoT problem
and improves commonsense reasoning. They have focused on multiple-
choice questions with open-ended commonsense reasoning, calling for
benchmark-related research. Additionally, their reasoning task does not
consider mathematical questions.

DETOXIGEN (Niu et al., 2024) is another detoxifier model pro-
posed by Niu et al., which is an ensemble of a pre-trained language
model as a generator that is parameter-efficient using contrastive de-
coding, and a detoxifier that produces toxic tokens for the generator.
They are trained on RealToxicityPrompts dataset. This research lacks
experimentation where both LLMs are trained on separate datasets
and may not cover the complete toxicity scope. Additionally, their
model’s human evaluation and generalization study have not been
conducted.

Hengle et al. proposed CoARL (Hengle et al., 2024), a framework
using multiple instruction tuning using LoRA and RL using LLMs for
counterspeech generation. While their model outperforms state-of-the-
art LLMs on their metric, it is important to note that they have used a
small dataset for their experiment and cannot be considered exhaustive.
They have pointed out that their RL reward approach might add bias,
non-alignment with human perceptions, and multiple feedback loops
are not accounted for in the model, which may affect its effectiveness
over time.

Siegelmann et al. proposed MICo (Siegelmann et al., 2024), Models
with Inhibition Control for Preventative detoxification, and curated a
dataset with 2850 entries. Due to the smaller size of their dataset, it
is non-representative of diverse toxic content. Thus, this model can be
trained on a larger dataset and may require fine-tuning and modifica-
tions.



S. Khapre et al.

Schifer et al. (2024) proposed a technique for the mitigation of iden-
tity term bias in toxicity detection. They have defined a bias target in
three levels, improving the generalization across targets. They have con-
ducted a single run of experiments focused on religious bias and thus
have not considered their scores to be robust.

Wang et al. (2024b) curated a dataset and proposed a technique with
knowledge editing detoxification and an intra-operative Neural Moni-
toring mechanism. This work sets the groundwork for future research
like ToxEdit (Zhang, 2025) described earlier.

Ji et al. proposed BeaverTails (Ji et al., 2024), curated a large dataset
of QA pairs with meta-labels for safety, and evaluated the model with
metrics of helpfulness and harmlessness. They have highlighted that the
annotators’ demographic diversity is limited, and there might be overlap
in certain categories.

Wang et al. proposed an approach called SELF-GUARD (Wang et al.,
2024e) to prevent jailbreaking attacks by performing content assessment
and toxicity detection on prompts and responses. They have highlighted
that this approach reduces harmful content generation probability but
does not eliminate it.

7.3.2. Detoxification of both implicit and explicit toxicity in LLMs

DisCGen (Hassan & Alikhani, 2023) by Hassan et al. curated a coun-
terspeech dataset and proposed a discourse-aware framework. Their
classifier is trained on Multitarget-CONAN, which is a small dataset, ex-
hibits bias. They have manually relabeled the wrongly tagged instances
in their counterspeech dataset.

Rebedea et al. proposed NeMo (Rebedea et al., 2023), an open-source
toolkit to add programmable rails to LLM-based applications for implicit
and explicit toxicity. They acknowledge that it cannot be used as a stan-
dalone safety mechanism, but can be added to already existing embed-
ded guardrails to prevent jailbreak attacks.

7.3.3. Detoxification explicit toxicity in SMP and web content

Chung and Bright (2024) curated a small dataset and proposed a
detoxification technique for Twitter, where the football players were
targeted during the UK Premier League championship. Barikaeri et al.
proposed RedditBias (Barikeri et al., 2021) and curated a dataset. Bhan
et al. (2024) proposed CF-Detox,;,,,., a counterfactual-based approach
for detoxifying text using local feature importance explanations. Their
method preserves semantic content while reducing toxicity, demonstrat-
ing the potential of eXplainable Al to support language detoxification
with interpretability and content faithfulness.

7.4. Model performance metrics and evaluations

Most toxicity detection and detoxification mechanisms are evaluated
using the F1-Scores, accuracy, precision and recall metrics. To ensure
that the model’s performance is robust and fair, a generalized framework
is essential. It should accommodate various fine-grained toxicities based
on toxicity context, platform, and environment.

