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Abstract

Foundation models for machine learned interatomic potentials (MLIPs) build upon
large training sets that are computationally expensive and often contain redundant
information that impairs generalization. To address this, we derive Additive Cook’s
Distance (ACD), a novel influence measure quantifying the impact of data point
addition. We use this in our stepwise ACD algorithm, an iterative method that starts
with a small data subset and greedily adds the most influential configurations from
the remaining pool. We validate our approach on two distinct MLIP benchmarks.
For a linear qSNAP potential on a beryllium dataset with high configurational
diversity, stepwise ACD achieves full-dataset accuracy using only half the data.
We then apply our method to the non-linear MACE model by first linearizing it
to select a representative subset from the chemically diverse Materials Project
(MPTrj) dataset. A final MACE model trained only on this curated subset shows
superior generalization to unseen structures, outperforming a model trained on the
full dataset. This work demonstrates that stepwise ACD is a powerful strategy to
reduce computational cost while enhancing the generalizability of MLIP foundation
models.

1 Introduction

The performance of machine-learned interatomic potentials (MLIPs) depends on the quality and
diversity of the training data [1]. This data is usually generated from expensive density functional the-
ory (DFT) calculations on atomic configurations obtained via methods such as random sampling [2],
geometry optimization [3, 4], molecular dynamics [5], design of experiments [6, 7], active learn-
ing [8–10], or their combinations [11–17]. As DFT datasets grow, researchers often use them entirely,
which, perhaps counterintuitively, can be detrimental. Training on large datasets is computationally
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expensive and they may contain redundant information. Such redundancy can bias a model, impairing
its generalizability and accuracy, which supports findings that more data can sometimes reduce
performance [18]. Therefore, intelligent data subsampling is important to reduce training costs and
improve model performance by creating more effective training sets.

Early subsampling efforts for MLIPs often relied on random sampling, which, despite its simplicity,
proved surprisingly effective for systems such as liquid water [19]. More structured approaches,
including cluster [20] and stratified [21] sampling, partition configurations into groups before uni-
form selection. A significant advancement came from uncertainty-driven methods, which prioritize
configurations with high prediction variance [22]. These techniques, integrated within active learning
frameworks, are used not only to generate new training configurations but also to select representative
subsets from existing datasets [10, 23]. Recently, random network distillation has leveraged the dis-
agreement between fixed and trainable neural networks to identify under-sampled regions, achieving
10-fold dataset reductions for reactive systems such as molten salts [24].

Another class of methods employs advanced distance and matrix-based techniques. Farthest point
sampling (FPS) maximizes coverage in the feature space by iteratively selecting configurations most
distant from those already chosen. Similarly, the local-environment-guided selection of atomic
structures maintains a bank of distinct local atomic environments, adding new structures only if their
environments are sufficiently dissimilar from those already included in training set [25]. Matrix
factorization methods such as CUR decomposition—which approximates a data matrix as the product
of a small subset of its columns (C), rows (R), and a linking matrix (U)—identify structurally
important configurations [26], and the associated leverage scores can be used independently as a
sampling technique that we benchmark in this work. While extensions like block CUR decomposition
have been proposed [27], they have not yet been applied to MLIP training set subsampling. Other
approaches, such as principal covariates regression (PCovR), consider variance in both atomic
environments and target properties [28].

In this work, we employ Cook’s distance [29] a metric of a data point’s influence measuring how
model predictions change upon its removal. Here, we introduce a novel variant, which we term
Additive Cook’s Distance (ACD), to measure the influence of a data point upon its addition to the
training set. To differentiate between metrics, the standard version will be called Subtractive Cook’s
Distance (SCD). ACD enables the stepwise construction of the training set from a small initial
subset, analogous to active learning. We adopt this additive procedure based on its computational
efficiency in contrast to a subtractive approach. Additive building of the data set avoids the large
matrix inversion that would be required at the first step of stepwise SCD method. We demonstrate that
this influence-guided approach can enhance MLIP foundation models. Specifically, we demonstrate
that a MACE foundation model trained on a subset of the Materials Project dataset (MPTrj)—selected
by our stepwise ACD method and containing only half the data—achieves superior generalizability
compared to a model trained on the full dataset.

