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Abstract

Neural-symbolic (NS) learning provides an effi-
cient approach to visual question answering (VQA)
by combining the advantages of neural network
learning and symbolic reasoning. However, the un-
certainty of the neural networks (NN) learning in
the existing NS methods has not been considered,
and one single answer is provided for a question
without confidence evaluation. To tackle this prob-
lem, we propose a confidence-based NS (CBNS)
framework to evaluate the confidence of the NN
modules based on uncertainty quantification and
make inferences based on the confidence evalua-
tions. Specifically, CBNS includes a probabilistic
question parser which generates multiple program
candidates with confidence evaluations. CBNS also
includes a probabilistic scene perception module
which provides object-based scene representation
and confidence evaluations for each attribute of ob-
jects in an image. The object-based scene repre-
sentation and the programs with confidence evalu-
ations are used for evaluating the confidence of an-
swers through the inference process. The proposed
framework is model-agnostic and compatible with
mainstream NS VQA architectures. Experiments
on CLEVR demonstrate that the proposed frame-
work enables confidence-based reasoning for the
complex VQA task and leads to a promising per-
formance improvement with a significantly reduced
computation cost.

1 Introduction

Reasoning is critical for complex tasks and has attracted in-
creasing attention from machine learning research. While
data-driven methods, especially deep learning, have proven
to work in an end-to-end fashion, the lack of explainability,
high computational cost, and requirements of large amounts
of data hinder their applications in the real world. In partic-
ular for VQA, data-driven VQA models are prone to exploit
biases in datasets to find shortcuts instead of performing high-
level reasoning [Kervadec et al., 2021], and cannot maintain
reasoning consistency in answering the compositional ques-
tion and its sub-questions [Jing er al., 2022]. To enhance

learning efficiency and explainability, NS learning has been
studied to combine the high explainability, provable correct-
ness, and ease of using human expert knowledge of symbolic
manipulation with the advantages of neural networks (NN).

However, NS methods cannot eliminate the disadvantages
of NN. There is inevitable uncertainty in the NN part, due
to probabilistic variations in random events or the lack of
knowledge of a process. Most existing methods for NS VQA
focus on reducing the requirements of symbolic labels (e.g.,
neural-symbolic concept learner (NS-CL)[Mao et al., 2019]),
learning new symbols (e.g., meta-concept learner[Han et al.,
2019]), increasing the complexity of tasks, (e.g., video ques-
tion answering, requiring machines to understand physical
laws[Chen et al., 2021]), without considering the uncertainty
propagation along the reasoning path. The absence of uncer-
tainty awareness for reasoning fails to consider the long-tail
distribution of visual concepts and the unequal importance of
reasoning steps in real data [Li ef al., 2021], which can result
in mistakes that are intolerable for safety-critical applications.
For example, Shah ef al. have shown that the existing VQA
models are brittle to linguistic variations.

In this paper, we propose a Confidence-Based Neural-
Symbolic (CBNS) approach that leverages uncertainty quan-
tification of the deep learning models in the neural-symbolic
system for confidence-based neural-symbolic VQA. Instanti-
ated in the context of VQA, we consider the uncertainty in
both scene perception and question parsing with Variational
Dropout [Kingma et al., 2015]. The uncertainty quantifica-
tion can be utilized to improve the learning efficiency of the
entire system and proves to be effective for confidence evalu-
ations. Specifically, for the question parser, we introduce re-
construction loss, agreement loss, and variational dropout for
training, and propose an improved beam search for inference,
such that the question parser can achieve high accuracy with
limited training data. Moreover, using the trained question
parser with uncertainty quantification, we propose a data aug-
mentation method to select predicted programs by the agree-
ment loss and confidence evaluations. This proposed data
augmentation method ensures a high probability of correct se-
lection, allowing the selected programs to be used as pseudo
groundtruth programs. Using pseudo groundtruth programs,
we train the scene perception module without groundtruth
annotations. In this way, our approach trains the VQA sys-
tem with limited groundtruth concepts and programs, avoid-



ing the data-consuming and compute-intensive REINFORCE
[Williams, 1992] used in prior work such as NS-CL[Mao
et al., 2019]. At the reasoning stage, the CBNS approach
quantifies the uncertainties of both the question parser and
scene perception modules to evaluate the confidence of the
object concept predictions and the symbolic reasoning pro-
cess. The concept predictions, along with their confidence
evaluations, are input into the predicted symbolic programs
for confidence-based reasoning.