Nazir et al. proposed an open-source Python toolkit LangTest (Nazir
etal., 2024), with 60 tests and claimed to help improve the performance
of LLMs and NLP models in regards to toxicity recognition and mitiga-
tion. It dynamically generates the automated testing workflow based
on real-world applications. It trains, evaluates, runs tests, augments the
training datasets, and repeats the process. Test results before and after
augmentation are compared for the “bias, robustness, accuracy, fairness,
and security” aspects of the model.

For bias and fairness assessment of an LLM, Bouchard et al. proposed
LangFair (Bouchard et al., 2025), a Python package. It claims to provide
an evaluation framework tailored to LLM tasks, considering their re-
sponses. It generated toxicity score for the words and stereotypes based
on occurrence and classification.

Rottger et al. proposed HateCheck (Rottger et al., 2021), consisting
of 29 function tests, a test suite to evaluate toxicity detection models.
They targeted the annotation process of toxicity datasets.
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Verhoeven et al. (2024) proposed an evaluation setup for the gen-
eralization capability of community models for fallacy and hate-speech
detection, claiming that social subgraphs and graph meta-learning have
better generalizability compared to standard community models.

In most of the toxicity mitigation studies, where the dataset is curated
or synthesized, a common problem is the lack of diverse annotators’
backgrounds, causing bias. In many proposed techniques, the usage of
a single small dataset for training and evaluation limits their scope,
generalization, and robustness. Some studies using machine learning
and deep learning techniques are conducted on an imbalanced dataset,
which raises concerns about the reliability of their results. Many stud-
ies focused on providing the necessary context and demonstrating the
problem’s relevance to pave the way for future research.

8. Open challenges and future directions

Despite advances in toxicity detection, several challenges remain.
These include the scarcity of representative datasets, difficulties in han-
dling emojis and informal language, and the complexity of detecting
multilingual and multimodal toxic content, implicit bias, and fairness
issues in LLMs. Another major open challenge is the lack of interpretabil-
ity in toxicity classifiers, which limits transparency and user trust. Ad-
dressing these challenges is essential for building inclusive and account-
able online platforms and Al systems.

8.1. Datasets

Various datasets are being used in research in different domains to
train machine learning models to detect toxicity. However, the dataset
sizes are not large enough to generalize it to a large set of domains.
There is an opportunity to merge many of the datasets and their classes
into one large central dataset, so that research with high coverage and
effectiveness can be performed. Such a dataset may serve as the start-
ing point for various lines of research studies. Antypas and Camacho-
Collados (2023) showed better performance in toxicity detection when
13 datasets of tweets were unified. During dataset unification, chal-
lenges like different formatting, class granularity such as binary or multi-
class, imbalance among classes and languages were encountered. Tora-
man et al. (2022) emphasized that the model detection performance
highly depends on the quality of the dataset on which it is being trained.
XAI techniques can support the construction and quality control of
datasets. The labeling inconsistencies or annotation errors can be de-
tected by analyzing model explanations. Further use of XAI-based high-
lighting to make more informed decisions, improving inter-annotator
agreement. This is especially important given the documented biases
and inconsistencies in commonly used toxicity datasets (Wiegand et al.,
2019).

8.2. Multi-lingual multi-modal toxicity

This survey is limited to English content in textual mode. This tax-
onomy can be adapted to languages other than English, this remains
unexplored in this survey paper. Research involving toxicity in most lan-
guages is sparse, and any toxicity taxonomy created for them could be
expanded further. This survey has presented a thoughtful and detailed
Toxicity Taxonomy, which should apply to them, generally speaking.

Toxicity detection and mitigation for modalities except text, such as
audio, image, video, and multi-modal toxicity, are not surveyed in this
work. There is scope to survey these modal toxicities based on the given
taxonomy.

8.3. Implicit bias
Recently, research in implicit bias has picked up momentum. This

survey is limited to unearthing the toxicity extant in platforms. Implicit
bias exhibited during the dataset annotation process also besets datasets
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with the bias inherent to experts or human annotators. Further, social
and algorithmic bias are also not explored in this paper. Gallegos et al.
(2024) presented a survey on LLM’s bias and fairness and provided fu-
ture directions for mitigation. Unintended bias in toxicity detection is
challenging to address. Lopez and Kiibler (2025) concluded that depen-
dence on the annotators of the toxicity datasets makes it difficult to
achieve reliability. Research has demonstrated bias in the toxicity de-
tection process itself (Gencoglu, 2020) (Vaidya et al., 2020), a topic not
part of this survey.