2 Methods

2.1 Subtractive Cook’s Distance

Leverage identifies data points with unique features. In a linear model with a descriptor matrix X ,
the leverage of a point i is the diagonal element hii of the hat matrix H = X(XTX)−1XT . For
numerical stability, we compute H using a singular value decomposition (SVD) of X = UΣV T ,
which simplifies the hat matrix to H = UUT .

While leverage identifies potentially importance, SCD quantifies configuration’s actual influence on
the fitted model by measuring the change in predictions upon its removal.

The Cook’s distance Di for a data point i is defined as:

Di =

∑N
j=1(ŷj(n+i))− ŷj(n))

2

ps2
(1)

where p is the number of model parameters, ŷj(n+i) is the prediction for data point j from the full
model, ŷj(n) is the prediction when point i is excluded from the training set, and s2 = eT e

n− p is the
mean squared error. As shown in Eq. 2, it can be expressed more efficiently using the residual ei and
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the leverage hii.

Di =
e2i
ps2

[
hii

(1− hii)2

]
=

e2i
ps2

[
xi(X

T
n Xn)

−1xT
i

(1− xi(XT
n Xn)−1xT

i )
2

]
(2)

We propose using Cook’s distance to select the most influential configurations for training. However,
the standard formulation measures the influence of a single data row (e.g., energy). Since a configura-
tion’s influence depends on its collective energy, forces, and stress data, we derived a generalized
block Cook’s distance. The full derivation is provided in Appendix A and the final formula is given
in Eq. 3

Dm =
1

ps2
eTm(I −Hmm)−1Hmm(I −Hmm)−1em (3)

Where m are data rows of a configuration, em = ym −Xmβ(n+m) and Hmm = UmUT
m.

2.2 Additive Cook’s Distance

As an alternative to subsampling from a large dataset, we developed an additive approach that
iteratively builds a training set from a small initial subset. For this, we derived a score analogous to
Cook’s distance, which we term additive Cook’s distance (ACD), to measure the influence of adding
a candidate data point to an existing model. The stepwise process begins with a small subset of data.
In each step, we calculate ACD for all remaining candidate points to identify which would be most
influential. The highest-scoring configuration is then added to the training set. To make this process
computationally feasible, we avoid model refitting by using a low-rank update to efficiently update
the (XTX)−1 matrix after each addition. ACD for adding a single data point i to a model trained on
n existing points Xn is given by Eq. 4:

Di =
e2i
ps2

[
xi(X

T
n Xn)

−1xT
i

1 + xi(XT
n Xn)−1xT

i

]
(4)

As with SCD, a block version of this metric can be derived to handle full atomic configuration data
defined by rows m. Its derivation can be found in Appendix B with the result here,

Dm =
1

ps2
eTm(I +Xm(XT

n Xn)
−1XT

m)−1Xm(XT
n Xn)

−1XT
mem. (5)

The computational cost of performing the matrix inversion update was similar to that of evaluating
the ACD score for the MPTrj dataset, both requiring roughly 20–30 ms per iteration

3 Results

3.1 Benchmark 1: qSNAP Fusion Applications

To validate the stepwise ACD for training set reduction, we benchmarked it on a linear model
where the theory of leverage and influence scores is exact. We used the quadratic Spectral Neighbor
Analysis Potential (qSNAP) [30] potential with a high DFT convergence beryllium dataset for fusion
applications, consisting of 20,000 highly diverse non-equilibrium atomic configurations generated
via entropy maximization [7, 31, 32]. We extracted qSNAP descriptors using FitSNAP [33] and then
fit a linear regression model.