Compared with the mainstream neural symbolic VQA,
where only one representation for an image and one determin-
istic program for an associated question are predicted, and a
single answer is provided at the end, our framework offers
confidence evaluations for each step of the inference starting
from the scene perception, which simplifies the error analysis
process by highlighting the incorrectness of prediction with
low confidence scores. To summarize, this paper makes the
following contributions:

* We extend the neural symbolic learning by presenting
the CBNS framework, which provides confidence eval-
uations for the NN modules in NS models. Additionally,
CBNS is compatible with mainstream NS VQA archi-
tectures (such as NS-VQA and NS-CL);

With the program prediction confidence estimated by
CBNS, we significantly improve the learning efficiency
of question parsing for current NS VQA approaches by
avoiding REINFORCE, which is of high sample com-
plexity and used to train question parser without the re-
quirements of groundtruth programs;

We evaluate the CBNS framework on the CLEVR
datasets, and compare its performance with state-of-the-
art neural symbolic VQA methods. Results show that
CBNS is able to perform VQA tasks in a transparent way
with accurate confidence estimation.
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2 Related Works

Uncertainties in VQA have been studied to improve the per-
formance of models. [Patro et al., 2019] considered the un-
certainty in vision, [Shah er al., 2019] considered the uncer-
tainty in questions, and [Vedantam et al., 2019] proposed
probabilistic neural symbolic models. However, few works
explicitly consider the joint uncertainty from perception and
reasoning. Imperfect computer vision interpretation and com-
positional question understanding introduce uncertainty that
must be jointly reasoned to determine the correct answer[Kr-
ishnamurthy er al., 2016]. In this paper, we aim to quantify
the uncertainties in both scene perception and question pars-
ing, make inferences based on uncertainty quantification, and
provide answers with confidence evaluations.

Neural Semantic Parsing can be used to transform ques-
tions into explicit programs as sequences of symbolic tokens,
which gain better interpretability than implicit programs as
conditioned neural operations. Lots of methods have been
developed to employ uncertainty quantification in natural lan-
guage processing. [Dong et al., 2018] designed metrics to
quantify major causes of uncertainty and used the metrics to
estimate confidence scores that indicate whether model pre-
dictions are likely to be correct. [Wang et al., 2019] im-

proved back-translation with the word- and sentence-level
confidence estimation based on uncertainty. [Zhang et al.,
2019] proposed an adaptive decoding method that is guided
by model uncertainty and automatically uses deeper compu-
tations when necessary. [Fomicheva et al., 2020] exploited
the machine translation model uncertainty to generate multi-
ple diverse translations. In this paper, we are interested in ex-
ploiting the uncertainty in semantic parsing to generate multi-
ple programs for the pure symbolic executor such that multi-
ple reasoning paths can be investigated to improve the model
performance.

3 CBNS Approach for VQA

The proposed CBNS approach for VQA shown in Figure 1
consists of three modules:

* A scene perception module to extract the object-based
representations of images with confidence evaluations
for each concept prediction (Section 4.2);

* A question parser module to translate a natural language
question into multiple programs associated with confi-
dence scores (Section 4.1). The multiple programs can
facilitate finding accurate programs.

* A program executor module to execute the programs
from the question parsing module on the concept quan-
tization from the scene perception module with confi-
dence evaluations for answer predictions (Section 4.3).

One challenge of NS VQA is to reduce or even avoid the
requirements of groundtruth programs for training the ques-
tion parser. The authors [Mao et al., 2019; Han et al., 2019]
employed REINFORCE for the optimization of the question
parser in a non-smooth program space, which requires the
correctness of the execution result as the reward signal. How-
ever, REINFORCE suffers from an inefficient update process
and noisy gradient estimate, which negatively affects train-
ing the scene perception module. Instead, we propose to use
semi-supervised learning to avoid REINFORCE and improve
learning efficiency. The idea is to learn a sufficiently accurate
question parser with uncertainty quantification from limited
fully-annotated data, which will be elaborated on next.

