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Abstract

Classical neural ordinary differential equations (ODEs) trained by using explicit methods are intrin-
sically constrained by stability, severely affecting their efficiency and robustness in learning complex
spatiotemporal dynamics, particularly those displaying chaotic behavior. In this work we propose
a semi-implicit neural ODE approach that capitalizes on the partitionable structure of the underly-
ing dynamics. In our method the neural ODE is partitioned into a linear part treated implicitly for
enhanced stability and a nonlinear part treated explicitly. We apply this approach to learn chaotic
trajectories of the Kuramoto–Sivashinsky equation. Our results demonstrate that our approach sig-
nificantly outperforms existing approaches for coarse-resolution data and remains efficient for fine-
resolution data where existing techniques become intractable.

1 Introduction

Recent advances of neural ordinary differential equations (ODEs) (Chen et al., 2018; 2020; Zhou
et al., 2021; Shankar et al., 2020; Linot et al., 2022) have enabled the prediction of spatiotemporal
systems from time series data, finding applications in diverse fields such as seismology, epidemiol-
ogy, urban mobility, and neuroscience.

Predicting chaotic dynamics is inherently challenging, however, because of their sensitivity to initial
conditions, where even a small perturbation can lead to substantial errors over time. This stability is-
sue restricts the effectiveness of traditional neural ODE approaches to short-time prediction (Maulik
et al., 2020) or prediction in reduced dimensions (Linot & Graham, 2022) for chaotic systems. The
primary motivation for this research is to address the prediction of complex, high-dimensional, and
chaotic systems.

In existing applications of neural ODEs, explicit time integration methods are frequently used be-
cause of their advantages in ease of implementation, minimal storage requirements, and straightfor-
ward backpropagation. However, a major drawback of these methods is their conditional stability,
which imposes limitations on the timestep size. On the other hand, implicit time integration methods
offer unconditional stability but often come at the cost of computational efficiency compared with
explicit methods, since they require solving nonlinear systems at each time step. Typically, nonlinear
solvers involve an iterative procedure such as fixed-point iteration or Newton’s method. However,
these solvers may fail to converge for ill-conditioned systems, and direct backpropogation becomes
challenging because of the iterative algorithm’s complexity and the memory bottlenecks with auto-
matic differentiation. Some efforts have been made to make nonlinear solvers feasible for training.
For instance, the Jacobian-free backpropagation method in (Fung et al., 2022) uses a precondition-
ing technique, and proximal implicit neural ODEs (Baker et al., 2022) approximate the solution of
the nonlinear system with an optimization algorithm. Yet these methods, grounded in fixed-point
iteration, compromise convergence speed and stability in favor of easing backpropagation.

Regarding gradient calculation, adjoint methods (Chen et al., 2018; Winston & Kolter, 2020) have
been widely utilized in neural ODEs. The vanilla neural ODE (Chen et al., 2018) adopted a contin-
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uous adjoint approach, which, however, lacks reverse accuracy. Notably, the gradient is inconsistent
with the forward pass, even when employing the same time integrator and step size in both passes.
Reverse-accurate variants of neural ODEs have been developed in (Gholaminejad et al., 2019; Zhang
et al., 2019; Zhuang et al., 2020; 2021), relying on backpropagation, checkpointing, and recompu-
tation to mitigate memory costs. Zhang et al. (Zhang & Zhao, 2022) proposed a discrete adjoint
approach that achieves reverse-accuracy and can leverage optimal checkpointing schedules (Zhang
& Constantinescu, 2021; 2023) to balance the trade-off between recomputation and memory usage
when memory is constrained.

In this work we capitalize on the structure of underlying dynamical systems and introduce a semi-
implicit neural ODE approach to address the computational bottlenecks and stability limitations of
traditional neural ODEs. Our approach enables the use of implicit-explicit (IMEX) methods for
partitioned systems. To achieve reverse accuracy and memory efficiency, we extend the discrete
adjoint approach (Zhang & Zhao, 2022) to IMEX Runge–Kutta methods.

2 Method

We consider an autonomous neural ODE framework with an additively partitioned right-hand side:

du

dt
= G(u) +H(u) , (1)

where u(t) ∈ Rd is the state, t is the time, and G : Rd → Rd and H : Rd → Rd are neural networks,
for example feed-forward neural networks. Similar to the conventional neural ODE, our framework
takes an input u(t0), learns the representation of the dynamics, and predicts the output u(tN ) or a
sequence of outputs uti , t = 1, . . . , N by solving (2) from the starting time t0 to the ending time
tN with a numerical ODE solver. While this framework is general and applicable for a wide range
of applications, we are particularly interested in a model with a nonlinear part and a linear part.
Without loss of generality, we assume H is linear and rewrite (1) to

du

dt
= G(u)︸ ︷︷ ︸

Nonlinear

+ Au︸︷︷︸
Linear

. (2)

To train the partitioned neural network, we adopt a semi-implicit approach to solve (2) and a discrete
adjoint approach to compute the gradients, as an alternative to directly backpropogating through an
ODE solver.