We evaluated four subsampling strategies by comparing their resulting test RMSE for energy and
forces as a function of training set fraction (Figure 1). The beryllium dataset was split into a testing set
of 10,000 configurations and a training set of 10,000 configuration. The training set was sub-sampled
while the test set remained fixed. The benchmarked methods were: (1) random sampling, (2) sampling
with probabilities proportional to leverage scores, (3) selecting points with the highest SCD, and (4)
our proposed stepwise ACD method.

The results clearly demonstrate the advantage of influence-guided data reduction. Random sampling
performs poorly, while leverage and standard Cook’s distance offer some improvements. Our stepwise
additive Cook’s distance method consistently achieves the lowest energy RMSE across all dataset
sizes. Notably, this method reaches the same testing accuracy as the full dataset using only half of
the training set. In this calculation, all selection criteria were based on energy influence alone. We
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(a) Testing Energy RMSE. (b) Testing Force RMSE.

Figure 1: Comparison of subsampling strategies for a qSNAP Beryllium potential. Testing RMSE for
(a) energy and (b) force as a function of the training set fraction used for training.

hypothesize that the "block" variant of our method (Eq. 5), which considers the combined influence
of a configuration’s energy and forces, would further improve force accuracy. The derivation for this
block Cook’s distance score is detailed in Appendix A and B for the standard data point removal and
the data point addition respectively.

3.2 Benchmark 2: MACE Foundation Model for Diverse Chemistry

While Cook’s distance is directly applicable to linear models like qSNAP, it is not clear that it can be
applied to non-linear message-passing models. To demonstrate this, we benchmark stepwise ACD
method to reduce the chemically diverse Materials Project Trajectory (MPTrj) dataset with over 1.5
million structures spanning the majority of the periodic table. The target is reducing this dataset
for training the MACE foundation model while maintaining equivalent or superior generalizability
compared to one trained on the full training set.

For this test, we partitioned the MPTrj data set by structure ID (MP-ID) into 70% training, 10%
validation and 20% testing sets. Each set contains all snapshots from the geometry optimization of its
MP-IDs, ensuring no overlap of crystal structures between sets. This ensures that the test set contains
crystal structures unseen during training, providing a measure of generalization. Then, we generated
subsets of this training data to be used for non-linear MACE training: 50% subset of the training
set sampled randomly, 50% subset of the training set sampled according to leverage score derived
probabilities, 50% subset of the training set selected via stepwise ACD method, and the full training
set as a reference. We also include the ‘data leakage’ model which was trained with overlapping
validation and test data to illustrate the effect of overfitting and artificially low test errors. In this
case, we combined the validation and test sets, selected the model based on this combined set, and
then evaluated its errors. We compare subsampling strategies based on testing errors of these trained
MACE models in Table 1. To use the ACD formula on the MPTrj dataset, we linearized the MACE
by extracting the descriptors from the pre-trained MACE-MP-0 foundation model and bypassed the
final non-linear readout layers. These descriptors then served as features in a linear model for the
ACD formula. As we did not consider descriptor derivatives, this linear fit is based on energies only.

Table 1 compares MACE models trained on various dataset subsets to assess how data reduction
affects generalization. The two “no subsampling” cases establish baselines: the unbiased model
was trained and validated in the standard way—using a validation set distinct from the test set—so
the reported errors reflect genuine out-of-sample performance, while the “data-leakage” version
intentionally combines the validation and test sets during training. This setup allows the model
to indirectly see the test data and thus produce artificially low errors that serve as a lower-bound
reference. Against the unbiased model, the stepwise additive Cook’s-distance (ACD) method achieves
lower RMSE (L2) and (L4) norms for both energy and forces and, remarkably, even surpasses the
data-leakage model in (L4) errors. Because higher-order norms amplify large deviations, these
reductions demonstrate that ACD pruning effectively suppresses outlier predictions and enhances
tail stability, indicating improved extrapolative behavior. The leverage-sampled subset performs
comparably well, achieving the lowest force RMSE. As in benchmark 1, this can be attributed to
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Table 1: MACE model testing errors obtained using different training subsets. Each model was
trained on the full dataset, a 50% random subset, a 50% leverage-sampled subset, and a 50% subset
selected via the stepwise additive Cook’s-distance method. ∥∆E∥p and ∥∆E∥p denote the Lp norms
of energy and force errors, respectively (e.g., ∥∆E∥1 = Energy MAE, ∥∆F∥2 = Force RMSE). The
configuration labeled “data leakage” includes overlapping validation and test data and is shown for
comparison. Bold values mark the two best results per column. MACE model is trained with Huber
loss.