4 CBNS Model Training and Inference

The training procedure of the CBNS model includes: (1)
training the question parser using limited fully-annotated data
including scene annotations, questions, programs, and an-
swers; (2) predicting programs for the questions sampled
from the training set including only images, questions and
answers, and then selecting programs based on the proposed
data augmentation method; (3) training the concept learner
using the selected programs as pseudo groundtruth programs
and the associated images and answers.

4.1 Uncertainty-aware Question Parser Training

Similar to [Yi et al., 2018], we use an attention-based
sequence-to-sequence (seq2seq) model with an encoder-
decoder structure as a question parser to transform questions
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Figure 1: The schematic of CBNS VQA. The model consists of a question parsing module, a scene perception module, and a program

execution module.

into symbolic programs. Specifically, the encoder is repre-
sented by a bidirectional LSTM [Hochreiter and Schmidhu-
ber, 1997] that takes as input a question of variable lengths
and outputs an encoded vector e¢; = [ef", eP] at time step i by

[

el \hi =LSTM(®g (), hi_y),

B 1B _ B

e »hi =LSTM(®p(xi), hi,),
where ®p is the jointly trained word embedding for the
encoder; (el hf") and (eP,hP) are the outputs and hid-
den states of the forward and backward networks, respec-
tively. The decoder is a similar LSTM. The output g/, s; =
LSTM(® p(yt—1), st—1) of the LSTM, where y;_; denotes
the previous token of the output sequence and ®p is the de-
coder word embedding, is then fed to an attention layer with
identity attention matrix to obtain a context vector ¢!’ as a
weighted sum of the encoded states e; via

P _ PT P _ P
ay; = softmax(q; ' e;), ¢; = E oy, €.
i

ey
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Then, [¢f, cl] is passed to a fully connected layer with the
softmax activation function to obtain the conditional distribu-
tion of the predicted token ;.

To enhance the performance of the question parser, we im-
prove the architecture of the question parser model. We add a
reconstructor [Tu ef al., 2016], which reconstructs the ques-
tion from the hidden layer of the decoder and ensures that the
program retains the information in the question, to the ques-
tion parser model [Yi et al., 2018]. The reconstructor is a
similar decoder. The output ¢f* = LSTM(®g(z;_1)) of the
LSTM is then fed to an attention layer as

alf = softmax (¢t " Was,), cff = Z allsy, (3)
t

where W, is the attention weight matrix. @~ We ob-

tain the distribution for the predicted token by =zt ~

softmax(W gk, c£]). Then, the reconstruction loss is

N
1
R(x"ls"7) =+ > logp(x™[s";7), 4)
n=1
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Figure 2: Architecture of our question parser.

where s™ denotes the sequence of the hidden states of the de-
coder for the n-th question. However, neither the seq2seq
model nor the reconstructor can guarantee sequence level
agreement [Yang er al, 2019], as the predictions of the
seq2seq model and the reconstructor at the current time step
are based on the predictions at the previous time step. To en-
force the sequence level agreement, we add a sequence agree-
ment loss as follows

1 N
AX" YY) = Do llesx") =spy™I* ®)
n=1

where e € R? and sp € R? denote the hidden states of the
encoder and decoder at the last time step, respectively, and d
is the dimension of the hidden states.

Uncertain quantification in Question Parsing
Bayesian posterior inference is a commonly used method for
uncertainty quantification [Bao et al., 2021]. While exact in-



ference is computationally intractable on account of the high
complexity of NN, efficient approximate schemes such as
Markov Chain Monte Carlo and variational inference can be
designed [Kingma er al., 2015]. Variational dropout (VD)
has proven to greatly improve the efficiency of variational
Bayesian inference on the model parameters [Kingma et al.,
2015], which is critical for quantifying uncertainty through-
out the complex VQA reasoning process. Therefore, we use
VD [Kingma et al., 2015] to quantify the model uncertainty.