2.1 Forward pass

Implicit-explicit Runge–Kutta methods are a classical class of semi-implicit numerical schemes for
the time discretization of systems in the form (2), where the right-hand side is partitioned based
on stiffness; for example, G is nonstiff and H is stiff. In an IMEX method, the ODE is integrated
explicitly in G and implicitly in H by coefficients (A = {aij}, b, c) for the explicit part and (Ã =

{ãij}, b̃, c̃) for the implicit part:

U (i) = un +∆t

i−1∑
j=1

aijG(j) +∆t

i∑
j=1

ãijH(j) , i = 1, . . . , s (3a)

un+1 = un +∆t

s∑
j=1

bjG(j) +∆t

s∑
j=1

b̃jH(j) , (3b)

where ∆t is the step size, A = {aij} is strictly lower triangular, Ã = {ãij} is lower triangular and
can have zeros on the diagonal (these correspond to explicit stages), and ◦(i) is a stage index i. G(j)

and H(j) are shorthands for G(t+ ci∆t, U (j)) and H(t+ ci∆t, U (j)), respectively.

At each stage, one needs to solve a nonlinear system for U (i), typically with an iterative method
such as the Newton method. If H is linear, however, (3b) becomes a linear problem with respect to
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U (i):

(I −∆t ãijA)U (i) = un +∆t

i−1∑
j=1

aijG(j) +∆t

i−1∑
j=1

ãij AU j , (4)

thus significantly increasing the computational efficiency. In practice, many applications contain a
linear stiff term. For example, in diffusion-reaction equations, diffusion can be represented by a lin-
ear term and treated implicitly in an IMEX setting. Many neural networks, such as those containing
convolution layers or fully connected layers without activation functions, can be viewed as a linear
map as well.

2.2 Backward pass

Following the same methodology in (Zhang & Zhao, 2022), we have derived the discrete adjoint
formula for the IMEX Runge–Kutta methods in (3b), implemented it in the PETSc library (Balay
et al., 2023), and used it through the PNODE framework (Zhang & Zhao, 2022). The discrete adjoint
formula is as follows:(
I −∆t ãii HT (i)

u

)
λ
(i)
n+1 = ∆t

(
biGT (i)

u + b̃iHT (i)
u

)
λn+1

+∆tGT (i)
u

s∑
j=i+1

ajiλ
(j)
n+1 +∆tHT (i)

u

s∑
j=i+1

ãjiλ
(j)
n+1, , i = s, · · · , 1,

λn = λn+1 +

s∑
j=1

λ
(j)
n+1,

µ
(i)
n+1 = ∆t

(
biGT (i)

p + b̃iHT (i)
p

)
λn+1

+∆tGT (i)
p

s∑
j=i+1

ajiλ
(j)
n+1 +∆tHT (i)

p

s∑
j=i

ãjiλ
(j)
n+1,

µn = µn+1 +

s∑
j=1

µ
(j)
n+1.

(5)
Here λ and µ correspond to the partial derivatives of the loss with respect to the initial state and the
NN parameters, respectively.

In the beginning of the backward pass, we set

λN =
dℓ

du
, µN = 0

as the terminal condition. λ and µ are propagated backward in time (the index n goes from N to 0)
during the backward pass according to (5). At the end of the backward pass, we obtain the gradient

∇θℓ = µT
0 .

If ãii = 0, the first equation in (5) falls back to an explicit formula. For all ãii that are nonzero,
we need to solve a linear system that involves the transposed Jacobian. PETSc provides a large
collection of efficient linear solvers, including iterative solvers and direct solvers. For efficiency,
we do not build the Jacobian matrix explicitly when using iterative solvers. Instead, we compute
the Jacobian-vector product (for the forward pass) and the transposed Jacobian-vector product (for
the backward pass) with AD tools such as AutoGrad. Each time, the cost is one forward evaluation
of the linear term followed by a backward pass. If A is known explicitly, direct solvers are more
favorable since we can factorize the system once and reuse it across time steps and batches. A needs
to be refactorized only when changed, for example at a new optimization step.

3 Experiments on Kuramoto–Sivashinsky Equation

The Kuramoto–Sivashinsky (KS) equation in one-space dimension is described by

∂u

∂t
= −u

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
, x ∈ [0, 22]. (6)
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(a) Ground truth (b) Prediction

Figure 1: Prediction of the trajectory for the KS equation on a uniform grid of size 512 using
SINODE with IMEX-RK2. The neural ODE RHS consists of an MLP block and a CNN block.

It is a well-known nonlinear chaotic partial differential equation (PDE) used for modeling complex
spatiotemporal dynamics.