Subsampling
Strategy

Energy error (meV/atom) Force error (meV/Å)
∥∆E∥1 ∥∆E∥2 ∥∆E∥4 ∥∆F∥1 ∥∆F∥2 ∥∆F∥4

Stepwise ACD 33.46 68.37 252.18 88.41 188.03 2063.18
Random 37.33 81.16 362.52 67.33 227.36 4517.35
Leverage 36.63 75.86 297.61 69.68 170.34 1785.22
No subsampling 36.46 100.26 1270.46 68.52 455.96 13065.16

No subsampling
(data leakage) 26.41 65.07 360.63 59.37 170.55 2144.17

the fact that the ACD method considers leverage and energy residuals only; it does not explicitly
account for force errors. Incorporating force residuals into the Cook’s-distance metric, as proposed
in the block variant (Eq. 5), could therefore further reduce force-related errors. Since the stepwise
ACD algorithm is implemented efficiently using low-rank matrix updates: after adding each new
data point, only a (3N + 1)× (3N + 1) matrix—where N is the number of atoms in the candidate
configuration—needs to be inverted. Because this matrix is small, the update completes within
milliseconds on a GPU. Overall, reducing the MPTrj training set by half required 9 hours on a single
GPU.

Overall, both influence- and leverage-based pruning outperform random selection and can rival or
even exceed full-data performance—sometimes surpassing the data-leakage lower bound—while
improving computational efficiency, and generalizability to unseen configurations. By removing
redundant data, the model implicitly assigns lower weight to similar configurations and greater
importance to rare or outlier samples. This rebalancing enhances the model’s ability to generalize,
since emphasizing non-redundant and diverse regions of configuration space improves extrapolation.
Consequently, we observe lower test errors—especially notable given that our test set was inten-
tionally constructed to exclude atomic configurations seen during training and to differ by crystal
structure—thus providing a meaningful measure of performance on unseen phases and structures.

4 Conclusion

In this work, we introduced stepwise additive Cook’s distance method for training set data reduction
for MLIPs. We highlighted its computational efficiency for two benchmarks: a linear qSNAP model
for single element (beryllium) dataset of diverse atomic configurations and a non-linear MACE
foundation model trained on the chemically diverse MPTrj dataset. Our results show that our method
outperforms random sampling and even surpasses the performance of models trained on the full
training set. Specifically, by reducing the MPTrj training set by 50%, and retraining MACE model we
achieved lower energy and force RMSE on a held-out test set, indicating improved generalizability.

The success of the additive Cook’s distance stems from its ability to identify and retain configurations
that are not only outliers in feature space (high leverage) but also have a large impact on model
predictions (high residual). This process effectively removes redundant data while preserving the
most influential and diverse atomic configurations, leading to more generalizable ML foundation
models of interatomic potentials.
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A Derivation of Block Version for Original (Subtractive) Cook’s Distance

Given that DFT data includes both energy and forces, we extended Cook’s distance to consider entire con-
figurations rather than individual data point. This new Block version of Cook’s distance assesses the overall
importance of a configuration, including its energy, forces, and stresses. The new definition is in 6:

Dm =

∑N
j=1(ŷj(n+m) − ŷj(n))

2

ps2
(6)

where m is the indices of all the rows of X corresponding to a certain configuration which can include forces and
stresses in addition to energies and n is the indices of the rest of the rows. Therefore ŷj(n+m) is the prediction
on data point j of the linear regression trained on all data points and ŷj(n) is the prediction on data point j of the
linear regression trained on all data points except data points m that correspond to a certain configuration.