In particular, similar to [Kingma et al., 2015], we assume
the scale-invariant log-uniform prior p(w) and a factorized
Gaussian posterior g, (w) with trainable parameters ¢ for the
weights w of a hidden/output layer the NN. To approximate
the posterior of w by g4 (W), ¢ is learned by maximizing

L(¢) = —Dkr(gs(Wllp(w))) + Lp(9), (6)

where Lp(¢) = S0 E, (w)[log p(y™|x", w)] and is ap-
proximated by an unbiased differentiable minibatch-based
Monte Carlo estimator

N M
Lp(¢)~ ) (1\14 Zlogp(y"wx",w““))) (7)

n=1 k=1

with w(®) sampled from g,(w). In particular, g4(w;) =
N (i, ad?), and w; = ¢; + \/ag?e; where w; denotes the
i-th weight, €; ~ N(O, 1), and « is the dropout rate. We
incorporate variational dropout in the decoder of our ques-
tion parser for uncertainty quantification.Specifically, using
the decoder output ¢/ and the context vector ¢!’, we obtain

the distribution for the predicted token by
3 ~ softmax(WoReLU(VD([¢], cF]; w))),

where VD(-; w) denotes the NN layer where variational
dropout is applied to approximate the posterior of w for un-
certainty quantification. A deterministic weight matrix Wy
is used for token prediction to reduce the model complexity.

Figure 2 shows the complete architecture of our question
parser. The program supervision loss and the answer predic-
tion loss are borrowed from [Yi et al., 2018]. The program
supervision loss requires groundtruth programs. The answer
prediction loss is computed based on the difference between
the groundtruth answers and the answers that are predicted
by executing the predicted programs on the concepts from
the scene perception module.

Uncertainty-aware Inference of Question Parser

Using Monte Carlo (MC) sampling by g¢s(w), we ob-
tain multiple models and use model averaging for program
generation. Speciﬁcally, we sample M outputs {h(k) =
WoReLU(VD([gF, ¢F’]; w*)))}M_ | and use the outputs to
estimate the conditional d1str1but10n of the token y; as

M

% Z ). (8)

k=1

P(Yelye—1,- -+, y1, ) = softmax(

Furthermore, to exploit and deal with the uncertainty in
the question parser learned from data, we generate mul-
tiple programs. Beam search (BS) is a widely-used test-
time decoding algorithm in neural machine translation, but

it suffers from a lack of diversity. Approaches have been
proposed to enhance diversity[Vijayakumar et al., 2016;
Li and Jurafsky, 2016]. However, the diversity of BS is de-
termined by p. When p is close to a uniform distribution,
then BS can generate diverse sequences; if p is close to one-
hot encoding, simply enforcing diversity can increase the dis-
crepancy between the training and testing process of BS and
thus degrade the performance of decoding. Moreover, mini-
mizing the negative log-likelihood in the training process is
prone to result in overly confident predictions and uncali-
brated uncertainty which does not correspond well with the
model error [Laves et al., 2020]. Therefore, in this paper,
we introduce variational dropout to moderate this problem
by considering model uncertainty. To generate B programs,
at each time step ¢ of decoding, we store the top-B beam
candidates of symbolic modules, where B is the beam width
and the candidates are sorted by ©(y;) = S.¢_, 0(y;) with
0(y;) = log p(yilyi—1, - ,y1,X™) At the next time step, we
consider all possible single token extensions of these beams
and selects the B most likely extensions. This process is re-
peated until maximum time 7'. Then the most likely B se-
quences {y("}B | are selected.

However, the log-probabilities of sequences may not align
with the probability that the program candidates are correct
due to the model error/uncertainty. Instead, we consider
model uncertainty to determine the most promising program.
In particular, we calibrate the probabilities of sequences by
penalizing the average estimations with variances as

. E [p(y®[x)]
Pc(y(b)) = W.

where E [p(y®)]x)] = & ol 5™ (y*9|x, w*)) and

Var(p(y P |x)) = 57 3L, (60 (v B0 %, wh)
with pF) (yF0)|x w(*)) being computed using w(*) sam-

pled by the posterior distribution. Then, we sort the B
(b)) as BS
T .