8.4. LLMs

Natural language processing with emojis, reinforcement learning
with human feedback, and the vulnerabilities of LLMs pose a tremen-
dous challenge in dealing with toxicity. The different individuals per-
ceive emojis differently (Zhukova & Herring, 2024). Gupta et al. (2023)
highlighted that the polarity of a statement’s sentiment can be inverted
when a single or multiple emojis are included in the sentiment analysis.
The use of reinforcement learning with human feedback poses a serious
challenge to retaining the models’ initial training. New prompts contin-
ually enable LLMs to learn and update themselves, thereby improving
their performance. In the case of prompt injection and jailbreaking at-
tacks, this may slowly coax the model toward toxicity. This is a research
gap suggesting LLMs should be equipped with a mechanism to identify
which prompts to learn from or which ones to ignore. Vulnerabilities
of LLMs beyond toxicity are not explored in this survey. However, we
consider prompt injection and jailbreaking as part of toxicity in LLMs.

8.5. Algorithmic, social, and evaluation bias

While we have showcased research on implicit and explicit toxicity
and bias based on target groups, we have not focused on identifying
whether toxicity has arisen due to algorithmic bias or social bias. It
is necessary to further distinguish which type of algorithmic bias it is
afflicted with, whether it is consciously built-in or has crept in subcon-
sciously. Explicit or implicit, algorithmic bias is challenging to evaluate.
Evaluation metrics used in research are generic and not self-reflective,
suggestive of bias in itself. How to come up with an evaluation metric
for toxicity, free of bias, is another huge challenge.

8.6. Explainable AI

Studies have shown that models trained on biased datasets can in-
correctly classify neutral identity-related terms such as ’black’ or ’gay’ as
toxic (Bender et al., 2021). XAl techniques can uncover such patterns by
highlighting consistently high attribution scores for these identity terms.
This insight allows us to identify and correct biased behavior in models.
XAlIimproves the transparency, fairness, and effectiveness of the toxicity
classification models and detoxification systems by generating explana-
tions on their decisions (Mersha et al., 2024b). XAI techniques, such as
LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017), and Inte-
grated Gradients (Sundararajan et al., 2017), aid in identifying words
that contribute to the classification of toxicity, thereby enhancing in-
terpretability and user trust, providing higher accuracy and fairness in
Al systems, by highlighting toxic elements in text, improving evalua-
tion metrics, and quality of the dataset (Mersha et al., 2024a, 2025c).
XAI also enables content moderation and online safety (Chamola et al.,
2023; Mersha et al., 2025a).

9. Conclusion

The toxicity in online platforms and Al Systems continues to remain
a challenge, even though there is copious research with various perspec-
tives and contexts being conducted, due to various reasons. One, the ef-
fort is usually piecemeal and thus not holistic, and needs consolidation.
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Two, the technology is evolving, and so are the facets of toxicity. Adapt-
ability to evolving technology is necessary. Three, the platforms deal
with toxicity in a reactive manner and not a proactive manner. Proac-
tive techniques rather than reactive ones should be encouraged. Four, a
framework of governance policies is not usually involved in the detec-
tion and mitigation of toxicity in digital communication. Five, holistic
approaches to develop toxicity evaluation metrics have not been forth-
coming. Six, as more and more Al systems are integrated into our lives,
more psychological assessments must be considered for effective quality
assurance.

Addressing Al-driven toxicities requires improved content modera-
tion strategies, enhanced model transparency, and bias-mitigation tech-
niques, such as adversarial training, XAI, and reinforcement learning
with human feedback (Liu, 2023). Additionally, as discussed in the Sec-
tion 2.3, a collaborative effort is highly warranted. Adversaries are al-
ways several steps ahead in attacking the ecosystem with toxic behavior.
All stakeholders need to continuously improve mechanisms for detection
and detoxification with evolving technology and omnipresent cyberat-
tacks to mitigate the psychological impacts society is direly facing.
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