Using the definition of ŷ:

Dm =

∑N
j=1(Xj(β(n+m) − β(n)))

2

ps2

=
1

ps2
(β(n+m) − β(n))

TXT
n+mXn+m(β(n+m) − β(n))

(7)

Instead of determining β(n) through retraining of ML every time we remove each configuration m to determine
the importance of that configuration, we would like to train once on all the data and obtain β(n+m) and then
have a quick way to get β(n). To start let’s write what is the equation for β(n):

β(n) = (XT
n Xn)

−1XT
n yn

= (XT
n+mXn+m −XT

mXm)−1(XT
n+myn+m −XT

mym)
(8)

The Woodbury matrix identity:

(A− UCV )−1 = A−1 +A−1U(C−1 − V A−1U)−1V A−1 (9)

Applying Eq. 9:

(XT
n+mXn+m −XT

mXm)−1 = (XT
n+mXn+m)−1

+ (XT
n+mXn+m)−1XT

m(I −Xm(XT
n+mXn+m)−1XT

m)−1Xm(XT
n+mXn+m)−1 (10)

Plugging Eq. 10 into Eq. 8:

β(n) = (XT
n+mXn+m)−1(XT

n+myn+m −XT
mym)

+ (XT
n+mXn+m)−1XT

m(I −Hmm)−1Xm(XT
n+mXn+m)−1(XT

n+myn+m −XT
mym) (11)
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Where Hmm = Xm(XT
n+mXn+m)−1XT

m which is a block matrix of the whole hat matrix H =

Xn+m(XT
n+mXn+m)−1XT

n+m indexed by rows m and columns m

β(n) = β(n+m) − (XT
n+mXn+m)−1XT

mym

+ (XT
n+mXn+m)−1XT

m(I −Hmm)−1(Xmβ(n+m) −Hmmym) (12)

Combining like terms and rearranging:

β(n+m) − β(n) = (XT
n+mXn+m)−1XT

m(I −Hmm)−1((I −Hmm)ym −Xmβ(n+m) +Hmmym)

= (XT
n+mXn+m)−1XT

m(I −Hmm)−1(ym −Xmβ(n+m))

= (XT
n+mXn+m)−1XT

m(I −Hmm)−1em

(13)

Where em = (ym −Xmβ(n+m)).

Eq. 13 gives us a formula of difference between coefficients of linear regression models of the case when we use
all data points and when we remove indices indicated by m.

Xn+m(βn+m − βn) = Xn+m(XT
n+mXn+m)−1XT

m(I −Hmm)−1em (14)

Multiplying by it’s transpose gives:

(βn+m − βn)
TXT

n+mXn+m(βn+m − βn) =

= eTm((I −Hmm)−1)TXm((XT
n+mXn+m)−1)TXT

n+mXn+m(XT
n+mXn+m)−1XT

m(I −Hmm)−1em

= eTm((I −Hmm)−1)TXm((XT
n+mXn+m)−1)TXT

m(I −Hmm)−1em

= eTm((I −Hmm)−1)T (Xm(XT
n+mXn+m)−1XT

m)T (I −Hmm)−1em

= eTm((I −Hmm)−1)THmm(I −Hmm)−1em

= eTm(I −Hmm)−1Hmm(I −Hmm)−1em
(15)

Substituting (Eq. 15) into (Eq. 7) gives the final equation for generalized Cook’s distance:

Dm =
1

ps2
eTm(I −Hmm)−1Hmm(I −Hmm)−1em (16)

Where em = ym −Xmβ(n+m) and Hmm can be computed as Hmm = UmUT
m.

B Derivation of Additive Cook’s Distance for both Block and Regular
versions

We derived a formula similar to Cook’s distance, which we call additive Cook’s distance in this paper, to
evaluate the impact of adding a new data point to the dataset instead of removing it. Starting with a small,
leverage-sampled or even random subset, we used this additive Cook’s distance to iteratively select and add
the most influential data points. To avoid expensive refitting upon the addition of a new configuration to our
training set, we applied a low-rank update to the matrix (XTX)−1 after each addition. This allowed us to
quickly recompute the influence of the rest of data points and continue the selection process.