Confidence Scores of Program Candidates
To enable the aggregation of the uncertainty quantification
of individual modules for confidence-based reasoning, we
need a confidence score for the generated program candidates
based on the uncertainty of predictions. In this paper, we eval-
uate the confidence score c; of the model by

~ x B
ity = (1- ) e ao

where the values of p(y|x) are estimated using the weights
drawn from g¢,(w) using the MC sampling, § is a tuning
hyper-parameter to control the difference between confidence
values of programs of larger differences. c¢s(p(y|x)) is be-
tween 0 and 1, as the variance of a probability is no greater
than the corresponding expectation [Wang et al., 2019].
Moreover, ¢s(p(y|x)) increases as the uncertainty (described
by variances) decreases, and ¢, (p(y|x)) is positively corre-
lated with the calibrated probability p.(y) defined in Eq. (9).

€))

sequences by p.(y(*)) rather than using O (y.

Data Augmentation Method for Program Selection
The uncertainty-aware training of the question parser can also
be used for data augmentation to avoid the requirements of

~E [p(y®[x)])”



Algorithm 1 Program selection by data augmentation rules

Input: questions {x"}/V_,, required program size N,
forn =1to N do
for k =1to M do
Sample a model p*) by the posterior g, (W)
Generate B program candidates y(*:*) by p*) and
save pF) (D) |x") b=1,--- | B
end for
Generate B program candidates §(*) by j in Eq. (8)
Compute the calibrated probability by Eq. (9)
for b =1to B do
Compute the agreement loss A(x",y ")) by Eq. (5)
end for
Obtain the ranking rank”* of the B candidates {317 |
by the agreement loss
Obtain the ranking rank?e of {y(*)}Z_ by the calibrated

probabilities using {p™*) (3*-¥) |x™) 241;51 1

if Top-1@rank“'==Top-1@rank?* then
Select the Top-1 program of rank”* and save the cali-
brated probability of the selected program
end if
end for
Sort the selected programs by the calibrated probability
Return: Top N, programs and the associated questions.

groundtruth programs or using the programs from the explo-
ration of REINFORCE to train the concept learner, which
could greatly increase the training/data efficiency of concept
learner. In particular, we propose to select programs that are
correct with a high probability from the predicted programs
of the questions in the training set for concept learning.

To increase the probability that the selected programs are
correct, we select programs on which multiple rankings reach
consensus. Specifically, after obtaining B programs from BS,
we rank the programs by the calibrated probabilities; then,
we obtain another ranking by the agreement loss between the
candidates and the question, as the agreement loss can mea-
sure the coverage of the programs to the questions.

After obtaining the two rankings, we select the questions
when the two rankings reach a consensus on the top-1 pro-
grams. Next, we rank the selected questions again by the
calibrated probabilities of the top-1 program and augment the
dataset with the top questions associated with the top-1 pre-
dicted programs. The procedures of the program selection for
data augmentation are summarized in Algorithm 1.

4.2 Concept Learner Using Predicted Programs

Since the accuracy of the selected programs by the data aug-
mentation rules is high, we use the selected programs as
pseudo groundtruth programs to learn the parameters of the
scene perception module. To quantify the uncertainty in
scene perception module, we again apply Variational Dropout
to the object features.

For determining an object’s concepts (concept quantiza-
tion), similar to [Mao et al., 2019], we use a neural operator
that maps the object representation to an embedding. Then,
the attribute is determined based on the cosine distances be-

tween the learned concept vectors v and the embedding of
the object. For example, the probability of the concepts that
belong to attribute a,, for an object o,, is estimated by

< JJulop)ll2, v > —1+ 7)
T ’
where b is a trainable log-softmax-normalized vector that
indicates whether ¢, belongs to a,, u(-) denotes the neural
operator, and v°» is the L2-normalized concept vector of the
concept ¢,; o denotes the softmax function and < -,- > de-
notes the cosine distance; v and 7 are scalar constants for
scaling and shifting the values of similarities.