For our experiments, we use the initial condition:

u = cos(x/22)sin(1 + x/22).

The equation is discretized in space by using a Fourier spectral method and integrated in time with
the exponential time-differencing fourth-order Runge–Kutta method (Kassam & Trefethen, 2005).
To obtain the training data, we collect a time series u(t) ∈ RN for a time span of 200 after discarding
the transient states for the initial time period [0, 100] so that the dynamics is guaranteed to be in the
chaotic regime. In this regime, the solution is extremely sensitive to perturbations in the initial data;
for example, perturbations can be amplified by 108 in a time span of 150 (Kassam & Trefethen,
2005).

We train neural ODEs by approximating the nonlinear term u∂u
∂x with a fully connected multilayer

perceptron (MLP) and approximating the remaining linear terms on the right-hand side (RHS) of
(6) with a fixed convolutional neural network (CNN) layer, following the best settings identified in
(Linot et al., 2022). We use circular padding and a CNN filter of size 5 to mimic centered finite-
difference operators for the anti-diffusion and hyper-diffusion terms with periodic boundary condi-
tions. The parameters of the filter are fixed to be [−1.0/∆x4, 4.0/∆x4 − 1.0/∆x2,−6.0/∆x4 +
2.0/∆x2, 4.0/∆x4 − 1.0/∆x2,−1.0/∆x4], where the grid spacing ∆x = L/N .

We compare SINODE with explicit methods that are commonly used for neural ODEs and with a
fully implicit method proposed in (Zhang & Zhao, 2022). When using the SINODE method, we
treat the MLP part implicitly and the CNN part explicitly. A timestep size 0.2 is used for IMEX and
the fully implicit method. Because of the stability constraints, the explicit methods do not work well
until we decrease the step size to 0.001.

Figure 1 demonstrates that the model prediction made by SINODE is in good agreement with the
ground truth for a long time period. In Figure 2 we illustrate the training loss versus the training
time for all the methods, providing a clear evaluation of their efficiency. As expected, SINODE
using IMEX methods significantly outperform the other methods. For example, SINODE with
IMEX-RK2 is approximately 47 times faster than the classical neural ODE with Dopri5 and ap-
proximately 33 times faster than the neural ODE with Crank–Nicolson to decrease the training loss
to 10−3. The superior performance of SINODE is attributed mainly to superior stability properties
and the computational advantages of semi-implicit methods. Note that the improvement in training
efficiency becomes more significant as the number of time steps increases because of the increased
opportunity to reuse the LU factorization for solving the linear systems. For Figure 2 we use only
one time step during the training, reflecting the worst-case performance.

The problem becomes more challenging for training neural ODEs when the grid resolution increases
(so the dimension N increases). After we change the grid size from 64 to 512, the performance of
neural ODEs with explicit methods or fully implicit methods degrades dramatically, while SINODE
maintains high efficiency. Figure 3 shows the results of SINODE for this test case. We can still use
the timestep size 0.2 for the training with SINODE, but the explicit methods require a step size as
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Figure 2: Training loss versus training time for all the methods (a) and for the IMEX methods (b).
The grid size is 64. (b) is a zoom-in plot of (a).

small as 10−7 because of the severe stability constraint from the hyper-diffusion term. We are not
able to make the fully implicit methods work with the step size 0.2 because the nonlinear solver
diverges frequently during the training process. This is not uncommon for classical PDE solvers
since the condition number of the system increases as the grid resolution increases. Decreasing the
step size by 10 times stabilizes the nonlinear solvers. However, this leads to a per-epoch training
time of more than one hour whereas SINODE typically takes less than one second per epoch.
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Figure 3: SINODE results for KSE on a uniform grid of size 512.

An interesting observation is that the lower-order IMEX-RK methods lead to better training effi-
ciency than do high-order IMEX-RK methods, despite their slightly slower convergence speed due
to relatively lower accuracy. This is because higher-order IMEX-RK methods require more stages,
leading to more linear solves at each time step. For the coarse-grid case (64), the second-order
IMEX-RK performs approximately 2.5 times better than the fifth-order IMEX-RK. For the fine-grid
case (512), this gain factor is larger than 5. We expect this gain to increase as the grid resolution
increases.

4 Conclusion

In this study we introduce SINODE, a semi-implicit approach for training neural ODEs by har-
nessing IMEX Runge–Kutta methods and their discrete adjoints. SINODE offers substantial com-
putational advantages over existing approaches, owing to its enhanced stability and efficient linear
system solution during time integration. We demonstrated the efficiency of SINODE by applying it
to learn the chaotic dynamics of a PDE problem. For coarse-resolution data, SINODE outperforms
the classical neural ODE approach by a factor of 47X. With fine -resolution data, we illustrate that
SINODE maintains high efficiency, while both explicit methods and fully implicit methods become
impractical because of the stability constraints or computational expenses.
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