The definition for the additive Cook’s is the same as in Eq. 1. The difference is in the base model which in the
case of normal Cook’s distance is the ŷj(n+m) model with data points m and in the additive Cook’s is the ŷj(n)

model without data points m. To derive the expression let’s first substitute the definition of ŷ into Eq. 1:

Dm =

∑N
j=1(Xj(β(n+m) − β(n)))

2

ps2

=
1

ps2
(β(n+m) − β(n))

TXT
n+mXn+m(β(n+m) − β(n))

(17)

β(n+m) = (XT
n+mXn+m)−1XT

n+myn+m = (XT
n Xn +XT

mXm)−1(XT
n yn +XT

mym) (18)

Applying Woodbury matrix identity:

(XT
n Xn +XT

mXm)−1 = (XT
n Xn)

−1

− (XT
n Xn)

−1XT
m(I +Xm(XT

n Xn)
−1XT

m)−1Xm(XT
n Xn)

−1 (19)
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Plugging Eq. 19 back into Eq. 18:

β(n+m) = (XT
n Xn)

−1(XT
n yn +XT

mym)

− (XT
n Xn)

−1XT
m(I +Xm(XT

n Xn)
−1XT

m)−1Xm(XT
n Xn)

−1(XT
n yn +XT

mym)

= β(n) + (XT
n Xn)

−1XT
mym

− (XT
n Xn)

−1XT
m(I +Xm(XT

n Xn)
−1XT

m)−1(Xmβ(n) +Xm(XT
n Xn)

−1XT
mym)

(20)

After rearranging we get:

β(n+m) − β(n) = (XT
n Xn)

−1XT
m(I +Xm(XT

n Xn)
−1XT

m)−1

((I +Xm(XT
n Xn)

−1XT
m)ym −Xmβ(n) −Xm(XT

n Xn)
−1XT

mym)

= (XT
n Xn)

−1XT
m(I +Xm(XT

n Xn)
−1XT

m)−1(ym −Xmβ(n))

= (XT
n Xn)

−1XT
m(I +Xm(XT

n Xn)
−1XT

m)−1em

(21)

Where em = (ym −Xmβ(n)).

Xn+m(βn+m − βn) = Xn+m(XT
n Xn)

−1XT
m(I +Xm(XT

n Xn)
−1XT

m)−1em (22)

(βn+m − βn)
TXT

n+mXn+m(βn+m − βn) =

= eTm((I +Hmm)−1)TXm((XT
n Xn)

−1)TXT
n+mXn+m(XT

n Xn)
−1XT

m(I +Hmm)−1em

= eTm(I +Hmm)−1Xm(XT
n Xn)

−1XT
n Xn(X

T
n Xn)

−1XT
m(I +Hmm)−1em

+ eTm(I +Hmm)−1Xm(XT
n Xn)

−1XT
mXm(XT

n Xn)
−1XT

m(I +Hmm)−1em

= eTm(I +Hmm)−1Xm(XT
n Xn)

−1XT
m(I +Hmm)−1em

+ eTm(I +Hmm)−1Xm(XT
n Xn)

−1XT
mXm(XT

n Xn)
−1XT

m(I +Hmm)−1em

= eTm(I +Hmm)−1Hmm(I +Hmm)(I +Hmm)−1em

= eTm(I +Hmm)−1Hmmem

(23)

Where Hmm = Xm((XT
n Xn)

−1)TXT
m.

Substituting (Eq. 23) into (Eq. 17) we get the final Additive Block Cook’s distance formula:

Dm =
1

ps2
eTm(I +Xm(XT

n Xn)
−1XT

m)−1Xm(XT
n Xn)

−1XT
mem (24)

Additive Cook’s distance for adding only one data point i:

Di =
e2i
ps2

[
xi(X

T
n Xn)

−1xT
i

1 + xi(XT
n Xn)−1xT

i

]
(25)
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