In the training phase, for each batch of data, we randomly
sample one model u(*)(-) (with k denoting the index of the
sampled model) by the dropout rate, and compute one embed-
ding u*) (0,) for concept quantization of the object o,. The
optimization objective of the scene perception module is to
maximize the likelihood of the final answers a™ being correct

Pa, (cplop;u) =0 (b% +

N M
max ) l(a" E(P(iy;0™), PY), A1)
n=1k=1

where E is the executor, and P the scene perception module
with parameters 9(¥): g denotes the answer, i), the image, and
P the pseudo groundtruth program from the candidates for
the n-th question. To make the execution outputs of P" fully
differentiable w.r.t. the parameters in the scene perception
module for concept learning, we use a quasi-symbolic execu-
tor [Mao et al., 2019; Han et al., 2019], i.e., the intermedi-
ate results of the programs are represented as the attention
mask over all objects in the scene. Each element of the mask
Mask; € [0, 1] denotes the probability that the i-th object of
the scene belongs to the intermediate results.

For concept quantization with confidence evaluation, we
compute M embeddings {u(*)(0,)} L, of the object o,
by sampling M models, and compute the probabilities
ﬁg]z)(cp|op) w.r.t. to all the concepts ¢, € C), for each em-
bedding u*)(0,). Then, we compute the confidence scores

B Var<ﬁap<cp|op>>>2
E [ﬁ%(cﬂ%)]

To calibrate pg,(cylop,) by uncertainty, we use
¢s(Pa, (cplop)) to weight pg (cplop;u) calculated by
the average embeddings w(0,) = > pe, u®(0,),
and the weighted probabilities p,,(cplop) =
¢s(Pa, (cplop))Pa, (cplop; u) are used for concept quan-
tization. The prediction of the attribute value is the
concept ¢, with the highest weighted probability, i.e.,
¢, = argmaxe, Pa, (Cplop)-

Moreover, we use the average confidence score

1 R
cs(aplop) = @ Z ¢s(Pa, (Cplop))

cp€Cy

CS(ﬁap(cp|0p)> = (1 (12)

as the confidence score of an attribute a, for an object o,,
and use the minimal value of the confidence scores of an at-
tribute for all objects in an image as the confidence score of



an attribute of the image, i.e., cs(ap|ip) = min,, cs(aplop).
Then, we use the products of the confidence scores of all the
attributes as the confidence score of the image, i.e., ¢5(i,) =

Hap CS(ap‘Z’p))-

4.3 Confidence Scores throughout Execution

After concept quantization of an image and program gener-
ation of a question about the image with confidence evalua-
tions, we evaluate the confidence for each step of the program
execution. Specifically, for the ¢-th functional operation in the
program that involves an attribute a,, we use

t .

c, = min cg(aplo 13
S op€ O, 5( P‘ p) ( )

where O denotes the set of objects that are involved in the

t-th operation, as the confidence score of the ¢-th step. Then,

we compute the confidence score of the answer derived by

executing the program as

cipxy) = (YII4) xetobybor = a4

where T is the number of operations involving attributes in
the program, i/ is used to normalize the score, and « is a
tuning parameter to control the relative importance of the final
confidence scores of perception and program. We choose « to
achieve the largest AUC score of using the answer confidence
score to predict the correctness of answers on the training set.

5 Experiments

In this section, we empirically evaluate the proposed frame-
work CBNS VQA on the CLEVR dataset [Johnson et al.,
2017al. The goal is to evaluate whether CBNS VQA is capa-
ble of providing confidence-based inference for VQA tasks
and how it performs compared with state-of-the-art neural
symbolic VQA methods.

5.1 Module training of CBNS model

Question parser training details: We train the question
parser using 630 ground-truth programs (7 programs per
question template, < 1% of CLEVR’s 70K training images)
with the associated groundtruth scene annotations from the
training set of CLEVR dataset. First, we use the groundtruth
scene annotations and programs to train the question parser
in Section 4. Our question parser shares the same encoder
and decoder structures as [Yi e al., 2018] except for the re-
constructor, the variational dropout layer, and the additional
losses for self-supervision. We trained our question parser for
20k iterations.

Table 1: Answer accuracy of question parser models for different
numbers of supervised question program examples.

# 270 450 630 810
MLE 71.97 8335 90.22 92.17
OurRs 94.11 97.84 99.00 99.35

Performance comparison of question parsing: Table
1 shows the reconstruction loss, agreement loss, and VD
with BS improved the answer accuracy by 8.78%, compared

against the maximum likelihood estimation (MLE) question
parser from [Yi et al., 2018]. The beam width B = 3 in
our experiments. Moreover, we validate the data augmenta-
tion rules by checking the accuracy of the selected programs.
Specifically, we use the exact match score (i.e., the percentage
of predicted programs that exactly match the groundtruth pro-
grams') to measure the accuracy of the predicted programs.
The accuracy of the predicted programs selected by the rules
on the validation set is 99.88% while the accuracy of all the
predicted program candidates is 99.00%, which demonstrates
the high effectiveness of the rules. Moreover, our question
parser improves the program accuracy by more than 5%,
compared against NMN[Johnson et al., 2017b] (62.47%) and
Prob-NMN [Vedantam et al., 2019] (93.15%) using 1000 su-
pervised program question examples. Additionally, our ques-
tion parser significantly reduced the computational cost, com-
pared to the question parser in the NS-VQA. NS-VQA ques-
tion parser used 270 groundtruth programs for 20k-iteration
supervised pretraining and then ran additional 2M iterations
of REINFORCE with early stopping on 30k data while our
method does not need REINFORCE at all.

Confidence evaluation of question parsing: To demon-
strate the effectiveness of confidence evaluations, We test the
capability of the confidence scores of programs to predict the
correctness of the programs. The AUC score of using the
confidence scores to predict the correctness of the programs
that reach consensus on the Top 1 ranking is 0.9450, which
shows the usefulness of the confidence score for predicting
the program’s correctness.

Scene perception training details: We generate 3 pro-
gram candidates for each of the 90k questions randomly se-
lected from the CLEVR training set and find 64k questions
for which the Top-1 program candidates by the rankings of
agreement loss and the calibrated probabilities reach consen-
sus. Then, we sort the Top-1 program candidates for the 64k
questions by the calibrated probabilities in descending order
and select the first 45k programs associated with the images
and answers for training the concept learner. Our scene per-
ception module shares the same structure as NS-CL except
for the variational dropout layer. To train the scene percep-
tion module, we use a similar approach as NS-CL except that
we use the fixed programs predicted by our question parser
while NS-CL trains the question parser (using REINFORCE
and additional data) and the scene perception module alter-
natively. It is noted that REINFORCE suffers from an ineffi-
cient update process and noisy gradient estimate, which neg-
atively affects the scene perception module training. Our ap-
proach can avoid REINROECE and achieve competitive ac-
curacy for both question parsing and scene perception.

Performance comparison of scene perception: We eval-
uate the performance of our scene perception module on the
CLEVR validation set, and the accuracy for all object prop-
erties is greater than 98%, suggesting the predicted programs
are sufficient for concept learning without direct concept su-
pervision. Moreover, our scene perception module achieved
comparative accuracy (99.32)% to the NS-CL on the training
set of CLEVR dataset with groundtruth programs (99.90%)

't is noted that the groundtruth programs are only used for vali-
dation rather than training or inference.



Table 2: Answer accuracy comparison for different question types. RL refers to REINFORCE; GT: groundtruth; L: using concept labels; PS:

pure symbolic; QS: quasi-symbolic.

MODEL SAMPLES PROG. RL EXE. MEAN COUNT CMP. NUM. EXIST QUERY CMP. ATTR.
NS-CL 30K - - PS 96.33 96.70 97.27 97.92  95.80 95.24
70K 0 YEs QS 98.19 96.31 98.06 98.94  98.80 98.84
CBNS(CL) 45K 630 No PsS 96.11 94.66 97.55 97.01 96.09 96.67
70K 630 No PS 98.36 99.75 99.00 98.35 98.41 99.18
NS-VQA 30k L 270 YEs PS 99.13 99.12 99.45 99.43 99.06 98.90
CBNS(VQA) 30K L 630 No PS 98.46 97.40 99.10 98.40 98.58 99.34

regarding the mean concept accuracy, while also providing
reliable confidence evaluations.

Confidence evaluation of scene perception: In the con-
cept quantization from CBNS(CL), we use the confidence
scores to predict the correctness of predicted concepts and
calculate the AUC scores to evaluate the confidence’s per-
formance. Specifically, the AUC scores for the attributes
color, material, shape, and size are 0.9768, 0.9652, 0.9670
and 0.9908, which demonstrates the effectiveness of the con-
fidence evaluations of concept learning.

5.2 Final performance comparison

Table 2 shows the accuracy comparison between our ap-
proach and the existing works. Need to mention, except for
our proposed CBNS, all other neural-symbolic VQA systems
listed here do not provide confidence evaluation for the rea-
soning process, they only treat the intermediate results as
black-box outcomes.

Since NS-CL avoids the requirements of concept labels
with quasi-symbolic reasoning and CNBS uses pure symbolic
reasoning, for a fair comparison, we test the performance of
concept quantization from NS-CL with pure symbolic reason-
ing. Utilizing the groundtruth programs for symbolic execu-
tion, NS-CL achieved an accuracy of 96.33%. Our proposed
method CBNS(CL) achieved a similar performance (96.11%)
to NS-CL using pure symbolic reasoning but avoided the
REINFORCE training process of high sample complexity.
Moreover, the accuracy of our approach can further increase
by improving the accuracy of concept quantization. Train-
ing with 70K samples for concept quantization, our approach
(98.36%) performs better than NS-CL (98.19%) using quasi-
symbolic reasoning.

Additionally, to demonstrate our CBNS framework is
model-agnostic, we apply our confidence-based approaches
to NS-VQA [Yi ez al., 2018] and compare the accuracy of NS-
VQA? with our CBNS(VQA) that uses the proposed question
parser with confidence evaluations. The concept labels were
used to train the attribute net. We used the same predictions
of concepts for evaluating the NS-VQA parser and our parser.
The answer accuracy of NS-VQA (99.13%) is the same as
that of using the groundtruth programs and slightly higher
than CBNS(VQA) (98.46%), as the question parser of NS-
VQA was pretrained on 270 groundtruth question program
pairs and finetuned on 30,000 question-answer pairs while
our parser was trained only on 630 fully annotated data.

Confidence evaluation of answers: Using the similar set-
tings of NS-CL? to train the perception module but with un-
certainty quantification, we evaluated the confidence of the

2https://github.com/kexinyi/ns-vqa.
*https://github.com/vacancy/NS-CL-PyTorch-Release.

logic operation outputs along the program execution trace, as
described in Section 4.3. In Figure 3, we compare the ROC
curves of CBNS VQA with another two baselines: (1) MAC
model + Predictive Uncertainty; and (2) MAC model + EDL.
The MAC [Hudson and Manning, 2018] is an end-to-end neu-
ral structure that performs reasoning implicitly and has shown
good performance on VQA tasks. Predictive Uncertainty is
introduced by [Malinin and Gales, 2018], it models the dis-
tributional uncertainty by parameterizing a prior distribution
over predictive distributions. The other method, EDL[Sen-
soy et al., 2018] uses subjective logic to measure the uncer-
tainty of the prediction result. In the experiment, we noticed
a significant performance drop after enabling the uncertainty
measure on neural networks. The original validation accuracy
of MAC on CLEVR, if combined with predictive uncertainty
and EDL, drops from 98.9% to 95.36% and 90.67%, respec-
tively. Instead, our CBNS(VQA) could maintain a good accu-
racy of 98.46% while getting the best uncertainty estimation
with an AUC of 0.9499.
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Figure 3: The ROC curves of answer correctness prediction for dif-
ferent uncertainty quantization methods.

6 Conclusion

In this paper, a CBNS framework for VQA is introduced,
wherein confidence evaluations relied on the quantification
of model uncertainty in the NN components (specifically,
scene perception and question parsing) as well as the pro-
gram execution. The system considers multiple program
candidates and provides answers accompanied by confidence
evaluations. Through experiments conducted on the CLEVR
dataset, it is observed that uncertainty quantification not only
serves as a basis for confidence assessments but also enhances
the accuracy of question parsing and improves learning effi-
ciency. Moving forward, future research will focus on ex-
ploring the adaptability of this framework to other neural-
symbolic VQA models and testing its performance using
larger-scale datasets of natural images and language.
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